|  | /* | 
|  | * Copyright (C) 2016 Oracle.  All Rights Reserved. | 
|  | * | 
|  | * Author: Darrick J. Wong <darrick.wong@oracle.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version 2 | 
|  | * of the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_defer.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_rmap_item.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_rmap.h" | 
|  |  | 
|  |  | 
|  | kmem_zone_t	*xfs_rui_zone; | 
|  | kmem_zone_t	*xfs_rud_zone; | 
|  |  | 
|  | static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip) | 
|  | { | 
|  | return container_of(lip, struct xfs_rui_log_item, rui_item); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_rui_item_free( | 
|  | struct xfs_rui_log_item	*ruip) | 
|  | { | 
|  | if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS) | 
|  | kmem_free(ruip); | 
|  | else | 
|  | kmem_zone_free(xfs_rui_zone, ruip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Freeing the RUI requires that we remove it from the AIL if it has already | 
|  | * been placed there. However, the RUI may not yet have been placed in the AIL | 
|  | * when called by xfs_rui_release() from RUD processing due to the ordering of | 
|  | * committed vs unpin operations in bulk insert operations. Hence the reference | 
|  | * count to ensure only the last caller frees the RUI. | 
|  | */ | 
|  | void | 
|  | xfs_rui_release( | 
|  | struct xfs_rui_log_item	*ruip) | 
|  | { | 
|  | ASSERT(atomic_read(&ruip->rui_refcount) > 0); | 
|  | if (atomic_dec_and_test(&ruip->rui_refcount)) { | 
|  | xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR); | 
|  | xfs_rui_item_free(ruip); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_rui_item_size( | 
|  | struct xfs_log_item	*lip, | 
|  | int			*nvecs, | 
|  | int			*nbytes) | 
|  | { | 
|  | struct xfs_rui_log_item	*ruip = RUI_ITEM(lip); | 
|  |  | 
|  | *nvecs += 1; | 
|  | *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given rui log item. We use only 1 iovec, and we point that | 
|  | * at the rui_log_format structure embedded in the rui item. | 
|  | * It is at this point that we assert that all of the extent | 
|  | * slots in the rui item have been filled. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_rui_item_format( | 
|  | struct xfs_log_item	*lip, | 
|  | struct xfs_log_vec	*lv) | 
|  | { | 
|  | struct xfs_rui_log_item	*ruip = RUI_ITEM(lip); | 
|  | struct xfs_log_iovec	*vecp = NULL; | 
|  |  | 
|  | ASSERT(atomic_read(&ruip->rui_next_extent) == | 
|  | ruip->rui_format.rui_nextents); | 
|  |  | 
|  | ruip->rui_format.rui_type = XFS_LI_RUI; | 
|  | ruip->rui_format.rui_size = 1; | 
|  |  | 
|  | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format, | 
|  | xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pinning has no meaning for an rui item, so just return. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_rui_item_pin( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The unpin operation is the last place an RUI is manipulated in the log. It is | 
|  | * either inserted in the AIL or aborted in the event of a log I/O error. In | 
|  | * either case, the RUI transaction has been successfully committed to make it | 
|  | * this far. Therefore, we expect whoever committed the RUI to either construct | 
|  | * and commit the RUD or drop the RUD's reference in the event of error. Simply | 
|  | * drop the log's RUI reference now that the log is done with it. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_rui_item_unpin( | 
|  | struct xfs_log_item	*lip, | 
|  | int			remove) | 
|  | { | 
|  | struct xfs_rui_log_item	*ruip = RUI_ITEM(lip); | 
|  |  | 
|  | xfs_rui_release(ruip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RUI items have no locking or pushing.  However, since RUIs are pulled from | 
|  | * the AIL when their corresponding RUDs are committed to disk, their situation | 
|  | * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller | 
|  | * will eventually flush the log.  This should help in getting the RUI out of | 
|  | * the AIL. | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_rui_item_push( | 
