| /**************************************************************************** | 
 |  * Driver for Solarflare Solarstorm network controllers and boards | 
 |  * Copyright 2010-2011 Solarflare Communications Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 as published | 
 |  * by the Free Software Foundation, incorporated herein by reference. | 
 |  */ | 
 | #include <linux/pci.h> | 
 | #include <linux/module.h> | 
 | #include "net_driver.h" | 
 | #include "efx.h" | 
 | #include "nic.h" | 
 | #include "io.h" | 
 | #include "mcdi.h" | 
 | #include "filter.h" | 
 | #include "mcdi_pcol.h" | 
 | #include "regs.h" | 
 | #include "vfdi.h" | 
 |  | 
 | /* Number of longs required to track all the VIs in a VF */ | 
 | #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX) | 
 |  | 
 | /* Maximum number of RX queues supported */ | 
 | #define VF_MAX_RX_QUEUES 63 | 
 |  | 
 | /** | 
 |  * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour | 
 |  * @VF_TX_FILTER_OFF: Disabled | 
 |  * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only | 
 |  *	2 TX queues allowed per VF. | 
 |  * @VF_TX_FILTER_ON: Enabled | 
 |  */ | 
 | enum efx_vf_tx_filter_mode { | 
 | 	VF_TX_FILTER_OFF, | 
 | 	VF_TX_FILTER_AUTO, | 
 | 	VF_TX_FILTER_ON, | 
 | }; | 
 |  | 
 | /** | 
 |  * struct efx_vf - Back-end resource and protocol state for a PCI VF | 
 |  * @efx: The Efx NIC owning this VF | 
 |  * @pci_rid: The PCI requester ID for this VF | 
 |  * @pci_name: The PCI name (formatted address) of this VF | 
 |  * @index: Index of VF within its port and PF. | 
 |  * @req: VFDI incoming request work item. Incoming USR_EV events are received | 
 |  *	by the NAPI handler, but must be handled by executing MCDI requests | 
 |  *	inside a work item. | 
 |  * @req_addr: VFDI incoming request DMA address (in VF's PCI address space). | 
 |  * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member. | 
 |  * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member. | 
 |  * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by | 
 |  *	@status_lock | 
 |  * @busy: VFDI request queued to be processed or being processed. Receiving | 
 |  *	a VFDI request when @busy is set is an error condition. | 
 |  * @buf: Incoming VFDI requests are DMA from the VF into this buffer. | 
 |  * @buftbl_base: Buffer table entries for this VF start at this index. | 
 |  * @rx_filtering: Receive filtering has been requested by the VF driver. | 
 |  * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request. | 
 |  * @rx_filter_qid: VF relative qid for RX filter requested by VF. | 
 |  * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported. | 
 |  * @tx_filter_mode: Transmit MAC filtering mode. | 
 |  * @tx_filter_id: Transmit MAC filter ID. | 
 |  * @addr: The MAC address and outer vlan tag of the VF. | 
 |  * @status_addr: VF DMA address of page for &struct vfdi_status updates. | 
 |  * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr, | 
 |  *	@peer_page_addrs and @peer_page_count from simultaneous | 
 |  *	updates by the VM and consumption by | 
 |  *	efx_sriov_update_vf_addr() | 
 |  * @peer_page_addrs: Pointer to an array of guest pages for local addresses. | 
 |  * @peer_page_count: Number of entries in @peer_page_count. | 
 |  * @evq0_addrs: Array of guest pages backing evq0. | 
 |  * @evq0_count: Number of entries in @evq0_addrs. | 
 |  * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler | 
 |  *	to wait for flush completions. | 
 |  * @txq_lock: Mutex for TX queue allocation. | 
 |  * @txq_mask: Mask of initialized transmit queues. | 
 |  * @txq_count: Number of initialized transmit queues. | 
 |  * @rxq_mask: Mask of initialized receive queues. | 
 |  * @rxq_count: Number of initialized receive queues. | 
 |  * @rxq_retry_mask: Mask or receive queues that need to be flushed again | 
 |  *	due to flush failure. | 
 |  * @rxq_retry_count: Number of receive queues in @rxq_retry_mask. | 
 |  * @reset_work: Work item to schedule a VF reset. | 
 |  */ | 
 | struct efx_vf { | 
 | 	struct efx_nic *efx; | 
 | 	unsigned int pci_rid; | 
 | 	char pci_name[13]; /* dddd:bb:dd.f */ | 
 | 	unsigned int index; | 
 | 	struct work_struct req; | 
 | 	u64 req_addr; | 
 | 	int req_type; | 
 | 	unsigned req_seqno; | 
 | 	unsigned msg_seqno; | 
 | 	bool busy; | 
 | 	struct efx_buffer buf; | 
 | 	unsigned buftbl_base; | 
 | 	bool rx_filtering; | 
 | 	enum efx_filter_flags rx_filter_flags; | 
 | 	unsigned rx_filter_qid; | 
 | 	int rx_filter_id; | 
 | 	enum efx_vf_tx_filter_mode tx_filter_mode; | 
 | 	int tx_filter_id; | 
 | 	struct vfdi_endpoint addr; | 
 | 	u64 status_addr; | 
 | 	struct mutex status_lock; | 
 | 	u64 *peer_page_addrs; | 
 | 	unsigned peer_page_count; | 
 | 	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) / | 
 | 		       EFX_BUF_SIZE]; | 
 | 	unsigned evq0_count; | 
 | 	wait_queue_head_t flush_waitq; | 
 | 	struct mutex txq_lock; | 
 | 	unsigned long txq_mask[VI_MASK_LENGTH]; | 
 | 	unsigned txq_count; | 
 | 	unsigned long rxq_mask[VI_MASK_LENGTH]; | 
 | 	unsigned rxq_count; | 
 | 	unsigned long rxq_retry_mask[VI_MASK_LENGTH]; | 
 | 	atomic_t rxq_retry_count; | 
 | 	struct work_struct reset_work; | 
 | }; | 
 |  | 
 | struct efx_memcpy_req { | 
 | 	unsigned int from_rid; | 
 | 	void *from_buf; | 
 | 	u64 from_addr; | 
 | 	unsigned int to_rid; | 
 | 	u64 to_addr; | 
 | 	unsigned length; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct efx_local_addr - A MAC address on the vswitch without a VF. | 
 |  * | 
 |  * Siena does not have a switch, so VFs can't transmit data to each | 
 |  * other. Instead the VFs must be made aware of the local addresses | 
 |  * on the vswitch, so that they can arrange for an alternative | 
 |  * software datapath to be used. | 
 |  * | 
 |  * @link: List head for insertion into efx->local_addr_list. | 
 |  * @addr: Ethernet address | 
 |  */ | 
 | struct efx_local_addr { | 
 | 	struct list_head link; | 
 | 	u8 addr[ETH_ALEN]; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct efx_endpoint_page - Page of vfdi_endpoint structures | 
 |  * | 
 |  * @link: List head for insertion into efx->local_page_list. | 
 |  * @ptr: Pointer to page. | 
 |  * @addr: DMA address of page. | 
 |  */ | 
 | struct efx_endpoint_page { | 
 | 	struct list_head link; | 
 | 	void *ptr; | 
 | 	dma_addr_t addr; | 
 | }; | 
 |  | 
 | /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */ | 
 | #define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\ | 
 | 	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid)) | 
 | #define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\ | 
 | 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\ | 
 | 	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE)) | 
 | #define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\ | 
 | 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\ | 
 | 	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE)) | 
 |  | 
 | #define EFX_FIELD_MASK(_field)			\ | 
 | 	((1 << _field ## _WIDTH) - 1) | 
 |  | 
 | /* VFs can only use this many transmit channels */ | 
 | static unsigned int vf_max_tx_channels = 2; | 
 | module_param(vf_max_tx_channels, uint, 0444); | 
 | MODULE_PARM_DESC(vf_max_tx_channels, | 
 | 		 "Limit the number of TX channels VFs can use"); | 
 |  | 
 | static int max_vfs = -1; | 
 | module_param(max_vfs, int, 0444); | 
 | MODULE_PARM_DESC(max_vfs, | 
 | 		 "Reduce the number of VFs initialized by the driver"); | 
 |  | 
 | /* Workqueue used by VFDI communication.  We can't use the global | 
 |  * workqueue because it may be running the VF driver's probe() | 
 |  * routine, which will be blocked there waiting for a VFDI response. | 
 |  */ | 
 | static struct workqueue_struct *vfdi_workqueue; | 
 |  | 
 | static unsigned abs_index(struct efx_vf *vf, unsigned index) | 
 | { | 
 | 	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index; | 
 | } | 
 |  | 
 | static int efx_sriov_cmd(struct efx_nic *efx, bool enable, | 
 | 			 unsigned *vi_scale_out, unsigned *vf_total_out) | 
 | { | 
 | 	u8 inbuf[MC_CMD_SRIOV_IN_LEN]; | 
 | 	u8 outbuf[MC_CMD_SRIOV_OUT_LEN]; | 
 | 	unsigned vi_scale, vf_total; | 
 | 	size_t outlen; | 
 | 	int rc; | 
 |  | 
 | 	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0); | 
 | 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE); | 
 | 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count); | 
 |  | 
 | 	rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN, | 
 | 			  outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen); | 
 | 	if (rc) | 
 | 		return rc; | 
 | 	if (outlen < MC_CMD_SRIOV_OUT_LEN) | 
 | 		return -EIO; | 
 |  | 
 | 	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL); | 
 | 	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE); | 
 | 	if (vi_scale > EFX_VI_SCALE_MAX) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (vi_scale_out) | 
 | 		*vi_scale_out = vi_scale; | 
 | 	if (vf_total_out) | 
 | 		*vf_total_out = vf_total; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void efx_sriov_usrev(struct efx_nic *efx, bool enabled) | 
 | { | 
 | 	efx_oword_t reg; | 
 |  | 
 | 	EFX_POPULATE_OWORD_2(reg, | 
 | 			     FRF_CZ_USREV_DIS, enabled ? 0 : 1, | 
 | 			     FRF_CZ_DFLT_EVQ, efx->vfdi_channel->channel); | 
 | 	efx_writeo(efx, ®, FR_CZ_USR_EV_CFG); | 
 | } | 
 |  | 
 | static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req, | 
 | 			    unsigned int count) | 
 | { | 
 | 	u8 *inbuf, *record; | 
 | 	unsigned int used; | 
 | 	u32 from_rid, from_hi, from_lo; | 
 | 	int rc; | 
 |  | 
 | 	mb();	/* Finish writing source/reading dest before DMA starts */ | 
 |  | 
 | 	used = MC_CMD_MEMCPY_IN_LEN(count); | 
 | 	if (WARN_ON(used > MCDI_CTL_SDU_LEN_MAX)) | 
 | 		return -ENOBUFS; | 
 |  | 
 | 	/* Allocate room for the largest request */ | 
 | 	inbuf = kzalloc(MCDI_CTL_SDU_LEN_MAX, GFP_KERNEL); | 
 | 	if (inbuf == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	record = inbuf; | 
 | 	MCDI_SET_DWORD(record, MEMCPY_IN_RECORD, count); | 
 | 	while (count-- > 0) { | 
 | 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID, | 
 | 			       req->to_rid); | 
 | 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_LO, | 
 | 			       (u32)req->to_addr); | 
 | 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_HI, | 
 | 			       (u32)(req->to_addr >> 32)); | 
 | 		if (req->from_buf == NULL) { | 
 | 			from_rid = req->from_rid; | 
 | 			from_lo = (u32)req->from_addr; | 
 | 			from_hi = (u32)(req->from_addr >> 32); | 
 | 		} else { | 
 | 			if (WARN_ON(used + req->length > MCDI_CTL_SDU_LEN_MAX)) { | 
 | 				rc = -ENOBUFS; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE; | 
 | 			from_lo = used; | 
 | 			from_hi = 0; | 
 | 			memcpy(inbuf + used, req->from_buf, req->length); | 
 | 			used += req->length; | 
 | 		} | 
 |  | 
 | 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid); | 
 | 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LO, | 
 | 			       from_lo); | 
 | 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_HI, | 
 | 			       from_hi); | 
 | 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH, | 
 | 			       req->length); | 
 |  | 
 | 		++req; | 
 | 		record += MC_CMD_MEMCPY_IN_RECORD_LEN; | 
 | 	} | 
 |  | 
 | 	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL); | 
 | out: | 
 | 	kfree(inbuf); | 
 |  | 
 | 	mb();	/* Don't write source/read dest before DMA is complete */ | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* The TX filter is entirely controlled by this driver, and is modified | 
 |  * underneath the feet of the VF | 
 |  */ | 
 | static void efx_sriov_reset_tx_filter(struct efx_vf *vf) | 
 | { | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct efx_filter_spec filter; | 
 | 	u16 vlan; | 
 | 	int rc; | 
 |  | 
 | 	if (vf->tx_filter_id != -1) { | 
 | 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, | 
 | 					  vf->tx_filter_id); | 
 | 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n", | 
 | 			  vf->pci_name, vf->tx_filter_id); | 
 | 		vf->tx_filter_id = -1; | 
 | 	} | 
 |  | 
 | 	if (is_zero_ether_addr(vf->addr.mac_addr)) | 
 | 		return; | 
 |  | 
 | 	/* Turn on TX filtering automatically if not explicitly | 
 | 	 * enabled or disabled. | 
 | 	 */ | 
 | 	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2) | 
 | 		vf->tx_filter_mode = VF_TX_FILTER_ON; | 
 |  | 
 | 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK; | 
 | 	efx_filter_init_tx(&filter, abs_index(vf, 0)); | 
 | 	rc = efx_filter_set_eth_local(&filter, | 
 | 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC, | 
 | 				      vf->addr.mac_addr); | 
 | 	BUG_ON(rc); | 
 |  | 
 | 	rc = efx_filter_insert_filter(efx, &filter, true); | 
 | 	if (rc < 0) { | 
 | 		netif_warn(efx, hw, efx->net_dev, | 
 | 			   "Unable to migrate tx filter for vf %s\n", | 
 | 			   vf->pci_name); | 
 | 	} else { | 
 | 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n", | 
 | 			  vf->pci_name, rc); | 
 | 		vf->tx_filter_id = rc; | 
 | 	} | 
 | } | 
 |  | 
 | /* The RX filter is managed here on behalf of the VF driver */ | 
 | static void efx_sriov_reset_rx_filter(struct efx_vf *vf) | 
 | { | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct efx_filter_spec filter; | 
 | 	u16 vlan; | 
 | 	int rc; | 
 |  | 
 | 	if (vf->rx_filter_id != -1) { | 
 | 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, | 
 | 					  vf->rx_filter_id); | 
 | 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n", | 
 | 			  vf->pci_name, vf->rx_filter_id); | 
 | 		vf->rx_filter_id = -1; | 
 | 	} | 
 |  | 
 | 	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr)) | 
 | 		return; | 
 |  | 
 | 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK; | 
 | 	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED, | 
 | 			   vf->rx_filter_flags, | 
 | 			   abs_index(vf, vf->rx_filter_qid)); | 
 | 	rc = efx_filter_set_eth_local(&filter, | 
 | 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC, | 
 | 				      vf->addr.mac_addr); | 
 | 	BUG_ON(rc); | 
 |  | 