|  | struct xfs_log_item	*lip, | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | return XFS_ITEM_PINNED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The RUI has been either committed or aborted if the transaction has been | 
|  | * cancelled. If the transaction was cancelled, an RUD isn't going to be | 
|  | * constructed and thus we free the RUI here directly. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_rui_item_unlock( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | if (lip->li_flags & XFS_LI_ABORTED) | 
|  | xfs_rui_release(RUI_ITEM(lip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The RUI is logged only once and cannot be moved in the log, so simply return | 
|  | * the lsn at which it's been logged. | 
|  | */ | 
|  | STATIC xfs_lsn_t | 
|  | xfs_rui_item_committed( | 
|  | struct xfs_log_item	*lip, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | return lsn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The RUI dependency tracking op doesn't do squat.  It can't because | 
|  | * it doesn't know where the free extent is coming from.  The dependency | 
|  | * tracking has to be handled by the "enclosing" metadata object.  For | 
|  | * example, for inodes, the inode is locked throughout the extent freeing | 
|  | * so the dependency should be recorded there. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_rui_item_committing( | 
|  | struct xfs_log_item	*lip, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the ops vector shared by all rui log items. | 
|  | */ | 
|  | static const struct xfs_item_ops xfs_rui_item_ops = { | 
|  | .iop_size	= xfs_rui_item_size, | 
|  | .iop_format	= xfs_rui_item_format, | 
|  | .iop_pin	= xfs_rui_item_pin, | 
|  | .iop_unpin	= xfs_rui_item_unpin, | 
|  | .iop_unlock	= xfs_rui_item_unlock, | 
|  | .iop_committed	= xfs_rui_item_committed, | 
|  | .iop_push	= xfs_rui_item_push, | 
|  | .iop_committing = xfs_rui_item_committing, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an rui item with the given number of extents. | 
|  | */ | 
|  | struct xfs_rui_log_item * | 
|  | xfs_rui_init( | 
|  | struct xfs_mount		*mp, | 
|  | uint				nextents) | 
|  |  | 
|  | { | 
|  | struct xfs_rui_log_item		*ruip; | 
|  |  | 
|  | ASSERT(nextents > 0); | 
|  | if (nextents > XFS_RUI_MAX_FAST_EXTENTS) | 
|  | ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), KM_SLEEP); | 
|  | else | 
|  | ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP); | 
|  |  | 
|  | xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops); | 
|  | ruip->rui_format.rui_nextents = nextents; | 
|  | ruip->rui_format.rui_id = (uintptr_t)(void *)ruip; | 
|  | atomic_set(&ruip->rui_next_extent, 0); | 
|  | atomic_set(&ruip->rui_refcount, 2); | 
|  |  | 
|  | return ruip; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy an RUI format buffer from the given buf, and into the destination | 
|  | * RUI format structure.  The RUI/RUD items were designed not to need any | 
|  | * special alignment handling. | 
|  | */ | 
|  | int | 
|  | xfs_rui_copy_format( | 
|  | struct xfs_log_iovec		*buf, | 
|  | struct xfs_rui_log_format	*dst_rui_fmt) | 
|  | { | 
|  | struct xfs_rui_log_format	*src_rui_fmt; | 
|  | uint				len; | 
|  |  | 
|  | src_rui_fmt = buf->i_addr; | 
|  | len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents); | 
|  |  | 
|  | if (buf->i_len != len) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | memcpy(dst_rui_fmt, src_rui_fmt, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip) | 
|  | { | 
|  | return container_of(lip, struct xfs_rud_log_item, rud_item); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_rud_item_size( | 
|  | struct xfs_log_item	*lip, | 
|  | int			*nvecs, | 
|  | int			*nbytes) | 
|  | { | 
|  | *nvecs += 1; | 
|  | *nbytes += sizeof(struct xfs_rud_log_format); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given rud log item. We use only 1 iovec, and we point that | 
|  | * at the rud_log_format structure embedded in the rud item. | 
|  | * It is at this point that we assert that all of the extent | 
|  | * slots in the rud item have been filled. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_rud_item_format( | 