 | 	rc = efx_filter_insert_filter(efx, &filter, true); | 
 | 	if (rc < 0) { | 
 | 		netif_warn(efx, hw, efx->net_dev, | 
 | 			   "Unable to insert rx filter for vf %s\n", | 
 | 			   vf->pci_name); | 
 | 	} else { | 
 | 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n", | 
 | 			  vf->pci_name, rc); | 
 | 		vf->rx_filter_id = rc; | 
 | 	} | 
 | } | 
 |  | 
 | static void __efx_sriov_update_vf_addr(struct efx_vf *vf) | 
 | { | 
 | 	efx_sriov_reset_tx_filter(vf); | 
 | 	efx_sriov_reset_rx_filter(vf); | 
 | 	queue_work(vfdi_workqueue, &vf->efx->peer_work); | 
 | } | 
 |  | 
 | /* Push the peer list to this VF. The caller must hold status_lock to interlock | 
 |  * with VFDI requests, and they must be serialised against manipulation of | 
 |  * local_page_list, either by acquiring local_lock or by running from | 
 |  * efx_sriov_peer_work() | 
 |  */ | 
 | static void __efx_sriov_push_vf_status(struct efx_vf *vf) | 
 | { | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct vfdi_status *status = efx->vfdi_status.addr; | 
 | 	struct efx_memcpy_req copy[4]; | 
 | 	struct efx_endpoint_page *epp; | 
 | 	unsigned int pos, count; | 
 | 	unsigned data_offset; | 
 | 	efx_qword_t event; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&vf->status_lock)); | 
 | 	WARN_ON(!vf->status_addr); | 
 |  | 
 | 	status->local = vf->addr; | 
 | 	status->generation_end = ++status->generation_start; | 
 |  | 
 | 	memset(copy, '\0', sizeof(copy)); | 
 | 	/* Write generation_start */ | 
 | 	copy[0].from_buf = &status->generation_start; | 
 | 	copy[0].to_rid = vf->pci_rid; | 
 | 	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status, | 
 | 						     generation_start); | 
 | 	copy[0].length = sizeof(status->generation_start); | 
 | 	/* DMA the rest of the structure (excluding the generations). This | 
 | 	 * assumes that the non-generation portion of vfdi_status is in | 
 | 	 * one chunk starting at the version member. | 
 | 	 */ | 
 | 	data_offset = offsetof(struct vfdi_status, version); | 
 | 	copy[1].from_rid = efx->pci_dev->devfn; | 
 | 	copy[1].from_addr = efx->vfdi_status.dma_addr + data_offset; | 
 | 	copy[1].to_rid = vf->pci_rid; | 
 | 	copy[1].to_addr = vf->status_addr + data_offset; | 
 | 	copy[1].length =  status->length - data_offset; | 
 |  | 
 | 	/* Copy the peer pages */ | 
 | 	pos = 2; | 
 | 	count = 0; | 
 | 	list_for_each_entry(epp, &efx->local_page_list, link) { | 
 | 		if (count == vf->peer_page_count) { | 
 | 			/* The VF driver will know they need to provide more | 
 | 			 * pages because peer_addr_count is too large. | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 | 		copy[pos].from_buf = NULL; | 
 | 		copy[pos].from_rid = efx->pci_dev->devfn; | 
 | 		copy[pos].from_addr = epp->addr; | 
 | 		copy[pos].to_rid = vf->pci_rid; | 
 | 		copy[pos].to_addr = vf->peer_page_addrs[count]; | 
 | 		copy[pos].length = EFX_PAGE_SIZE; | 
 |  | 
 | 		if (++pos == ARRAY_SIZE(copy)) { | 
 | 			efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy)); | 
 | 			pos = 0; | 
 | 		} | 
 | 		++count; | 
 | 	} | 
 |  | 
 | 	/* Write generation_end */ | 
 | 	copy[pos].from_buf = &status->generation_end; | 
 | 	copy[pos].to_rid = vf->pci_rid; | 
 | 	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status, | 
 | 						       generation_end); | 
 | 	copy[pos].length = sizeof(status->generation_end); | 
 | 	efx_sriov_memcpy(efx, copy, pos + 1); | 
 |  | 
 | 	/* Notify the guest */ | 
 | 	EFX_POPULATE_QWORD_3(event, | 
 | 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV, | 
 | 			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff), | 
 | 			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS); | 
 | 	++vf->msg_seqno; | 
 | 	efx_generate_event(efx, EFX_VI_BASE + vf->index * efx_vf_size(efx), | 
 | 			      &event); | 
 | } | 
 |  | 
 | static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset, | 
 | 			   u64 *addr, unsigned count) | 
 | { | 
 | 	efx_qword_t buf; | 
 | 	unsigned pos; | 
 |  | 
 | 	for (pos = 0; pos < count; ++pos) { | 
 | 		EFX_POPULATE_QWORD_3(buf, | 
 | 				     FRF_AZ_BUF_ADR_REGION, 0, | 
 | 				     FRF_AZ_BUF_ADR_FBUF, | 
 | 				     addr ? addr[pos] >> 12 : 0, | 
 | 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0); | 
 | 		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL, | 
 | 				&buf, offset + pos); | 
 | 	} | 
 | } | 
 |  | 
 | static bool bad_vf_index(struct efx_nic *efx, unsigned index) | 
 | { | 
 | 	return index >= efx_vf_size(efx); | 
 | } | 
 |  | 
 | static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count) | 
 | { | 
 | 	unsigned max_buf_count = max_entry_count * | 
 | 		sizeof(efx_qword_t) / EFX_BUF_SIZE; | 
 |  | 
 | 	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count); | 
 | } | 
 |  | 
 | /* Check that VI specified by per-port index belongs to a VF. | 
 |  * Optionally set VF index and VI index within the VF. | 
 |  */ | 
 | static bool map_vi_index(struct efx_nic *efx, unsigned abs_index, | 
 | 			 struct efx_vf **vf_out, unsigned *rel_index_out) | 
 | { | 
 | 	unsigned vf_i; | 
 |  | 
 | 	if (abs_index < EFX_VI_BASE) | 
 | 		return true; | 
 | 	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx); | 
 | 	if (vf_i >= efx->vf_init_count) | 
 | 		return true; | 
 |  | 
 | 	if (vf_out) | 
 | 		*vf_out = efx->vf + vf_i; | 
 | 	if (rel_index_out) | 
 | 		*rel_index_out = abs_index % efx_vf_size(efx); | 
 | 	return false; | 
 | } | 
 |  | 
 | static int efx_vfdi_init_evq(struct efx_vf *vf) | 
 | { | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct vfdi_req *req = vf->buf.addr; | 
 | 	unsigned vf_evq = req->u.init_evq.index; | 
 | 	unsigned buf_count = req->u.init_evq.buf_count; | 
 | 	unsigned abs_evq = abs_index(vf, vf_evq); | 
 | 	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq); | 
 | 	efx_oword_t reg; | 
 |  | 
 | 	if (bad_vf_index(efx, vf_evq) || | 
 | 	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) { | 
 | 		if (net_ratelimit()) | 
 | 			netif_err(efx, hw, efx->net_dev, | 
 | 				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n", | 
 | 				  vf->pci_name, vf_evq, buf_count); | 
 | 		return VFDI_RC_EINVAL; | 
 | 	} | 
 |  | 
 | 	efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count); | 
 |  | 
 | 	EFX_POPULATE_OWORD_3(reg, | 
 | 			     FRF_CZ_TIMER_Q_EN, 1, | 
 | 			     FRF_CZ_HOST_NOTIFY_MODE, 0, | 
 | 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); | 
 | 	efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq); | 
 | 	EFX_POPULATE_OWORD_3(reg, | 
 | 			     FRF_AZ_EVQ_EN, 1, | 
 | 			     FRF_AZ_EVQ_SIZE, __ffs(buf_count), | 
 | 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl); | 
 | 	efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq); | 
 |  | 
 | 	if (vf_evq == 0) { | 
 | 		memcpy(vf->evq0_addrs, req->u.init_evq.addr, | 
 | 		       buf_count * sizeof(u64)); | 
 | 		vf->evq0_count = buf_count; | 
 | 	} | 
 |  | 
 | 	return VFDI_RC_SUCCESS; | 
 | } | 
 |  | 
 | static int efx_vfdi_init_rxq(struct efx_vf *vf) | 
 | { | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct vfdi_req *req = vf->buf.addr; | 
 | 	unsigned vf_rxq = req->u.init_rxq.index; | 
 | 	unsigned vf_evq = req->u.init_rxq.evq; | 
 | 	unsigned buf_count = req->u.init_rxq.buf_count; | 
 | 	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq); | 
 | 	unsigned label; | 
 | 	efx_oword_t reg; | 
 |  | 
 | 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) || | 
 | 	    vf_rxq >= VF_MAX_RX_QUEUES || | 
 | 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) { | 
 | 		if (net_ratelimit()) | 
 | 			netif_err(efx, hw, efx->net_dev, | 
 | 				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d " | 
 | 				  "buf_count %d\n", vf->pci_name, vf_rxq, | 
 | 				  vf_evq, buf_count); | 
 | 		return VFDI_RC_EINVAL; | 
 | 	} | 
 | 	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask)) | 
 | 		++vf->rxq_count; | 
 | 	efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count); | 
 |  | 
 | 	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL); | 
 | 	EFX_POPULATE_OWORD_6(reg, | 
 | 			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl, | 
 | 			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq), | 
 | 			     FRF_AZ_RX_DESCQ_LABEL, label, | 
 | 			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count), | 
 | 			     FRF_AZ_RX_DESCQ_JUMBO, | 
 | 			     !!(req->u.init_rxq.flags & | 
 | 				VFDI_RXQ_FLAG_SCATTER_EN), | 
 | 			     FRF_AZ_RX_DESCQ_EN, 1); | 
 | 	efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL, | 
 | 			 abs_index(vf, vf_rxq)); | 
 |  | 
 | 	return VFDI_RC_SUCCESS; | 
 | } | 
 |  | 
 | static int efx_vfdi_init_txq(struct efx_vf *vf) | 
 | { | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct vfdi_req *req = vf->buf.addr; | 
 | 	unsigned vf_txq = req->u.init_txq.index; | 
 | 	unsigned vf_evq = req->u.init_txq.evq; | 
 | 	unsigned buf_count = req->u.init_txq.buf_count; | 
 | 	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq); | 
 | 	unsigned label, eth_filt_en; | 
 | 	efx_oword_t reg; | 
 |  | 
 | 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) || | 
 | 	    vf_txq >= vf_max_tx_channels || | 
 | 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) { | 
 | 		if (net_ratelimit()) | 
 | 			netif_err(efx, hw, efx->net_dev, | 
 | 				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d " | 
 | 				  "buf_count %d\n", vf->pci_name, vf_txq, | 
 | 				  vf_evq, buf_count); | 
 | 		return VFDI_RC_EINVAL; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&vf->txq_lock); | 
 | 	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask)) | 
 | 		++vf->txq_count; | 
 | 	mutex_unlock(&vf->txq_lock); | 
 | 	efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count); | 
 |  | 
 | 	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON; | 
 |  | 
 | 	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL); | 
 | 	EFX_POPULATE_OWORD_8(reg, | 
 | 			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U), | 
 | 			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en, | 
 | 			     FRF_AZ_TX_DESCQ_EN, 1, | 
 | 			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl, | 
 | 			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq), | 
 | 			     FRF_AZ_TX_DESCQ_LABEL, label, | 
 | 			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count), | 
 | 			     FRF_BZ_TX_NON_IP_DROP_DIS, 1); | 
 | 	efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL, | 
 | 			 abs_index(vf, vf_txq)); | 
 |  | 
 | 	return VFDI_RC_SUCCESS; | 
 | } | 
 |  | 
 | /* Returns true when efx_vfdi_fini_all_queues should wake */ | 
 | static bool efx_vfdi_flush_wake(struct efx_vf *vf) | 
 | { | 
 | 	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */ | 
 | 	smp_mb(); | 
 |  | 
 | 	return (!vf->txq_count && !vf->rxq_count) || | 
 | 		atomic_read(&vf->rxq_retry_count); | 
 | } | 
 |  | 
 | static void efx_vfdi_flush_clear(struct efx_vf *vf) | 
 | { | 
 | 	memset(vf->txq_mask, 0, sizeof(vf->txq_mask)); | 
 | 	vf->txq_count = 0; | 
 | 	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask)); | 
 | 	vf->rxq_count = 0; | 
 | 	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask)); | 
 | 	atomic_set(&vf->rxq_retry_count, 0); | 
 | } | 
 |  | 
 | static int efx_vfdi_fini_all_queues(struct efx_vf *vf) | 
 | { | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	efx_oword_t reg; | 
 | 	unsigned count = efx_vf_size(efx); | 
 | 	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx); | 
 | 	unsigned timeout = HZ; | 
 | 	unsigned index, rxqs_count; | 
 | 	__le32 *rxqs; | 
 | 	int rc; | 
 |  | 
 | 	BUILD_BUG_ON(VF_MAX_RX_QUEUES > | 
 | 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); | 
 |  | 
 | 	rxqs = kmalloc(count * sizeof(*rxqs), GFP_KERNEL); | 
 | 	if (rxqs == NULL) | 
 | 		return VFDI_RC_ENOMEM; | 
 |  | 
 | 	rtnl_lock(); | 
 | 	if (efx->fc_disable++ == 0) | 
 | 		efx_mcdi_set_mac(efx); | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	/* Flush all the initialized queues */ | 
 | 	rxqs_count = 0; | 
 | 	for (index = 0; index < count; ++index) { | 
 | 		if (test_bit(index, vf->txq_mask)) { | 
 | 			EFX_POPULATE_OWORD_2(reg, | 
 | 					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, | 
 | 					     FRF_AZ_TX_FLUSH_DESCQ, | 
 | 					     vf_offset + index); | 
 | 			efx_writeo(efx, ®, FR_AZ_TX_FLUSH_DESCQ); | 
 | 		} | 
 | 		if (test_bit(index, vf->rxq_mask)) | 
 | 			rxqs[rxqs_count++] = cpu_to_le32(vf_offset + index); | 
 | 	} | 
 |  | 
 | 	atomic_set(&vf->rxq_retry_count, 0); | 
 | 	while (timeout && (vf->rxq_count || vf->txq_count)) { | 
 | 		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, (u8 *)rxqs, | 
 | 				  rxqs_count * sizeof(*rxqs), NULL, 0, NULL); | 
 | 		WARN_ON(rc < 0); | 
 |  | 
 | 		timeout = wait_event_timeout(vf->flush_waitq, | 
 | 					     efx_vfdi_flush_wake(vf), | 
 | 					     timeout); | 
 | 		rxqs_count = 0; | 
 | 		for (index = 0; index < count; ++index) { | 
 | 			if (test_and_clear_bit(index, vf->rxq_retry_mask)) { | 
 | 				atomic_dec(&vf->rxq_retry_count); | 
 | 				rxqs[rxqs_count++] = | 
 | 					cpu_to_le32(vf_offset + index); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rtnl_lock(); | 
 | 	if (--efx->fc_disable == 0) | 
 | 		efx_mcdi_set_mac(efx); | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	/* Irrespective of success/failure, fini the queues */ | 
 | 	EFX_ZERO_OWORD(reg); | 
 | 	for (index = 0; index < count; ++index) { | 
 | 		efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL, | 
 | 				 vf_offset + index); | 
 | 		efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL, | 
 | 				 vf_offset + index); | 
 | 		efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, | 
 | 				 vf_offset + index); | 
 | 		efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, | 
 | 				 vf_offset + index); | 
 | 	} | 
 | 	efx_sriov_bufs(efx, vf->buftbl_base, NULL, | 
 | 		       EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx)); | 
 | 	kfree(rxqs); | 
 | 	efx_vfdi_flush_clear(vf); | 
 |  | 
 | 	vf->evq0_count = 0; | 
 |  | 
 | 	return timeout ? 0 : VFDI_RC_ETIMEDOUT; | 
 | } | 
 |  | 
 | static int efx_vfdi_insert_filter(struct efx_vf *vf) | 
 | { | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct vfdi_req *req = vf->buf.addr; | 
 | 	unsigned vf_rxq = req->u.mac_filter.rxq; | 
 | 	unsigned flags; | 
 |  | 
 | 	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) { | 
 | 		if (net_ratelimit()) | 
 | 			netif_err(efx, hw, efx->net_dev, | 
 | 				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d " | 
 | 				  "flags 0x%x\n", vf->pci_name, vf_rxq, | 
 | 				  req->u.mac_filter.flags); | 
 | 		return VFDI_RC_EINVAL; | 
 | 	} | 
 |  | 
 | 	flags = 0; | 
 | 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS) | 
 | 		flags |= EFX_FILTER_FLAG_RX_RSS; | 
 | 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER) | 
 | 		flags |= EFX_FILTER_FLAG_RX_SCATTER; | 
 | 	vf->rx_filter_flags = flags; | 
 | 	vf->rx_filter_qid = vf_rxq; | 
 | 	vf->rx_filtering = true; | 
 |  | 
 | 	efx_sriov_reset_rx_filter(vf); | 
 | 	queue_work(vfdi_workqueue, &efx->peer_work); | 
 |  | 
 | 	return VFDI_RC_SUCCESS; | 
 | } | 
 |  | 
 | static int efx_vfdi_remove_all_filters(struct efx_vf *vf) | 
 | { | 
 | 	vf->rx_filtering = false; | 
 | 	efx_sriov_reset_rx_filter(vf); | 
 | 	queue_work(vfdi_workqueue, &vf->efx->peer_work); | 
 |  | 
 | 	return VFDI_RC_SUCCESS; | 
 | } | 
 |  | 
 | static int efx_vfdi_set_status_page(struct efx_vf *vf) | 
 | { | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct vfdi_req *req = vf->buf.addr; | 
 | 	u64 page_count = req->u.set_status_page.peer_page_count; | 
 | 	u64 max_page_count = | 
 | 		(EFX_PAGE_SIZE - | 
 | 		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0])) | 
 | 		/ sizeof(req->u.set_status_page.peer_page_addr[0]); | 
 |  | 
 | 	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) { | 
 | 		if (net_ratelimit()) | 
 | 			netif_err(efx, hw, efx->net_dev, | 
 | 				  "ERROR: Invalid SET_STATUS_PAGE from %s\n", | 
 | 				  vf->pci_name); | 
 | 		return VFDI_RC_EINVAL; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&efx->local_lock); | 
 | 	mutex_lock(&vf->status_lock); | 
 | 	vf->status_addr = req->u.set_status_page.dma_addr; | 
 |  | 
 | 	kfree(vf->peer_page_addrs); | 
 | 	vf->peer_page_addrs = NULL; | 
 | 	vf->peer_page_count = 0; | 
 |  | 
 | 	if (page_count) { | 
 | 		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64), | 
 | 					      GFP_KERNEL); | 
 | 		if (vf->peer_page_addrs) { | 
 | 			memcpy(vf->peer_page_addrs, | 
 | 			       req->u.set_status_page.peer_page_addr, | 
 | 			       page_count * sizeof(u64)); | 
 | 			vf->peer_page_count = page_count; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	__efx_sriov_push_vf_status(vf); | 
 | 	mutex_unlock(&vf->status_lock); | 
 | 	mutex_unlock(&efx->local_lock); | 
 |  | 
 | 	return VFDI_RC_SUCCESS; | 
 | } | 
 |  | 
 | static int efx_vfdi_clear_status_page(struct efx_vf *vf) | 
 | { | 
 | 	mutex_lock(&vf->status_lock); | 
 | 	vf->status_addr = 0; | 
 | 	mutex_unlock(&vf->status_lock); | 
 |  | 
 | 	return VFDI_RC_SUCCESS; | 
 | } | 
 |  | 
 | typedef int (*efx_vfdi_op_t)(struct efx_vf *vf); | 
 |  | 
 | static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = { | 
 | 	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq, | 
 | 	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq, | 
 | 	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq, | 
 | 	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues, | 
 | 	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter, | 
 | 	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters, | 
 | 	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page, | 
 | 	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page, | 
 | }; | 
 |  | 
 | static void efx_sriov_vfdi(struct work_struct *work) | 
 | { | 
 | 	struct efx_vf *vf = container_of(work, struct efx_vf, req); | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct vfdi_req *req = vf->buf.addr; | 
 | 	struct efx_memcpy_req copy[2]; | 
 | 	int rc; | 
 |  | 
 | 	/* Copy this page into the local address space */ | 
 | 	memset(copy, '\0', sizeof(copy)); | 
 | 	copy[0].from_rid = vf->pci_rid; | 
 | 	copy[0].from_addr = vf->req_addr; | 
 | 	copy[0].to_rid = efx->pci_dev->devfn; | 
 | 	copy[0].to_addr = vf->buf.dma_addr; | 
 | 	copy[0].length = EFX_PAGE_SIZE; | 
 | 	rc = efx_sriov_memcpy(efx, copy, 1); | 
 | 	if (rc) { | 
 | 		/* If we can't get the request, we can't reply to the caller */ | 
 | 		if (net_ratelimit()) | 
 | 			netif_err(efx, hw, efx->net_dev, | 
 | 				  "ERROR: Unable to fetch VFDI request from %s rc %d\n", | 
 | 				  vf->pci_name, -rc); | 
 | 		vf->busy = false; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) { | 
 | 		rc = vfdi_ops[req->op](vf); | 
 | 		if (rc == 0) { | 
 | 			netif_dbg(efx, hw, efx->net_dev, | 
 | 				  "vfdi request %d from %s ok\n", | 
 | 				  req->op, vf->pci_name); | 
 | 		} | 
 | 	} else { | 
 | 		netif_dbg(efx, hw, efx->net_dev, | 
 | 			  "ERROR: Unrecognised request %d from VF %s addr " | 
 | 			  "%llx\n", req->op, vf->pci_name, | 
 | 			  (unsigned long long)vf->req_addr); | 
 | 		rc = VFDI_RC_EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	/* Allow subsequent VF requests */ | 
 | 	vf->busy = false; | 
 | 	smp_wmb(); | 
 |  | 
 | 	/* Respond to the request */ | 
 | 	req->rc = rc; | 
 | 	req->op = VFDI_OP_RESPONSE; | 
 |  | 
 | 	memset(copy, '\0', sizeof(copy)); | 
 | 	copy[0].from_buf = &req->rc; | 
 | 	copy[0].to_rid = vf->pci_rid; | 
 | 	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc); | 
 | 	copy[0].length = sizeof(req->rc); | 
 | 	copy[1].from_buf = &req->op; | 
 | 	copy[1].to_rid = vf->pci_rid; | 
 | 	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op); | 
 | 	copy[1].length = sizeof(req->op); | 
 |  | 
 | 	(void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy)); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* After a reset the event queues inside the guests no longer exist. Fill the | 
 |  * event ring in guest memory with VFDI reset events, then (re-initialise) the | 
 |  * event queue to raise an interrupt. The guest driver will then recover. | 
 |  */ | 
 | static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer) | 
 | { | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct efx_memcpy_req copy_req[4]; | 
 | 	efx_qword_t event; | 
 | 	unsigned int pos, count, k, buftbl, abs_evq; | 
 | 	efx_oword_t reg; | 
 | 	efx_dword_t ptr; | 
 | 	int rc; | 
 |  | 
 | 	BUG_ON(buffer->len != EFX_PAGE_SIZE); | 
 |  | 
 | 	if (!vf->evq0_count) | 
 | 		return; | 
 | 	BUG_ON(vf->evq0_count & (vf->evq0_count - 1)); | 
 |  | 
 | 	mutex_lock(&vf->status_lock); | 
 | 	EFX_POPULATE_QWORD_3(event, | 
 | 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV, | 
 | 			     VFDI_EV_SEQ, vf->msg_seqno, | 
 | 			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET); | 
 | 	vf->msg_seqno++; | 
 | 	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event)) | 
 | 		memcpy(buffer->addr + pos, &event, sizeof(event)); | 
 |  | 
 | 	for (pos = 0; pos < vf->evq0_count; pos += count) { | 
 | 		count = min_t(unsigned, vf->evq0_count - pos, | 
 | 			      ARRAY_SIZE(copy_req)); | 
 | 		for (k = 0; k < count; k++) { | 
 | 			copy_req[k].from_buf = NULL; | 
 | 			copy_req[k].from_rid = efx->pci_dev->devfn; | 
 | 			copy_req[k].from_addr = buffer->dma_addr; | 
 | 			copy_req[k].to_rid = vf->pci_rid; | 
 | 			copy_req[k].to_addr = vf->evq0_addrs[pos + k]; | 
 | 			copy_req[k].length = EFX_PAGE_SIZE; | 
 | 		} | 
 | 		rc = efx_sriov_memcpy(efx, copy_req, count); | 
 | 		if (rc) { | 
 | 			if (net_ratelimit()) | 
 | 				netif_err(efx, hw, efx->net_dev, | 
 | 					  "ERROR: Unable to notify %s of reset" | 
 | 					  ": %d\n", vf->pci_name, -rc); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Reinitialise, arm and trigger evq0 */ | 
 | 	abs_evq = abs_index(vf, 0); | 
 | 	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0); | 
 | 	efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count); | 
 |  | 
 | 	EFX_POPULATE_OWORD_3(reg, | 
 | 			     FRF_CZ_TIMER_Q_EN, 1, | 
 | 			     FRF_CZ_HOST_NOTIFY_MODE, 0, | 
 | 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); | 
 | 	efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq); | 
 | 	EFX_POPULATE_OWORD_3(reg, | 
 | 			     FRF_AZ_EVQ_EN, 1, | 
 | 			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count), | 
 | 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl); | 
 | 	efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq); | 
 | 	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0); | 
 | 	efx_writed_table(efx, &ptr, FR_BZ_EVQ_RPTR, abs_evq); | 
 |  | 
 | 	mutex_unlock(&vf->status_lock); | 
 | } | 
 |  | 
 | static void efx_sriov_reset_vf_work(struct work_struct *work) | 
 | { | 
 | 	struct efx_vf *vf = container_of(work, struct efx_vf, req); | 
 | 	struct efx_nic *efx = vf->efx; | 
 | 	struct efx_buffer buf; | 
 |  | 
 | 	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE)) { | 
 | 		efx_sriov_reset_vf(vf, &buf); | 
 | 		efx_nic_free_buffer(efx, &buf); | 
 | 	} | 
 | } | 
 |  | 
 | static void efx_sriov_handle_no_channel(struct efx_nic *efx) | 
 | { | 
 | 	netif_err(efx, drv, efx->net_dev, | 
 | 		  "ERROR: IOV requires MSI-X and 1 additional interrupt" | 
 | 		  "vector. IOV disabled\n"); | 
 | 	efx->vf_count = 0; | 
 | } | 
 |  | 
 | static int efx_sriov_probe_channel(struct efx_channel *channel) | 
 | { | 
 | 	channel->efx->vfdi_channel = channel; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len) | 
 | { | 
 | 	snprintf(buf, len, "%s-iov", channel->efx->name); | 
 | } | 
 |  | 
 | static const struct efx_channel_type efx_sriov_channel_type = { | 
 | 	.handle_no_channel	= efx_sriov_handle_no_channel, | 
 | 	.pre_probe		= efx_sriov_probe_channel, | 
 | 	.post_remove		= efx_channel_dummy_op_void, | 
 | 	.get_name		= efx_sriov_get_channel_name, | 
 | 	/* no copy operation; channel must not be reallocated */ | 
 | 	.keep_eventq		= true, | 
 | }; | 
 |  | 
 | void efx_sriov_probe(struct efx_nic *efx) | 
 | { | 
 | 	unsigned count; | 
 |  | 
 | 	if (!max_vfs) | 
 | 		return; | 
 |  | 
 | 	if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count)) | 
 | 		return; | 
 | 	if (count > 0 && count > max_vfs) | 
 | 		count = max_vfs; | 
 |  | 
 | 	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */ | 
 | 	efx->vf_count = count; | 
 |  | 
 | 	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type; | 
 | } | 
 |  | 
 | /* Copy the list of individual addresses into the vfdi_status.peers | 
 |  * array and auxillary pages, protected by %local_lock. Drop that lock | 
 |  * and then broadcast the address list to every VF. | 
 |  */ | 
 | static void efx_sriov_peer_work(struct work_struct *data) | 
 | { | 
 | 	struct efx_nic *efx = container_of(data, struct efx_nic, peer_work); | 
 | 	struct vfdi_status *vfdi_status = efx->vfdi_status.addr; | 
 | 	struct efx_vf *vf; | 
 | 	struct efx_local_addr *local_addr; | 
 | 	struct vfdi_endpoint *peer; | 
 | 	struct efx_endpoint_page *epp; | 
 | 	struct list_head pages; | 
 | 	unsigned int peer_space; | 
 | 	unsigned int peer_count; | 
 | 	unsigned int pos; | 
 |  | 
 | 	mutex_lock(&efx->local_lock); | 
 |  | 
 | 	/* Move the existing peer pages off %local_page_list */ | 
 | 	INIT_LIST_HEAD(&pages); | 
 | 	list_splice_tail_init(&efx->local_page_list, &pages); | 
 |  | 
 | 	/* Populate the VF addresses starting from entry 1 (entry 0 is | 
 | 	 * the PF address) | 
 | 	 */ | 
 | 	peer = vfdi_status->peers + 1; | 
 | 	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1; | 
 | 	peer_count = 1; | 
 | 	for (pos = 0; pos < efx->vf_count; ++pos) { | 
 | 		vf = efx->vf + pos; | 
 |  | 
 | 		mutex_lock(&vf->status_lock); | 
 | 		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) { | 
 | 			*peer++ = vf->addr; | 
 | 			++peer_count; | 
 | 			--peer_space; | 
 | 			BUG_ON(peer_space == 0); | 
 | 		} | 
 | 		mutex_unlock(&vf->status_lock); | 
 | 	} | 
 |  | 
 | 	/* Fill the remaining addresses */ | 
 | 	list_for_each_entry(local_addr, &efx->local_addr_list, link) { | 
 | 		memcpy(peer->mac_addr, local_addr->addr, ETH_ALEN); | 
 | 		peer->tci = 0; | 
 | 		++peer; | 
 | 		++peer_count; | 
 | 		if (--peer_space == 0) { | 
 | 			if (list_empty(&pages)) { | 
 | 				epp = kmalloc(sizeof(*epp), GFP_KERNEL); | 
 | 				if (!epp) | 
 | 					break; | 
 | 				epp->ptr = dma_alloc_coherent( | 
 | 					&efx->pci_dev->dev, EFX_PAGE_SIZE, | 
 | 					&epp->addr, GFP_KERNEL); | 
 | 				if (!epp->ptr) { | 
 | 					kfree(epp); | 
 | 					break; | 
 | 				} | 
 | 			} else { | 
 | 				epp = list_first_entry( | 
 | 					&pages, struct efx_endpoint_page, link); | 
 | 				list_del(&epp->link); | 
 | 			} | 
 |  | 
 | 			list_add_tail(&epp->link, &efx->local_page_list); | 
 | 			peer = (struct vfdi_endpoint *)epp->ptr; | 
 | 			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint); | 
 | 		} | 
 | 	} | 
 | 	vfdi_status->peer_count = peer_count; | 
 | 	mutex_unlock(&efx->local_lock); | 
 |  | 
 | 	/* Free any now unused endpoint pages */ | 
 | 	while (!list_empty(&pages)) { | 
 | 		epp = list_first_entry( | 
 | 			&pages, struct efx_endpoint_page, link); | 
 | 		list_del(&epp->link); | 
 | 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE, | 
 | 				  epp->ptr, epp->addr); | 
 | 		kfree(epp); | 
 | 	} | 
 |  | 
 | 	/* Finally, push the pages */ | 
 | 	for (pos = 0; pos < efx->vf_count; ++pos) { | 
 | 		vf = efx->vf + pos; | 
 |  | 
 | 		mutex_lock(&vf->status_lock); | 
 | 		if (vf->status_addr) | 
 | 			__efx_sriov_push_vf_status(vf); | 
 | 		mutex_unlock(&vf->status_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static void efx_sriov_free_local(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_local_addr *local_addr; | 
 | 	struct efx_endpoint_page *epp; | 
 |  | 
 | 	while (!list_empty(&efx->local_addr_list)) { | 
 | 		local_addr = list_first_entry(&efx->local_addr_list, | 
 | 					      struct efx_local_addr, link); | 
 | 		list_del(&local_addr->link); | 
 | 		kfree(local_addr); | 
 | 	} | 
 |  | 
 | 	while (!list_empty(&efx->local_page_list)) { | 
 | 		epp = list_first_entry(&efx->local_page_list, | 
 | 				       struct efx_endpoint_page, link); | 
 | 		list_del(&epp->link); | 
 | 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE, | 
 | 				  epp->ptr, epp->addr); | 
 | 		kfree(epp); | 
 | 	} | 
 | } | 
 |  | 
 | static int efx_sriov_vf_alloc(struct efx_nic *efx) | 
 | { | 
 | 	unsigned index; | 
 | 	struct efx_vf *vf; | 
 |  | 
 | 	efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL); | 
 | 	if (!efx->vf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (index = 0; index < efx->vf_count; ++index) { | 
 | 		vf = efx->vf + index; | 
 |  | 
 | 		vf->efx = efx; | 
 | 		vf->index = index; | 
 | 		vf->rx_filter_id = -1; | 
 | 		vf->tx_filter_mode = VF_TX_FILTER_AUTO; | 
 | 		vf->tx_filter_id = -1; | 
 | 		INIT_WORK(&vf->req, efx_sriov_vfdi); | 
 | 		INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work); | 
 | 		init_waitqueue_head(&vf->flush_waitq); | 
 | 		mutex_init(&vf->status_lock); | 
 | 		mutex_init(&vf->txq_lock); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void efx_sriov_vfs_fini(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_vf *vf; | 
 | 	unsigned int pos; | 
 |  | 
 | 	for (pos = 0; pos < efx->vf_count; ++pos) { | 
 | 		vf = efx->vf + pos; | 
 |  | 
 | 		efx_nic_free_buffer(efx, &vf->buf); | 
 | 		kfree(vf->peer_page_addrs); | 
 | 		vf->peer_page_addrs = NULL; | 
 | 		vf->peer_page_count = 0; | 
 |  | 
 | 		vf->evq0_count = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int efx_sriov_vfs_init(struct efx_nic *efx) | 
 | { | 
 | 	struct pci_dev *pci_dev = efx->pci_dev; | 
 | 	unsigned index, devfn, sriov, buftbl_base; | 
 | 	u16 offset, stride; | 
 | 	struct efx_vf *vf; | 
 | 	int rc; | 
 |  | 
 | 	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV); | 
 | 	if (!sriov) | 
 | 		return -ENOENT; | 
 |  | 
 | 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset); | 
 | 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride); | 
 |  | 
 | 	buftbl_base = efx->vf_buftbl_base; | 
 | 	devfn = pci_dev->devfn + offset; | 
 | 	for (index = 0; index < efx->vf_count; ++index) { | 
 | 		vf = efx->vf + index; | 
 |  | 
 | 		/* Reserve buffer entries */ | 
 | 		vf->buftbl_base = buftbl_base; | 
 | 		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx); | 
 |  | 
 | 		vf->pci_rid = devfn; | 
 | 		snprintf(vf->pci_name, sizeof(vf->pci_name), | 
 | 			 "%04x:%02x:%02x.%d", | 
 | 			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number, | 
 | 			 PCI_SLOT(devfn), PCI_FUNC(devfn)); | 
 |  | 
 | 		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE); | 
 | 		if (rc) | 
 | 			goto fail; | 
 |  | 
 | 		devfn += stride; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	efx_sriov_vfs_fini(efx); | 
 | 	return rc; | 
 | } | 
 |  | 
 | int efx_sriov_init(struct efx_nic *efx) | 
 | { | 
 | 	struct net_device *net_dev = efx->net_dev; | 
 | 	struct vfdi_status *vfdi_status; | 
 | 	int rc; | 
 |  | 
 | 	/* Ensure there's room for vf_channel */ | 
 | 	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE); | 
 | 	/* Ensure that VI_BASE is aligned on VI_SCALE */ | 
 | 	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1)); | 
 |  | 
 | 	if (efx->vf_count == 0) | 
 | 		return 0; | 
 |  | 
 | 	rc = efx_sriov_cmd(efx, true, NULL, NULL); | 
 | 	if (rc) | 
 | 		goto fail_cmd; | 
 |  | 
 | 	rc = efx_nic_alloc_buffer(efx, &efx->vfdi_status, sizeof(*vfdi_status)); | 
 | 	if (rc) | 
 | 		goto fail_status; | 
 | 	vfdi_status = efx->vfdi_status.addr; | 
 | 	memset(vfdi_status, 0, sizeof(*vfdi_status)); | 
 | 	vfdi_status->version = 1; | 
 | 	vfdi_status->length = sizeof(*vfdi_status); | 
 | 	vfdi_status->max_tx_channels = vf_max_tx_channels; | 
 | 	vfdi_status->vi_scale = efx->vi_scale; | 
 | 	vfdi_status->rss_rxq_count = efx->rss_spread; | 
 | 	vfdi_status->peer_count = 1 + efx->vf_count; | 
 | 	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns; | 
 |  | 
 | 	rc = efx_sriov_vf_alloc(efx); | 
 | 	if (rc) | 
 | 		goto fail_alloc; | 
 |  | 
 | 	mutex_init(&efx->local_lock); | 
 | 	INIT_WORK(&efx->peer_work, efx_sriov_peer_work); | 
 | 	INIT_LIST_HEAD(&efx->local_addr_list); | 
 | 	INIT_LIST_HEAD(&efx->local_page_list); | 
 |  | 
 | 	rc = efx_sriov_vfs_init(efx); | 
 | 	if (rc) | 
 | 		goto fail_vfs; | 
 |  | 
 | 	rtnl_lock(); | 
 | 	memcpy(vfdi_status->peers[0].mac_addr, | 
 | 	       net_dev->dev_addr, ETH_ALEN); | 
 | 	efx->vf_init_count = efx->vf_count; | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	efx_sriov_usrev(efx, true); | 
 |  | 
 | 	/* At this point we must be ready to accept VFDI requests */ | 
 |  | 
 | 	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count); | 
 | 	if (rc) | 
 | 		goto fail_pci; | 
 |  | 
 | 	netif_info(efx, probe, net_dev, | 
 | 		   "enabled SR-IOV for %d VFs, %d VI per VF\n", | 
 | 		   efx->vf_count, efx_vf_size(efx)); | 
 | 	return 0; | 
 |  | 
 | fail_pci: | 
 | 	efx_sriov_usrev(efx, false); | 
 | 	rtnl_lock(); | 
 | 	efx->vf_init_count = 0; | 
 | 	rtnl_unlock(); | 
 | 	efx_sriov_vfs_fini(efx); | 
 | fail_vfs: | 
 | 	cancel_work_sync(&efx->peer_work); | 
 | 	efx_sriov_free_local(efx); | 
 | 	kfree(efx->vf); | 
 | fail_alloc: | 
 | 	efx_nic_free_buffer(efx, &efx->vfdi_status); | 
 | fail_status: | 
 | 	efx_sriov_cmd(efx, false, NULL, NULL); | 
 | fail_cmd: | 
 | 	return rc; | 
 | } | 
 |  | 
 | void efx_sriov_fini(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_vf *vf; | 
 | 	unsigned int pos; | 
 |  | 
 | 	if (efx->vf_init_count == 0) | 
 | 		return; | 
 |  | 
 | 	/* Disable all interfaces to reconfiguration */ | 
 | 	BUG_ON(efx->vfdi_channel->enabled); | 
 | 	efx_sriov_usrev(efx, false); | 
 | 	rtnl_lock(); | 
 | 	efx->vf_init_count = 0; | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	/* Flush all reconfiguration work */ | 
 | 	for (pos = 0; pos < efx->vf_count; ++pos) { | 
 | 		vf = efx->vf + pos; | 
 | 		cancel_work_sync(&vf->req); | 
 | 		cancel_work_sync(&vf->reset_work); | 
 | 	} | 
 | 	cancel_work_sync(&efx->peer_work); | 
 |  | 
 | 	pci_disable_sriov(efx->pci_dev); | 
 |  | 
 | 	/* Tear down back-end state */ | 
 | 	efx_sriov_vfs_fini(efx); | 
 | 	efx_sriov_free_local(efx); | 
 | 	kfree(efx->vf); | 
 | 	efx_nic_free_buffer(efx, &efx->vfdi_status); | 
 | 	efx_sriov_cmd(efx, false, NULL, NULL); | 
 | } | 
 |  | 
 | void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event) | 
 | { | 
 | 	struct efx_nic *efx = channel->efx; | 
 | 	struct efx_vf *vf; | 
 | 	unsigned qid, seq, type, data; | 
 |  | 
 | 	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID); | 
 |  | 
 | 	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */ | 
 | 	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0); | 
 | 	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ); | 
 | 	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE); | 
 | 	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA); | 
 |  | 
 | 	netif_vdbg(efx, hw, efx->net_dev, | 