|  | struct xfs_log_item	*lip, | 
|  | struct xfs_log_vec	*lv) | 
|  | { | 
|  | struct xfs_rud_log_item	*rudp = RUD_ITEM(lip); | 
|  | struct xfs_log_iovec	*vecp = NULL; | 
|  |  | 
|  | rudp->rud_format.rud_type = XFS_LI_RUD; | 
|  | rudp->rud_format.rud_size = 1; | 
|  |  | 
|  | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format, | 
|  | sizeof(struct xfs_rud_log_format)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pinning has no meaning for an rud item, so just return. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_rud_item_pin( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since pinning has no meaning for an rud item, unpinning does | 
|  | * not either. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_rud_item_unpin( | 
|  | struct xfs_log_item	*lip, | 
|  | int			remove) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There isn't much you can do to push on an rud item.  It is simply stuck | 
|  | * waiting for the log to be flushed to disk. | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_rud_item_push( | 
|  | struct xfs_log_item	*lip, | 
|  | struct list_head	*buffer_list) | 
|  | { | 
|  | return XFS_ITEM_PINNED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The RUD is either committed or aborted if the transaction is cancelled. If | 
|  | * the transaction is cancelled, drop our reference to the RUI and free the | 
|  | * RUD. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_rud_item_unlock( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | struct xfs_rud_log_item	*rudp = RUD_ITEM(lip); | 
|  |  | 
|  | if (lip->li_flags & XFS_LI_ABORTED) { | 
|  | xfs_rui_release(rudp->rud_ruip); | 
|  | kmem_zone_free(xfs_rud_zone, rudp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When the rud item is committed to disk, all we need to do is delete our | 
|  | * reference to our partner rui item and then free ourselves. Since we're | 
|  | * freeing ourselves we must return -1 to keep the transaction code from | 
|  | * further referencing this item. | 
|  | */ | 
|  | STATIC xfs_lsn_t | 
|  | xfs_rud_item_committed( | 
|  | struct xfs_log_item	*lip, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | struct xfs_rud_log_item	*rudp = RUD_ITEM(lip); | 
|  |  | 
|  | /* | 
|  | * Drop the RUI reference regardless of whether the RUD has been | 
|  | * aborted. Once the RUD transaction is constructed, it is the sole | 
|  | * responsibility of the RUD to release the RUI (even if the RUI is | 
|  | * aborted due to log I/O error). | 
|  | */ | 
|  | xfs_rui_release(rudp->rud_ruip); | 
|  | kmem_zone_free(xfs_rud_zone, rudp); | 
|  |  | 
|  | return (xfs_lsn_t)-1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The RUD dependency tracking op doesn't do squat.  It can't because | 
|  | * it doesn't know where the free extent is coming from.  The dependency | 
|  | * tracking has to be handled by the "enclosing" metadata object.  For | 
|  | * example, for inodes, the inode is locked throughout the extent freeing | 
|  | * so the dependency should be recorded there. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_rud_item_committing( | 
|  | struct xfs_log_item	*lip, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the ops vector shared by all rud log items. | 
|  | */ | 
|  | static const struct xfs_item_ops xfs_rud_item_ops = { | 
|  | .iop_size	= xfs_rud_item_size, | 
|  | .iop_format	= xfs_rud_item_format, | 
|  | .iop_pin	= xfs_rud_item_pin, | 
|  | .iop_unpin	= xfs_rud_item_unpin, | 
|  | .iop_unlock	= xfs_rud_item_unlock, | 
|  | .iop_committed	= xfs_rud_item_committed, | 
|  | .iop_push	= xfs_rud_item_push, | 
|  | .iop_committing = xfs_rud_item_committing, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an rud item with the given number of extents. | 
|  | */ | 
|  | struct xfs_rud_log_item * | 
|  | xfs_rud_init( | 
|  | struct xfs_mount		*mp, | 
|  | struct xfs_rui_log_item		*ruip) | 
|  |  | 
|  | { | 
|  | struct xfs_rud_log_item	*rudp; | 
|  |  | 
|  | rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP); | 
|  | xfs_log_item_init(mp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops); | 