 | 		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n", | 
 | 		   qid, seq, type, data); | 
 |  | 
 | 	if (map_vi_index(efx, qid, &vf, NULL)) | 
 | 		return; | 
 | 	if (vf->busy) | 
 | 		goto error; | 
 |  | 
 | 	if (type == VFDI_EV_TYPE_REQ_WORD0) { | 
 | 		/* Resynchronise */ | 
 | 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0; | 
 | 		vf->req_seqno = seq + 1; | 
 | 		vf->req_addr = 0; | 
 | 	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type) | 
 | 		goto error; | 
 |  | 
 | 	switch (vf->req_type) { | 
 | 	case VFDI_EV_TYPE_REQ_WORD0: | 
 | 	case VFDI_EV_TYPE_REQ_WORD1: | 
 | 	case VFDI_EV_TYPE_REQ_WORD2: | 
 | 		vf->req_addr |= (u64)data << (vf->req_type << 4); | 
 | 		++vf->req_type; | 
 | 		return; | 
 |  | 
 | 	case VFDI_EV_TYPE_REQ_WORD3: | 
 | 		vf->req_addr |= (u64)data << 48; | 
 | 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0; | 
 | 		vf->busy = true; | 
 | 		queue_work(vfdi_workqueue, &vf->req); | 
 | 		return; | 
 | 	} | 
 |  | 
 | error: | 
 | 	if (net_ratelimit()) | 
 | 		netif_err(efx, hw, efx->net_dev, | 
 | 			  "ERROR: Screaming VFDI request from %s\n", | 
 | 			  vf->pci_name); | 
 | 	/* Reset the request and sequence number */ | 
 | 	vf->req_type = VFDI_EV_TYPE_REQ_WORD0; | 
 | 	vf->req_seqno = seq + 1; | 
 | } | 
 |  | 
 | void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i) | 
 | { | 
 | 	struct efx_vf *vf; | 
 |  | 
 | 	if (vf_i > efx->vf_init_count) | 
 | 		return; | 
 | 	vf = efx->vf + vf_i; | 
 | 	netif_info(efx, hw, efx->net_dev, | 
 | 		   "FLR on VF %s\n", vf->pci_name); | 
 |  | 
 | 	vf->status_addr = 0; | 
 | 	efx_vfdi_remove_all_filters(vf); | 
 | 	efx_vfdi_flush_clear(vf); | 
 |  | 
 | 	vf->evq0_count = 0; | 
 | } | 
 |  | 
 | void efx_sriov_mac_address_changed(struct efx_nic *efx) | 
 | { | 
 | 	struct vfdi_status *vfdi_status = efx->vfdi_status.addr; | 
 |  | 
 | 	if (!efx->vf_init_count) | 
 | 		return; | 
 | 	memcpy(vfdi_status->peers[0].mac_addr, | 
 | 	       efx->net_dev->dev_addr, ETH_ALEN); | 
 | 	queue_work(vfdi_workqueue, &efx->peer_work); | 
 | } | 
 |  | 
 | void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) | 
 | { | 
 | 	struct efx_vf *vf; | 
 | 	unsigned queue, qid; | 
 |  | 
 | 	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA); | 
 | 	if (map_vi_index(efx, queue, &vf, &qid)) | 
 | 		return; | 
 | 	/* Ignore flush completions triggered by an FLR */ | 
 | 	if (!test_bit(qid, vf->txq_mask)) | 
 | 		return; | 
 |  | 
 | 	__clear_bit(qid, vf->txq_mask); | 
 | 	--vf->txq_count; | 
 |  | 
 | 	if (efx_vfdi_flush_wake(vf)) | 
 | 		wake_up(&vf->flush_waitq); | 
 | } | 
 |  | 
 | void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) | 
 | { | 
 | 	struct efx_vf *vf; | 
 | 	unsigned ev_failed, queue, qid; | 
 |  | 
 | 	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); | 
 | 	ev_failed = EFX_QWORD_FIELD(*event, | 
 | 				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); | 
 | 	if (map_vi_index(efx, queue, &vf, &qid)) | 
 | 		return; | 
 | 	if (!test_bit(qid, vf->rxq_mask)) | 
 | 		return; | 
 |  | 
 | 	if (ev_failed) { | 
 | 		set_bit(qid, vf->rxq_retry_mask); | 
 | 		atomic_inc(&vf->rxq_retry_count); | 
 | 	} else { | 
 | 		__clear_bit(qid, vf->rxq_mask); | 
 | 		--vf->rxq_count; | 
 | 	} | 
 | 	if (efx_vfdi_flush_wake(vf)) | 
 | 		wake_up(&vf->flush_waitq); | 
 | } | 
 |  | 
 | /* Called from napi. Schedule the reset work item */ | 
 | void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) | 
 | { | 
 | 	struct efx_vf *vf; | 
 | 	unsigned int rel; | 
 |  | 
 | 	if (map_vi_index(efx, dmaq, &vf, &rel)) | 
 | 		return; | 
 |  | 
 | 	if (net_ratelimit()) | 
 | 		netif_err(efx, hw, efx->net_dev, | 
 | 			  "VF %d DMA Q %d reports descriptor fetch error.\n", | 
 | 			  vf->index, rel); | 
 | 	queue_work(vfdi_workqueue, &vf->reset_work); | 
 | } | 
 |  | 
 | /* Reset all VFs */ | 
 | void efx_sriov_reset(struct efx_nic *efx) | 
 | { | 
 | 	unsigned int vf_i; | 
 | 	struct efx_buffer buf; | 
 | 	struct efx_vf *vf; | 
 |  | 
 | 	ASSERT_RTNL(); | 
 |  | 
 | 	if (efx->vf_init_count == 0) | 
 | 		return; | 
 |  | 
 | 	efx_sriov_usrev(efx, true); | 
 | 	(void)efx_sriov_cmd(efx, true, NULL, NULL); | 
 |  | 
 | 	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE)) | 
 | 		return; | 
 |  | 
 | 	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) { | 
 | 		vf = efx->vf + vf_i; | 
 | 		efx_sriov_reset_vf(vf, &buf); | 
 | 	} | 
 |  | 
 | 	efx_nic_free_buffer(efx, &buf); | 
 | } | 
 |  | 
 | int efx_init_sriov(void) | 
 | { | 
 | 	/* A single threaded workqueue is sufficient. efx_sriov_vfdi() and | 
 | 	 * efx_sriov_peer_work() spend almost all their time sleeping for | 
 | 	 * MCDI to complete anyway | 
 | 	 */ | 
 | 	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi"); | 
 | 	if (!vfdi_workqueue) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void efx_fini_sriov(void) | 
 | { | 
 | 	destroy_workqueue(vfdi_workqueue); | 
 | } | 
 |  | 
 | int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 | 	struct efx_vf *vf; | 
 |  | 
 | 	if (vf_i >= efx->vf_init_count) | 
 | 		return -EINVAL; | 
 | 	vf = efx->vf + vf_i; | 
 |  | 
 | 	mutex_lock(&vf->status_lock); | 
 | 	memcpy(vf->addr.mac_addr, mac, ETH_ALEN); | 
 | 	__efx_sriov_update_vf_addr(vf); | 
 | 	mutex_unlock(&vf->status_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i, | 
 | 			  u16 vlan, u8 qos) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 | 	struct efx_vf *vf; | 
 | 	u16 tci; | 
 |  | 
 | 	if (vf_i >= efx->vf_init_count) | 
 | 		return -EINVAL; | 
 | 	vf = efx->vf + vf_i; | 
 |  | 
 | 	mutex_lock(&vf->status_lock); | 
 | 	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT); | 
 | 	vf->addr.tci = htons(tci); | 
 | 	__efx_sriov_update_vf_addr(vf); | 
 | 	mutex_unlock(&vf->status_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i, | 
 | 			      bool spoofchk) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 | 	struct efx_vf *vf; | 
 | 	int rc; | 
 |  | 
 | 	if (vf_i >= efx->vf_init_count) | 
 | 		return -EINVAL; | 
 | 	vf = efx->vf + vf_i; | 
 |  | 
 | 	mutex_lock(&vf->txq_lock); | 
 | 	if (vf->txq_count == 0) { | 
 | 		vf->tx_filter_mode = | 
 | 			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF; | 
 | 		rc = 0; | 
 | 	} else { | 
 | 		/* This cannot be changed while TX queues are running */ | 
 | 		rc = -EBUSY; | 
 | 	} | 
 | 	mutex_unlock(&vf->txq_lock); | 
 | 	return rc; | 
 | } | 
 |  | 
 | int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i, | 
 | 			    struct ifla_vf_info *ivi) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 | 	struct efx_vf *vf; | 
 | 	u16 tci; | 
 |  | 
 | 	if (vf_i >= efx->vf_init_count) | 
 | 		return -EINVAL; | 
 | 	vf = efx->vf + vf_i; | 
 |  | 
 | 	ivi->vf = vf_i; | 
 | 	memcpy(ivi->mac, vf->addr.mac_addr, ETH_ALEN); | 
 | 	ivi->tx_rate = 0; | 
 | 	tci = ntohs(vf->addr.tci); | 
 | 	ivi->vlan = tci & VLAN_VID_MASK; | 
 | 	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7; | 
 | 	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  |