|  | rudp->rud_ruip = ruip; | 
|  | rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id; | 
|  |  | 
|  | return rudp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an rmap update intent item that was recovered from the log. | 
|  | * We need to update the rmapbt. | 
|  | */ | 
|  | int | 
|  | xfs_rui_recover( | 
|  | struct xfs_mount		*mp, | 
|  | struct xfs_rui_log_item		*ruip) | 
|  | { | 
|  | int				i; | 
|  | int				error = 0; | 
|  | struct xfs_map_extent		*rmap; | 
|  | xfs_fsblock_t			startblock_fsb; | 
|  | bool				op_ok; | 
|  | struct xfs_rud_log_item		*rudp; | 
|  | enum xfs_rmap_intent_type	type; | 
|  | int				whichfork; | 
|  | xfs_exntst_t			state; | 
|  | struct xfs_trans		*tp; | 
|  | struct xfs_btree_cur		*rcur = NULL; | 
|  |  | 
|  | ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)); | 
|  |  | 
|  | /* | 
|  | * First check the validity of the extents described by the | 
|  | * RUI.  If any are bad, then assume that all are bad and | 
|  | * just toss the RUI. | 
|  | */ | 
|  | for (i = 0; i < ruip->rui_format.rui_nextents; i++) { | 
|  | rmap = &ruip->rui_format.rui_extents[i]; | 
|  | startblock_fsb = XFS_BB_TO_FSB(mp, | 
|  | XFS_FSB_TO_DADDR(mp, rmap->me_startblock)); | 
|  | switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { | 
|  | case XFS_RMAP_EXTENT_MAP: | 
|  | case XFS_RMAP_EXTENT_MAP_SHARED: | 
|  | case XFS_RMAP_EXTENT_UNMAP: | 
|  | case XFS_RMAP_EXTENT_UNMAP_SHARED: | 
|  | case XFS_RMAP_EXTENT_CONVERT: | 
|  | case XFS_RMAP_EXTENT_CONVERT_SHARED: | 
|  | case XFS_RMAP_EXTENT_ALLOC: | 
|  | case XFS_RMAP_EXTENT_FREE: | 
|  | op_ok = true; | 
|  | break; | 
|  | default: | 
|  | op_ok = false; | 
|  | break; | 
|  | } | 
|  | if (!op_ok || startblock_fsb == 0 || | 
|  | rmap->me_len == 0 || | 
|  | startblock_fsb >= mp->m_sb.sb_dblocks || | 
|  | rmap->me_len >= mp->m_sb.sb_agblocks || | 
|  | (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) { | 
|  | /* | 
|  | * This will pull the RUI from the AIL and | 
|  | * free the memory associated with it. | 
|  | */ | 
|  | set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags); | 
|  | xfs_rui_release(ruip); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, | 
|  | mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp); | 
|  | if (error) | 
|  | return error; | 
|  | rudp = xfs_trans_get_rud(tp, ruip); | 
|  |  | 
|  | for (i = 0; i < ruip->rui_format.rui_nextents; i++) { | 
|  | rmap = &ruip->rui_format.rui_extents[i]; | 
|  | state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ? | 
|  | XFS_EXT_UNWRITTEN : XFS_EXT_NORM; | 
|  | whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ? | 
|  | XFS_ATTR_FORK : XFS_DATA_FORK; | 
|  | switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { | 
|  | case XFS_RMAP_EXTENT_MAP: | 
|  | type = XFS_RMAP_MAP; | 
|  | break; | 
|  | case XFS_RMAP_EXTENT_MAP_SHARED: | 
|  | type = XFS_RMAP_MAP_SHARED; | 
|  | break; | 
|  | case XFS_RMAP_EXTENT_UNMAP: | 
|  | type = XFS_RMAP_UNMAP; | 
|  | break; | 
|  | case XFS_RMAP_EXTENT_UNMAP_SHARED: | 
|  | type = XFS_RMAP_UNMAP_SHARED; | 
|  | break; | 
|  | case XFS_RMAP_EXTENT_CONVERT: | 
|  | type = XFS_RMAP_CONVERT; | 
|  | break; | 
|  | case XFS_RMAP_EXTENT_CONVERT_SHARED: | 
|  | type = XFS_RMAP_CONVERT_SHARED; | 
|  | break; | 
|  | case XFS_RMAP_EXTENT_ALLOC: | 
|  | type = XFS_RMAP_ALLOC; | 
|  | break; | 
|  | case XFS_RMAP_EXTENT_FREE: | 
|  | type = XFS_RMAP_FREE; | 
|  | break; | 
|  | default: | 
|  | error = -EFSCORRUPTED; | 
|  | goto abort_error; | 
|  | } | 
|  | error = xfs_trans_log_finish_rmap_update(tp, rudp, type, | 
|  | rmap->me_owner, whichfork, | 
|  | rmap->me_startoff, rmap->me_startblock, | 
|  | rmap->me_len, state, &rcur); | 
|  | if (error) | 
|  | goto abort_error; | 
|  |  | 
|  | } | 
|  |  | 
|  | xfs_rmap_finish_one_cleanup(tp, rcur, error); | 
|  | set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags); | 
|  | error = xfs_trans_commit(tp); | 
|  | return error; | 
|  |  | 
|  | abort_error: | 
|  | xfs_rmap_finish_one_cleanup(tp, rcur, error); | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } |