|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include "compat.h" | 
|  | #include "hash.h" | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "print-tree.h" | 
|  | #include "transaction.h" | 
|  | #include "volumes.h" | 
|  | #include "raid56.h" | 
|  | #include "locking.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "math.h" | 
|  |  | 
|  | #undef SCRAMBLE_DELAYED_REFS | 
|  |  | 
|  | /* | 
|  | * control flags for do_chunk_alloc's force field | 
|  | * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk | 
|  | * if we really need one. | 
|  | * | 
|  | * CHUNK_ALLOC_LIMITED means to only try and allocate one | 
|  | * if we have very few chunks already allocated.  This is | 
|  | * used as part of the clustering code to help make sure | 
|  | * we have a good pool of storage to cluster in, without | 
|  | * filling the FS with empty chunks | 
|  | * | 
|  | * CHUNK_ALLOC_FORCE means it must try to allocate one | 
|  | * | 
|  | */ | 
|  | enum { | 
|  | CHUNK_ALLOC_NO_FORCE = 0, | 
|  | CHUNK_ALLOC_LIMITED = 1, | 
|  | CHUNK_ALLOC_FORCE = 2, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Control how reservations are dealt with. | 
|  | * | 
|  | * RESERVE_FREE - freeing a reservation. | 
|  | * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for | 
|  | *   ENOSPC accounting | 
|  | * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update | 
|  | *   bytes_may_use as the ENOSPC accounting is done elsewhere | 
|  | */ | 
|  | enum { | 
|  | RESERVE_FREE = 0, | 
|  | RESERVE_ALLOC = 1, | 
|  | RESERVE_ALLOC_NO_ACCOUNT = 2, | 
|  | }; | 
|  |  | 
|  | static int update_block_group(struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, int alloc); | 
|  | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner_objectid, | 
|  | u64 owner_offset, int refs_to_drop, | 
|  | struct btrfs_delayed_extent_op *extra_op); | 
|  | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_extent_item *ei); | 
|  | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins, int ref_mod); | 
|  | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, struct btrfs_disk_key *key, | 
|  | int level, struct btrfs_key *ins); | 
|  | static int do_chunk_alloc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, u64 flags, | 
|  | int force); | 
|  | static int find_next_key(struct btrfs_path *path, int level, | 
|  | struct btrfs_key *key); | 
|  | static void dump_space_info(struct btrfs_space_info *info, u64 bytes, | 
|  | int dump_block_groups); | 
|  | static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, | 
|  | u64 num_bytes, int reserve); | 
|  | static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes); | 
|  |  | 
|  | static noinline int | 
|  | block_group_cache_done(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | smp_mb(); | 
|  | return cache->cached == BTRFS_CACHE_FINISHED; | 
|  | } | 
|  |  | 
|  | static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) | 
|  | { | 
|  | return (cache->flags & bits) == bits; | 
|  | } | 
|  |  | 
|  | static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | atomic_inc(&cache->count); | 
|  | } | 
|  |  | 
|  | void btrfs_put_block_group(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | if (atomic_dec_and_test(&cache->count)) { | 
|  | WARN_ON(cache->pinned > 0); | 
|  | WARN_ON(cache->reserved > 0); | 
|  | kfree(cache->free_space_ctl); | 
|  | kfree(cache); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this adds the block group to the fs_info rb tree for the block group | 
|  | * cache | 
|  | */ | 
|  | static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, | 
|  | struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent = NULL; | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | p = &info->block_group_cache_tree.rb_node; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | cache = rb_entry(parent, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | if (block_group->key.objectid < cache->key.objectid) { | 
|  | p = &(*p)->rb_left; | 
|  | } else if (block_group->key.objectid > cache->key.objectid) { | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  | return -EEXIST; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(&block_group->cache_node, parent, p); | 
|  | rb_insert_color(&block_group->cache_node, | 
|  | &info->block_group_cache_tree); | 
|  |  | 
|  | if (info->first_logical_byte > block_group->key.objectid) | 
|  | info->first_logical_byte = block_group->key.objectid; | 
|  |  | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will return the block group at or after bytenr if contains is 0, else | 
|  | * it will return the block group that contains the bytenr | 
|  | */ | 
|  | static struct btrfs_block_group_cache * | 
|  | block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, | 
|  | int contains) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache, *ret = NULL; | 
|  | struct rb_node *n; | 
|  | u64 end, start; | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | n = info->block_group_cache_tree.rb_node; | 
|  |  | 
|  | while (n) { | 
|  | cache = rb_entry(n, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | end = cache->key.objectid + cache->key.offset - 1; | 
|  | start = cache->key.objectid; | 
|  |  | 
|  | if (bytenr < start) { | 
|  | if (!contains && (!ret || start < ret->key.objectid)) | 
|  | ret = cache; | 
|  | n = n->rb_left; | 
|  | } else if (bytenr > start) { | 
|  | if (contains && bytenr <= end) { | 
|  | ret = cache; | 
|  | break; | 
|  | } | 
|  | n = n->rb_right; | 
|  | } else { | 
|  | ret = cache; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ret) { | 
|  | btrfs_get_block_group(ret); | 
|  | if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) | 
|  | info->first_logical_byte = ret->key.objectid; | 
|  | } | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int add_excluded_extent(struct btrfs_root *root, | 
|  | u64 start, u64 num_bytes) | 
|  | { | 
|  | u64 end = start + num_bytes - 1; | 
|  | set_extent_bits(&root->fs_info->freed_extents[0], | 
|  | start, end, EXTENT_UPTODATE, GFP_NOFS); | 
|  | set_extent_bits(&root->fs_info->freed_extents[1], | 
|  | start, end, EXTENT_UPTODATE, GFP_NOFS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_excluded_extents(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | u64 start, end; | 
|  |  | 
|  | start = cache->key.objectid; | 
|  | end = start + cache->key.offset - 1; | 
|  |  | 
|  | clear_extent_bits(&root->fs_info->freed_extents[0], | 
|  | start, end, EXTENT_UPTODATE, GFP_NOFS); | 
|  | clear_extent_bits(&root->fs_info->freed_extents[1], | 
|  | start, end, EXTENT_UPTODATE, GFP_NOFS); | 
|  | } | 
|  |  | 
|  | static int exclude_super_stripes(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | u64 bytenr; | 
|  | u64 *logical; | 
|  | int stripe_len; | 
|  | int i, nr, ret; | 
|  |  | 
|  | if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { | 
|  | stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; | 
|  | cache->bytes_super += stripe_len; | 
|  | ret = add_excluded_extent(root, cache->key.objectid, | 
|  | stripe_len); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
|  | bytenr = btrfs_sb_offset(i); | 
|  | ret = btrfs_rmap_block(&root->fs_info->mapping_tree, | 
|  | cache->key.objectid, bytenr, | 
|  | 0, &logical, &nr, &stripe_len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | while (nr--) { | 
|  | cache->bytes_super += stripe_len; | 
|  | ret = add_excluded_extent(root, logical[nr], | 
|  | stripe_len); | 
|  | if (ret) { | 
|  | kfree(logical); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(logical); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btrfs_caching_control * | 
|  | get_caching_control(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_caching_control *ctl; | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | if (cache->cached != BTRFS_CACHE_STARTED) { | 
|  | spin_unlock(&cache->lock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* We're loading it the fast way, so we don't have a caching_ctl. */ | 
|  | if (!cache->caching_ctl) { | 
|  | spin_unlock(&cache->lock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ctl = cache->caching_ctl; | 
|  | atomic_inc(&ctl->count); | 
|  | spin_unlock(&cache->lock); | 
|  | return ctl; | 
|  | } | 
|  |  | 
|  | static void put_caching_control(struct btrfs_caching_control *ctl) | 
|  | { | 
|  | if (atomic_dec_and_test(&ctl->count)) | 
|  | kfree(ctl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is only called by cache_block_group, since we could have freed extents | 
|  | * we need to check the pinned_extents for any extents that can't be used yet | 
|  | * since their free space will be released as soon as the transaction commits. | 
|  | */ | 
|  | static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_fs_info *info, u64 start, u64 end) | 
|  | { | 
|  | u64 extent_start, extent_end, size, total_added = 0; | 
|  | int ret; | 
|  |  | 
|  | while (start < end) { | 
|  | ret = find_first_extent_bit(info->pinned_extents, start, | 
|  | &extent_start, &extent_end, | 
|  | EXTENT_DIRTY | EXTENT_UPTODATE, | 
|  | NULL); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | if (extent_start <= start) { | 
|  | start = extent_end + 1; | 
|  | } else if (extent_start > start && extent_start < end) { | 
|  | size = extent_start - start; | 
|  | total_added += size; | 
|  | ret = btrfs_add_free_space(block_group, start, | 
|  | size); | 
|  | BUG_ON(ret); /* -ENOMEM or logic error */ | 
|  | start = extent_end + 1; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (start < end) { | 
|  | size = end - start; | 
|  | total_added += size; | 
|  | ret = btrfs_add_free_space(block_group, start, size); | 
|  | BUG_ON(ret); /* -ENOMEM or logic error */ | 
|  | } | 
|  |  | 
|  | return total_added; | 
|  | } | 
|  |  | 
|  | static noinline void caching_thread(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_fs_info *fs_info; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | struct btrfs_root *extent_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | u64 total_found = 0; | 
|  | u64 last = 0; | 
|  | u32 nritems; | 
|  | int ret = 0; | 
|  |  | 
|  | caching_ctl = container_of(work, struct btrfs_caching_control, work); | 
|  | block_group = caching_ctl->block_group; | 
|  | fs_info = block_group->fs_info; | 
|  | extent_root = fs_info->extent_root; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | goto out; | 
|  |  | 
|  | last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); | 
|  |  | 
|  | /* | 
|  | * We don't want to deadlock with somebody trying to allocate a new | 
|  | * extent for the extent root while also trying to search the extent | 
|  | * root to add free space.  So we skip locking and search the commit | 
|  | * root, since its read-only | 
|  | */ | 
|  | path->skip_locking = 1; | 
|  | path->search_commit_root = 1; | 
|  | path->reada = 1; | 
|  |  | 
|  | key.objectid = last; | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | again: | 
|  | mutex_lock(&caching_ctl->mutex); | 
|  | /* need to make sure the commit_root doesn't disappear */ | 
|  | down_read(&fs_info->extent_commit_sem); | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto err; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  |  | 
|  | while (1) { | 
|  | if (btrfs_fs_closing(fs_info) > 1) { | 
|  | last = (u64)-1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (path->slots[0] < nritems) { | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | } else { | 
|  | ret = find_next_key(path, 0, &key); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | if (need_resched() || | 
|  | btrfs_next_leaf(extent_root, path)) { | 
|  | caching_ctl->progress = last; | 
|  | btrfs_release_path(path); | 
|  | up_read(&fs_info->extent_commit_sem); | 
|  | mutex_unlock(&caching_ctl->mutex); | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (key.objectid < block_group->key.objectid) { | 
|  | path->slots[0]++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (key.objectid >= block_group->key.objectid + | 
|  | block_group->key.offset) | 
|  | break; | 
|  |  | 
|  | if (key.type == BTRFS_EXTENT_ITEM_KEY) { | 
|  | total_found += add_new_free_space(block_group, | 
|  | fs_info, last, | 
|  | key.objectid); | 
|  | last = key.objectid + key.offset; | 
|  |  | 
|  | if (total_found > (1024 * 1024 * 2)) { | 
|  | total_found = 0; | 
|  | wake_up(&caching_ctl->wait); | 
|  | } | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | total_found += add_new_free_space(block_group, fs_info, last, | 
|  | block_group->key.objectid + | 
|  | block_group->key.offset); | 
|  | caching_ctl->progress = (u64)-1; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->caching_ctl = NULL; | 
|  | block_group->cached = BTRFS_CACHE_FINISHED; | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | err: | 
|  | btrfs_free_path(path); | 
|  | up_read(&fs_info->extent_commit_sem); | 
|  |  | 
|  | free_excluded_extents(extent_root, block_group); | 
|  |  | 
|  | mutex_unlock(&caching_ctl->mutex); | 
|  | out: | 
|  | wake_up(&caching_ctl->wait); | 
|  |  | 
|  | put_caching_control(caching_ctl); | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  |  | 
|  | static int cache_block_group(struct btrfs_block_group_cache *cache, | 
|  | int load_cache_only) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | int ret = 0; | 
|  |  | 
|  | caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); | 
|  | if (!caching_ctl) | 
|  | return -ENOMEM; | 
|  |  | 
|  | INIT_LIST_HEAD(&caching_ctl->list); | 
|  | mutex_init(&caching_ctl->mutex); | 
|  | init_waitqueue_head(&caching_ctl->wait); | 
|  | caching_ctl->block_group = cache; | 
|  | caching_ctl->progress = cache->key.objectid; | 
|  | atomic_set(&caching_ctl->count, 1); | 
|  | caching_ctl->work.func = caching_thread; | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | /* | 
|  | * This should be a rare occasion, but this could happen I think in the | 
|  | * case where one thread starts to load the space cache info, and then | 
|  | * some other thread starts a transaction commit which tries to do an | 
|  | * allocation while the other thread is still loading the space cache | 
|  | * info.  The previous loop should have kept us from choosing this block | 
|  | * group, but if we've moved to the state where we will wait on caching | 
|  | * block groups we need to first check if we're doing a fast load here, | 
|  | * so we can wait for it to finish, otherwise we could end up allocating | 
|  | * from a block group who's cache gets evicted for one reason or | 
|  | * another. | 
|  | */ | 
|  | while (cache->cached == BTRFS_CACHE_FAST) { | 
|  | struct btrfs_caching_control *ctl; | 
|  |  | 
|  | ctl = cache->caching_ctl; | 
|  | atomic_inc(&ctl->count); | 
|  | prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | finish_wait(&ctl->wait, &wait); | 
|  | put_caching_control(ctl); | 
|  | spin_lock(&cache->lock); | 
|  | } | 
|  |  | 
|  | if (cache->cached != BTRFS_CACHE_NO) { | 
|  | spin_unlock(&cache->lock); | 
|  | kfree(caching_ctl); | 
|  | return 0; | 
|  | } | 
|  | WARN_ON(cache->caching_ctl); | 
|  | cache->caching_ctl = caching_ctl; | 
|  | cache->cached = BTRFS_CACHE_FAST; | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { | 
|  | ret = load_free_space_cache(fs_info, cache); | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | if (ret == 1) { | 
|  | cache->caching_ctl = NULL; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | } else { | 
|  | if (load_cache_only) { | 
|  | cache->caching_ctl = NULL; | 
|  | cache->cached = BTRFS_CACHE_NO; | 
|  | } else { | 
|  | cache->cached = BTRFS_CACHE_STARTED; | 
|  | } | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | wake_up(&caching_ctl->wait); | 
|  | if (ret == 1) { | 
|  | put_caching_control(caching_ctl); | 
|  | free_excluded_extents(fs_info->extent_root, cache); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * We are not going to do the fast caching, set cached to the | 
|  | * appropriate value and wakeup any waiters. | 
|  | */ | 
|  | spin_lock(&cache->lock); | 
|  | if (load_cache_only) { | 
|  | cache->caching_ctl = NULL; | 
|  | cache->cached = BTRFS_CACHE_NO; | 
|  | } else { | 
|  | cache->cached = BTRFS_CACHE_STARTED; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | wake_up(&caching_ctl->wait); | 
|  | } | 
|  |  | 
|  | if (load_cache_only) { | 
|  | put_caching_control(caching_ctl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | down_write(&fs_info->extent_commit_sem); | 
|  | atomic_inc(&caching_ctl->count); | 
|  | list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); | 
|  | up_write(&fs_info->extent_commit_sem); | 
|  |  | 
|  | btrfs_get_block_group(cache); | 
|  |  | 
|  | btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return the block group that starts at or after bytenr | 
|  | */ | 
|  | static struct btrfs_block_group_cache * | 
|  | btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | cache = block_group_cache_tree_search(info, bytenr, 0); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return the block group that contains the given bytenr | 
|  | */ | 
|  | struct btrfs_block_group_cache *btrfs_lookup_block_group( | 
|  | struct btrfs_fs_info *info, | 
|  | u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | cache = block_group_cache_tree_search(info, bytenr, 1); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, | 
|  | u64 flags) | 
|  | { | 
|  | struct list_head *head = &info->space_info; | 
|  | struct btrfs_space_info *found; | 
|  |  | 
|  | flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(found, head, list) { | 
|  | if (found->flags & flags) { | 
|  | rcu_read_unlock(); | 
|  | return found; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * after adding space to the filesystem, we need to clear the full flags | 
|  | * on all the space infos. | 
|  | */ | 
|  | void btrfs_clear_space_info_full(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct list_head *head = &info->space_info; | 
|  | struct btrfs_space_info *found; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(found, head, list) | 
|  | found->full = 0; | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | u64 btrfs_find_block_group(struct btrfs_root *root, | 
|  | u64 search_start, u64 search_hint, int owner) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | u64 used; | 
|  | u64 last = max(search_hint, search_start); | 
|  | u64 group_start = 0; | 
|  | int full_search = 0; | 
|  | int factor = 9; | 
|  | int wrapped = 0; | 
|  | again: | 
|  | while (1) { | 
|  | cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
|  | if (!cache) | 
|  | break; | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | last = cache->key.objectid + cache->key.offset; | 
|  | used = btrfs_block_group_used(&cache->item); | 
|  |  | 
|  | if ((full_search || !cache->ro) && | 
|  | block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { | 
|  | if (used + cache->pinned + cache->reserved < | 
|  | div_factor(cache->key.offset, factor)) { | 
|  | group_start = cache->key.objectid; | 
|  | spin_unlock(&cache->lock); | 
|  | btrfs_put_block_group(cache); | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | btrfs_put_block_group(cache); | 
|  | cond_resched(); | 
|  | } | 
|  | if (!wrapped) { | 
|  | last = search_start; | 
|  | wrapped = 1; | 
|  | goto again; | 
|  | } | 
|  | if (!full_search && factor < 10) { | 
|  | last = search_start; | 
|  | full_search = 1; | 
|  | factor = 10; | 
|  | goto again; | 
|  | } | 
|  | found: | 
|  | return group_start; | 
|  | } | 
|  |  | 
|  | /* simple helper to search for an existing extent at a given offset */ | 
|  | int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = start; | 
|  | key.offset = len; | 
|  | btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); | 
|  | ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, | 
|  | 0, 0); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to lookup reference count and flags of extent. | 
|  | * | 
|  | * the head node for delayed ref is used to store the sum of all the | 
|  | * reference count modifications queued up in the rbtree. the head | 
|  | * node may also store the extent flags to set. This way you can check | 
|  | * to see what the reference count and extent flags would be if all of | 
|  | * the delayed refs are not processed. | 
|  | */ | 
|  | int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 bytenr, | 
|  | u64 num_bytes, u64 *refs, u64 *flags) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | u32 item_size; | 
|  | u64 num_refs; | 
|  | u64 extent_flags; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  | if (!trans) { | 
|  | path->skip_locking = 1; | 
|  | path->search_commit_root = 1; | 
|  | } | 
|  | again: | 
|  | ret = btrfs_search_slot(trans, root->fs_info->extent_root, | 
|  | &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out_free; | 
|  |  | 
|  | if (ret == 0) { | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | if (item_size >= sizeof(*ei)) { | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | num_refs = btrfs_extent_refs(leaf, ei); | 
|  | extent_flags = btrfs_extent_flags(leaf, ei); | 
|  | } else { | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | struct btrfs_extent_item_v0 *ei0; | 
|  | BUG_ON(item_size != sizeof(*ei0)); | 
|  | ei0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item_v0); | 
|  | num_refs = btrfs_extent_refs_v0(leaf, ei0); | 
|  | /* FIXME: this isn't correct for data */ | 
|  | extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | #else | 
|  | BUG(); | 
|  | #endif | 
|  | } | 
|  | BUG_ON(num_refs == 0); | 
|  | } else { | 
|  | num_refs = 0; | 
|  | extent_flags = 0; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (!trans) | 
|  | goto out; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(trans, bytenr); | 
|  | if (head) { | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | atomic_inc(&head->node.refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Mutex was contended, block until it's released and try | 
|  | * again | 
|  | */ | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref(&head->node); | 
|  | goto again; | 
|  | } | 
|  | if (head->extent_op && head->extent_op->update_flags) | 
|  | extent_flags |= head->extent_op->flags_to_set; | 
|  | else | 
|  | BUG_ON(num_refs == 0); | 
|  |  | 
|  | num_refs += head->node.ref_mod; | 
|  | mutex_unlock(&head->mutex); | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | out: | 
|  | WARN_ON(num_refs == 0); | 
|  | if (refs) | 
|  | *refs = num_refs; | 
|  | if (flags) | 
|  | *flags = extent_flags; | 
|  | out_free: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Back reference rules.  Back refs have three main goals: | 
|  | * | 
|  | * 1) differentiate between all holders of references to an extent so that | 
|  | *    when a reference is dropped we can make sure it was a valid reference | 
|  | *    before freeing the extent. | 
|  | * | 
|  | * 2) Provide enough information to quickly find the holders of an extent | 
|  | *    if we notice a given block is corrupted or bad. | 
|  | * | 
|  | * 3) Make it easy to migrate blocks for FS shrinking or storage pool | 
|  | *    maintenance.  This is actually the same as #2, but with a slightly | 
|  | *    different use case. | 
|  | * | 
|  | * There are two kinds of back refs. The implicit back refs is optimized | 
|  | * for pointers in non-shared tree blocks. For a given pointer in a block, | 
|  | * back refs of this kind provide information about the block's owner tree | 
|  | * and the pointer's key. These information allow us to find the block by | 
|  | * b-tree searching. The full back refs is for pointers in tree blocks not | 
|  | * referenced by their owner trees. The location of tree block is recorded | 
|  | * in the back refs. Actually the full back refs is generic, and can be | 
|  | * used in all cases the implicit back refs is used. The major shortcoming | 
|  | * of the full back refs is its overhead. Every time a tree block gets | 
|  | * COWed, we have to update back refs entry for all pointers in it. | 
|  | * | 
|  | * For a newly allocated tree block, we use implicit back refs for | 
|  | * pointers in it. This means most tree related operations only involve | 
|  | * implicit back refs. For a tree block created in old transaction, the | 
|  | * only way to drop a reference to it is COW it. So we can detect the | 
|  | * event that tree block loses its owner tree's reference and do the | 
|  | * back refs conversion. | 
|  | * | 
|  | * When a tree block is COW'd through a tree, there are four cases: | 
|  | * | 
|  | * The reference count of the block is one and the tree is the block's | 
|  | * owner tree. Nothing to do in this case. | 
|  | * | 
|  | * The reference count of the block is one and the tree is not the | 
|  | * block's owner tree. In this case, full back refs is used for pointers | 
|  | * in the block. Remove these full back refs, add implicit back refs for | 
|  | * every pointers in the new block. | 
|  | * | 
|  | * The reference count of the block is greater than one and the tree is | 
|  | * the block's owner tree. In this case, implicit back refs is used for | 
|  | * pointers in the block. Add full back refs for every pointers in the | 
|  | * block, increase lower level extents' reference counts. The original | 
|  | * implicit back refs are entailed to the new block. | 
|  | * | 
|  | * The reference count of the block is greater than one and the tree is | 
|  | * not the block's owner tree. Add implicit back refs for every pointer in | 
|  | * the new block, increase lower level extents' reference count. | 
|  | * | 
|  | * Back Reference Key composing: | 
|  | * | 
|  | * The key objectid corresponds to the first byte in the extent, | 
|  | * The key type is used to differentiate between types of back refs. | 
|  | * There are different meanings of the key offset for different types | 
|  | * of back refs. | 
|  | * | 
|  | * File extents can be referenced by: | 
|  | * | 
|  | * - multiple snapshots, subvolumes, or different generations in one subvol | 
|  | * - different files inside a single subvolume | 
|  | * - different offsets inside a file (bookend extents in file.c) | 
|  | * | 
|  | * The extent ref structure for the implicit back refs has fields for: | 
|  | * | 
|  | * - Objectid of the subvolume root | 
|  | * - objectid of the file holding the reference | 
|  | * - original offset in the file | 
|  | * - how many bookend extents | 
|  | * | 
|  | * The key offset for the implicit back refs is hash of the first | 
|  | * three fields. | 
|  | * | 
|  | * The extent ref structure for the full back refs has field for: | 
|  | * | 
|  | * - number of pointers in the tree leaf | 
|  | * | 
|  | * The key offset for the implicit back refs is the first byte of | 
|  | * the tree leaf | 
|  | * | 
|  | * When a file extent is allocated, The implicit back refs is used. | 
|  | * the fields are filled in: | 
|  | * | 
|  | *     (root_key.objectid, inode objectid, offset in file, 1) | 
|  | * | 
|  | * When a file extent is removed file truncation, we find the | 
|  | * corresponding implicit back refs and check the following fields: | 
|  | * | 
|  | *     (btrfs_header_owner(leaf), inode objectid, offset in file) | 
|  | * | 
|  | * Btree extents can be referenced by: | 
|  | * | 
|  | * - Different subvolumes | 
|  | * | 
|  | * Both the implicit back refs and the full back refs for tree blocks | 
|  | * only consist of key. The key offset for the implicit back refs is | 
|  | * objectid of block's owner tree. The key offset for the full back refs | 
|  | * is the first byte of parent block. | 
|  | * | 
|  | * When implicit back refs is used, information about the lowest key and | 
|  | * level of the tree block are required. These information are stored in | 
|  | * tree block info structure. | 
|  | */ | 
|  |  | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | static int convert_extent_item_v0(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 owner, u32 extra_size) | 
|  | { | 
|  | struct btrfs_extent_item *item; | 
|  | struct btrfs_extent_item_v0 *ei0; | 
|  | struct btrfs_extent_ref_v0 *ref0; | 
|  | struct btrfs_tree_block_info *bi; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | u32 new_size = sizeof(*item); | 
|  | u64 refs; | 
|  | int ret; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | ei0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item_v0); | 
|  | refs = btrfs_extent_refs_v0(leaf, ei0); | 
|  |  | 
|  | if (owner == (u64)-1) { | 
|  | while (1) { | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | BUG_ON(ret > 0); /* Corruption */ | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, | 
|  | path->slots[0]); | 
|  | BUG_ON(key.objectid != found_key.objectid); | 
|  | if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { | 
|  | path->slots[0]++; | 
|  | continue; | 
|  | } | 
|  | ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_ref_v0); | 
|  | owner = btrfs_ref_objectid_v0(leaf, ref0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) | 
|  | new_size += sizeof(*bi); | 
|  |  | 
|  | new_size -= sizeof(*ei0); | 
|  | ret = btrfs_search_slot(trans, root, &key, path, | 
|  | new_size + extra_size, 1); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | BUG_ON(ret); /* Corruption */ | 
|  |  | 
|  | btrfs_extend_item(trans, root, path, new_size); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | btrfs_set_extent_refs(leaf, item, refs); | 
|  | /* FIXME: get real generation */ | 
|  | btrfs_set_extent_generation(leaf, item, 0); | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | btrfs_set_extent_flags(leaf, item, | 
|  | BTRFS_EXTENT_FLAG_TREE_BLOCK | | 
|  | BTRFS_BLOCK_FLAG_FULL_BACKREF); | 
|  | bi = (struct btrfs_tree_block_info *)(item + 1); | 
|  | /* FIXME: get first key of the block */ | 
|  | memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); | 
|  | btrfs_set_tree_block_level(leaf, bi, (int)owner); | 
|  | } else { | 
|  | btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | u32 high_crc = ~(u32)0; | 
|  | u32 low_crc = ~(u32)0; | 
|  | __le64 lenum; | 
|  |  | 
|  | lenum = cpu_to_le64(root_objectid); | 
|  | high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); | 
|  | lenum = cpu_to_le64(owner); | 
|  | low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); | 
|  | lenum = cpu_to_le64(offset); | 
|  | low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); | 
|  |  | 
|  | return ((u64)high_crc << 31) ^ (u64)low_crc; | 
|  | } | 
|  |  | 
|  | static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, | 
|  | struct btrfs_extent_data_ref *ref) | 
|  | { | 
|  | return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), | 
|  | btrfs_extent_data_ref_objectid(leaf, ref), | 
|  | btrfs_extent_data_ref_offset(leaf, ref)); | 
|  | } | 
|  |  | 
|  | static int match_extent_data_ref(struct extent_buffer *leaf, | 
|  | struct btrfs_extent_data_ref *ref, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || | 
|  | btrfs_extent_data_ref_objectid(leaf, ref) != owner || | 
|  | btrfs_extent_data_ref_offset(leaf, ref) != offset) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid, | 
|  | u64 owner, u64 offset) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | struct extent_buffer *leaf; | 
|  | u32 nritems; | 
|  | int ret; | 
|  | int recow; | 
|  | int err = -ENOENT; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | key.offset = hash_extent_data_ref(root_objectid, | 
|  | owner, offset); | 
|  | } | 
|  | again: | 
|  | recow = 0; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (parent) { | 
|  | if (!ret) | 
|  | return 0; | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | key.type = BTRFS_EXTENT_REF_V0_KEY; | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto fail; | 
|  | } | 
|  | if (!ret) | 
|  | return 0; | 
|  | #endif | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | while (1) { | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | err = ret; | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | recow = 1; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != bytenr || | 
|  | key.type != BTRFS_EXTENT_DATA_REF_KEY) | 
|  | goto fail; | 
|  |  | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  |  | 
|  | if (match_extent_data_ref(leaf, ref, root_objectid, | 
|  | owner, offset)) { | 
|  | if (recow) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | fail: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid, u64 owner, | 
|  | u64 offset, int refs_to_add) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | u32 size; | 
|  | u32 num_refs; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | key.offset = parent; | 
|  | size = sizeof(struct btrfs_shared_data_ref); | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | key.offset = hash_extent_data_ref(root_objectid, | 
|  | owner, offset); | 
|  | size = sizeof(struct btrfs_extent_data_ref); | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, size); | 
|  | if (ret && ret != -EEXIST) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | if (parent) { | 
|  | struct btrfs_shared_data_ref *ref; | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | if (ret == 0) { | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); | 
|  | } else { | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref); | 
|  | num_refs += refs_to_add; | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, num_refs); | 
|  | } | 
|  | } else { | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | while (ret == -EEXIST) { | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | if (match_extent_data_ref(leaf, ref, root_objectid, | 
|  | owner, offset)) | 
|  | break; | 
|  | btrfs_release_path(path); | 
|  | key.offset++; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | size); | 
|  | if (ret && ret != -EEXIST) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | if (ret == 0) { | 
|  | btrfs_set_extent_data_ref_root(leaf, ref, | 
|  | root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, ref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); | 
|  | } else { | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref); | 
|  | num_refs += refs_to_add; | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, num_refs); | 
|  | } | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | ret = 0; | 
|  | fail: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | int refs_to_drop) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_extent_data_ref *ref1 = NULL; | 
|  | struct btrfs_shared_data_ref *ref2 = NULL; | 
|  | struct extent_buffer *leaf; | 
|  | u32 num_refs = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | ref2 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { | 
|  | struct btrfs_extent_ref_v0 *ref0; | 
|  | ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_ref_v0); | 
|  | num_refs = btrfs_ref_count_v0(leaf, ref0); | 
|  | #endif | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | BUG_ON(num_refs < refs_to_drop); | 
|  | num_refs -= refs_to_drop; | 
|  |  | 
|  | if (num_refs == 0) { | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | } else { | 
|  | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) | 
|  | btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); | 
|  | else if (key.type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | else { | 
|  | struct btrfs_extent_ref_v0 *ref0; | 
|  | ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_ref_v0); | 
|  | btrfs_set_ref_count_v0(leaf, ref0, num_refs); | 
|  | } | 
|  | #endif | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline u32 extent_data_ref_count(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_data_ref *ref1; | 
|  | struct btrfs_shared_data_ref *ref2; | 
|  | u32 num_refs = 0; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (iref) { | 
|  | if (btrfs_extent_inline_ref_type(leaf, iref) == | 
|  | BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else { | 
|  | ref2 = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | } | 
|  | } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | ref2 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { | 
|  | struct btrfs_extent_ref_v0 *ref0; | 
|  | ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_ref_v0); | 
|  | num_refs = btrfs_ref_count_v0(leaf, ref0); | 
|  | #endif | 
|  | } else { | 
|  | WARN_ON(1); | 
|  | } | 
|  | return num_refs; | 
|  | } | 
|  |  | 
|  | static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | key.offset = root_objectid; | 
|  | } | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | if (ret == -ENOENT && parent) { | 
|  | btrfs_release_path(path); | 
|  | key.type = BTRFS_EXTENT_REF_V0_KEY; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | } | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | key.offset = root_objectid; | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int extent_ref_type(u64 parent, u64 owner) | 
|  | { | 
|  | int type; | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | else | 
|  | type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | } else { | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | else | 
|  | type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | } | 
|  | return type; | 
|  | } | 
|  |  | 
|  | static int find_next_key(struct btrfs_path *path, int level, | 
|  | struct btrfs_key *key) | 
|  |  | 
|  | { | 
|  | for (; level < BTRFS_MAX_LEVEL; level++) { | 
|  | if (!path->nodes[level]) | 
|  | break; | 
|  | if (path->slots[level] + 1 >= | 
|  | btrfs_header_nritems(path->nodes[level])) | 
|  | continue; | 
|  | if (level == 0) | 
|  | btrfs_item_key_to_cpu(path->nodes[level], key, | 
|  | path->slots[level] + 1); | 
|  | else | 
|  | btrfs_node_key_to_cpu(path->nodes[level], key, | 
|  | path->slots[level] + 1); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look for inline back ref. if back ref is found, *ref_ret is set | 
|  | * to the address of inline back ref, and 0 is returned. | 
|  | * | 
|  | * if back ref isn't found, *ref_ret is set to the address where it | 
|  | * should be inserted, and -ENOENT is returned. | 
|  | * | 
|  | * if insert is true and there are too many inline back refs, the path | 
|  | * points to the extent item, and -EAGAIN is returned. | 
|  | * | 
|  | * NOTE: inline back refs are ordered in the same way that back ref | 
|  | *	 items in the tree are ordered. | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref **ref_ret, | 
|  | u64 bytenr, u64 num_bytes, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int insert) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | u64 flags; | 
|  | u64 item_size; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | int extra_size; | 
|  | int type; | 
|  | int want; | 
|  | int ret; | 
|  | int err = 0; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  |  | 
|  | want = extent_ref_type(parent, owner); | 
|  | if (insert) { | 
|  | extra_size = btrfs_extent_inline_ref_size(want); | 
|  | path->keep_locks = 1; | 
|  | } else | 
|  | extra_size = -1; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | if (ret && !insert) { | 
|  | err = -ENOENT; | 
|  | goto out; | 
|  | } else if (ret) { | 
|  | err = -EIO; | 
|  | WARN_ON(1); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | if (item_size < sizeof(*ei)) { | 
|  | if (!insert) { | 
|  | err = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  | ret = convert_extent_item_v0(trans, root, path, owner, | 
|  | extra_size); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | } | 
|  | #endif | 
|  | BUG_ON(item_size < sizeof(*ei)); | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(leaf, ei); | 
|  |  | 
|  | ptr = (unsigned long)(ei + 1); | 
|  | end = (unsigned long)ei + item_size; | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | ptr += sizeof(struct btrfs_tree_block_info); | 
|  | BUG_ON(ptr > end); | 
|  | } else { | 
|  | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); | 
|  | } | 
|  |  | 
|  | err = -ENOENT; | 
|  | while (1) { | 
|  | if (ptr >= end) { | 
|  | WARN_ON(ptr > end); | 
|  | break; | 
|  | } | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | type = btrfs_extent_inline_ref_type(leaf, iref); | 
|  | if (want < type) | 
|  | break; | 
|  | if (want > type) { | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | if (match_extent_data_ref(leaf, dref, root_objectid, | 
|  | owner, offset)) { | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | if (hash_extent_data_ref_item(leaf, dref) < | 
|  | hash_extent_data_ref(root_objectid, owner, offset)) | 
|  | break; | 
|  | } else { | 
|  | u64 ref_offset; | 
|  | ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); | 
|  | if (parent > 0) { | 
|  | if (parent == ref_offset) { | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | if (ref_offset < parent) | 
|  | break; | 
|  | } else { | 
|  | if (root_objectid == ref_offset) { | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | if (ref_offset < root_objectid) | 
|  | break; | 
|  | } | 
|  | } | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | } | 
|  | if (err == -ENOENT && insert) { | 
|  | if (item_size + extra_size >= | 
|  | BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * To add new inline back ref, we have to make sure | 
|  | * there is no corresponding back ref item. | 
|  | * For simplicity, we just do not add new inline back | 
|  | * ref if there is any kind of item for this block | 
|  | */ | 
|  | if (find_next_key(path, 0, &key) == 0 && | 
|  | key.objectid == bytenr && | 
|  | key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | *ref_ret = (struct btrfs_extent_inline_ref *)ptr; | 
|  | out: | 
|  | if (insert) { | 
|  | path->keep_locks = 0; | 
|  | btrfs_unlock_up_safe(path, 1); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to add new inline back ref | 
|  | */ | 
|  | static noinline_for_stack | 
|  | void setup_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | unsigned long item_offset; | 
|  | u64 refs; | 
|  | int size; | 
|  | int type; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | item_offset = (unsigned long)iref - (unsigned long)ei; | 
|  |  | 
|  | type = extent_ref_type(parent, owner); | 
|  | size = btrfs_extent_inline_ref_size(type); | 
|  |  | 
|  | btrfs_extend_item(trans, root, path, size); | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | refs += refs_to_add; | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | ptr = (unsigned long)ei + item_offset; | 
|  | end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | if (ptr < end - size) | 
|  | memmove_extent_buffer(leaf, ptr + size, ptr, | 
|  | end - size - ptr); | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, type); | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, dref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, dref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); | 
|  | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | struct btrfs_shared_data_ref *sref; | 
|  | sref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | } else { | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  |  | 
|  | static int lookup_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref **ref_ret, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = lookup_inline_extent_backref(trans, root, path, ref_ret, | 
|  | bytenr, num_bytes, parent, | 
|  | root_objectid, owner, offset, 0); | 
|  | if (ret != -ENOENT) | 
|  | return ret; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | *ref_ret = NULL; | 
|  |  | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, | 
|  | root_objectid); | 
|  | } else { | 
|  | ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, | 
|  | root_objectid, owner, offset); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to update/remove inline back ref | 
|  | */ | 
|  | static noinline_for_stack | 
|  | void update_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | int refs_to_mod, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_data_ref *dref = NULL; | 
|  | struct btrfs_shared_data_ref *sref = NULL; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | u32 item_size; | 
|  | int size; | 
|  | int type; | 
|  | u64 refs; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); | 
|  | refs += refs_to_mod; | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | type = btrfs_extent_inline_ref_type(leaf, iref); | 
|  |  | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | refs = btrfs_extent_data_ref_count(leaf, dref); | 
|  | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | sref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | refs = btrfs_shared_data_ref_count(leaf, sref); | 
|  | } else { | 
|  | refs = 1; | 
|  | BUG_ON(refs_to_mod != -1); | 
|  | } | 
|  |  | 
|  | BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); | 
|  | refs += refs_to_mod; | 
|  |  | 
|  | if (refs > 0) { | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) | 
|  | btrfs_set_extent_data_ref_count(leaf, dref, refs); | 
|  | else | 
|  | btrfs_set_shared_data_ref_count(leaf, sref, refs); | 
|  | } else { | 
|  | size =  btrfs_extent_inline_ref_size(type); | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | ptr = (unsigned long)iref; | 
|  | end = (unsigned long)ei + item_size; | 
|  | if (ptr + size < end) | 
|  | memmove_extent_buffer(leaf, ptr, ptr + size, | 
|  | end - ptr - size); | 
|  | item_size -= size; | 
|  | btrfs_truncate_item(trans, root, path, item_size, 1); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int insert_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, | 
|  | u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int ret; | 
|  |  | 
|  | ret = lookup_inline_extent_backref(trans, root, path, &iref, | 
|  | bytenr, num_bytes, parent, | 
|  | root_objectid, owner, offset, 1); | 
|  | if (ret == 0) { | 
|  | BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); | 
|  | update_inline_extent_backref(trans, root, path, iref, | 
|  | refs_to_add, extent_op); | 
|  | } else if (ret == -ENOENT) { | 
|  | setup_inline_extent_backref(trans, root, path, iref, parent, | 
|  | root_objectid, owner, offset, | 
|  | refs_to_add, extent_op); | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int insert_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int refs_to_add) | 
|  | { | 
|  | int ret; | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | BUG_ON(refs_to_add != 1); | 
|  | ret = insert_tree_block_ref(trans, root, path, bytenr, | 
|  | parent, root_objectid); | 
|  | } else { | 
|  | ret = insert_extent_data_ref(trans, root, path, bytenr, | 
|  | parent, root_objectid, | 
|  | owner, offset, refs_to_add); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int remove_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | int refs_to_drop, int is_data) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!is_data && refs_to_drop != 1); | 
|  | if (iref) { | 
|  | update_inline_extent_backref(trans, root, path, iref, | 
|  | -refs_to_drop, NULL); | 
|  | } else if (is_data) { | 
|  | ret = remove_extent_data_ref(trans, root, path, refs_to_drop); | 
|  | } else { | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_issue_discard(struct block_device *bdev, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); | 
|  | } | 
|  |  | 
|  | static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, | 
|  | u64 num_bytes, u64 *actual_bytes) | 
|  | { | 
|  | int ret; | 
|  | u64 discarded_bytes = 0; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  |  | 
|  |  | 
|  | /* Tell the block device(s) that the sectors can be discarded */ | 
|  | ret = btrfs_map_block(root->fs_info, REQ_DISCARD, | 
|  | bytenr, &num_bytes, &bbio, 0); | 
|  | /* Error condition is -ENOMEM */ | 
|  | if (!ret) { | 
|  | struct btrfs_bio_stripe *stripe = bbio->stripes; | 
|  | int i; | 
|  |  | 
|  |  | 
|  | for (i = 0; i < bbio->num_stripes; i++, stripe++) { | 
|  | if (!stripe->dev->can_discard) | 
|  | continue; | 
|  |  | 
|  | ret = btrfs_issue_discard(stripe->dev->bdev, | 
|  | stripe->physical, | 
|  | stripe->length); | 
|  | if (!ret) | 
|  | discarded_bytes += stripe->length; | 
|  | else if (ret != -EOPNOTSUPP) | 
|  | break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ | 
|  |  | 
|  | /* | 
|  | * Just in case we get back EOPNOTSUPP for some reason, | 
|  | * just ignore the return value so we don't screw up | 
|  | * people calling discard_extent. | 
|  | */ | 
|  | ret = 0; | 
|  | } | 
|  | kfree(bbio); | 
|  | } | 
|  |  | 
|  | if (actual_bytes) | 
|  | *actual_bytes = discarded_bytes; | 
|  |  | 
|  |  | 
|  | if (ret == -EOPNOTSUPP) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Can return -ENOMEM */ | 
|  | int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, u64 offset, int for_cow) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && | 
|  | root_objectid == BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, | 
|  | num_bytes, | 
|  | parent, root_objectid, (int)owner, | 
|  | BTRFS_ADD_DELAYED_REF, NULL, for_cow); | 
|  | } else { | 
|  | ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, | 
|  | num_bytes, | 
|  | parent, root_objectid, owner, offset, | 
|  | BTRFS_ADD_DELAYED_REF, NULL, for_cow); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *item; | 
|  | u64 refs; | 
|  | int ret; | 
|  | int err = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = 1; | 
|  | path->leave_spinning = 1; | 
|  | /* this will setup the path even if it fails to insert the back ref */ | 
|  | ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, | 
|  | path, bytenr, num_bytes, parent, | 
|  | root_objectid, owner, offset, | 
|  | refs_to_add, extent_op); | 
|  | if (ret == 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret != -EAGAIN) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, item); | 
|  | btrfs_set_extent_refs(leaf, item, refs + refs_to_add); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, item); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | path->reada = 1; | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | /* now insert the actual backref */ | 
|  | ret = insert_extent_backref(trans, root->fs_info->extent_root, | 
|  | path, bytenr, parent, root_objectid, | 
|  | owner, offset, refs_to_add); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, root, ret); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int run_delayed_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | int insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_delayed_data_ref *ref; | 
|  | struct btrfs_key ins; | 
|  | u64 parent = 0; | 
|  | u64 ref_root = 0; | 
|  | u64 flags = 0; | 
|  |  | 
|  | ins.objectid = node->bytenr; | 
|  | ins.offset = node->num_bytes; | 
|  | ins.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ref = btrfs_delayed_node_to_data_ref(node); | 
|  | if (node->type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | parent = ref->parent; | 
|  | else | 
|  | ref_root = ref->root; | 
|  |  | 
|  | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { | 
|  | if (extent_op) { | 
|  | BUG_ON(extent_op->update_key); | 
|  | flags |= extent_op->flags_to_set; | 
|  | } | 
|  | ret = alloc_reserved_file_extent(trans, root, | 
|  | parent, ref_root, flags, | 
|  | ref->objectid, ref->offset, | 
|  | &ins, node->ref_mod); | 
|  | } else if (node->action == BTRFS_ADD_DELAYED_REF) { | 
|  | ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, | 
|  | node->num_bytes, parent, | 
|  | ref_root, ref->objectid, | 
|  | ref->offset, node->ref_mod, | 
|  | extent_op); | 
|  | } else if (node->action == BTRFS_DROP_DELAYED_REF) { | 
|  | ret = __btrfs_free_extent(trans, root, node->bytenr, | 
|  | node->num_bytes, parent, | 
|  | ref_root, ref->objectid, | 
|  | ref->offset, node->ref_mod, | 
|  | extent_op); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_extent_item *ei) | 
|  | { | 
|  | u64 flags = btrfs_extent_flags(leaf, ei); | 
|  | if (extent_op->update_flags) { | 
|  | flags |= extent_op->flags_to_set; | 
|  | btrfs_set_extent_flags(leaf, ei, flags); | 
|  | } | 
|  |  | 
|  | if (extent_op->update_key) { | 
|  | struct btrfs_tree_block_info *bi; | 
|  | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); | 
|  | bi = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | btrfs_set_tree_block_key(leaf, bi, &extent_op->key); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int run_delayed_extent_op(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct extent_buffer *leaf; | 
|  | u32 item_size; | 
|  | int ret; | 
|  | int err = 0; | 
|  |  | 
|  | if (trans->aborted) | 
|  | return 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = node->bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = node->num_bytes; | 
|  |  | 
|  | path->reada = 1; | 
|  | path->leave_spinning = 1; | 
|  | ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, | 
|  | path, 0, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | if (ret > 0) { | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | if (item_size < sizeof(*ei)) { | 
|  | ret = convert_extent_item_v0(trans, root->fs_info->extent_root, | 
|  | path, (u64)-1, 0); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | } | 
|  | #endif | 
|  | BUG_ON(item_size < sizeof(*ei)); | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | int insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_delayed_tree_ref *ref; | 
|  | struct btrfs_key ins; | 
|  | u64 parent = 0; | 
|  | u64 ref_root = 0; | 
|  |  | 
|  | ins.objectid = node->bytenr; | 
|  | ins.offset = node->num_bytes; | 
|  | ins.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ref = btrfs_delayed_node_to_tree_ref(node); | 
|  | if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | parent = ref->parent; | 
|  | else | 
|  | ref_root = ref->root; | 
|  |  | 
|  | BUG_ON(node->ref_mod != 1); | 
|  | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { | 
|  | BUG_ON(!extent_op || !extent_op->update_flags || | 
|  | !extent_op->update_key); | 
|  | ret = alloc_reserved_tree_block(trans, root, | 
|  | parent, ref_root, | 
|  | extent_op->flags_to_set, | 
|  | &extent_op->key, | 
|  | ref->level, &ins); | 
|  | } else if (node->action == BTRFS_ADD_DELAYED_REF) { | 
|  | ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, | 
|  | node->num_bytes, parent, ref_root, | 
|  | ref->level, 0, 1, extent_op); | 
|  | } else if (node->action == BTRFS_DROP_DELAYED_REF) { | 
|  | ret = __btrfs_free_extent(trans, root, node->bytenr, | 
|  | node->num_bytes, parent, ref_root, | 
|  | ref->level, 0, 1, extent_op); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* helper function to actually process a single delayed ref entry */ | 
|  | static int run_one_delayed_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | int insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (trans->aborted) | 
|  | return 0; | 
|  |  | 
|  | if (btrfs_delayed_ref_is_head(node)) { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | /* | 
|  | * we've hit the end of the chain and we were supposed | 
|  | * to insert this extent into the tree.  But, it got | 
|  | * deleted before we ever needed to insert it, so all | 
|  | * we have to do is clean up the accounting | 
|  | */ | 
|  | BUG_ON(extent_op); | 
|  | head = btrfs_delayed_node_to_head(node); | 
|  | if (insert_reserved) { | 
|  | btrfs_pin_extent(root, node->bytenr, | 
|  | node->num_bytes, 1); | 
|  | if (head->is_data) { | 
|  | ret = btrfs_del_csums(trans, root, | 
|  | node->bytenr, | 
|  | node->num_bytes); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (node->type == BTRFS_TREE_BLOCK_REF_KEY || | 
|  | node->type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | ret = run_delayed_tree_ref(trans, root, node, extent_op, | 
|  | insert_reserved); | 
|  | else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || | 
|  | node->type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | ret = run_delayed_data_ref(trans, root, node, extent_op, | 
|  | insert_reserved); | 
|  | else | 
|  | BUG(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline struct btrfs_delayed_ref_node * | 
|  | select_delayed_ref(struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | int action = BTRFS_ADD_DELAYED_REF; | 
|  | again: | 
|  | /* | 
|  | * select delayed ref of type BTRFS_ADD_DELAYED_REF first. | 
|  | * this prevents ref count from going down to zero when | 
|  | * there still are pending delayed ref. | 
|  | */ | 
|  | node = rb_prev(&head->node.rb_node); | 
|  | while (1) { | 
|  | if (!node) | 
|  | break; | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, | 
|  | rb_node); | 
|  | if (ref->bytenr != head->node.bytenr) | 
|  | break; | 
|  | if (ref->action == action) | 
|  | return ref; | 
|  | node = rb_prev(node); | 
|  | } | 
|  | if (action == BTRFS_ADD_DELAYED_REF) { | 
|  | action = BTRFS_DROP_DELAYED_REF; | 
|  | goto again; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 0 on success or if called with an already aborted transaction. | 
|  | * Returns -ENOMEM or -EIO on failure and will abort the transaction. | 
|  | */ | 
|  | static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct list_head *cluster) | 
|  | { | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct btrfs_delayed_ref_head *locked_ref = NULL; | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  | int count = 0; | 
|  | int must_insert_reserved = 0; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | while (1) { | 
|  | if (!locked_ref) { | 
|  | /* pick a new head ref from the cluster list */ | 
|  | if (list_empty(cluster)) | 
|  | break; | 
|  |  | 
|  | locked_ref = list_entry(cluster->next, | 
|  | struct btrfs_delayed_ref_head, cluster); | 
|  |  | 
|  | /* grab the lock that says we are going to process | 
|  | * all the refs for this head */ | 
|  | ret = btrfs_delayed_ref_lock(trans, locked_ref); | 
|  |  | 
|  | /* | 
|  | * we may have dropped the spin lock to get the head | 
|  | * mutex lock, and that might have given someone else | 
|  | * time to free the head.  If that's true, it has been | 
|  | * removed from our list and we can move on. | 
|  | */ | 
|  | if (ret == -EAGAIN) { | 
|  | locked_ref = NULL; | 
|  | count++; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to try and merge add/drops of the same ref since we | 
|  | * can run into issues with relocate dropping the implicit ref | 
|  | * and then it being added back again before the drop can | 
|  | * finish.  If we merged anything we need to re-loop so we can | 
|  | * get a good ref. | 
|  | */ | 
|  | btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, | 
|  | locked_ref); | 
|  |  | 
|  | /* | 
|  | * locked_ref is the head node, so we have to go one | 
|  | * node back for any delayed ref updates | 
|  | */ | 
|  | ref = select_delayed_ref(locked_ref); | 
|  |  | 
|  | if (ref && ref->seq && | 
|  | btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { | 
|  | /* | 
|  | * there are still refs with lower seq numbers in the | 
|  | * process of being added. Don't run this ref yet. | 
|  | */ | 
|  | list_del_init(&locked_ref->cluster); | 
|  | btrfs_delayed_ref_unlock(locked_ref); | 
|  | locked_ref = NULL; | 
|  | delayed_refs->num_heads_ready++; | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | cond_resched(); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * record the must insert reserved flag before we | 
|  | * drop the spin lock. | 
|  | */ | 
|  | must_insert_reserved = locked_ref->must_insert_reserved; | 
|  | locked_ref->must_insert_reserved = 0; | 
|  |  | 
|  | extent_op = locked_ref->extent_op; | 
|  | locked_ref->extent_op = NULL; | 
|  |  | 
|  | if (!ref) { | 
|  | /* All delayed refs have been processed, Go ahead | 
|  | * and send the head node to run_one_delayed_ref, | 
|  | * so that any accounting fixes can happen | 
|  | */ | 
|  | ref = &locked_ref->node; | 
|  |  | 
|  | if (extent_op && must_insert_reserved) { | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | extent_op = NULL; | 
|  | } | 
|  |  | 
|  | if (extent_op) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | ret = run_delayed_extent_op(trans, root, | 
|  | ref, extent_op); | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  |  | 
|  | if (ret) { | 
|  | printk(KERN_DEBUG | 
|  | "btrfs: run_delayed_extent_op " | 
|  | "returned %d\n", ret); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | btrfs_delayed_ref_unlock(locked_ref); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | goto next; | 
|  | } | 
|  | } | 
|  |  | 
|  | ref->in_tree = 0; | 
|  | rb_erase(&ref->rb_node, &delayed_refs->root); | 
|  | delayed_refs->num_entries--; | 
|  | if (!btrfs_delayed_ref_is_head(ref)) { | 
|  | /* | 
|  | * when we play the delayed ref, also correct the | 
|  | * ref_mod on head | 
|  | */ | 
|  | switch (ref->action) { | 
|  | case BTRFS_ADD_DELAYED_REF: | 
|  | case BTRFS_ADD_DELAYED_EXTENT: | 
|  | locked_ref->node.ref_mod -= ref->ref_mod; | 
|  | break; | 
|  | case BTRFS_DROP_DELAYED_REF: | 
|  | locked_ref->node.ref_mod += ref->ref_mod; | 
|  | break; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | } | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | ret = run_one_delayed_ref(trans, root, ref, extent_op, | 
|  | must_insert_reserved); | 
|  |  | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | if (ret) { | 
|  | btrfs_delayed_ref_unlock(locked_ref); | 
|  | btrfs_put_delayed_ref(ref); | 
|  | printk(KERN_DEBUG | 
|  | "btrfs: run_one_delayed_ref returned %d\n", ret); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this node is a head, that means all the refs in this head | 
|  | * have been dealt with, and we will pick the next head to deal | 
|  | * with, so we must unlock the head and drop it from the cluster | 
|  | * list before we release it. | 
|  | */ | 
|  | if (btrfs_delayed_ref_is_head(ref)) { | 
|  | list_del_init(&locked_ref->cluster); | 
|  | btrfs_delayed_ref_unlock(locked_ref); | 
|  | locked_ref = NULL; | 
|  | } | 
|  | btrfs_put_delayed_ref(ref); | 
|  | count++; | 
|  | next: | 
|  | cond_resched(); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #ifdef SCRAMBLE_DELAYED_REFS | 
|  | /* | 
|  | * Normally delayed refs get processed in ascending bytenr order. This | 
|  | * correlates in most cases to the order added. To expose dependencies on this | 
|  | * order, we start to process the tree in the middle instead of the beginning | 
|  | */ | 
|  | static u64 find_middle(struct rb_root *root) | 
|  | { | 
|  | struct rb_node *n = root->rb_node; | 
|  | struct btrfs_delayed_ref_node *entry; | 
|  | int alt = 1; | 
|  | u64 middle; | 
|  | u64 first = 0, last = 0; | 
|  |  | 
|  | n = rb_first(root); | 
|  | if (n) { | 
|  | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); | 
|  | first = entry->bytenr; | 
|  | } | 
|  | n = rb_last(root); | 
|  | if (n) { | 
|  | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); | 
|  | last = entry->bytenr; | 
|  | } | 
|  | n = root->rb_node; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); | 
|  | WARN_ON(!entry->in_tree); | 
|  |  | 
|  | middle = entry->bytenr; | 
|  |  | 
|  | if (alt) | 
|  | n = n->rb_left; | 
|  | else | 
|  | n = n->rb_right; | 
|  |  | 
|  | alt = 1 - alt; | 
|  | } | 
|  | return middle; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct qgroup_update *qgroup_update; | 
|  | int ret = 0; | 
|  |  | 
|  | if (list_empty(&trans->qgroup_ref_list) != | 
|  | !trans->delayed_ref_elem.seq) { | 
|  | /* list without seq or seq without list */ | 
|  | printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n", | 
|  | list_empty(&trans->qgroup_ref_list) ? "" : " not", | 
|  | trans->delayed_ref_elem.seq); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (!trans->delayed_ref_elem.seq) | 
|  | return 0; | 
|  |  | 
|  | while (!list_empty(&trans->qgroup_ref_list)) { | 
|  | qgroup_update = list_first_entry(&trans->qgroup_ref_list, | 
|  | struct qgroup_update, list); | 
|  | list_del(&qgroup_update->list); | 
|  | if (!ret) | 
|  | ret = btrfs_qgroup_account_ref( | 
|  | trans, fs_info, qgroup_update->node, | 
|  | qgroup_update->extent_op); | 
|  | kfree(qgroup_update); | 
|  | } | 
|  |  | 
|  | btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq, | 
|  | int count) | 
|  | { | 
|  | int val = atomic_read(&delayed_refs->ref_seq); | 
|  |  | 
|  | if (val < seq || val >= seq + count) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this starts processing the delayed reference count updates and | 
|  | * extent insertions we have queued up so far.  count can be | 
|  | * 0, which means to process everything in the tree at the start | 
|  | * of the run (but not newly added entries), or it can be some target | 
|  | * number you'd like to process. | 
|  | * | 
|  | * Returns 0 on success or if called with an aborted transaction | 
|  | * Returns <0 on error and aborts the transaction | 
|  | */ | 
|  | int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, unsigned long count) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct list_head cluster; | 
|  | int ret; | 
|  | u64 delayed_start; | 
|  | int run_all = count == (unsigned long)-1; | 
|  | int run_most = 0; | 
|  | int loops; | 
|  |  | 
|  | /* We'll clean this up in btrfs_cleanup_transaction */ | 
|  | if (trans->aborted) | 
|  | return 0; | 
|  |  | 
|  | if (root == root->fs_info->extent_root) | 
|  | root = root->fs_info->tree_root; | 
|  |  | 
|  | btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | INIT_LIST_HEAD(&cluster); | 
|  | if (count == 0) { | 
|  | count = delayed_refs->num_entries * 2; | 
|  | run_most = 1; | 
|  | } | 
|  |  | 
|  | if (!run_all && !run_most) { | 
|  | int old; | 
|  | int seq = atomic_read(&delayed_refs->ref_seq); | 
|  |  | 
|  | progress: | 
|  | old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); | 
|  | if (old) { | 
|  | DEFINE_WAIT(__wait); | 
|  | if (delayed_refs->num_entries < 16348) | 
|  | return 0; | 
|  |  | 
|  | prepare_to_wait(&delayed_refs->wait, &__wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  |  | 
|  | old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); | 
|  | if (old) { | 
|  | schedule(); | 
|  | finish_wait(&delayed_refs->wait, &__wait); | 
|  |  | 
|  | if (!refs_newer(delayed_refs, seq, 256)) | 
|  | goto progress; | 
|  | else | 
|  | return 0; | 
|  | } else { | 
|  | finish_wait(&delayed_refs->wait, &__wait); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | } else { | 
|  | atomic_inc(&delayed_refs->procs_running_refs); | 
|  | } | 
|  |  | 
|  | again: | 
|  | loops = 0; | 
|  | spin_lock(&delayed_refs->lock); | 
|  |  | 
|  | #ifdef SCRAMBLE_DELAYED_REFS | 
|  | delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); | 
|  | #endif | 
|  |  | 
|  | while (1) { | 
|  | if (!(run_all || run_most) && | 
|  | delayed_refs->num_heads_ready < 64) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * go find something we can process in the rbtree.  We start at | 
|  | * the beginning of the tree, and then build a cluster | 
|  | * of refs to process starting at the first one we are able to | 
|  | * lock | 
|  | */ | 
|  | delayed_start = delayed_refs->run_delayed_start; | 
|  | ret = btrfs_find_ref_cluster(trans, &cluster, | 
|  | delayed_refs->run_delayed_start); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ret = run_clustered_refs(trans, root, &cluster); | 
|  | if (ret < 0) { | 
|  | btrfs_release_ref_cluster(&cluster); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | btrfs_abort_transaction(trans, root, ret); | 
|  | atomic_dec(&delayed_refs->procs_running_refs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | atomic_add(ret, &delayed_refs->ref_seq); | 
|  |  | 
|  | count -= min_t(unsigned long, ret, count); | 
|  |  | 
|  | if (count == 0) | 
|  | break; | 
|  |  | 
|  | if (delayed_start >= delayed_refs->run_delayed_start) { | 
|  | if (loops == 0) { | 
|  | /* | 
|  | * btrfs_find_ref_cluster looped. let's do one | 
|  | * more cycle. if we don't run any delayed ref | 
|  | * during that cycle (because we can't because | 
|  | * all of them are blocked), bail out. | 
|  | */ | 
|  | loops = 1; | 
|  | } else { | 
|  | /* | 
|  | * no runnable refs left, stop trying | 
|  | */ | 
|  | BUG_ON(run_all); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ret) { | 
|  | /* refs were run, let's reset staleness detection */ | 
|  | loops = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (run_all) { | 
|  | if (!list_empty(&trans->new_bgs)) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | btrfs_create_pending_block_groups(trans, root); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | } | 
|  |  | 
|  | node = rb_first(&delayed_refs->root); | 
|  | if (!node) | 
|  | goto out; | 
|  | count = (unsigned long)-1; | 
|  |  | 
|  | while (node) { | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, | 
|  | rb_node); | 
|  | if (btrfs_delayed_ref_is_head(ref)) { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  |  | 
|  | head = btrfs_delayed_node_to_head(ref); | 
|  | atomic_inc(&ref->refs); | 
|  |  | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | /* | 
|  | * Mutex was contended, block until it's | 
|  | * released and try again | 
|  | */ | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  |  | 
|  | btrfs_put_delayed_ref(ref); | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | node = rb_next(node); | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | schedule_timeout(1); | 
|  | goto again; | 
|  | } | 
|  | out: | 
|  | atomic_dec(&delayed_refs->procs_running_refs); | 
|  | smp_mb(); | 
|  | if (waitqueue_active(&delayed_refs->wait)) | 
|  | wake_up(&delayed_refs->wait); | 
|  |  | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | assert_qgroups_uptodate(trans); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 flags, | 
|  | int is_data) | 
|  | { | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | int ret; | 
|  |  | 
|  | extent_op = btrfs_alloc_delayed_extent_op(); | 
|  | if (!extent_op) | 
|  | return -ENOMEM; | 
|  |  | 
|  | extent_op->flags_to_set = flags; | 
|  | extent_op->update_flags = 1; | 
|  | extent_op->update_key = 0; | 
|  | extent_op->is_data = is_data ? 1 : 0; | 
|  |  | 
|  | ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, | 
|  | num_bytes, extent_op); | 
|  | if (ret) | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid, u64 offset, u64 bytenr) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct btrfs_delayed_data_ref *data_ref; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct rb_node *node; | 
|  | int ret = 0; | 
|  |  | 
|  | ret = -ENOENT; | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(trans, bytenr); | 
|  | if (!head) | 
|  | goto out; | 
|  |  | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | atomic_inc(&head->node.refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Mutex was contended, block until it's released and let | 
|  | * caller try again | 
|  | */ | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref(&head->node); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | node = rb_prev(&head->node.rb_node); | 
|  | if (!node) | 
|  | goto out_unlock; | 
|  |  | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); | 
|  |  | 
|  | if (ref->bytenr != bytenr) | 
|  | goto out_unlock; | 
|  |  | 
|  | ret = 1; | 
|  | if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) | 
|  | goto out_unlock; | 
|  |  | 
|  | data_ref = btrfs_delayed_node_to_data_ref(ref); | 
|  |  | 
|  | node = rb_prev(node); | 
|  | if (node) { | 
|  | int seq = ref->seq; | 
|  |  | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); | 
|  | if (ref->bytenr == bytenr && ref->seq == seq) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (data_ref->root != root->root_key.objectid || | 
|  | data_ref->objectid != objectid || data_ref->offset != offset) | 
|  | goto out_unlock; | 
|  |  | 
|  | ret = 0; | 
|  | out_unlock: | 
|  | mutex_unlock(&head->mutex); | 
|  | out: | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int check_committed_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid, u64 offset, u64 bytenr) | 
|  | { | 
|  | struct btrfs_root *extent_root = root->fs_info->extent_root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_key key; | 
|  | u32 item_size; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | BUG_ON(ret == 0); /* Corruption */ | 
|  |  | 
|  | ret = -ENOENT; | 
|  | if (path->slots[0] == 0) | 
|  | goto out; | 
|  |  | 
|  | path->slots[0]--; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) | 
|  | goto out; | 
|  |  | 
|  | ret = 1; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | if (item_size < sizeof(*ei)) { | 
|  | WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); | 
|  | goto out; | 
|  | } | 
|  | #endif | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  |  | 
|  | if (item_size != sizeof(*ei) + | 
|  | btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) | 
|  | goto out; | 
|  |  | 
|  | if (btrfs_extent_generation(leaf, ei) <= | 
|  | btrfs_root_last_snapshot(&root->root_item)) | 
|  | goto out; | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)(ei + 1); | 
|  | if (btrfs_extent_inline_ref_type(leaf, iref) != | 
|  | BTRFS_EXTENT_DATA_REF_KEY) | 
|  | goto out; | 
|  |  | 
|  | ref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | if (btrfs_extent_refs(leaf, ei) != | 
|  | btrfs_extent_data_ref_count(leaf, ref) || | 
|  | btrfs_extent_data_ref_root(leaf, ref) != | 
|  | root->root_key.objectid || | 
|  | btrfs_extent_data_ref_objectid(leaf, ref) != objectid || | 
|  | btrfs_extent_data_ref_offset(leaf, ref) != offset) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 objectid, u64 offset, u64 bytenr) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | int ret2; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOENT; | 
|  |  | 
|  | do { | 
|  | ret = check_committed_ref(trans, root, path, objectid, | 
|  | offset, bytenr); | 
|  | if (ret && ret != -ENOENT) | 
|  | goto out; | 
|  |  | 
|  | ret2 = check_delayed_ref(trans, root, path, objectid, | 
|  | offset, bytenr); | 
|  | } while (ret2 == -EAGAIN); | 
|  |  | 
|  | if (ret2 && ret2 != -ENOENT) { | 
|  | ret = ret2; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ret != -ENOENT || ret2 != -ENOENT) | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) | 
|  | WARN_ON(ret > 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, | 
|  | int full_backref, int inc, int for_cow) | 
|  | { | 
|  | u64 bytenr; | 
|  | u64 num_bytes; | 
|  | u64 parent; | 
|  | u64 ref_root; | 
|  | u32 nritems; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | int i; | 
|  | int level; | 
|  | int ret = 0; | 
|  | int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, | 
|  | u64, u64, u64, u64, u64, u64, int); | 
|  |  | 
|  | ref_root = btrfs_header_owner(buf); | 
|  | nritems = btrfs_header_nritems(buf); | 
|  | level = btrfs_header_level(buf); | 
|  |  | 
|  | if (!root->ref_cows && level == 0) | 
|  | return 0; | 
|  |  | 
|  | if (inc) | 
|  | process_func = btrfs_inc_extent_ref; | 
|  | else | 
|  | process_func = btrfs_free_extent; | 
|  |  | 
|  | if (full_backref) | 
|  | parent = buf->start; | 
|  | else | 
|  | parent = 0; | 
|  |  | 
|  | for (i = 0; i < nritems; i++) { | 
|  | if (level == 0) { | 
|  | btrfs_item_key_to_cpu(buf, &key, i); | 
|  | if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | fi = btrfs_item_ptr(buf, i, | 
|  | struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(buf, fi) == | 
|  | BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | bytenr = btrfs_file_extent_disk_bytenr(buf, fi); | 
|  | if (bytenr == 0) | 
|  | continue; | 
|  |  | 
|  | num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); | 
|  | key.offset -= btrfs_file_extent_offset(buf, fi); | 
|  | ret = process_func(trans, root, bytenr, num_bytes, | 
|  | parent, ref_root, key.objectid, | 
|  | key.offset, for_cow); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } else { | 
|  | bytenr = btrfs_node_blockptr(buf, i); | 
|  | num_bytes = btrfs_level_size(root, level - 1); | 
|  | ret = process_func(trans, root, bytenr, num_bytes, | 
|  | parent, ref_root, level - 1, 0, | 
|  | for_cow); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | fail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct extent_buffer *buf, int full_backref, int for_cow) | 
|  | { | 
|  | return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); | 
|  | } | 
|  |  | 
|  | int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct extent_buffer *buf, int full_backref, int for_cow) | 
|  | { | 
|  | return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); | 
|  | } | 
|  |  | 
|  | static int write_one_cache_group(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_root *extent_root = root->fs_info->extent_root; | 
|  | unsigned long bi; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | BUG_ON(ret); /* Corruption */ | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | bi = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(path); | 
|  | fail: | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, root, ret); | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_group_cache * | 
|  | next_block_group(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct rb_node *node; | 
|  | spin_lock(&root->fs_info->block_group_cache_lock); | 
|  | node = rb_next(&cache->cache_node); | 
|  | btrfs_put_block_group(cache); | 
|  | if (node) { | 
|  | cache = rb_entry(node, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | btrfs_get_block_group(cache); | 
|  | } else | 
|  | cache = NULL; | 
|  | spin_unlock(&root->fs_info->block_group_cache_lock); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static int cache_save_setup(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_root *root = block_group->fs_info->tree_root; | 
|  | struct inode *inode = NULL; | 
|  | u64 alloc_hint = 0; | 
|  | int dcs = BTRFS_DC_ERROR; | 
|  | int num_pages = 0; | 
|  | int retries = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If this block group is smaller than 100 megs don't bother caching the | 
|  | * block group. | 
|  | */ | 
|  | if (block_group->key.offset < (100 * 1024 * 1024)) { | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->disk_cache_state = BTRFS_DC_WRITTEN; | 
|  | spin_unlock(&block_group->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | again: | 
|  | inode = lookup_free_space_inode(root, block_group, path); | 
|  | if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { | 
|  | ret = PTR_ERR(inode); | 
|  | btrfs_release_path(path); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (IS_ERR(inode)) { | 
|  | BUG_ON(retries); | 
|  | retries++; | 
|  |  | 
|  | if (block_group->ro) | 
|  | goto out_free; | 
|  |  | 
|  | ret = create_free_space_inode(root, trans, block_group, path); | 
|  | if (ret) | 
|  | goto out_free; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* We've already setup this transaction, go ahead and exit */ | 
|  | if (block_group->cache_generation == trans->transid && | 
|  | i_size_read(inode)) { | 
|  | dcs = BTRFS_DC_SETUP; | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to set the generation to 0, that way if anything goes wrong | 
|  | * from here on out we know not to trust this cache when we load up next | 
|  | * time. | 
|  | */ | 
|  | BTRFS_I(inode)->generation = 0; | 
|  | ret = btrfs_update_inode(trans, root, inode); | 
|  | WARN_ON(ret); | 
|  |  | 
|  | if (i_size_read(inode) > 0) { | 
|  | ret = btrfs_truncate_free_space_cache(root, trans, path, | 
|  | inode); | 
|  | if (ret) | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->cached != BTRFS_CACHE_FINISHED || | 
|  | !btrfs_test_opt(root, SPACE_CACHE)) { | 
|  | /* | 
|  | * don't bother trying to write stuff out _if_ | 
|  | * a) we're not cached, | 
|  | * b) we're with nospace_cache mount option. | 
|  | */ | 
|  | dcs = BTRFS_DC_WRITTEN; | 
|  | spin_unlock(&block_group->lock); | 
|  | goto out_put; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | /* | 
|  | * Try to preallocate enough space based on how big the block group is. | 
|  | * Keep in mind this has to include any pinned space which could end up | 
|  | * taking up quite a bit since it's not folded into the other space | 
|  | * cache. | 
|  | */ | 
|  | num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); | 
|  | if (!num_pages) | 
|  | num_pages = 1; | 
|  |  | 
|  | num_pages *= 16; | 
|  | num_pages *= PAGE_CACHE_SIZE; | 
|  |  | 
|  | ret = btrfs_check_data_free_space(inode, num_pages); | 
|  | if (ret) | 
|  | goto out_put; | 
|  |  | 
|  | ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, | 
|  | num_pages, num_pages, | 
|  | &alloc_hint); | 
|  | if (!ret) | 
|  | dcs = BTRFS_DC_SETUP; | 
|  | btrfs_free_reserved_data_space(inode, num_pages); | 
|  |  | 
|  | out_put: | 
|  | iput(inode); | 
|  | out_free: | 
|  | btrfs_release_path(path); | 
|  | out: | 
|  | spin_lock(&block_group->lock); | 
|  | if (!ret && dcs == BTRFS_DC_SETUP) | 
|  | block_group->cache_generation = trans->transid; | 
|  | block_group->disk_cache_state = dcs; | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | int err = 0; | 
|  | struct btrfs_path *path; | 
|  | u64 last = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | again: | 
|  | while (1) { | 
|  | cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
|  | while (cache) { | 
|  | if (cache->disk_cache_state == BTRFS_DC_CLEAR) | 
|  | break; | 
|  | cache = next_block_group(root, cache); | 
|  | } | 
|  | if (!cache) { | 
|  | if (last == 0) | 
|  | break; | 
|  | last = 0; | 
|  | continue; | 
|  | } | 
|  | err = cache_save_setup(cache, trans, path); | 
|  | last = cache->key.objectid + cache->key.offset; | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | if (last == 0) { | 
|  | err = btrfs_run_delayed_refs(trans, root, | 
|  | (unsigned long)-1); | 
|  | if (err) /* File system offline */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
|  | while (cache) { | 
|  | if (cache->disk_cache_state == BTRFS_DC_CLEAR) { | 
|  | btrfs_put_block_group(cache); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (cache->dirty) | 
|  | break; | 
|  | cache = next_block_group(root, cache); | 
|  | } | 
|  | if (!cache) { | 
|  | if (last == 0) | 
|  | break; | 
|  | last = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (cache->disk_cache_state == BTRFS_DC_SETUP) | 
|  | cache->disk_cache_state = BTRFS_DC_NEED_WRITE; | 
|  | cache->dirty = 0; | 
|  | last = cache->key.objectid + cache->key.offset; | 
|  |  | 
|  | err = write_one_cache_group(trans, root, path, cache); | 
|  | if (err) /* File system offline */ | 
|  | goto out; | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | /* | 
|  | * I don't think this is needed since we're just marking our | 
|  | * preallocated extent as written, but just in case it can't | 
|  | * hurt. | 
|  | */ | 
|  | if (last == 0) { | 
|  | err = btrfs_run_delayed_refs(trans, root, | 
|  | (unsigned long)-1); | 
|  | if (err) /* File system offline */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
|  | while (cache) { | 
|  | /* | 
|  | * Really this shouldn't happen, but it could if we | 
|  | * couldn't write the entire preallocated extent and | 
|  | * splitting the extent resulted in a new block. | 
|  | */ | 
|  | if (cache->dirty) { | 
|  | btrfs_put_block_group(cache); | 
|  | goto again; | 
|  | } | 
|  | if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) | 
|  | break; | 
|  | cache = next_block_group(root, cache); | 
|  | } | 
|  | if (!cache) { | 
|  | if (last == 0) | 
|  | break; | 
|  | last = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | err = btrfs_write_out_cache(root, trans, cache, path); | 
|  |  | 
|  | /* | 
|  | * If we didn't have an error then the cache state is still | 
|  | * NEED_WRITE, so we can set it to WRITTEN. | 
|  | */ | 
|  | if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) | 
|  | cache->disk_cache_state = BTRFS_DC_WRITTEN; | 
|  | last = cache->key.objectid + cache->key.offset; | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  | out: | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | int readonly = 0; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(root->fs_info, bytenr); | 
|  | if (!block_group || block_group->ro) | 
|  | readonly = 1; | 
|  | if (block_group) | 
|  | btrfs_put_block_group(block_group); | 
|  | return readonly; | 
|  | } | 
|  |  | 
|  | static int update_space_info(struct btrfs_fs_info *info, u64 flags, | 
|  | u64 total_bytes, u64 bytes_used, | 
|  | struct btrfs_space_info **space_info) | 
|  | { | 
|  | struct btrfs_space_info *found; | 
|  | int i; | 
|  | int factor; | 
|  |  | 
|  | if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) | 
|  | factor = 2; | 
|  | else | 
|  | factor = 1; | 
|  |  | 
|  | found = __find_space_info(info, flags); | 
|  | if (found) { | 
|  | spin_lock(&found->lock); | 
|  | found->total_bytes += total_bytes; | 
|  | found->disk_total += total_bytes * factor; | 
|  | found->bytes_used += bytes_used; | 
|  | found->disk_used += bytes_used * factor; | 
|  | found->full = 0; | 
|  | spin_unlock(&found->lock); | 
|  | *space_info = found; | 
|  | return 0; | 
|  | } | 
|  | found = kzalloc(sizeof(*found), GFP_NOFS); | 
|  | if (!found) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) | 
|  | INIT_LIST_HEAD(&found->block_groups[i]); | 
|  | init_rwsem(&found->groups_sem); | 
|  | spin_lock_init(&found->lock); | 
|  | found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; | 
|  | found->total_bytes = total_bytes; | 
|  | found->disk_total = total_bytes * factor; | 
|  | found->bytes_used = bytes_used; | 
|  | found->disk_used = bytes_used * factor; | 
|  | found->bytes_pinned = 0; | 
|  | found->bytes_reserved = 0; | 
|  | found->bytes_readonly = 0; | 
|  | found->bytes_may_use = 0; | 
|  | found->full = 0; | 
|  | found->force_alloc = CHUNK_ALLOC_NO_FORCE; | 
|  | found->chunk_alloc = 0; | 
|  | found->flush = 0; | 
|  | init_waitqueue_head(&found->wait); | 
|  | *space_info = found; | 
|  | list_add_rcu(&found->list, &info->space_info); | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | info->data_sinfo = found; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) | 
|  | { | 
|  | u64 extra_flags = chunk_to_extended(flags) & | 
|  | BTRFS_EXTENDED_PROFILE_MASK; | 
|  |  | 
|  | write_seqlock(&fs_info->profiles_lock); | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | fs_info->avail_data_alloc_bits |= extra_flags; | 
|  | if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | fs_info->avail_metadata_alloc_bits |= extra_flags; | 
|  | if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | fs_info->avail_system_alloc_bits |= extra_flags; | 
|  | write_sequnlock(&fs_info->profiles_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns target flags in extended format or 0 if restripe for this | 
|  | * chunk_type is not in progress | 
|  | * | 
|  | * should be called with either volume_mutex or balance_lock held | 
|  | */ | 
|  | static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) | 
|  | { | 
|  | struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
|  | u64 target = 0; | 
|  |  | 
|  | if (!bctl) | 
|  | return 0; | 
|  |  | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA && | 
|  | bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
|  | target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; | 
|  | } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && | 
|  | bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
|  | target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; | 
|  | } else if (flags & BTRFS_BLOCK_GROUP_METADATA && | 
|  | bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
|  | target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; | 
|  | } | 
|  |  | 
|  | return target; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @flags: available profiles in extended format (see ctree.h) | 
|  | * | 
|  | * Returns reduced profile in chunk format.  If profile changing is in | 
|  | * progress (either running or paused) picks the target profile (if it's | 
|  | * already available), otherwise falls back to plain reducing. | 
|  | */ | 
|  | u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) | 
|  | { | 
|  | /* | 
|  | * we add in the count of missing devices because we want | 
|  | * to make sure that any RAID levels on a degraded FS | 
|  | * continue to be honored. | 
|  | */ | 
|  | u64 num_devices = root->fs_info->fs_devices->rw_devices + | 
|  | root->fs_info->fs_devices->missing_devices; | 
|  | u64 target; | 
|  | u64 tmp; | 
|  |  | 
|  | /* | 
|  | * see if restripe for this chunk_type is in progress, if so | 
|  | * try to reduce to the target profile | 
|  | */ | 
|  | spin_lock(&root->fs_info->balance_lock); | 
|  | target = get_restripe_target(root->fs_info, flags); | 
|  | if (target) { | 
|  | /* pick target profile only if it's already available */ | 
|  | if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { | 
|  | spin_unlock(&root->fs_info->balance_lock); | 
|  | return extended_to_chunk(target); | 
|  | } | 
|  | } | 
|  | spin_unlock(&root->fs_info->balance_lock); | 
|  |  | 
|  | /* First, mask out the RAID levels which aren't possible */ | 
|  | if (num_devices == 1) | 
|  | flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID5); | 
|  | if (num_devices < 3) | 
|  | flags &= ~BTRFS_BLOCK_GROUP_RAID6; | 
|  | if (num_devices < 4) | 
|  | flags &= ~BTRFS_BLOCK_GROUP_RAID10; | 
|  |  | 
|  | tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | | 
|  | BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); | 
|  | flags &= ~tmp; | 
|  |  | 
|  | if (tmp & BTRFS_BLOCK_GROUP_RAID6) | 
|  | tmp = BTRFS_BLOCK_GROUP_RAID6; | 
|  | else if (tmp & BTRFS_BLOCK_GROUP_RAID5) | 
|  | tmp = BTRFS_BLOCK_GROUP_RAID5; | 
|  | else if (tmp & BTRFS_BLOCK_GROUP_RAID10) | 
|  | tmp = BTRFS_BLOCK_GROUP_RAID10; | 
|  | else if (tmp & BTRFS_BLOCK_GROUP_RAID1) | 
|  | tmp = BTRFS_BLOCK_GROUP_RAID1; | 
|  | else if (tmp & BTRFS_BLOCK_GROUP_RAID0) | 
|  | tmp = BTRFS_BLOCK_GROUP_RAID0; | 
|  |  | 
|  | return extended_to_chunk(flags | tmp); | 
|  | } | 
|  |  | 
|  | static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) | 
|  | { | 
|  | unsigned seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&root->fs_info->profiles_lock); | 
|  |  | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | flags |= root->fs_info->avail_data_alloc_bits; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | flags |= root->fs_info->avail_system_alloc_bits; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | flags |= root->fs_info->avail_metadata_alloc_bits; | 
|  | } while (read_seqretry(&root->fs_info->profiles_lock, seq)); | 
|  |  | 
|  | return btrfs_reduce_alloc_profile(root, flags); | 
|  | } | 
|  |  | 
|  | u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) | 
|  | { | 
|  | u64 flags; | 
|  | u64 ret; | 
|  |  | 
|  | if (data) | 
|  | flags = BTRFS_BLOCK_GROUP_DATA; | 
|  | else if (root == root->fs_info->chunk_root) | 
|  | flags = BTRFS_BLOCK_GROUP_SYSTEM; | 
|  | else | 
|  | flags = BTRFS_BLOCK_GROUP_METADATA; | 
|  |  | 
|  | ret = get_alloc_profile(root, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will check the space that the inode allocates from to make sure we have | 
|  | * enough space for bytes. | 
|  | */ | 
|  | int btrfs_check_data_free_space(struct inode *inode, u64 bytes) | 
|  | { | 
|  | struct btrfs_space_info *data_sinfo; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 used; | 
|  | int ret = 0, committed = 0, alloc_chunk = 1; | 
|  |  | 
|  | /* make sure bytes are sectorsize aligned */ | 
|  | bytes = ALIGN(bytes, root->sectorsize); | 
|  |  | 
|  | if (root == root->fs_info->tree_root || | 
|  | BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { | 
|  | alloc_chunk = 0; | 
|  | committed = 1; | 
|  | } | 
|  |  | 
|  | data_sinfo = fs_info->data_sinfo; | 
|  | if (!data_sinfo) | 
|  | goto alloc; | 
|  |  | 
|  | again: | 
|  | /* make sure we have enough space to handle the data first */ | 
|  | spin_lock(&data_sinfo->lock); | 
|  | used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + | 
|  | data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + | 
|  | data_sinfo->bytes_may_use; | 
|  |  | 
|  | if (used + bytes > data_sinfo->total_bytes) { | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | /* | 
|  | * if we don't have enough free bytes in this space then we need | 
|  | * to alloc a new chunk. | 
|  | */ | 
|  | if (!data_sinfo->full && alloc_chunk) { | 
|  | u64 alloc_target; | 
|  |  | 
|  | data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; | 
|  | spin_unlock(&data_sinfo->lock); | 
|  | alloc: | 
|  | alloc_target = btrfs_get_alloc_profile(root, 1); | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | ret = do_chunk_alloc(trans, root->fs_info->extent_root, | 
|  | alloc_target, | 
|  | CHUNK_ALLOC_NO_FORCE); | 
|  | btrfs_end_transaction(trans, root); | 
|  | if (ret < 0) { | 
|  | if (ret != -ENOSPC) | 
|  | return ret; | 
|  | else | 
|  | goto commit_trans; | 
|  | } | 
|  |  | 
|  | if (!data_sinfo) | 
|  | data_sinfo = fs_info->data_sinfo; | 
|  |  | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have less pinned bytes than we want to allocate then | 
|  | * don't bother committing the transaction, it won't help us. | 
|  | */ | 
|  | if (data_sinfo->bytes_pinned < bytes) | 
|  | committed = 1; | 
|  | spin_unlock(&data_sinfo->lock); | 
|  |  | 
|  | /* commit the current transaction and try again */ | 
|  | commit_trans: | 
|  | if (!committed && | 
|  | !atomic_read(&root->fs_info->open_ioctl_trans)) { | 
|  | committed = 1; | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  | ret = btrfs_commit_transaction(trans, root); | 
|  | if (ret) | 
|  | return ret; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | return -ENOSPC; | 
|  | } | 
|  | data_sinfo->bytes_may_use += bytes; | 
|  | trace_btrfs_space_reservation(root->fs_info, "space_info", | 
|  | data_sinfo->flags, bytes, 1); | 
|  | spin_unlock(&data_sinfo->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called if we need to clear a data reservation for this inode. | 
|  | */ | 
|  | void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_space_info *data_sinfo; | 
|  |  | 
|  | /* make sure bytes are sectorsize aligned */ | 
|  | bytes = ALIGN(bytes, root->sectorsize); | 
|  |  | 
|  | data_sinfo = root->fs_info->data_sinfo; | 
|  | spin_lock(&data_sinfo->lock); | 
|  | data_sinfo->bytes_may_use -= bytes; | 
|  | trace_btrfs_space_reservation(root->fs_info, "space_info", | 
|  | data_sinfo->flags, bytes, 0); | 
|  | spin_unlock(&data_sinfo->lock); | 
|  | } | 
|  |  | 
|  | static void force_metadata_allocation(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct list_head *head = &info->space_info; | 
|  | struct btrfs_space_info *found; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(found, head, list) { | 
|  | if (found->flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | found->force_alloc = CHUNK_ALLOC_FORCE; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static int should_alloc_chunk(struct btrfs_root *root, | 
|  | struct btrfs_space_info *sinfo, int force) | 
|  | { | 
|  | struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; | 
|  | u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; | 
|  | u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; | 
|  | u64 thresh; | 
|  |  | 
|  | if (force == CHUNK_ALLOC_FORCE) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * We need to take into account the global rsv because for all intents | 
|  | * and purposes it's used space.  Don't worry about locking the | 
|  | * global_rsv, it doesn't change except when the transaction commits. | 
|  | */ | 
|  | if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | num_allocated += global_rsv->size; | 
|  |  | 
|  | /* | 
|  | * in limited mode, we want to have some free space up to | 
|  | * about 1% of the FS size. | 
|  | */ | 
|  | if (force == CHUNK_ALLOC_LIMITED) { | 
|  | thresh = btrfs_super_total_bytes(root->fs_info->super_copy); | 
|  | thresh = max_t(u64, 64 * 1024 * 1024, | 
|  | div_factor_fine(thresh, 1)); | 
|  |  | 
|  | if (num_bytes - num_allocated < thresh) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) | 
|  | { | 
|  | u64 num_dev; | 
|  |  | 
|  | if (type & (BTRFS_BLOCK_GROUP_RAID10 | | 
|  | BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID5 | | 
|  | BTRFS_BLOCK_GROUP_RAID6)) | 
|  | num_dev = root->fs_info->fs_devices->rw_devices; | 
|  | else if (type & BTRFS_BLOCK_GROUP_RAID1) | 
|  | num_dev = 2; | 
|  | else | 
|  | num_dev = 1;	/* DUP or single */ | 
|  |  | 
|  | /* metadata for updaing devices and chunk tree */ | 
|  | return btrfs_calc_trans_metadata_size(root, num_dev + 1); | 
|  | } | 
|  |  | 
|  | static void check_system_chunk(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 type) | 
|  | { | 
|  | struct btrfs_space_info *info; | 
|  | u64 left; | 
|  | u64 thresh; | 
|  |  | 
|  | info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); | 
|  | spin_lock(&info->lock); | 
|  | left = info->total_bytes - info->bytes_used - info->bytes_pinned - | 
|  | info->bytes_reserved - info->bytes_readonly; | 
|  | spin_unlock(&info->lock); | 
|  |  | 
|  | thresh = get_system_chunk_thresh(root, type); | 
|  | if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { | 
|  | printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n", | 
|  | left, thresh, type); | 
|  | dump_space_info(info, 0, 0); | 
|  | } | 
|  |  | 
|  | if (left < thresh) { | 
|  | u64 flags; | 
|  |  | 
|  | flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); | 
|  | btrfs_alloc_chunk(trans, root, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int do_chunk_alloc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, u64 flags, int force) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_fs_info *fs_info = extent_root->fs_info; | 
|  | int wait_for_alloc = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Don't re-enter if we're already allocating a chunk */ | 
|  | if (trans->allocating_chunk) | 
|  | return -ENOSPC; | 
|  |  | 
|  | space_info = __find_space_info(extent_root->fs_info, flags); | 
|  | if (!space_info) { | 
|  | ret = update_space_info(extent_root->fs_info, flags, | 
|  | 0, 0, &space_info); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  | BUG_ON(!space_info); /* Logic error */ | 
|  |  | 
|  | again: | 
|  | spin_lock(&space_info->lock); | 
|  | if (force < space_info->force_alloc) | 
|  | force = space_info->force_alloc; | 
|  | if (space_info->full) { | 
|  | spin_unlock(&space_info->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!should_alloc_chunk(extent_root, space_info, force)) { | 
|  | spin_unlock(&space_info->lock); | 
|  | return 0; | 
|  | } else if (space_info->chunk_alloc) { | 
|  | wait_for_alloc = 1; | 
|  | } else { | 
|  | space_info->chunk_alloc = 1; | 
|  | } | 
|  |  | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  |  | 
|  | /* | 
|  | * The chunk_mutex is held throughout the entirety of a chunk | 
|  | * allocation, so once we've acquired the chunk_mutex we know that the | 
|  | * other guy is done and we need to recheck and see if we should | 
|  | * allocate. | 
|  | */ | 
|  | if (wait_for_alloc) { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | wait_for_alloc = 0; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | trans->allocating_chunk = true; | 
|  |  | 
|  | /* | 
|  | * If we have mixed data/metadata chunks we want to make sure we keep | 
|  | * allocating mixed chunks instead of individual chunks. | 
|  | */ | 
|  | if (btrfs_mixed_space_info(space_info)) | 
|  | flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); | 
|  |  | 
|  | /* | 
|  | * if we're doing a data chunk, go ahead and make sure that | 
|  | * we keep a reasonable number of metadata chunks allocated in the | 
|  | * FS as well. | 
|  | */ | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { | 
|  | fs_info->data_chunk_allocations++; | 
|  | if (!(fs_info->data_chunk_allocations % | 
|  | fs_info->metadata_ratio)) | 
|  | force_metadata_allocation(fs_info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we have enough space in SYSTEM chunk because we may need | 
|  | * to update devices. | 
|  | */ | 
|  | check_system_chunk(trans, extent_root, flags); | 
|  |  | 
|  | ret = btrfs_alloc_chunk(trans, extent_root, flags); | 
|  | trans->allocating_chunk = false; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | if (ret < 0 && ret != -ENOSPC) | 
|  | goto out; | 
|  | if (ret) | 
|  | space_info->full = 1; | 
|  | else | 
|  | ret = 1; | 
|  |  | 
|  | space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; | 
|  | out: | 
|  | space_info->chunk_alloc = 0; | 
|  | spin_unlock(&space_info->lock); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int can_overcommit(struct btrfs_root *root, | 
|  | struct btrfs_space_info *space_info, u64 bytes, | 
|  | enum btrfs_reserve_flush_enum flush) | 
|  | { | 
|  | struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; | 
|  | u64 profile = btrfs_get_alloc_profile(root, 0); | 
|  | u64 rsv_size = 0; | 
|  | u64 avail; | 
|  | u64 used; | 
|  | u64 to_add; | 
|  |  | 
|  | used = space_info->bytes_used + space_info->bytes_reserved + | 
|  | space_info->bytes_pinned + space_info->bytes_readonly; | 
|  |  | 
|  | spin_lock(&global_rsv->lock); | 
|  | rsv_size = global_rsv->size; | 
|  | spin_unlock(&global_rsv->lock); | 
|  |  | 
|  | /* | 
|  | * We only want to allow over committing if we have lots of actual space | 
|  | * free, but if we don't have enough space to handle the global reserve | 
|  | * space then we could end up having a real enospc problem when trying | 
|  | * to allocate a chunk or some other such important allocation. | 
|  | */ | 
|  | rsv_size <<= 1; | 
|  | if (used + rsv_size >= space_info->total_bytes) | 
|  | return 0; | 
|  |  | 
|  | used += space_info->bytes_may_use; | 
|  |  | 
|  | spin_lock(&root->fs_info->free_chunk_lock); | 
|  | avail = root->fs_info->free_chunk_space; | 
|  | spin_unlock(&root->fs_info->free_chunk_lock); | 
|  |  | 
|  | /* | 
|  | * If we have dup, raid1 or raid10 then only half of the free | 
|  | * space is actually useable.  For raid56, the space info used | 
|  | * doesn't include the parity drive, so we don't have to | 
|  | * change the math | 
|  | */ | 
|  | if (profile & (BTRFS_BLOCK_GROUP_DUP | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) | 
|  | avail >>= 1; | 
|  |  | 
|  | to_add = space_info->total_bytes; | 
|  |  | 
|  | /* | 
|  | * If we aren't flushing all things, let us overcommit up to | 
|  | * 1/2th of the space. If we can flush, don't let us overcommit | 
|  | * too much, let it overcommit up to 1/8 of the space. | 
|  | */ | 
|  | if (flush == BTRFS_RESERVE_FLUSH_ALL) | 
|  | to_add >>= 3; | 
|  | else | 
|  | to_add >>= 1; | 
|  |  | 
|  | /* | 
|  | * Limit the overcommit to the amount of free space we could possibly | 
|  | * allocate for chunks. | 
|  | */ | 
|  | to_add = min(avail, to_add); | 
|  |  | 
|  | if (used + bytes < space_info->total_bytes + to_add) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | struct super_block *sb = root->fs_info->sb; | 
|  | int started; | 
|  |  | 
|  | /* If we can not start writeback, just sync all the delalloc file. */ | 
|  | started = try_to_writeback_inodes_sb_nr(sb, nr_pages, | 
|  | WB_REASON_FS_FREE_SPACE); | 
|  | if (!started) { | 
|  | /* | 
|  | * We needn't worry the filesystem going from r/w to r/o though | 
|  | * we don't acquire ->s_umount mutex, because the filesystem | 
|  | * should guarantee the delalloc inodes list be empty after | 
|  | * the filesystem is readonly(all dirty pages are written to | 
|  | * the disk). | 
|  | */ | 
|  | btrfs_start_delalloc_inodes(root, 0); | 
|  | btrfs_wait_ordered_extents(root, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shrink metadata reservation for delalloc | 
|  | */ | 
|  | static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, | 
|  | bool wait_ordered) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 delalloc_bytes; | 
|  | u64 max_reclaim; | 
|  | long time_left; | 
|  | unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; | 
|  | int loops = 0; | 
|  | enum btrfs_reserve_flush_enum flush; | 
|  |  | 
|  | trans = (struct btrfs_trans_handle *)current->journal_info; | 
|  | block_rsv = &root->fs_info->delalloc_block_rsv; | 
|  | space_info = block_rsv->space_info; | 
|  |  | 
|  | smp_mb(); | 
|  | delalloc_bytes = percpu_counter_sum_positive( | 
|  | &root->fs_info->delalloc_bytes); | 
|  | if (delalloc_bytes == 0) { | 
|  | if (trans) | 
|  | return; | 
|  | btrfs_wait_ordered_extents(root, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (delalloc_bytes && loops < 3) { | 
|  | max_reclaim = min(delalloc_bytes, to_reclaim); | 
|  | nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; | 
|  | btrfs_writeback_inodes_sb_nr(root, nr_pages); | 
|  | /* | 
|  | * We need to wait for the async pages to actually start before | 
|  | * we do anything. | 
|  | */ | 
|  | wait_event(root->fs_info->async_submit_wait, | 
|  | !atomic_read(&root->fs_info->async_delalloc_pages)); | 
|  |  | 
|  | if (!trans) | 
|  | flush = BTRFS_RESERVE_FLUSH_ALL; | 
|  | else | 
|  | flush = BTRFS_RESERVE_NO_FLUSH; | 
|  | spin_lock(&space_info->lock); | 
|  | if (can_overcommit(root, space_info, orig, flush)) { | 
|  | spin_unlock(&space_info->lock); | 
|  | break; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | loops++; | 
|  | if (wait_ordered && !trans) { | 
|  | btrfs_wait_ordered_extents(root, 0); | 
|  | } else { | 
|  | time_left = schedule_timeout_killable(1); | 
|  | if (time_left) | 
|  | break; | 
|  | } | 
|  | smp_mb(); | 
|  | delalloc_bytes = percpu_counter_sum_positive( | 
|  | &root->fs_info->delalloc_bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * maybe_commit_transaction - possibly commit the transaction if its ok to | 
|  | * @root - the root we're allocating for | 
|  | * @bytes - the number of bytes we want to reserve | 
|  | * @force - force the commit | 
|  | * | 
|  | * This will check to make sure that committing the transaction will actually | 
|  | * get us somewhere and then commit the transaction if it does.  Otherwise it | 
|  | * will return -ENOSPC. | 
|  | */ | 
|  | static int may_commit_transaction(struct btrfs_root *root, | 
|  | struct btrfs_space_info *space_info, | 
|  | u64 bytes, int force) | 
|  | { | 
|  | struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | trans = (struct btrfs_trans_handle *)current->journal_info; | 
|  | if (trans) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (force) | 
|  | goto commit; | 
|  |  | 
|  | /* See if there is enough pinned space to make this reservation */ | 
|  | spin_lock(&space_info->lock); | 
|  | if (space_info->bytes_pinned >= bytes) { | 
|  | spin_unlock(&space_info->lock); | 
|  | goto commit; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | /* | 
|  | * See if there is some space in the delayed insertion reservation for | 
|  | * this reservation. | 
|  | */ | 
|  | if (space_info != delayed_rsv->space_info) | 
|  | return -ENOSPC; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&delayed_rsv->lock); | 
|  | if (space_info->bytes_pinned + delayed_rsv->size < bytes) { | 
|  | spin_unlock(&delayed_rsv->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  | spin_unlock(&delayed_rsv->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | commit: | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | return btrfs_commit_transaction(trans, root); | 
|  | } | 
|  |  | 
|  | enum flush_state { | 
|  | FLUSH_DELAYED_ITEMS_NR	=	1, | 
|  | FLUSH_DELAYED_ITEMS	=	2, | 
|  | FLUSH_DELALLOC		=	3, | 
|  | FLUSH_DELALLOC_WAIT	=	4, | 
|  | ALLOC_CHUNK		=	5, | 
|  | COMMIT_TRANS		=	6, | 
|  | }; | 
|  |  | 
|  | static int flush_space(struct btrfs_root *root, | 
|  | struct btrfs_space_info *space_info, u64 num_bytes, | 
|  | u64 orig_bytes, int state) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | int nr; | 
|  | int ret = 0; | 
|  |  | 
|  | switch (state) { | 
|  | case FLUSH_DELAYED_ITEMS_NR: | 
|  | case FLUSH_DELAYED_ITEMS: | 
|  | if (state == FLUSH_DELAYED_ITEMS_NR) { | 
|  | u64 bytes = btrfs_calc_trans_metadata_size(root, 1); | 
|  |  | 
|  | nr = (int)div64_u64(num_bytes, bytes); | 
|  | if (!nr) | 
|  | nr = 1; | 
|  | nr *= 2; | 
|  | } else { | 
|  | nr = -1; | 
|  | } | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | break; | 
|  | } | 
|  | ret = btrfs_run_delayed_items_nr(trans, root, nr); | 
|  | btrfs_end_transaction(trans, root); | 
|  | break; | 
|  | case FLUSH_DELALLOC: | 
|  | case FLUSH_DELALLOC_WAIT: | 
|  | shrink_delalloc(root, num_bytes, orig_bytes, | 
|  | state == FLUSH_DELALLOC_WAIT); | 
|  | break; | 
|  | case ALLOC_CHUNK: | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | break; | 
|  | } | 
|  | ret = do_chunk_alloc(trans, root->fs_info->extent_root, | 
|  | btrfs_get_alloc_profile(root, 0), | 
|  | CHUNK_ALLOC_NO_FORCE); | 
|  | btrfs_end_transaction(trans, root); | 
|  | if (ret == -ENOSPC) | 
|  | ret = 0; | 
|  | break; | 
|  | case COMMIT_TRANS: | 
|  | ret = may_commit_transaction(root, space_info, orig_bytes, 0); | 
|  | break; | 
|  | default: | 
|  | ret = -ENOSPC; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | /** | 
|  | * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space | 
|  | * @root - the root we're allocating for | 
|  | * @block_rsv - the block_rsv we're allocating for | 
|  | * @orig_bytes - the number of bytes we want | 
|  | * @flush - whether or not we can flush to make our reservation | 
|  | * | 
|  | * This will reserve orgi_bytes number of bytes from the space info associated | 
|  | * with the block_rsv.  If there is not enough space it will make an attempt to | 
|  | * flush out space to make room.  It will do this by flushing delalloc if | 
|  | * possible or committing the transaction.  If flush is 0 then no attempts to | 
|  | * regain reservations will be made and this will fail if there is not enough | 
|  | * space already. | 
|  | */ | 
|  | static int reserve_metadata_bytes(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | u64 orig_bytes, | 
|  | enum btrfs_reserve_flush_enum flush) | 
|  | { | 
|  | struct btrfs_space_info *space_info = block_rsv->space_info; | 
|  | u64 used; | 
|  | u64 num_bytes = orig_bytes; | 
|  | int flush_state = FLUSH_DELAYED_ITEMS_NR; | 
|  | int ret = 0; | 
|  | bool flushing = false; | 
|  |  | 
|  | again: | 
|  | ret = 0; | 
|  | spin_lock(&space_info->lock); | 
|  | /* | 
|  | * We only want to wait if somebody other than us is flushing and we | 
|  | * are actually allowed to flush all things. | 
|  | */ | 
|  | while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && | 
|  | space_info->flush) { | 
|  | spin_unlock(&space_info->lock); | 
|  | /* | 
|  | * If we have a trans handle we can't wait because the flusher | 
|  | * may have to commit the transaction, which would mean we would | 
|  | * deadlock since we are waiting for the flusher to finish, but | 
|  | * hold the current transaction open. | 
|  | */ | 
|  | if (current->journal_info) | 
|  | return -EAGAIN; | 
|  | ret = wait_event_killable(space_info->wait, !space_info->flush); | 
|  | /* Must have been killed, return */ | 
|  | if (ret) | 
|  | return -EINTR; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | } | 
|  |  | 
|  | ret = -ENOSPC; | 
|  | used = space_info->bytes_used + space_info->bytes_reserved + | 
|  | space_info->bytes_pinned + space_info->bytes_readonly + | 
|  | space_info->bytes_may_use; | 
|  |  | 
|  | /* | 
|  | * The idea here is that we've not already over-reserved the block group | 
|  | * then we can go ahead and save our reservation first and then start | 
|  | * flushing if we need to.  Otherwise if we've already overcommitted | 
|  | * lets start flushing stuff first and then come back and try to make | 
|  | * our reservation. | 
|  | */ | 
|  | if (used <= space_info->total_bytes) { | 
|  | if (used + orig_bytes <= space_info->total_bytes) { | 
|  | space_info->bytes_may_use += orig_bytes; | 
|  | trace_btrfs_space_reservation(root->fs_info, | 
|  | "space_info", space_info->flags, orig_bytes, 1); | 
|  | ret = 0; | 
|  | } else { | 
|  | /* | 
|  | * Ok set num_bytes to orig_bytes since we aren't | 
|  | * overocmmitted, this way we only try and reclaim what | 
|  | * we need. | 
|  | */ | 
|  | num_bytes = orig_bytes; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Ok we're over committed, set num_bytes to the overcommitted | 
|  | * amount plus the amount of bytes that we need for this | 
|  | * reservation. | 
|  | */ | 
|  | num_bytes = used - space_info->total_bytes + | 
|  | (orig_bytes * 2); | 
|  | } | 
|  |  | 
|  | if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { | 
|  | space_info->bytes_may_use += orig_bytes; | 
|  | trace_btrfs_space_reservation(root->fs_info, "space_info", | 
|  | space_info->flags, orig_bytes, | 
|  | 1); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Couldn't make our reservation, save our place so while we're trying | 
|  | * to reclaim space we can actually use it instead of somebody else | 
|  | * stealing it from us. | 
|  | * | 
|  | * We make the other tasks wait for the flush only when we can flush | 
|  | * all things. | 
|  | */ | 
|  | if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { | 
|  | flushing = true; | 
|  | space_info->flush = 1; | 
|  | } | 
|  |  | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) | 
|  | goto out; | 
|  |  | 
|  | ret = flush_space(root, space_info, num_bytes, orig_bytes, | 
|  | flush_state); | 
|  | flush_state++; | 
|  |  | 
|  | /* | 
|  | * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock | 
|  | * would happen. So skip delalloc flush. | 
|  | */ | 
|  | if (flush == BTRFS_RESERVE_FLUSH_LIMIT && | 
|  | (flush_state == FLUSH_DELALLOC || | 
|  | flush_state == FLUSH_DELALLOC_WAIT)) | 
|  | flush_state = ALLOC_CHUNK; | 
|  |  | 
|  | if (!ret) | 
|  | goto again; | 
|  | else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && | 
|  | flush_state < COMMIT_TRANS) | 
|  | goto again; | 
|  | else if (flush == BTRFS_RESERVE_FLUSH_ALL && | 
|  | flush_state <= COMMIT_TRANS) | 
|  | goto again; | 
|  |  | 
|  | out: | 
|  | if (ret == -ENOSPC && | 
|  | unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { | 
|  | struct btrfs_block_rsv *global_rsv = | 
|  | &root->fs_info->global_block_rsv; | 
|  |  | 
|  | if (block_rsv != global_rsv && | 
|  | !block_rsv_use_bytes(global_rsv, orig_bytes)) | 
|  | ret = 0; | 
|  | } | 
|  | if (flushing) { | 
|  | spin_lock(&space_info->lock); | 
|  | space_info->flush = 0; | 
|  | wake_up_all(&space_info->wait); | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_rsv *get_block_rsv( | 
|  | const struct btrfs_trans_handle *trans, | 
|  | const struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv = NULL; | 
|  |  | 
|  | if (root->ref_cows) | 
|  | block_rsv = trans->block_rsv; | 
|  |  | 
|  | if (root == root->fs_info->csum_root && trans->adding_csums) | 
|  | block_rsv = trans->block_rsv; | 
|  |  | 
|  | if (!block_rsv) | 
|  | block_rsv = root->block_rsv; | 
|  |  | 
|  | if (!block_rsv) | 
|  | block_rsv = &root->fs_info->empty_block_rsv; | 
|  |  | 
|  | return block_rsv; | 
|  | } | 
|  |  | 
|  | static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes) | 
|  | { | 
|  | int ret = -ENOSPC; | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (block_rsv->reserved >= num_bytes) { | 
|  | block_rsv->reserved -= num_bytes; | 
|  | if (block_rsv->reserved < block_rsv->size) | 
|  | block_rsv->full = 0; | 
|  | ret = 0; | 
|  | } | 
|  | spin_unlock(&block_rsv->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes, int update_size) | 
|  | { | 
|  | spin_lock(&block_rsv->lock); | 
|  | block_rsv->reserved += num_bytes; | 
|  | if (update_size) | 
|  | block_rsv->size += num_bytes; | 
|  | else if (block_rsv->reserved >= block_rsv->size) | 
|  | block_rsv->full = 1; | 
|  | spin_unlock(&block_rsv->lock); | 
|  | } | 
|  |  | 
|  | static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | struct btrfs_block_rsv *dest, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_space_info *space_info = block_rsv->space_info; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (num_bytes == (u64)-1) | 
|  | num_bytes = block_rsv->size; | 
|  | block_rsv->size -= num_bytes; | 
|  | if (block_rsv->reserved >= block_rsv->size) { | 
|  | num_bytes = block_rsv->reserved - block_rsv->size; | 
|  | block_rsv->reserved = block_rsv->size; | 
|  | block_rsv->full = 1; | 
|  | } else { | 
|  | num_bytes = 0; | 
|  | } | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | if (num_bytes > 0) { | 
|  | if (dest) { | 
|  | spin_lock(&dest->lock); | 
|  | if (!dest->full) { | 
|  | u64 bytes_to_add; | 
|  |  | 
|  | bytes_to_add = dest->size - dest->reserved; | 
|  | bytes_to_add = min(num_bytes, bytes_to_add); | 
|  | dest->reserved += bytes_to_add; | 
|  | if (dest->reserved >= dest->size) | 
|  | dest->full = 1; | 
|  | num_bytes -= bytes_to_add; | 
|  | } | 
|  | spin_unlock(&dest->lock); | 
|  | } | 
|  | if (num_bytes) { | 
|  | spin_lock(&space_info->lock); | 
|  | space_info->bytes_may_use -= num_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | space_info->flags, num_bytes, 0); | 
|  | space_info->reservation_progress++; | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, | 
|  | struct btrfs_block_rsv *dst, u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = block_rsv_use_bytes(src, num_bytes); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | block_rsv_add_bytes(dst, num_bytes, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) | 
|  | { | 
|  | memset(rsv, 0, sizeof(*rsv)); | 
|  | spin_lock_init(&rsv->lock); | 
|  | rsv->type = type; | 
|  | } | 
|  |  | 
|  | struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, | 
|  | unsigned short type) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); | 
|  | if (!block_rsv) | 
|  | return NULL; | 
|  |  | 
|  | btrfs_init_block_rsv(block_rsv, type); | 
|  | block_rsv->space_info = __find_space_info(fs_info, | 
|  | BTRFS_BLOCK_GROUP_METADATA); | 
|  | return block_rsv; | 
|  | } | 
|  |  | 
|  | void btrfs_free_block_rsv(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *rsv) | 
|  | { | 
|  | if (!rsv) | 
|  | return; | 
|  | btrfs_block_rsv_release(root, rsv, (u64)-1); | 
|  | kfree(rsv); | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_add(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, u64 num_bytes, | 
|  | enum btrfs_reserve_flush_enum flush) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (num_bytes == 0) | 
|  | return 0; | 
|  |  | 
|  | ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); | 
|  | if (!ret) { | 
|  | block_rsv_add_bytes(block_rsv, num_bytes, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_check(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, int min_factor) | 
|  | { | 
|  | u64 num_bytes = 0; | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | if (!block_rsv) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | num_bytes = div_factor(block_rsv->size, min_factor); | 
|  | if (block_rsv->reserved >= num_bytes) | 
|  | ret = 0; | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_refill(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, u64 min_reserved, | 
|  | enum btrfs_reserve_flush_enum flush) | 
|  | { | 
|  | u64 num_bytes = 0; | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | if (!block_rsv) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | num_bytes = min_reserved; | 
|  | if (block_rsv->reserved >= num_bytes) | 
|  | ret = 0; | 
|  | else | 
|  | num_bytes -= block_rsv->reserved; | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); | 
|  | if (!ret) { | 
|  | block_rsv_add_bytes(block_rsv, num_bytes, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, | 
|  | struct btrfs_block_rsv *dst_rsv, | 
|  | u64 num_bytes) | 
|  | { | 
|  | return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); | 
|  | } | 
|  |  | 
|  | void btrfs_block_rsv_release(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes) | 
|  | { | 
|  | struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; | 
|  | if (global_rsv->full || global_rsv == block_rsv || | 
|  | block_rsv->space_info != global_rsv->space_info) | 
|  | global_rsv = NULL; | 
|  | block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, | 
|  | num_bytes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to calculate size of global block reservation. | 
|  | * the desired value is sum of space used by extent tree, | 
|  | * checksum tree and root tree | 
|  | */ | 
|  | static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_space_info *sinfo; | 
|  | u64 num_bytes; | 
|  | u64 meta_used; | 
|  | u64 data_used; | 
|  | int csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
|  |  | 
|  | sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); | 
|  | spin_lock(&sinfo->lock); | 
|  | data_used = sinfo->bytes_used; | 
|  | spin_unlock(&sinfo->lock); | 
|  |  | 
|  | sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
|  | spin_lock(&sinfo->lock); | 
|  | if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | data_used = 0; | 
|  | meta_used = sinfo->bytes_used; | 
|  | spin_unlock(&sinfo->lock); | 
|  |  | 
|  | num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * | 
|  | csum_size * 2; | 
|  | num_bytes += div64_u64(data_used + meta_used, 50); | 
|  |  | 
|  | if (num_bytes * 3 > meta_used) | 
|  | num_bytes = div64_u64(meta_used, 3); | 
|  |  | 
|  | return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); | 
|  | } | 
|  |  | 
|  | static void update_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; | 
|  | struct btrfs_space_info *sinfo = block_rsv->space_info; | 
|  | u64 num_bytes; | 
|  |  | 
|  | num_bytes = calc_global_metadata_size(fs_info); | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | spin_lock(&block_rsv->lock); | 
|  |  | 
|  | block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); | 
|  |  | 
|  | num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + | 
|  | sinfo->bytes_reserved + sinfo->bytes_readonly + | 
|  | sinfo->bytes_may_use; | 
|  |  | 
|  | if (sinfo->total_bytes > num_bytes) { | 
|  | num_bytes = sinfo->total_bytes - num_bytes; | 
|  | block_rsv->reserved += num_bytes; | 
|  | sinfo->bytes_may_use += num_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | sinfo->flags, num_bytes, 1); | 
|  | } | 
|  |  | 
|  | if (block_rsv->reserved >= block_rsv->size) { | 
|  | num_bytes = block_rsv->reserved - block_rsv->size; | 
|  | sinfo->bytes_may_use -= num_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | sinfo->flags, num_bytes, 0); | 
|  | sinfo->reservation_progress++; | 
|  | block_rsv->reserved = block_rsv->size; | 
|  | block_rsv->full = 1; | 
|  | } | 
|  |  | 
|  | spin_unlock(&block_rsv->lock); | 
|  | spin_unlock(&sinfo->lock); | 
|  | } | 
|  |  | 
|  | static void init_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  |  | 
|  | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); | 
|  | fs_info->chunk_block_rsv.space_info = space_info; | 
|  |  | 
|  | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
|  | fs_info->global_block_rsv.space_info = space_info; | 
|  | fs_info->delalloc_block_rsv.space_info = space_info; | 
|  | fs_info->trans_block_rsv.space_info = space_info; | 
|  | fs_info->empty_block_rsv.space_info = space_info; | 
|  | fs_info->delayed_block_rsv.space_info = space_info; | 
|  |  | 
|  | fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; | 
|  |  | 
|  | update_global_block_rsv(fs_info); | 
|  | } | 
|  |  | 
|  | static void release_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, | 
|  | (u64)-1); | 
|  | WARN_ON(fs_info->delalloc_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->trans_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->trans_block_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->chunk_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->chunk_block_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->delayed_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->delayed_block_rsv.reserved > 0); | 
|  | } | 
|  |  | 
|  | void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | if (!trans->block_rsv) | 
|  | return; | 
|  |  | 
|  | if (!trans->bytes_reserved) | 
|  | return; | 
|  |  | 
|  | trace_btrfs_space_reservation(root->fs_info, "transaction", | 
|  | trans->transid, trans->bytes_reserved, 0); | 
|  | btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); | 
|  | trans->bytes_reserved = 0; | 
|  | } | 
|  |  | 
|  | /* Can only return 0 or -ENOSPC */ | 
|  | int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); | 
|  | struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; | 
|  |  | 
|  | /* | 
|  | * We need to hold space in order to delete our orphan item once we've | 
|  | * added it, so this takes the reservation so we can release it later | 
|  | * when we are truly done with the orphan item. | 
|  | */ | 
|  | u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); | 
|  | trace_btrfs_space_reservation(root->fs_info, "orphan", | 
|  | btrfs_ino(inode), num_bytes, 1); | 
|  | return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); | 
|  | } | 
|  |  | 
|  | void btrfs_orphan_release_metadata(struct inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); | 
|  | trace_btrfs_space_reservation(root->fs_info, "orphan", | 
|  | btrfs_ino(inode), num_bytes, 0); | 
|  | btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation | 
|  | * root: the root of the parent directory | 
|  | * rsv: block reservation | 
|  | * items: the number of items that we need do reservation | 
|  | * qgroup_reserved: used to return the reserved size in qgroup | 
|  | * | 
|  | * This function is used to reserve the space for snapshot/subvolume | 
|  | * creation and deletion. Those operations are different with the | 
|  | * common file/directory operations, they change two fs/file trees | 
|  | * and root tree, the number of items that the qgroup reserves is | 
|  | * different with the free space reservation. So we can not use | 
|  | * the space reseravtion mechanism in start_transaction(). | 
|  | */ | 
|  | int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *rsv, | 
|  | int items, | 
|  | u64 *qgroup_reserved) | 
|  | { | 
|  | u64 num_bytes; | 
|  | int ret; | 
|  |  | 
|  | if (root->fs_info->quota_enabled) { | 
|  | /* One for parent inode, two for dir entries */ | 
|  | num_bytes = 3 * root->leafsize; | 
|  | ret = btrfs_qgroup_reserve(root, num_bytes); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else { | 
|  | num_bytes = 0; | 
|  | } | 
|  |  | 
|  | *qgroup_reserved = num_bytes; | 
|  |  | 
|  | num_bytes = btrfs_calc_trans_metadata_size(root, items); | 
|  | rsv->space_info = __find_space_info(root->fs_info, | 
|  | BTRFS_BLOCK_GROUP_METADATA); | 
|  | ret = btrfs_block_rsv_add(root, rsv, num_bytes, | 
|  | BTRFS_RESERVE_FLUSH_ALL); | 
|  | if (ret) { | 
|  | if (*qgroup_reserved) | 
|  | btrfs_qgroup_free(root, *qgroup_reserved); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_subvolume_release_metadata(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *rsv, | 
|  | u64 qgroup_reserved) | 
|  | { | 
|  | btrfs_block_rsv_release(root, rsv, (u64)-1); | 
|  | if (qgroup_reserved) | 
|  | btrfs_qgroup_free(root, qgroup_reserved); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * drop_outstanding_extent - drop an outstanding extent | 
|  | * @inode: the inode we're dropping the extent for | 
|  | * | 
|  | * This is called when we are freeing up an outstanding extent, either called | 
|  | * after an error or after an extent is written.  This will return the number of | 
|  | * reserved extents that need to be freed.  This must be called with | 
|  | * BTRFS_I(inode)->lock held. | 
|  | */ | 
|  | static unsigned drop_outstanding_extent(struct inode *inode) | 
|  | { | 
|  | unsigned drop_inode_space = 0; | 
|  | unsigned dropped_extents = 0; | 
|  |  | 
|  | BUG_ON(!BTRFS_I(inode)->outstanding_extents); | 
|  | BTRFS_I(inode)->outstanding_extents--; | 
|  |  | 
|  | if (BTRFS_I(inode)->outstanding_extents == 0 && | 
|  | test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, | 
|  | &BTRFS_I(inode)->runtime_flags)) | 
|  | drop_inode_space = 1; | 
|  |  | 
|  | /* | 
|  | * If we have more or the same amount of outsanding extents than we have | 
|  | * reserved then we need to leave the reserved extents count alone. | 
|  | */ | 
|  | if (BTRFS_I(inode)->outstanding_extents >= | 
|  | BTRFS_I(inode)->reserved_extents) | 
|  | return drop_inode_space; | 
|  |  | 
|  | dropped_extents = BTRFS_I(inode)->reserved_extents - | 
|  | BTRFS_I(inode)->outstanding_extents; | 
|  | BTRFS_I(inode)->reserved_extents -= dropped_extents; | 
|  | return dropped_extents + drop_inode_space; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * calc_csum_metadata_size - return the amount of metada space that must be | 
|  | *	reserved/free'd for the given bytes. | 
|  | * @inode: the inode we're manipulating | 
|  | * @num_bytes: the number of bytes in question | 
|  | * @reserve: 1 if we are reserving space, 0 if we are freeing space | 
|  | * | 
|  | * This adjusts the number of csum_bytes in the inode and then returns the | 
|  | * correct amount of metadata that must either be reserved or freed.  We | 
|  | * calculate how many checksums we can fit into one leaf and then divide the | 
|  | * number of bytes that will need to be checksumed by this value to figure out | 
|  | * how many checksums will be required.  If we are adding bytes then the number | 
|  | * may go up and we will return the number of additional bytes that must be | 
|  | * reserved.  If it is going down we will return the number of bytes that must | 
|  | * be freed. | 
|  | * | 
|  | * This must be called with BTRFS_I(inode)->lock held. | 
|  | */ | 
|  | static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, | 
|  | int reserve) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | u64 csum_size; | 
|  | int num_csums_per_leaf; | 
|  | int num_csums; | 
|  | int old_csums; | 
|  |  | 
|  | if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && | 
|  | BTRFS_I(inode)->csum_bytes == 0) | 
|  | return 0; | 
|  |  | 
|  | old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); | 
|  | if (reserve) | 
|  | BTRFS_I(inode)->csum_bytes += num_bytes; | 
|  | else | 
|  | BTRFS_I(inode)->csum_bytes -= num_bytes; | 
|  | csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); | 
|  | num_csums_per_leaf = (int)div64_u64(csum_size, | 
|  | sizeof(struct btrfs_csum_item) + | 
|  | sizeof(struct btrfs_disk_key)); | 
|  | num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); | 
|  | num_csums = num_csums + num_csums_per_leaf - 1; | 
|  | num_csums = num_csums / num_csums_per_leaf; | 
|  |  | 
|  | old_csums = old_csums + num_csums_per_leaf - 1; | 
|  | old_csums = old_csums / num_csums_per_leaf; | 
|  |  | 
|  | /* No change, no need to reserve more */ | 
|  | if (old_csums == num_csums) | 
|  | return 0; | 
|  |  | 
|  | if (reserve) | 
|  | return btrfs_calc_trans_metadata_size(root, | 
|  | num_csums - old_csums); | 
|  |  | 
|  | return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); | 
|  | } | 
|  |  | 
|  | int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; | 
|  | u64 to_reserve = 0; | 
|  | u64 csum_bytes; | 
|  | unsigned nr_extents = 0; | 
|  | int extra_reserve = 0; | 
|  | enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; | 
|  | int ret = 0; | 
|  | bool delalloc_lock = true; | 
|  | u64 to_free = 0; | 
|  | unsigned dropped; | 
|  |  | 
|  | /* If we are a free space inode we need to not flush since we will be in | 
|  | * the middle of a transaction commit.  We also don't need the delalloc | 
|  | * mutex since we won't race with anybody.  We need this mostly to make | 
|  | * lockdep shut its filthy mouth. | 
|  | */ | 
|  | if (btrfs_is_free_space_inode(inode)) { | 
|  | flush = BTRFS_RESERVE_NO_FLUSH; | 
|  | delalloc_lock = false; | 
|  | } | 
|  |  | 
|  | if (flush != BTRFS_RESERVE_NO_FLUSH && | 
|  | btrfs_transaction_in_commit(root->fs_info)) | 
|  | schedule_timeout(1); | 
|  |  | 
|  | if (delalloc_lock) | 
|  | mutex_lock(&BTRFS_I(inode)->delalloc_mutex); | 
|  |  | 
|  | num_bytes = ALIGN(num_bytes, root->sectorsize); | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | BTRFS_I(inode)->outstanding_extents++; | 
|  |  | 
|  | if (BTRFS_I(inode)->outstanding_extents > | 
|  | BTRFS_I(inode)->reserved_extents) | 
|  | nr_extents = BTRFS_I(inode)->outstanding_extents - | 
|  | BTRFS_I(inode)->reserved_extents; | 
|  |  | 
|  | /* | 
|  | * Add an item to reserve for updating the inode when we complete the | 
|  | * delalloc io. | 
|  | */ | 
|  | if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, | 
|  | &BTRFS_I(inode)->runtime_flags)) { | 
|  | nr_extents++; | 
|  | extra_reserve = 1; | 
|  | } | 
|  |  | 
|  | to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); | 
|  | to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); | 
|  | csum_bytes = BTRFS_I(inode)->csum_bytes; | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  |  | 
|  | if (root->fs_info->quota_enabled) { | 
|  | ret = btrfs_qgroup_reserve(root, num_bytes + | 
|  | nr_extents * root->leafsize); | 
|  | if (ret) | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); | 
|  | if (unlikely(ret)) { | 
|  | if (root->fs_info->quota_enabled) | 
|  | btrfs_qgroup_free(root, num_bytes + | 
|  | nr_extents * root->leafsize); | 
|  | goto out_fail; | 
|  | } | 
|  |  | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | if (extra_reserve) { | 
|  | set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  | nr_extents--; | 
|  | } | 
|  | BTRFS_I(inode)->reserved_extents += nr_extents; | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  |  | 
|  | if (delalloc_lock) | 
|  | mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); | 
|  |  | 
|  | if (to_reserve) | 
|  | trace_btrfs_space_reservation(root->fs_info,"delalloc", | 
|  | btrfs_ino(inode), to_reserve, 1); | 
|  | block_rsv_add_bytes(block_rsv, to_reserve, 1); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_fail: | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | dropped = drop_outstanding_extent(inode); | 
|  | /* | 
|  | * If the inodes csum_bytes is the same as the original | 
|  | * csum_bytes then we know we haven't raced with any free()ers | 
|  | * so we can just reduce our inodes csum bytes and carry on. | 
|  | */ | 
|  | if (BTRFS_I(inode)->csum_bytes == csum_bytes) { | 
|  | calc_csum_metadata_size(inode, num_bytes, 0); | 
|  | } else { | 
|  | u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; | 
|  | u64 bytes; | 
|  |  | 
|  | /* | 
|  | * This is tricky, but first we need to figure out how much we | 
|  | * free'd from any free-ers that occured during this | 
|  | * reservation, so we reset ->csum_bytes to the csum_bytes | 
|  | * before we dropped our lock, and then call the free for the | 
|  | * number of bytes that were freed while we were trying our | 
|  | * reservation. | 
|  | */ | 
|  | bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; | 
|  | BTRFS_I(inode)->csum_bytes = csum_bytes; | 
|  | to_free = calc_csum_metadata_size(inode, bytes, 0); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Now we need to see how much we would have freed had we not | 
|  | * been making this reservation and our ->csum_bytes were not | 
|  | * artificially inflated. | 
|  | */ | 
|  | BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; | 
|  | bytes = csum_bytes - orig_csum_bytes; | 
|  | bytes = calc_csum_metadata_size(inode, bytes, 0); | 
|  |  | 
|  | /* | 
|  | * Now reset ->csum_bytes to what it should be.  If bytes is | 
|  | * more than to_free then we would have free'd more space had we | 
|  | * not had an artificially high ->csum_bytes, so we need to free | 
|  | * the remainder.  If bytes is the same or less then we don't | 
|  | * need to do anything, the other free-ers did the correct | 
|  | * thing. | 
|  | */ | 
|  | BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; | 
|  | if (bytes > to_free) | 
|  | to_free = bytes - to_free; | 
|  | else | 
|  | to_free = 0; | 
|  | } | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  | if (dropped) | 
|  | to_free += btrfs_calc_trans_metadata_size(root, dropped); | 
|  |  | 
|  | if (to_free) { | 
|  | btrfs_block_rsv_release(root, block_rsv, to_free); | 
|  | trace_btrfs_space_reservation(root->fs_info, "delalloc", | 
|  | btrfs_ino(inode), to_free, 0); | 
|  | } | 
|  | if (delalloc_lock) | 
|  | mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_delalloc_release_metadata - release a metadata reservation for an inode | 
|  | * @inode: the inode to release the reservation for | 
|  | * @num_bytes: the number of bytes we're releasing | 
|  | * | 
|  | * This will release the metadata reservation for an inode.  This can be called | 
|  | * once we complete IO for a given set of bytes to release their metadata | 
|  | * reservations. | 
|  | */ | 
|  | void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | u64 to_free = 0; | 
|  | unsigned dropped; | 
|  |  | 
|  | num_bytes = ALIGN(num_bytes, root->sectorsize); | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | dropped = drop_outstanding_extent(inode); | 
|  |  | 
|  | if (num_bytes) | 
|  | to_free = calc_csum_metadata_size(inode, num_bytes, 0); | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  | if (dropped > 0) | 
|  | to_free += btrfs_calc_trans_metadata_size(root, dropped); | 
|  |  | 
|  | trace_btrfs_space_reservation(root->fs_info, "delalloc", | 
|  | btrfs_ino(inode), to_free, 0); | 
|  | if (root->fs_info->quota_enabled) { | 
|  | btrfs_qgroup_free(root, num_bytes + | 
|  | dropped * root->leafsize); | 
|  | } | 
|  |  | 
|  | btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, | 
|  | to_free); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc | 
|  | * @inode: inode we're writing to | 
|  | * @num_bytes: the number of bytes we want to allocate | 
|  | * | 
|  | * This will do the following things | 
|  | * | 
|  | * o reserve space in the data space info for num_bytes | 
|  | * o reserve space in the metadata space info based on number of outstanding | 
|  | *   extents and how much csums will be needed | 
|  | * o add to the inodes ->delalloc_bytes | 
|  | * o add it to the fs_info's delalloc inodes list. | 
|  | * | 
|  | * This will return 0 for success and -ENOSPC if there is no space left. | 
|  | */ | 
|  | int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_check_data_free_space(inode, num_bytes); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); | 
|  | if (ret) { | 
|  | btrfs_free_reserved_data_space(inode, num_bytes); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_delalloc_release_space - release data and metadata space for delalloc | 
|  | * @inode: inode we're releasing space for | 
|  | * @num_bytes: the number of bytes we want to free up | 
|  | * | 
|  | * This must be matched with a call to btrfs_delalloc_reserve_space.  This is | 
|  | * called in the case that we don't need the metadata AND data reservations | 
|  | * anymore.  So if there is an error or we insert an inline extent. | 
|  | * | 
|  | * This function will release the metadata space that was not used and will | 
|  | * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes | 
|  | * list if there are no delalloc bytes left. | 
|  | */ | 
|  | void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) | 
|  | { | 
|  | btrfs_delalloc_release_metadata(inode, num_bytes); | 
|  | btrfs_free_reserved_data_space(inode, num_bytes); | 
|  | } | 
|  |  | 
|  | static int update_block_group(struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, int alloc) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | struct btrfs_fs_info *info = root->fs_info; | 
|  | u64 total = num_bytes; | 
|  | u64 old_val; | 
|  | u64 byte_in_group; | 
|  | int factor; | 
|  |  | 
|  | /* block accounting for super block */ | 
|  | spin_lock(&info->delalloc_lock); | 
|  | old_val = btrfs_super_bytes_used(info->super_copy); | 
|  | if (alloc) | 
|  | old_val += num_bytes; | 
|  | else | 
|  | old_val -= num_bytes; | 
|  | btrfs_set_super_bytes_used(info->super_copy, old_val); | 
|  | spin_unlock(&info->delalloc_lock); | 
|  |  | 
|  | while (total) { | 
|  | cache = btrfs_lookup_block_group(info, bytenr); | 
|  | if (!cache) | 
|  | return -ENOENT; | 
|  | if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) | 
|  | factor = 2; | 
|  | else | 
|  | factor = 1; | 
|  | /* | 
|  | * If this block group has free space cache written out, we | 
|  | * need to make sure to load it if we are removing space.  This | 
|  | * is because we need the unpinning stage to actually add the | 
|  | * space back to the block group, otherwise we will leak space. | 
|  | */ | 
|  | if (!alloc && cache->cached == BTRFS_CACHE_NO) | 
|  | cache_block_group(cache, 1); | 
|  |  | 
|  | byte_in_group = bytenr - cache->key.objectid; | 
|  | WARN_ON(byte_in_group > cache->key.offset); | 
|  |  | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  |  | 
|  | if (btrfs_test_opt(root, SPACE_CACHE) && | 
|  | cache->disk_cache_state < BTRFS_DC_CLEAR) | 
|  | cache->disk_cache_state = BTRFS_DC_CLEAR; | 
|  |  | 
|  | cache->dirty = 1; | 
|  | old_val = btrfs_block_group_used(&cache->item); | 
|  | num_bytes = min(total, cache->key.offset - byte_in_group); | 
|  | if (alloc) { | 
|  | old_val += num_bytes; | 
|  | btrfs_set_block_group_used(&cache->item, old_val); | 
|  | cache->reserved -= num_bytes; | 
|  | cache->space_info->bytes_reserved -= num_bytes; | 
|  | cache->space_info->bytes_used += num_bytes; | 
|  | cache->space_info->disk_used += num_bytes * factor; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  | } else { | 
|  | old_val -= num_bytes; | 
|  | btrfs_set_block_group_used(&cache->item, old_val); | 
|  | cache->pinned += num_bytes; | 
|  | cache->space_info->bytes_pinned += num_bytes; | 
|  | cache->space_info->bytes_used -= num_bytes; | 
|  | cache->space_info->disk_used -= num_bytes * factor; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | set_extent_dirty(info->pinned_extents, | 
|  | bytenr, bytenr + num_bytes - 1, | 
|  | GFP_NOFS | __GFP_NOFAIL); | 
|  | } | 
|  | btrfs_put_block_group(cache); | 
|  | total -= num_bytes; | 
|  | bytenr += num_bytes; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | u64 bytenr; | 
|  |  | 
|  | spin_lock(&root->fs_info->block_group_cache_lock); | 
|  | bytenr = root->fs_info->first_logical_byte; | 
|  | spin_unlock(&root->fs_info->block_group_cache_lock); | 
|  |  | 
|  | if (bytenr < (u64)-1) | 
|  | return bytenr; | 
|  |  | 
|  | cache = btrfs_lookup_first_block_group(root->fs_info, search_start); | 
|  | if (!cache) | 
|  | return 0; | 
|  |  | 
|  | bytenr = cache->key.objectid; | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | return bytenr; | 
|  | } | 
|  |  | 
|  | static int pin_down_extent(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache, | 
|  | u64 bytenr, u64 num_bytes, int reserved) | 
|  | { | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | cache->pinned += num_bytes; | 
|  | cache->space_info->bytes_pinned += num_bytes; | 
|  | if (reserved) { | 
|  | cache->reserved -= num_bytes; | 
|  | cache->space_info->bytes_reserved -= num_bytes; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | set_extent_dirty(root->fs_info->pinned_extents, bytenr, | 
|  | bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this function must be called within transaction | 
|  | */ | 
|  | int btrfs_pin_extent(struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, int reserved) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(root->fs_info, bytenr); | 
|  | BUG_ON(!cache); /* Logic error */ | 
|  |  | 
|  | pin_down_extent(root, cache, bytenr, num_bytes, reserved); | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this function must be called within transaction | 
|  | */ | 
|  | int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(root->fs_info, bytenr); | 
|  | BUG_ON(!cache); /* Logic error */ | 
|  |  | 
|  | /* | 
|  | * pull in the free space cache (if any) so that our pin | 
|  | * removes the free space from the cache.  We have load_only set | 
|  | * to one because the slow code to read in the free extents does check | 
|  | * the pinned extents. | 
|  | */ | 
|  | cache_block_group(cache, 1); | 
|  |  | 
|  | pin_down_extent(root, cache, bytenr, num_bytes, 0); | 
|  |  | 
|  | /* remove us from the free space cache (if we're there at all) */ | 
|  | btrfs_remove_free_space(cache, bytenr, num_bytes); | 
|  | btrfs_put_block_group(cache); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_update_reserved_bytes - update the block_group and space info counters | 
|  | * @cache:	The cache we are manipulating | 
|  | * @num_bytes:	The number of bytes in question | 
|  | * @reserve:	One of the reservation enums | 
|  | * | 
|  | * This is called by the allocator when it reserves space, or by somebody who is | 
|  | * freeing space that was never actually used on disk.  For example if you | 
|  | * reserve some space for a new leaf in transaction A and before transaction A | 
|  | * commits you free that leaf, you call this with reserve set to 0 in order to | 
|  | * clear the reservation. | 
|  | * | 
|  | * Metadata reservations should be called with RESERVE_ALLOC so we do the proper | 
|  | * ENOSPC accounting.  For data we handle the reservation through clearing the | 
|  | * delalloc bits in the io_tree.  We have to do this since we could end up | 
|  | * allocating less disk space for the amount of data we have reserved in the | 
|  | * case of compression. | 
|  | * | 
|  | * If this is a reservation and the block group has become read only we cannot | 
|  | * make the reservation and return -EAGAIN, otherwise this function always | 
|  | * succeeds. | 
|  | */ | 
|  | static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, | 
|  | u64 num_bytes, int reserve) | 
|  | { | 
|  | struct btrfs_space_info *space_info = cache->space_info; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | if (reserve != RESERVE_FREE) { | 
|  | if (cache->ro) { | 
|  | ret = -EAGAIN; | 
|  | } else { | 
|  | cache->reserved += num_bytes; | 
|  | space_info->bytes_reserved += num_bytes; | 
|  | if (reserve == RESERVE_ALLOC) { | 
|  | trace_btrfs_space_reservation(cache->fs_info, | 
|  | "space_info", space_info->flags, | 
|  | num_bytes, 0); | 
|  | space_info->bytes_may_use -= num_bytes; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (cache->ro) | 
|  | space_info->bytes_readonly += num_bytes; | 
|  | cache->reserved -= num_bytes; | 
|  | space_info->bytes_reserved -= num_bytes; | 
|  | space_info->reservation_progress++; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_caching_control *next; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | down_write(&fs_info->extent_commit_sem); | 
|  |  | 
|  | list_for_each_entry_safe(caching_ctl, next, | 
|  | &fs_info->caching_block_groups, list) { | 
|  | cache = caching_ctl->block_group; | 
|  | if (block_group_cache_done(cache)) { | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | list_del_init(&caching_ctl->list); | 
|  | put_caching_control(caching_ctl); | 
|  | } else { | 
|  | cache->last_byte_to_unpin = caching_ctl->progress; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (fs_info->pinned_extents == &fs_info->freed_extents[0]) | 
|  | fs_info->pinned_extents = &fs_info->freed_extents[1]; | 
|  | else | 
|  | fs_info->pinned_extents = &fs_info->freed_extents[0]; | 
|  |  | 
|  | up_write(&fs_info->extent_commit_sem); | 
|  |  | 
|  | update_global_block_rsv(fs_info); | 
|  | } | 
|  |  | 
|  | static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | u64 len; | 
|  | bool readonly; | 
|  |  | 
|  | while (start <= end) { | 
|  | readonly = false; | 
|  | if (!cache || | 
|  | start >= cache->key.objectid + cache->key.offset) { | 
|  | if (cache) | 
|  | btrfs_put_block_group(cache); | 
|  | cache = btrfs_lookup_block_group(fs_info, start); | 
|  | BUG_ON(!cache); /* Logic error */ | 
|  | } | 
|  |  | 
|  | len = cache->key.objectid + cache->key.offset - start; | 
|  | len = min(len, end + 1 - start); | 
|  |  | 
|  | if (start < cache->last_byte_to_unpin) { | 
|  | len = min(len, cache->last_byte_to_unpin - start); | 
|  | btrfs_add_free_space(cache, start, len); | 
|  | } | 
|  |  | 
|  | start += len; | 
|  | space_info = cache->space_info; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | cache->pinned -= len; | 
|  | space_info->bytes_pinned -= len; | 
|  | if (cache->ro) { | 
|  | space_info->bytes_readonly += len; | 
|  | readonly = true; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | if (!readonly && global_rsv->space_info == space_info) { | 
|  | spin_lock(&global_rsv->lock); | 
|  | if (!global_rsv->full) { | 
|  | len = min(len, global_rsv->size - | 
|  | global_rsv->reserved); | 
|  | global_rsv->reserved += len; | 
|  | space_info->bytes_may_use += len; | 
|  | if (global_rsv->reserved >= global_rsv->size) | 
|  | global_rsv->full = 1; | 
|  | } | 
|  | spin_unlock(&global_rsv->lock); | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  |  | 
|  | if (cache) | 
|  | btrfs_put_block_group(cache); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_io_tree *unpin; | 
|  | u64 start; | 
|  | u64 end; | 
|  | int ret; | 
|  |  | 
|  | if (trans->aborted) | 
|  | return 0; | 
|  |  | 
|  | if (fs_info->pinned_extents == &fs_info->freed_extents[0]) | 
|  | unpin = &fs_info->freed_extents[1]; | 
|  | else | 
|  | unpin = &fs_info->freed_extents[0]; | 
|  |  | 
|  | while (1) { | 
|  | ret = find_first_extent_bit(unpin, 0, &start, &end, | 
|  | EXTENT_DIRTY, NULL); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | if (btrfs_test_opt(root, DISCARD)) | 
|  | ret = btrfs_discard_extent(root, start, | 
|  | end + 1 - start, NULL); | 
|  |  | 
|  | clear_extent_dirty(unpin, start, end, GFP_NOFS); | 
|  | unpin_extent_range(root, start, end); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner_objectid, | 
|  | u64 owner_offset, int refs_to_drop, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_fs_info *info = root->fs_info; | 
|  | struct btrfs_root *extent_root = info->extent_root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int ret; | 
|  | int is_data; | 
|  | int extent_slot = 0; | 
|  | int found_extent = 0; | 
|  | int num_to_del = 1; | 
|  | u32 item_size; | 
|  | u64 refs; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = 1; | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; | 
|  | BUG_ON(!is_data && refs_to_drop != 1); | 
|  |  | 
|  | ret = lookup_extent_backref(trans, extent_root, path, &iref, | 
|  | bytenr, num_bytes, parent, | 
|  | root_objectid, owner_objectid, | 
|  | owner_offset); | 
|  | if (ret == 0) { | 
|  | extent_slot = path->slots[0]; | 
|  | while (extent_slot >= 0) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | extent_slot); | 
|  | if (key.objectid != bytenr) | 
|  | break; | 
|  | if (key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == num_bytes) { | 
|  | found_extent = 1; | 
|  | break; | 
|  | } | 
|  | if (path->slots[0] - extent_slot > 5) | 
|  | break; | 
|  | extent_slot--; | 
|  | } | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); | 
|  | if (found_extent && item_size < sizeof(*ei)) | 
|  | found_extent = 0; | 
|  | #endif | 
|  | if (!found_extent) { | 
|  | BUG_ON(iref); | 
|  | ret = remove_extent_backref(trans, extent_root, path, | 
|  | NULL, refs_to_drop, | 
|  | is_data); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, extent_root, ret); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, | 
|  | &key, path, -1, 1); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "umm, got %d back from search" | 
|  | ", was looking for %llu\n", ret, | 
|  | (unsigned long long)bytenr); | 
|  | if (ret > 0) | 
|  | btrfs_print_leaf(extent_root, | 
|  | path->nodes[0]); | 
|  | } | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, extent_root, ret); | 
|  | goto out; | 
|  | } | 
|  | extent_slot = path->slots[0]; | 
|  | } | 
|  | } else if (ret == -ENOENT) { | 
|  | btrfs_print_leaf(extent_root, path->nodes[0]); | 
|  | WARN_ON(1); | 
|  | printk(KERN_ERR "btrfs unable to find ref byte nr %llu " | 
|  | "parent %llu root %llu  owner %llu offset %llu\n", | 
|  | (unsigned long long)bytenr, | 
|  | (unsigned long long)parent, | 
|  | (unsigned long long)root_objectid, | 
|  | (unsigned long long)owner_objectid, | 
|  | (unsigned long long)owner_offset); | 
|  | } else { | 
|  | btrfs_abort_transaction(trans, extent_root, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, extent_slot); | 
|  | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
|  | if (item_size < sizeof(*ei)) { | 
|  | BUG_ON(found_extent || extent_slot != path->slots[0]); | 
|  | ret = convert_extent_item_v0(trans, extent_root, path, | 
|  | owner_objectid, 0); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, extent_root, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, &key, path, | 
|  | -1, 1); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "umm, got %d back from search" | 
|  | ", was looking for %llu\n", ret, | 
|  | (unsigned long long)bytenr); | 
|  | btrfs_print_leaf(extent_root, path->nodes[0]); | 
|  | } | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, extent_root, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | extent_slot = path->slots[0]; | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, extent_slot); | 
|  | } | 
|  | #endif | 
|  | BUG_ON(item_size < sizeof(*ei)); | 
|  | ei = btrfs_item_ptr(leaf, extent_slot, | 
|  | struct btrfs_extent_item); | 
|  | if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | struct btrfs_tree_block_info *bi; | 
|  | BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); | 
|  | bi = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); | 
|  | } | 
|  |  | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | BUG_ON(refs < refs_to_drop); | 
|  | refs -= refs_to_drop; | 
|  |  | 
|  | if (refs > 0) { | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  | /* | 
|  | * In the case of inline back ref, reference count will | 
|  | * be updated by remove_extent_backref | 
|  | */ | 
|  | if (iref) { | 
|  | BUG_ON(!found_extent); | 
|  | } else { | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  | if (found_extent) { | 
|  | ret = remove_extent_backref(trans, extent_root, path, | 
|  | iref, refs_to_drop, | 
|  | is_data); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, extent_root, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (found_extent) { | 
|  | BUG_ON(is_data && refs_to_drop != | 
|  | extent_data_ref_count(root, path, iref)); | 
|  | if (iref) { | 
|  | BUG_ON(path->slots[0] != extent_slot); | 
|  | } else { | 
|  | BUG_ON(path->slots[0] != extent_slot + 1); | 
|  | path->slots[0] = extent_slot; | 
|  | num_to_del = 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_items(trans, extent_root, path, path->slots[0], | 
|  | num_to_del); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, extent_root, ret); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (is_data) { | 
|  | ret = btrfs_del_csums(trans, root, bytenr, num_bytes); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, extent_root, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = update_block_group(root, bytenr, num_bytes, 0); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, extent_root, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when we free an block, it is possible (and likely) that we free the last | 
|  | * delayed ref for that extent as well.  This searches the delayed ref tree for | 
|  | * a given extent, and if there are no other delayed refs to be processed, it | 
|  | * removes it from the tree. | 
|  | */ | 
|  | static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 bytenr) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct rb_node *node; | 
|  | int ret = 0; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(trans, bytenr); | 
|  | if (!head) | 
|  | goto out; | 
|  |  | 
|  | node = rb_prev(&head->node.rb_node); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); | 
|  |  | 
|  | /* there are still entries for this ref, we can't drop it */ | 
|  | if (ref->bytenr == bytenr) | 
|  | goto out; | 
|  |  | 
|  | if (head->extent_op) { | 
|  | if (!head->must_insert_reserved) | 
|  | goto out; | 
|  | btrfs_free_delayed_extent_op(head->extent_op); | 
|  | head->extent_op = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * waiting for the lock here would deadlock.  If someone else has it | 
|  | * locked they are already in the process of dropping it anyway | 
|  | */ | 
|  | if (!mutex_trylock(&head->mutex)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * at this point we have a head with no other entries.  Go | 
|  | * ahead and process it. | 
|  | */ | 
|  | head->node.in_tree = 0; | 
|  | rb_erase(&head->node.rb_node, &delayed_refs->root); | 
|  |  | 
|  | delayed_refs->num_entries--; | 
|  |  | 
|  | /* | 
|  | * we don't take a ref on the node because we're removing it from the | 
|  | * tree, so we just steal the ref the tree was holding. | 
|  | */ | 
|  | delayed_refs->num_heads--; | 
|  | if (list_empty(&head->cluster)) | 
|  | delayed_refs->num_heads_ready--; | 
|  |  | 
|  | list_del_init(&head->cluster); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | BUG_ON(head->extent_op); | 
|  | if (head->must_insert_reserved) | 
|  | ret = 1; | 
|  |  | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref(&head->node); | 
|  | return ret; | 
|  | out: | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_free_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, | 
|  | u64 parent, int last_ref) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, | 
|  | buf->start, buf->len, | 
|  | parent, root->root_key.objectid, | 
|  | btrfs_header_level(buf), | 
|  | BTRFS_DROP_DELAYED_REF, NULL, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  |  | 
|  | if (!last_ref) | 
|  | return; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(root->fs_info, buf->start); | 
|  |  | 
|  | if (btrfs_header_generation(buf) == trans->transid) { | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | ret = check_ref_cleanup(trans, root, buf->start); | 
|  | if (!ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { | 
|  | pin_down_extent(root, cache, buf->start, buf->len, 1); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); | 
|  |  | 
|  | btrfs_add_free_space(cache, buf->start, buf->len); | 
|  | btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); | 
|  | } | 
|  | out: | 
|  | /* | 
|  | * Deleting the buffer, clear the corrupt flag since it doesn't matter | 
|  | * anymore. | 
|  | */ | 
|  | clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | /* Can return -ENOMEM */ | 
|  | int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int for_cow) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | /* | 
|  | * tree log blocks never actually go into the extent allocation | 
|  | * tree, just update pinning info and exit early. | 
|  | */ | 
|  | if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { | 
|  | WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); | 
|  | /* unlocks the pinned mutex */ | 
|  | btrfs_pin_extent(root, bytenr, num_bytes, 1); | 
|  | ret = 0; | 
|  | } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, | 
|  | num_bytes, | 
|  | parent, root_objectid, (int)owner, | 
|  | BTRFS_DROP_DELAYED_REF, NULL, for_cow); | 
|  | } else { | 
|  | ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, | 
|  | num_bytes, | 
|  | parent, root_objectid, owner, | 
|  | offset, BTRFS_DROP_DELAYED_REF, | 
|  | NULL, for_cow); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 stripe_align(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache, | 
|  | u64 val, u64 num_bytes) | 
|  | { | 
|  | u64 ret = ALIGN(val, root->stripesize); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when we wait for progress in the block group caching, its because | 
|  | * our allocation attempt failed at least once.  So, we must sleep | 
|  | * and let some progress happen before we try again. | 
|  | * | 
|  | * This function will sleep at least once waiting for new free space to | 
|  | * show up, and then it will check the block group free space numbers | 
|  | * for our min num_bytes.  Another option is to have it go ahead | 
|  | * and look in the rbtree for a free extent of a given size, but this | 
|  | * is a good start. | 
|  | */ | 
|  | static noinline int | 
|  | wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, | 
|  | u64 num_bytes) | 
|  | { | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  |  | 
|  | caching_ctl = get_caching_control(cache); | 
|  | if (!caching_ctl) | 
|  | return 0; | 
|  |  | 
|  | wait_event(caching_ctl->wait, block_group_cache_done(cache) || | 
|  | (cache->free_space_ctl->free_space >= num_bytes)); | 
|  |  | 
|  | put_caching_control(caching_ctl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int | 
|  | wait_block_group_cache_done(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  |  | 
|  | caching_ctl = get_caching_control(cache); | 
|  | if (!caching_ctl) | 
|  | return 0; | 
|  |  | 
|  | wait_event(caching_ctl->wait, block_group_cache_done(cache)); | 
|  |  | 
|  | put_caching_control(caching_ctl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __get_raid_index(u64 flags) | 
|  | { | 
|  | if (flags & BTRFS_BLOCK_GROUP_RAID10) | 
|  | return BTRFS_RAID_RAID10; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_RAID1) | 
|  | return BTRFS_RAID_RAID1; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_DUP) | 
|  | return BTRFS_RAID_DUP; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_RAID0) | 
|  | return BTRFS_RAID_RAID0; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_RAID5) | 
|  | return BTRFS_RAID_RAID5; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_RAID6) | 
|  | return BTRFS_RAID_RAID6; | 
|  |  | 
|  | return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ | 
|  | } | 
|  |  | 
|  | static int get_block_group_index(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | return __get_raid_index(cache->flags); | 
|  | } | 
|  |  | 
|  | enum btrfs_loop_type { | 
|  | LOOP_CACHING_NOWAIT = 0, | 
|  | LOOP_CACHING_WAIT = 1, | 
|  | LOOP_ALLOC_CHUNK = 2, | 
|  | LOOP_NO_EMPTY_SIZE = 3, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * walks the btree of allocated extents and find a hole of a given size. | 
|  | * The key ins is changed to record the hole: | 
|  | * ins->objectid == block start | 
|  | * ins->flags = BTRFS_EXTENT_ITEM_KEY | 
|  | * ins->offset == number of blocks | 
|  | * Any available blocks before search_start are skipped. | 
|  | */ | 
|  | static noinline int find_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *orig_root, | 
|  | u64 num_bytes, u64 empty_size, | 
|  | u64 hint_byte, struct btrfs_key *ins, | 
|  | u64 data) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_root *root = orig_root->fs_info->extent_root; | 
|  | struct btrfs_free_cluster *last_ptr = NULL; | 
|  | struct btrfs_block_group_cache *block_group = NULL; | 
|  | struct btrfs_block_group_cache *used_block_group; | 
|  | u64 search_start = 0; | 
|  | int empty_cluster = 2 * 1024 * 1024; | 
|  | struct btrfs_space_info *space_info; | 
|  | int loop = 0; | 
|  | int index = __get_raid_index(data); | 
|  | int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? | 
|  | RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; | 
|  | bool found_uncached_bg = false; | 
|  | bool failed_cluster_refill = false; | 
|  | bool failed_alloc = false; | 
|  | bool use_cluster = true; | 
|  | bool have_caching_bg = false; | 
|  |  | 
|  | WARN_ON(num_bytes < root->sectorsize); | 
|  | btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); | 
|  | ins->objectid = 0; | 
|  | ins->offset = 0; | 
|  |  | 
|  | trace_find_free_extent(orig_root, num_bytes, empty_size, data); | 
|  |  | 
|  | space_info = __find_space_info(root->fs_info, data); | 
|  | if (!space_info) { | 
|  | printk(KERN_ERR "No space info for %llu\n", data); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the space info is for both data and metadata it means we have a | 
|  | * small filesystem and we can't use the clustering stuff. | 
|  | */ | 
|  | if (btrfs_mixed_space_info(space_info)) | 
|  | use_cluster = false; | 
|  |  | 
|  | if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { | 
|  | last_ptr = &root->fs_info->meta_alloc_cluster; | 
|  | if (!btrfs_test_opt(root, SSD)) | 
|  | empty_cluster = 64 * 1024; | 
|  | } | 
|  |  | 
|  | if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && | 
|  | btrfs_test_opt(root, SSD)) { | 
|  | last_ptr = &root->fs_info->data_alloc_cluster; | 
|  | } | 
|  |  | 
|  | if (last_ptr) { | 
|  | spin_lock(&last_ptr->lock); | 
|  | if (last_ptr->block_group) | 
|  | hint_byte = last_ptr->window_start; | 
|  | spin_unlock(&last_ptr->lock); | 
|  | } | 
|  |  | 
|  | search_start = max(search_start, first_logical_byte(root, 0)); | 
|  | search_start = max(search_start, hint_byte); | 
|  |  | 
|  | if (!last_ptr) | 
|  | empty_cluster = 0; | 
|  |  | 
|  | if (search_start == hint_byte) { | 
|  | block_group = btrfs_lookup_block_group(root->fs_info, | 
|  | search_start); | 
|  | used_block_group = block_group; | 
|  | /* | 
|  | * we don't want to use the block group if it doesn't match our | 
|  | * allocation bits, or if its not cached. | 
|  | * | 
|  | * However if we are re-searching with an ideal block group | 
|  | * picked out then we don't care that the block group is cached. | 
|  | */ | 
|  | if (block_group && block_group_bits(block_group, data) && | 
|  | block_group->cached != BTRFS_CACHE_NO) { | 
|  | down_read(&space_info->groups_sem); | 
|  | if (list_empty(&block_group->list) || | 
|  | block_group->ro) { | 
|  | /* | 
|  | * someone is removing this block group, | 
|  | * we can't jump into the have_block_group | 
|  | * target because our list pointers are not | 
|  | * valid | 
|  | */ | 
|  | btrfs_put_block_group(block_group); | 
|  | up_read(&space_info->groups_sem); | 
|  | } else { | 
|  | index = get_block_group_index(block_group); | 
|  | goto have_block_group; | 
|  | } | 
|  | } else if (block_group) { | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | } | 
|  | search: | 
|  | have_caching_bg = false; | 
|  | down_read(&space_info->groups_sem); | 
|  | list_for_each_entry(block_group, &space_info->block_groups[index], | 
|  | list) { | 
|  | u64 offset; | 
|  | int cached; | 
|  |  | 
|  | used_block_group = block_group; | 
|  | btrfs_get_block_group(block_group); | 
|  | search_start = block_group->key.objectid; | 
|  |  | 
|  | /* | 
|  | * this can happen if we end up cycling through all the | 
|  | * raid types, but we want to make sure we only allocate | 
|  | * for the proper type. | 
|  | */ | 
|  | if (!block_group_bits(block_group, data)) { | 
|  | u64 extra = BTRFS_BLOCK_GROUP_DUP | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID5 | | 
|  | BTRFS_BLOCK_GROUP_RAID6 | | 
|  | BTRFS_BLOCK_GROUP_RAID10; | 
|  |  | 
|  | /* | 
|  | * if they asked for extra copies and this block group | 
|  | * doesn't provide them, bail.  This does allow us to | 
|  | * fill raid0 from raid1. | 
|  | */ | 
|  | if ((data & extra) && !(block_group->flags & extra)) | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | have_block_group: | 
|  | cached = block_group_cache_done(block_group); | 
|  | if (unlikely(!cached)) { | 
|  | found_uncached_bg = true; | 
|  | ret = cache_block_group(block_group, 0); | 
|  | BUG_ON(ret < 0); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(block_group->ro)) | 
|  | goto loop; | 
|  |  | 
|  | /* | 
|  | * Ok we want to try and use the cluster allocator, so | 
|  | * lets look there | 
|  | */ | 
|  | if (last_ptr) { | 
|  | unsigned long aligned_cluster; | 
|  | /* | 
|  | * the refill lock keeps out other | 
|  | * people trying to start a new cluster | 
|  | */ | 
|  | spin_lock(&last_ptr->refill_lock); | 
|  | used_block_group = last_ptr->block_group; | 
|  | if (used_block_group != block_group && | 
|  | (!used_block_group || | 
|  | used_block_group->ro || | 
|  | !block_group_bits(used_block_group, data))) { | 
|  | used_block_group = block_group; | 
|  | goto refill_cluster; | 
|  | } | 
|  |  | 
|  | if (used_block_group != block_group) | 
|  | btrfs_get_block_group(used_block_group); | 
|  |  | 
|  | offset = btrfs_alloc_from_cluster(used_block_group, | 
|  | last_ptr, num_bytes, used_block_group->key.objectid); | 
|  | if (offset) { | 
|  | /* we have a block, we're done */ | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | trace_btrfs_reserve_extent_cluster(root, | 
|  | block_group, search_start, num_bytes); | 
|  | goto checks; | 
|  | } | 
|  |  | 
|  | WARN_ON(last_ptr->block_group != used_block_group); | 
|  | if (used_block_group != block_group) { | 
|  | btrfs_put_block_group(used_block_group); | 
|  | used_block_group = block_group; | 
|  | } | 
|  | refill_cluster: | 
|  | BUG_ON(used_block_group != block_group); | 
|  | /* If we are on LOOP_NO_EMPTY_SIZE, we can't | 
|  | * set up a new clusters, so lets just skip it | 
|  | * and let the allocator find whatever block | 
|  | * it can find.  If we reach this point, we | 
|  | * will have tried the cluster allocator | 
|  | * plenty of times and not have found | 
|  | * anything, so we are likely way too | 
|  | * fragmented for the clustering stuff to find | 
|  | * anything. | 
|  | * | 
|  | * However, if the cluster is taken from the | 
|  | * current block group, release the cluster | 
|  | * first, so that we stand a better chance of | 
|  | * succeeding in the unclustered | 
|  | * allocation.  */ | 
|  | if (loop >= LOOP_NO_EMPTY_SIZE && | 
|  | last_ptr->block_group != block_group) { | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | goto unclustered_alloc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this cluster didn't work out, free it and | 
|  | * start over | 
|  | */ | 
|  | btrfs_return_cluster_to_free_space(NULL, last_ptr); | 
|  |  | 
|  | if (loop >= LOOP_NO_EMPTY_SIZE) { | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | goto unclustered_alloc; | 
|  | } | 
|  |  | 
|  | aligned_cluster = max_t(unsigned long, | 
|  | empty_cluster + empty_size, | 
|  | block_group->full_stripe_len); | 
|  |  | 
|  | /* allocate a cluster in this block group */ | 
|  | ret = btrfs_find_space_cluster(trans, root, | 
|  | block_group, last_ptr, | 
|  | search_start, num_bytes, | 
|  | aligned_cluster); | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * now pull our allocation out of this | 
|  | * cluster | 
|  | */ | 
|  | offset = btrfs_alloc_from_cluster(block_group, | 
|  | last_ptr, num_bytes, | 
|  | search_start); | 
|  | if (offset) { | 
|  | /* we found one, proceed */ | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | trace_btrfs_reserve_extent_cluster(root, | 
|  | block_group, search_start, | 
|  | num_bytes); | 
|  | goto checks; | 
|  | } | 
|  | } else if (!cached && loop > LOOP_CACHING_NOWAIT | 
|  | && !failed_cluster_refill) { | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  |  | 
|  | failed_cluster_refill = true; | 
|  | wait_block_group_cache_progress(block_group, | 
|  | num_bytes + empty_cluster + empty_size); | 
|  | goto have_block_group; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * at this point we either didn't find a cluster | 
|  | * or we weren't able to allocate a block from our | 
|  | * cluster.  Free the cluster we've been trying | 
|  | * to use, and go to the next block group | 
|  | */ | 
|  | btrfs_return_cluster_to_free_space(NULL, last_ptr); | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | unclustered_alloc: | 
|  | spin_lock(&block_group->free_space_ctl->tree_lock); | 
|  | if (cached && | 
|  | block_group->free_space_ctl->free_space < | 
|  | num_bytes + empty_cluster + empty_size) { | 
|  | spin_unlock(&block_group->free_space_ctl->tree_lock); | 
|  | goto loop; | 
|  | } | 
|  | spin_unlock(&block_group->free_space_ctl->tree_lock); | 
|  |  | 
|  | offset = btrfs_find_space_for_alloc(block_group, search_start, | 
|  | num_bytes, empty_size); | 
|  | /* | 
|  | * If we didn't find a chunk, and we haven't failed on this | 
|  | * block group before, and this block group is in the middle of | 
|  | * caching and we are ok with waiting, then go ahead and wait | 
|  | * for progress to be made, and set failed_alloc to true. | 
|  | * | 
|  | * If failed_alloc is true then we've already waited on this | 
|  | * block group once and should move on to the next block group. | 
|  | */ | 
|  | if (!offset && !failed_alloc && !cached && | 
|  | loop > LOOP_CACHING_NOWAIT) { | 
|  | wait_block_group_cache_progress(block_group, | 
|  | num_bytes + empty_size); | 
|  | failed_alloc = true; | 
|  | goto have_block_group; | 
|  | } else if (!offset) { | 
|  | if (!cached) | 
|  | have_caching_bg = true; | 
|  | goto loop; | 
|  | } | 
|  | checks: | 
|  | search_start = stripe_align(root, used_block_group, | 
|  | offset, num_bytes); | 
|  |  | 
|  | /* move on to the next group */ | 
|  | if (search_start + num_bytes > | 
|  | used_block_group->key.objectid + used_block_group->key.offset) { | 
|  | btrfs_add_free_space(used_block_group, offset, num_bytes); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | if (offset < search_start) | 
|  | btrfs_add_free_space(used_block_group, offset, | 
|  | search_start - offset); | 
|  | BUG_ON(offset > search_start); | 
|  |  | 
|  | ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, | 
|  | alloc_type); | 
|  | if (ret == -EAGAIN) { | 
|  | btrfs_add_free_space(used_block_group, offset, num_bytes); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | /* we are all good, lets return */ | 
|  | ins->objectid = search_start; | 
|  | ins->offset = num_bytes; | 
|  |  | 
|  | trace_btrfs_reserve_extent(orig_root, block_group, | 
|  | search_start, num_bytes); | 
|  | if (used_block_group != block_group) | 
|  | btrfs_put_block_group(used_block_group); | 
|  | btrfs_put_block_group(block_group); | 
|  | break; | 
|  | loop: | 
|  | failed_cluster_refill = false; | 
|  | failed_alloc = false; | 
|  | BUG_ON(index != get_block_group_index(block_group)); | 
|  | if (used_block_group != block_group) | 
|  | btrfs_put_block_group(used_block_group); | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | up_read(&space_info->groups_sem); | 
|  |  | 
|  | if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) | 
|  | goto search; | 
|  |  | 
|  | if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) | 
|  | goto search; | 
|  |  | 
|  | /* | 
|  | * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking | 
|  | *			caching kthreads as we move along | 
|  | * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching | 
|  | * LOOP_ALLOC_CHUNK, force a chunk allocation and try again | 
|  | * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try | 
|  | *			again | 
|  | */ | 
|  | if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { | 
|  | index = 0; | 
|  | loop++; | 
|  | if (loop == LOOP_ALLOC_CHUNK) { | 
|  | ret = do_chunk_alloc(trans, root, data, | 
|  | CHUNK_ALLOC_FORCE); | 
|  | /* | 
|  | * Do not bail out on ENOSPC since we | 
|  | * can do more things. | 
|  | */ | 
|  | if (ret < 0 && ret != -ENOSPC) { | 
|  | btrfs_abort_transaction(trans, | 
|  | root, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (loop == LOOP_NO_EMPTY_SIZE) { | 
|  | empty_size = 0; | 
|  | empty_cluster = 0; | 
|  | } | 
|  |  | 
|  | goto search; | 
|  | } else if (!ins->objectid) { | 
|  | ret = -ENOSPC; | 
|  | } else if (ins->objectid) { | 
|  | ret = 0; | 
|  | } | 
|  | out: | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dump_space_info(struct btrfs_space_info *info, u64 bytes, | 
|  | int dump_block_groups) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | int index = 0; | 
|  |  | 
|  | spin_lock(&info->lock); | 
|  | printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", | 
|  | (unsigned long long)info->flags, | 
|  | (unsigned long long)(info->total_bytes - info->bytes_used - | 
|  | info->bytes_pinned - info->bytes_reserved - | 
|  | info->bytes_readonly), | 
|  | (info->full) ? "" : "not "); | 
|  | printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " | 
|  | "reserved=%llu, may_use=%llu, readonly=%llu\n", | 
|  | (unsigned long long)info->total_bytes, | 
|  | (unsigned long long)info->bytes_used, | 
|  | (unsigned long long)info->bytes_pinned, | 
|  | (unsigned long long)info->bytes_reserved, | 
|  | (unsigned long long)info->bytes_may_use, | 
|  | (unsigned long long)info->bytes_readonly); | 
|  | spin_unlock(&info->lock); | 
|  |  | 
|  | if (!dump_block_groups) | 
|  | return; | 
|  |  | 
|  | down_read(&info->groups_sem); | 
|  | again: | 
|  | list_for_each_entry(cache, &info->block_groups[index], list) { | 
|  | spin_lock(&cache->lock); | 
|  | printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", | 
|  | (unsigned long long)cache->key.objectid, | 
|  | (unsigned long long)cache->key.offset, | 
|  | (unsigned long long)btrfs_block_group_used(&cache->item), | 
|  | (unsigned long long)cache->pinned, | 
|  | (unsigned long long)cache->reserved, | 
|  | cache->ro ? "[readonly]" : ""); | 
|  | btrfs_dump_free_space(cache, bytes); | 
|  | spin_unlock(&cache->lock); | 
|  | } | 
|  | if (++index < BTRFS_NR_RAID_TYPES) | 
|  | goto again; | 
|  | up_read(&info->groups_sem); | 
|  | } | 
|  |  | 
|  | int btrfs_reserve_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 num_bytes, u64 min_alloc_size, | 
|  | u64 empty_size, u64 hint_byte, | 
|  | struct btrfs_key *ins, u64 data) | 
|  | { | 
|  | bool final_tried = false; | 
|  | int ret; | 
|  |  | 
|  | data = btrfs_get_alloc_profile(root, data); | 
|  | again: | 
|  | WARN_ON(num_bytes < root->sectorsize); | 
|  | ret = find_free_extent(trans, root, num_bytes, empty_size, | 
|  | hint_byte, ins, data); | 
|  |  | 
|  | if (ret == -ENOSPC) { | 
|  | if (!final_tried) { | 
|  | num_bytes = num_bytes >> 1; | 
|  | num_bytes = round_down(num_bytes, root->sectorsize); | 
|  | num_bytes = max(num_bytes, min_alloc_size); | 
|  | if (num_bytes == min_alloc_size) | 
|  | final_tried = true; | 
|  | goto again; | 
|  | } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { | 
|  | struct btrfs_space_info *sinfo; | 
|  |  | 
|  | sinfo = __find_space_info(root->fs_info, data); | 
|  | printk(KERN_ERR "btrfs allocation failed flags %llu, " | 
|  | "wanted %llu\n", (unsigned long long)data, | 
|  | (unsigned long long)num_bytes); | 
|  | if (sinfo) | 
|  | dump_space_info(sinfo, num_bytes, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btrfs_free_reserved_extent(struct btrfs_root *root, | 
|  | u64 start, u64 len, int pin) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | int ret = 0; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(root->fs_info, start); | 
|  | if (!cache) { | 
|  | printk(KERN_ERR "Unable to find block group for %llu\n", | 
|  | (unsigned long long)start); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | if (btrfs_test_opt(root, DISCARD)) | 
|  | ret = btrfs_discard_extent(root, start, len, NULL); | 
|  |  | 
|  | if (pin) | 
|  | pin_down_extent(root, cache, start, len, 1); | 
|  | else { | 
|  | btrfs_add_free_space(cache, start, len); | 
|  | btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); | 
|  | } | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | trace_btrfs_reserved_extent_free(root, start, len); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_free_reserved_extent(struct btrfs_root *root, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | return __btrfs_free_reserved_extent(root, start, len, 0); | 
|  | } | 
|  |  | 
|  | int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | return __btrfs_free_reserved_extent(root, start, len, 1); | 
|  | } | 
|  |  | 
|  | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins, int ref_mod) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_extent_item *extent_item; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | int type; | 
|  | u32 size; | 
|  |  | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | else | 
|  | type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  |  | 
|  | size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->leave_spinning = 1; | 
|  | ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, | 
|  | ins, size); | 
|  | if (ret) { | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | extent_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | btrfs_set_extent_refs(leaf, extent_item, ref_mod); | 
|  | btrfs_set_extent_generation(leaf, extent_item, trans->transid); | 
|  | btrfs_set_extent_flags(leaf, extent_item, | 
|  | flags | BTRFS_EXTENT_FLAG_DATA); | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, type); | 
|  | if (parent > 0) { | 
|  | struct btrfs_shared_data_ref *ref; | 
|  | ref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); | 
|  | } else { | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | ref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, ref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | ret = update_block_group(root, ins->objectid, ins->offset, 1); | 
|  | if (ret) { /* -ENOENT, logic error */ | 
|  | printk(KERN_ERR "btrfs update block group failed for %llu " | 
|  | "%llu\n", (unsigned long long)ins->objectid, | 
|  | (unsigned long long)ins->offset); | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, struct btrfs_disk_key *key, | 
|  | int level, struct btrfs_key *ins) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_extent_item *extent_item; | 
|  | struct btrfs_tree_block_info *block_info; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->leave_spinning = 1; | 
|  | ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, | 
|  | ins, size); | 
|  | if (ret) { | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | extent_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | btrfs_set_extent_refs(leaf, extent_item, 1); | 
|  | btrfs_set_extent_generation(leaf, extent_item, trans->transid); | 
|  | btrfs_set_extent_flags(leaf, extent_item, | 
|  | flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); | 
|  | block_info = (struct btrfs_tree_block_info *)(extent_item + 1); | 
|  |  | 
|  | btrfs_set_tree_block_key(leaf, block_info, key); | 
|  | btrfs_set_tree_block_level(leaf, block_info, level); | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)(block_info + 1); | 
|  | if (parent > 0) { | 
|  | BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, | 
|  | BTRFS_SHARED_BLOCK_REF_KEY); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | } else { | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, | 
|  | BTRFS_TREE_BLOCK_REF_KEY); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | ret = update_block_group(root, ins->objectid, ins->offset, 1); | 
|  | if (ret) { /* -ENOENT, logic error */ | 
|  | printk(KERN_ERR "btrfs update block group failed for %llu " | 
|  | "%llu\n", (unsigned long long)ins->objectid, | 
|  | (unsigned long long)ins->offset); | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 root_objectid, u64 owner, | 
|  | u64 offset, struct btrfs_key *ins) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, | 
|  | ins->offset, 0, | 
|  | root_objectid, owner, offset, | 
|  | BTRFS_ADD_DELAYED_EXTENT, NULL, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used by the tree logging recovery code.  It records that | 
|  | * an extent has been allocated and makes sure to clear the free | 
|  | * space cache bits as well | 
|  | */ | 
|  | int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 root_objectid, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | u64 start = ins->objectid; | 
|  | u64 num_bytes = ins->offset; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); | 
|  | cache_block_group(block_group, 0); | 
|  | caching_ctl = get_caching_control(block_group); | 
|  |  | 
|  | if (!caching_ctl) { | 
|  | BUG_ON(!block_group_cache_done(block_group)); | 
|  | ret = btrfs_remove_free_space(block_group, start, num_bytes); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } else { | 
|  | mutex_lock(&caching_ctl->mutex); | 
|  |  | 
|  | if (start >= caching_ctl->progress) { | 
|  | ret = add_excluded_extent(root, start, num_bytes); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } else if (start + num_bytes <= caching_ctl->progress) { | 
|  | ret = btrfs_remove_free_space(block_group, | 
|  | start, num_bytes); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } else { | 
|  | num_bytes = caching_ctl->progress - start; | 
|  | ret = btrfs_remove_free_space(block_group, | 
|  | start, num_bytes); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  |  | 
|  | start = caching_ctl->progress; | 
|  | num_bytes = ins->objectid + ins->offset - | 
|  | caching_ctl->progress; | 
|  | ret = add_excluded_extent(root, start, num_bytes); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  |  | 
|  | mutex_unlock(&caching_ctl->mutex); | 
|  | put_caching_control(caching_ctl); | 
|  | } | 
|  |  | 
|  | ret = btrfs_update_reserved_bytes(block_group, ins->offset, | 
|  | RESERVE_ALLOC_NO_ACCOUNT); | 
|  | BUG_ON(ret); /* logic error */ | 
|  | btrfs_put_block_group(block_group); | 
|  | ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, | 
|  | 0, owner, offset, ins, 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u32 blocksize, | 
|  | int level) | 
|  | { | 
|  | struct extent_buffer *buf; | 
|  |  | 
|  | buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
|  | if (!buf) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | btrfs_set_header_generation(buf, trans->transid); | 
|  | btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); | 
|  | btrfs_tree_lock(buf); | 
|  | clean_tree_block(trans, root, buf); | 
|  | clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); | 
|  |  | 
|  | btrfs_set_lock_blocking(buf); | 
|  | btrfs_set_buffer_uptodate(buf); | 
|  |  | 
|  | if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { | 
|  | /* | 
|  | * we allow two log transactions at a time, use different | 
|  | * EXENT bit to differentiate dirty pages. | 
|  | */ | 
|  | if (root->log_transid % 2 == 0) | 
|  | set_extent_dirty(&root->dirty_log_pages, buf->start, | 
|  | buf->start + buf->len - 1, GFP_NOFS); | 
|  | else | 
|  | set_extent_new(&root->dirty_log_pages, buf->start, | 
|  | buf->start + buf->len - 1, GFP_NOFS); | 
|  | } else { | 
|  | set_extent_dirty(&trans->transaction->dirty_pages, buf->start, | 
|  | buf->start + buf->len - 1, GFP_NOFS); | 
|  | } | 
|  | trans->blocks_used++; | 
|  | /* this returns a buffer locked for blocking */ | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_rsv * | 
|  | use_block_rsv(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u32 blocksize) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; | 
|  | int ret; | 
|  |  | 
|  | block_rsv = get_block_rsv(trans, root); | 
|  |  | 
|  | if (block_rsv->size == 0) { | 
|  | ret = reserve_metadata_bytes(root, block_rsv, blocksize, | 
|  | BTRFS_RESERVE_NO_FLUSH); | 
|  | /* | 
|  | * If we couldn't reserve metadata bytes try and use some from | 
|  | * the global reserve. | 
|  | */ | 
|  | if (ret && block_rsv != global_rsv) { | 
|  | ret = block_rsv_use_bytes(global_rsv, blocksize); | 
|  | if (!ret) | 
|  | return global_rsv; | 
|  | return ERR_PTR(ret); | 
|  | } else if (ret) { | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | return block_rsv; | 
|  | } | 
|  |  | 
|  | ret = block_rsv_use_bytes(block_rsv, blocksize); | 
|  | if (!ret) | 
|  | return block_rsv; | 
|  | if (ret && !block_rsv->failfast) { | 
|  | if (btrfs_test_opt(root, ENOSPC_DEBUG)) { | 
|  | static DEFINE_RATELIMIT_STATE(_rs, | 
|  | DEFAULT_RATELIMIT_INTERVAL * 10, | 
|  | /*DEFAULT_RATELIMIT_BURST*/ 1); | 
|  | if (__ratelimit(&_rs)) | 
|  | WARN(1, KERN_DEBUG | 
|  | "btrfs: block rsv returned %d\n", ret); | 
|  | } | 
|  | ret = reserve_metadata_bytes(root, block_rsv, blocksize, | 
|  | BTRFS_RESERVE_NO_FLUSH); | 
|  | if (!ret) { | 
|  | return block_rsv; | 
|  | } else if (ret && block_rsv != global_rsv) { | 
|  | ret = block_rsv_use_bytes(global_rsv, blocksize); | 
|  | if (!ret) | 
|  | return global_rsv; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  |  | 
|  | static void unuse_block_rsv(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *block_rsv, u32 blocksize) | 
|  | { | 
|  | block_rsv_add_bytes(block_rsv, blocksize, 0); | 
|  | block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * finds a free extent and does all the dirty work required for allocation | 
|  | * returns the key for the extent through ins, and a tree buffer for | 
|  | * the first block of the extent through buf. | 
|  | * | 
|  | * returns the tree buffer or NULL. | 
|  | */ | 
|  | struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u32 blocksize, | 
|  | u64 parent, u64 root_objectid, | 
|  | struct btrfs_disk_key *key, int level, | 
|  | u64 hint, u64 empty_size) | 
|  | { | 
|  | struct btrfs_key ins; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct extent_buffer *buf; | 
|  | u64 flags = 0; | 
|  | int ret; | 
|  |  | 
|  |  | 
|  | block_rsv = use_block_rsv(trans, root, blocksize); | 
|  | if (IS_ERR(block_rsv)) | 
|  | return ERR_CAST(block_rsv); | 
|  |  | 
|  | ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, | 
|  | empty_size, hint, &ins, 0); | 
|  | if (ret) { | 
|  | unuse_block_rsv(root->fs_info, block_rsv, blocksize); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | buf = btrfs_init_new_buffer(trans, root, ins.objectid, | 
|  | blocksize, level); | 
|  | BUG_ON(IS_ERR(buf)); /* -ENOMEM */ | 
|  |  | 
|  | if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { | 
|  | if (parent == 0) | 
|  | parent = ins.objectid; | 
|  | flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | } else | 
|  | BUG_ON(parent > 0); | 
|  |  | 
|  | if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | extent_op = btrfs_alloc_delayed_extent_op(); | 
|  | BUG_ON(!extent_op); /* -ENOMEM */ | 
|  | if (key) | 
|  | memcpy(&extent_op->key, key, sizeof(extent_op->key)); | 
|  | else | 
|  | memset(&extent_op->key, 0, sizeof(extent_op->key)); | 
|  | extent_op->flags_to_set = flags; | 
|  | extent_op->update_key = 1; | 
|  | extent_op->update_flags = 1; | 
|  | extent_op->is_data = 0; | 
|  |  | 
|  | ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, | 
|  | ins.objectid, | 
|  | ins.offset, parent, root_objectid, | 
|  | level, BTRFS_ADD_DELAYED_EXTENT, | 
|  | extent_op, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | struct walk_control { | 
|  | u64 refs[BTRFS_MAX_LEVEL]; | 
|  | u64 flags[BTRFS_MAX_LEVEL]; | 
|  | struct btrfs_key update_progress; | 
|  | int stage; | 
|  | int level; | 
|  | int shared_level; | 
|  | int update_ref; | 
|  | int keep_locks; | 
|  | int reada_slot; | 
|  | int reada_count; | 
|  | int for_reloc; | 
|  | }; | 
|  |  | 
|  | #define DROP_REFERENCE	1 | 
|  | #define UPDATE_BACKREF	2 | 
|  |  | 
|  | static noinline void reada_walk_down(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct walk_control *wc, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | u64 bytenr; | 
|  | u64 generation; | 
|  | u64 refs; | 
|  | u64 flags; | 
|  | u32 nritems; | 
|  | u32 blocksize; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *eb; | 
|  | int ret; | 
|  | int slot; | 
|  | int nread = 0; | 
|  |  | 
|  | if (path->slots[wc->level] < wc->reada_slot) { | 
|  | wc->reada_count = wc->reada_count * 2 / 3; | 
|  | wc->reada_count = max(wc->reada_count, 2); | 
|  | } else { | 
|  | wc->reada_count = wc->reada_count * 3 / 2; | 
|  | wc->reada_count = min_t(int, wc->reada_count, | 
|  | BTRFS_NODEPTRS_PER_BLOCK(root)); | 
|  | } | 
|  |  | 
|  | eb = path->nodes[wc->level]; | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | blocksize = btrfs_level_size(root, wc->level - 1); | 
|  |  | 
|  | for (slot = path->slots[wc->level]; slot < nritems; slot++) { | 
|  | if (nread >= wc->reada_count) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  | bytenr = btrfs_node_blockptr(eb, slot); | 
|  | generation = btrfs_node_ptr_generation(eb, slot); | 
|  |  | 
|  | if (slot == path->slots[wc->level]) | 
|  | goto reada; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | generation <= root->root_key.offset) | 
|  | continue; | 
|  |  | 
|  | /* We don't lock the tree block, it's OK to be racy here */ | 
|  | ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, | 
|  | &refs, &flags); | 
|  | /* We don't care about errors in readahead. */ | 
|  | if (ret < 0) | 
|  | continue; | 
|  | BUG_ON(refs == 0); | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (refs == 1) | 
|  | goto reada; | 
|  |  | 
|  | if (wc->level == 1 && | 
|  | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | continue; | 
|  | if (!wc->update_ref || | 
|  | generation <= root->root_key.offset) | 
|  | continue; | 
|  | btrfs_node_key_to_cpu(eb, &key, slot); | 
|  | ret = btrfs_comp_cpu_keys(&key, | 
|  | &wc->update_progress); | 
|  | if (ret < 0) | 
|  | continue; | 
|  | } else { | 
|  | if (wc->level == 1 && | 
|  | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | continue; | 
|  | } | 
|  | reada: | 
|  | ret = readahead_tree_block(root, bytenr, blocksize, | 
|  | generation); | 
|  | if (ret) | 
|  | break; | 
|  | nread++; | 
|  | } | 
|  | wc->reada_slot = slot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to process tree block while walking down the tree. | 
|  | * | 
|  | * when wc->stage == UPDATE_BACKREF, this function updates | 
|  | * back refs for pointers in the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking down. | 
|  | */ | 
|  | static noinline int walk_down_proc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int lookup_info) | 
|  | { | 
|  | int level = wc->level; | 
|  | struct extent_buffer *eb = path->nodes[level]; | 
|  | u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | int ret; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | btrfs_header_owner(eb) != root->root_key.objectid) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * when reference count of tree block is 1, it won't increase | 
|  | * again. once full backref flag is set, we never clear it. | 
|  | */ | 
|  | if (lookup_info && | 
|  | ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || | 
|  | (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { | 
|  | BUG_ON(!path->locks[level]); | 
|  | ret = btrfs_lookup_extent_info(trans, root, | 
|  | eb->start, eb->len, | 
|  | &wc->refs[level], | 
|  | &wc->flags[level]); | 
|  | BUG_ON(ret == -ENOMEM); | 
|  | if (ret) | 
|  | return ret; | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  | } | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->refs[level] > 1) | 
|  | return 1; | 
|  |  | 
|  | if (path->locks[level] && !wc->keep_locks) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* wc->stage == UPDATE_BACKREF */ | 
|  | if (!(wc->flags[level] & flag)) { | 
|  | BUG_ON(!path->locks[level]); | 
|  | ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | ret = btrfs_set_disk_extent_flags(trans, root, eb->start, | 
|  | eb->len, flag, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | wc->flags[level] |= flag; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the block is shared by multiple trees, so it's not good to | 
|  | * keep the tree lock | 
|  | */ | 
|  | if (path->locks[level] && level > 0) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to process tree block pointer. | 
|  | * | 
|  | * when wc->stage == DROP_REFERENCE, this function checks | 
|  | * reference count of the block pointed to. if the block | 
|  | * is shared and we need update back refs for the subtree | 
|  | * rooted at the block, this function changes wc->stage to | 
|  | * UPDATE_BACKREF. if the block is shared and there is no | 
|  | * need to update back, this function drops the reference | 
|  | * to the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking down. | 
|  | */ | 
|  | static noinline int do_walk_down(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int *lookup_info) | 
|  | { | 
|  | u64 bytenr; | 
|  | u64 generation; | 
|  | u64 parent; | 
|  | u32 blocksize; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *next; | 
|  | int level = wc->level; | 
|  | int reada = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | generation = btrfs_node_ptr_generation(path->nodes[level], | 
|  | path->slots[level]); | 
|  | /* | 
|  | * if the lower level block was created before the snapshot | 
|  | * was created, we know there is no need to update back refs | 
|  | * for the subtree | 
|  | */ | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | generation <= root->root_key.offset) { | 
|  | *lookup_info = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); | 
|  | blocksize = btrfs_level_size(root, level - 1); | 
|  |  | 
|  | next = btrfs_find_tree_block(root, bytenr, blocksize); | 
|  | if (!next) { | 
|  | next = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
|  | if (!next) | 
|  | return -ENOMEM; | 
|  | reada = 1; | 
|  | } | 
|  | btrfs_tree_lock(next); | 
|  | btrfs_set_lock_blocking(next); | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, | 
|  | &wc->refs[level - 1], | 
|  | &wc->flags[level - 1]); | 
|  | if (ret < 0) { | 
|  | btrfs_tree_unlock(next); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | BUG_ON(wc->refs[level - 1] == 0); | 
|  | *lookup_info = 0; | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->refs[level - 1] > 1) { | 
|  | if (level == 1 && | 
|  | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | goto skip; | 
|  |  | 
|  | if (!wc->update_ref || | 
|  | generation <= root->root_key.offset) | 
|  | goto skip; | 
|  |  | 
|  | btrfs_node_key_to_cpu(path->nodes[level], &key, | 
|  | path->slots[level]); | 
|  | ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); | 
|  | if (ret < 0) | 
|  | goto skip; | 
|  |  | 
|  | wc->stage = UPDATE_BACKREF; | 
|  | wc->shared_level = level - 1; | 
|  | } | 
|  | } else { | 
|  | if (level == 1 && | 
|  | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | goto skip; | 
|  | } | 
|  |  | 
|  | if (!btrfs_buffer_uptodate(next, generation, 0)) { | 
|  | btrfs_tree_unlock(next); | 
|  | free_extent_buffer(next); | 
|  | next = NULL; | 
|  | *lookup_info = 1; | 
|  | } | 
|  |  | 
|  | if (!next) { | 
|  | if (reada && level == 1) | 
|  | reada_walk_down(trans, root, wc, path); | 
|  | next = read_tree_block(root, bytenr, blocksize, generation); | 
|  | if (!next) | 
|  | return -EIO; | 
|  | btrfs_tree_lock(next); | 
|  | btrfs_set_lock_blocking(next); | 
|  | } | 
|  |  | 
|  | level--; | 
|  | BUG_ON(level != btrfs_header_level(next)); | 
|  | path->nodes[level] = next; | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  | wc->level = level; | 
|  | if (wc->level == 1) | 
|  | wc->reada_slot = 0; | 
|  | return 0; | 
|  | skip: | 
|  | wc->refs[level - 1] = 0; | 
|  | wc->flags[level - 1] = 0; | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { | 
|  | parent = path->nodes[level]->start; | 
|  | } else { | 
|  | BUG_ON(root->root_key.objectid != | 
|  | btrfs_header_owner(path->nodes[level])); | 
|  | parent = 0; | 
|  | } | 
|  |  | 
|  | ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, | 
|  | root->root_key.objectid, level - 1, 0, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  | btrfs_tree_unlock(next); | 
|  | free_extent_buffer(next); | 
|  | *lookup_info = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to process tree block while walking up the tree. | 
|  | * | 
|  | * when wc->stage == DROP_REFERENCE, this function drops | 
|  | * reference count on the block. | 
|  | * | 
|  | * when wc->stage == UPDATE_BACKREF, this function changes | 
|  | * wc->stage back to DROP_REFERENCE if we changed wc->stage | 
|  | * to UPDATE_BACKREF previously while processing the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking up. | 
|  | */ | 
|  | static noinline int walk_up_proc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | int ret; | 
|  | int level = wc->level; | 
|  | struct extent_buffer *eb = path->nodes[level]; | 
|  | u64 parent = 0; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF) { | 
|  | BUG_ON(wc->shared_level < level); | 
|  | if (level < wc->shared_level) | 
|  | goto out; | 
|  |  | 
|  | ret = find_next_key(path, level + 1, &wc->update_progress); | 
|  | if (ret > 0) | 
|  | wc->update_ref = 0; | 
|  |  | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->shared_level = -1; | 
|  | path->slots[level] = 0; | 
|  |  | 
|  | /* | 
|  | * check reference count again if the block isn't locked. | 
|  | * we should start walking down the tree again if reference | 
|  | * count is one. | 
|  | */ | 
|  | if (!path->locks[level]) { | 
|  | BUG_ON(level == 0); | 
|  | btrfs_tree_lock(eb); | 
|  | btrfs_set_lock_blocking(eb); | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, root, | 
|  | eb->start, eb->len, | 
|  | &wc->refs[level], | 
|  | &wc->flags[level]); | 
|  | if (ret < 0) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | return ret; | 
|  | } | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  | if (wc->refs[level] == 1) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* wc->stage == DROP_REFERENCE */ | 
|  | BUG_ON(wc->refs[level] > 1 && !path->locks[level]); | 
|  |  | 
|  | if (wc->refs[level] == 1) { | 
|  | if (level == 0) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | ret = btrfs_dec_ref(trans, root, eb, 1, | 
|  | wc->for_reloc); | 
|  | else | 
|  | ret = btrfs_dec_ref(trans, root, eb, 0, | 
|  | wc->for_reloc); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  | /* make block locked assertion in clean_tree_block happy */ | 
|  | if (!path->locks[level] && | 
|  | btrfs_header_generation(eb) == trans->transid) { | 
|  | btrfs_tree_lock(eb); | 
|  | btrfs_set_lock_blocking(eb); | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  | } | 
|  | clean_tree_block(trans, root, eb); | 
|  | } | 
|  |  | 
|  | if (eb == root->node) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | parent = eb->start; | 
|  | else | 
|  | BUG_ON(root->root_key.objectid != | 
|  | btrfs_header_owner(eb)); | 
|  | } else { | 
|  | if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | parent = path->nodes[level + 1]->start; | 
|  | else | 
|  | BUG_ON(root->root_key.objectid != | 
|  | btrfs_header_owner(path->nodes[level + 1])); | 
|  | } | 
|  |  | 
|  | btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); | 
|  | out: | 
|  | wc->refs[level] = 0; | 
|  | wc->flags[level] = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int walk_down_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | int level = wc->level; | 
|  | int lookup_info = 1; | 
|  | int ret; | 
|  |  | 
|  | while (level >= 0) { | 
|  | ret = walk_down_proc(trans, root, path, wc, lookup_info); | 
|  | if (ret > 0) | 
|  | break; | 
|  |  | 
|  | if (level == 0) | 
|  | break; | 
|  |  | 
|  | if (path->slots[level] >= | 
|  | btrfs_header_nritems(path->nodes[level])) | 
|  | break; | 
|  |  | 
|  | ret = do_walk_down(trans, root, path, wc, &lookup_info); | 
|  | if (ret > 0) { | 
|  | path->slots[level]++; | 
|  | continue; | 
|  | } else if (ret < 0) | 
|  | return ret; | 
|  | level = wc->level; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int walk_up_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int max_level) | 
|  | { | 
|  | int level = wc->level; | 
|  | int ret; | 
|  |  | 
|  | path->slots[level] = btrfs_header_nritems(path->nodes[level]); | 
|  | while (level < max_level && path->nodes[level]) { | 
|  | wc->level = level; | 
|  | if (path->slots[level] + 1 < | 
|  | btrfs_header_nritems(path->nodes[level])) { | 
|  | path->slots[level]++; | 
|  | return 0; | 
|  | } else { | 
|  | ret = walk_up_proc(trans, root, path, wc); | 
|  | if (ret > 0) | 
|  | return 0; | 
|  |  | 
|  | if (path->locks[level]) { | 
|  | btrfs_tree_unlock_rw(path->nodes[level], | 
|  | path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | free_extent_buffer(path->nodes[level]); | 
|  | path->nodes[level] = NULL; | 
|  | level++; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop a subvolume tree. | 
|  | * | 
|  | * this function traverses the tree freeing any blocks that only | 
|  | * referenced by the tree. | 
|  | * | 
|  | * when a shared tree block is found. this function decreases its | 
|  | * reference count by one. if update_ref is true, this function | 
|  | * also make sure backrefs for the shared block and all lower level | 
|  | * blocks are properly updated. | 
|  | */ | 
|  | int btrfs_drop_snapshot(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, int update_ref, | 
|  | int for_reloc) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *tree_root = root->fs_info->tree_root; | 
|  | struct btrfs_root_item *root_item = &root->root_item; | 
|  | struct walk_control *wc; | 
|  | struct btrfs_key key; | 
|  | int err = 0; | 
|  | int ret; | 
|  | int level; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | wc = kzalloc(sizeof(*wc), GFP_NOFS); | 
|  | if (!wc) { | 
|  | btrfs_free_path(path); | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trans = btrfs_start_transaction(tree_root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | err = PTR_ERR(trans); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | if (block_rsv) | 
|  | trans->block_rsv = block_rsv; | 
|  |  | 
|  | if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { | 
|  | level = btrfs_header_level(root->node); | 
|  | path->nodes[level] = btrfs_lock_root_node(root); | 
|  | btrfs_set_lock_blocking(path->nodes[level]); | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  | memset(&wc->update_progress, 0, | 
|  | sizeof(wc->update_progress)); | 
|  | } else { | 
|  | btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); | 
|  | memcpy(&wc->update_progress, &key, | 
|  | sizeof(wc->update_progress)); | 
|  |  | 
|  | level = root_item->drop_level; | 
|  | BUG_ON(level == 0); | 
|  | path->lowest_level = level; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | path->lowest_level = 0; | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  | WARN_ON(ret > 0); | 
|  |  | 
|  | /* | 
|  | * unlock our path, this is safe because only this | 
|  | * function is allowed to delete this snapshot | 
|  | */ | 
|  | btrfs_unlock_up_safe(path, 0); | 
|  |  | 
|  | level = btrfs_header_level(root->node); | 
|  | while (1) { | 
|  | btrfs_tree_lock(path->nodes[level]); | 
|  | btrfs_set_lock_blocking(path->nodes[level]); | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, root, | 
|  | path->nodes[level]->start, | 
|  | path->nodes[level]->len, | 
|  | &wc->refs[level], | 
|  | &wc->flags[level]); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  |  | 
|  | if (level == root_item->drop_level) | 
|  | break; | 
|  |  | 
|  | btrfs_tree_unlock(path->nodes[level]); | 
|  | WARN_ON(wc->refs[level] != 1); | 
|  | level--; | 
|  | } | 
|  | } | 
|  |  | 
|  | wc->level = level; | 
|  | wc->shared_level = -1; | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->update_ref = update_ref; | 
|  | wc->keep_locks = 0; | 
|  | wc->for_reloc = for_reloc; | 
|  | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); | 
|  |  | 
|  | while (1) { | 
|  | ret = walk_down_tree(trans, root, path, wc); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret > 0) { | 
|  | BUG_ON(wc->stage != DROP_REFERENCE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | level = wc->level; | 
|  | btrfs_node_key(path->nodes[level], | 
|  | &root_item->drop_progress, | 
|  | path->slots[level]); | 
|  | root_item->drop_level = level; | 
|  | } | 
|  |  | 
|  | BUG_ON(wc->level == 0); | 
|  | if (btrfs_should_end_transaction(trans, tree_root)) { | 
|  | ret = btrfs_update_root(trans, tree_root, | 
|  | &root->root_key, | 
|  | root_item); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, tree_root, ret); | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  |  | 
|  | btrfs_end_transaction_throttle(trans, tree_root); | 
|  | trans = btrfs_start_transaction(tree_root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | err = PTR_ERR(trans); | 
|  | goto out_free; | 
|  | } | 
|  | if (block_rsv) | 
|  | trans->block_rsv = block_rsv; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | if (err) | 
|  | goto out_end_trans; | 
|  |  | 
|  | ret = btrfs_del_root(trans, tree_root, &root->root_key); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, tree_root, ret); | 
|  | goto out_end_trans; | 
|  | } | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { | 
|  | ret = btrfs_find_last_root(tree_root, root->root_key.objectid, | 
|  | NULL, NULL); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, tree_root, ret); | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } else if (ret > 0) { | 
|  | /* if we fail to delete the orphan item this time | 
|  | * around, it'll get picked up the next time. | 
|  | * | 
|  | * The most common failure here is just -ENOENT. | 
|  | */ | 
|  | btrfs_del_orphan_item(trans, tree_root, | 
|  | root->root_key.objectid); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (root->in_radix) { | 
|  | btrfs_free_fs_root(tree_root->fs_info, root); | 
|  | } else { | 
|  | free_extent_buffer(root->node); | 
|  | free_extent_buffer(root->commit_root); | 
|  | kfree(root); | 
|  | } | 
|  | out_end_trans: | 
|  | btrfs_end_transaction_throttle(trans, tree_root); | 
|  | out_free: | 
|  | kfree(wc); | 
|  | btrfs_free_path(path); | 
|  | out: | 
|  | if (err) | 
|  | btrfs_std_error(root->fs_info, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop subtree rooted at tree block 'node'. | 
|  | * | 
|  | * NOTE: this function will unlock and release tree block 'node' | 
|  | * only used by relocation code | 
|  | */ | 
|  | int btrfs_drop_subtree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *node, | 
|  | struct extent_buffer *parent) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct walk_control *wc; | 
|  | int level; | 
|  | int parent_level; | 
|  | int ret = 0; | 
|  | int wret; | 
|  |  | 
|  | BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | wc = kzalloc(sizeof(*wc), GFP_NOFS); | 
|  | if (!wc) { | 
|  | btrfs_free_path(path); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | btrfs_assert_tree_locked(parent); | 
|  | parent_level = btrfs_header_level(parent); | 
|  | extent_buffer_get(parent); | 
|  | path->nodes[parent_level] = parent; | 
|  | path->slots[parent_level] = btrfs_header_nritems(parent); | 
|  |  | 
|  | btrfs_assert_tree_locked(node); | 
|  | level = btrfs_header_level(node); | 
|  | path->nodes[level] = node; | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  |  | 
|  | wc->refs[parent_level] = 1; | 
|  | wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | wc->level = level; | 
|  | wc->shared_level = -1; | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->update_ref = 0; | 
|  | wc->keep_locks = 1; | 
|  | wc->for_reloc = 1; | 
|  | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); | 
|  |  | 
|  | while (1) { | 
|  | wret = walk_down_tree(trans, root, path, wc); | 
|  | if (wret < 0) { | 
|  | ret = wret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | wret = walk_up_tree(trans, root, path, wc, parent_level); | 
|  | if (wret < 0) | 
|  | ret = wret; | 
|  | if (wret != 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | kfree(wc); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) | 
|  | { | 
|  | u64 num_devices; | 
|  | u64 stripped; | 
|  |  | 
|  | /* | 
|  | * if restripe for this chunk_type is on pick target profile and | 
|  | * return, otherwise do the usual balance | 
|  | */ | 
|  | stripped = get_restripe_target(root->fs_info, flags); | 
|  | if (stripped) | 
|  | return extended_to_chunk(stripped); | 
|  |  | 
|  | /* | 
|  | * we add in the count of missing devices because we want | 
|  | * to make sure that any RAID levels on a degraded FS | 
|  | * continue to be honored. | 
|  | */ | 
|  | num_devices = root->fs_info->fs_devices->rw_devices + | 
|  | root->fs_info->fs_devices->missing_devices; | 
|  |  | 
|  | stripped = BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; | 
|  |  | 
|  | if (num_devices == 1) { | 
|  | stripped |= BTRFS_BLOCK_GROUP_DUP; | 
|  | stripped = flags & ~stripped; | 
|  |  | 
|  | /* turn raid0 into single device chunks */ | 
|  | if (flags & BTRFS_BLOCK_GROUP_RAID0) | 
|  | return stripped; | 
|  |  | 
|  | /* turn mirroring into duplication */ | 
|  | if (flags & (BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) | 
|  | return stripped | BTRFS_BLOCK_GROUP_DUP; | 
|  | } else { | 
|  | /* they already had raid on here, just return */ | 
|  | if (flags & stripped) | 
|  | return flags; | 
|  |  | 
|  | stripped |= BTRFS_BLOCK_GROUP_DUP; | 
|  | stripped = flags & ~stripped; | 
|  |  | 
|  | /* switch duplicated blocks with raid1 */ | 
|  | if (flags & BTRFS_BLOCK_GROUP_DUP) | 
|  | return stripped | BTRFS_BLOCK_GROUP_RAID1; | 
|  |  | 
|  | /* this is drive concat, leave it alone */ | 
|  | } | 
|  |  | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) | 
|  | { | 
|  | struct btrfs_space_info *sinfo = cache->space_info; | 
|  | u64 num_bytes; | 
|  | u64 min_allocable_bytes; | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We need some metadata space and system metadata space for | 
|  | * allocating chunks in some corner cases until we force to set | 
|  | * it to be readonly. | 
|  | */ | 
|  | if ((sinfo->flags & | 
|  | (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && | 
|  | !force) | 
|  | min_allocable_bytes = 1 * 1024 * 1024; | 
|  | else | 
|  | min_allocable_bytes = 0; | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | spin_lock(&cache->lock); | 
|  |  | 
|  | if (cache->ro) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | num_bytes = cache->key.offset - cache->reserved - cache->pinned - | 
|  | cache->bytes_super - btrfs_block_group_used(&cache->item); | 
|  |  | 
|  | if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + | 
|  | sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + | 
|  | min_allocable_bytes <= sinfo->total_bytes) { | 
|  | sinfo->bytes_readonly += num_bytes; | 
|  | cache->ro = 1; | 
|  | ret = 0; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&sinfo->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_set_block_group_ro(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache) | 
|  |  | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 alloc_flags; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(cache->ro); | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | alloc_flags = update_block_group_flags(root, cache->flags); | 
|  | if (alloc_flags != cache->flags) { | 
|  | ret = do_chunk_alloc(trans, root, alloc_flags, | 
|  | CHUNK_ALLOC_FORCE); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = set_block_group_ro(cache, 0); | 
|  | if (!ret) | 
|  | goto out; | 
|  | alloc_flags = get_alloc_profile(root, cache->space_info->flags); | 
|  | ret = do_chunk_alloc(trans, root, alloc_flags, | 
|  | CHUNK_ALLOC_FORCE); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = set_block_group_ro(cache, 0); | 
|  | out: | 
|  | btrfs_end_transaction(trans, root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 type) | 
|  | { | 
|  | u64 alloc_flags = get_alloc_profile(root, type); | 
|  | return do_chunk_alloc(trans, root, alloc_flags, | 
|  | CHUNK_ALLOC_FORCE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to account the unused space of all the readonly block group in the | 
|  | * list. takes mirrors into account. | 
|  | */ | 
|  | static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | u64 free_bytes = 0; | 
|  | int factor; | 
|  |  | 
|  | list_for_each_entry(block_group, groups_list, list) { | 
|  | spin_lock(&block_group->lock); | 
|  |  | 
|  | if (!block_group->ro) { | 
|  | spin_unlock(&block_group->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10 | | 
|  | BTRFS_BLOCK_GROUP_DUP)) | 
|  | factor = 2; | 
|  | else | 
|  | factor = 1; | 
|  |  | 
|  | free_bytes += (block_group->key.offset - | 
|  | btrfs_block_group_used(&block_group->item)) * | 
|  | factor; | 
|  |  | 
|  | spin_unlock(&block_group->lock); | 
|  | } | 
|  |  | 
|  | return free_bytes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to account the unused space of all the readonly block group in the | 
|  | * space_info. takes mirrors into account. | 
|  | */ | 
|  | u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) | 
|  | { | 
|  | int i; | 
|  | u64 free_bytes = 0; | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  |  | 
|  | for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) | 
|  | if (!list_empty(&sinfo->block_groups[i])) | 
|  | free_bytes += __btrfs_get_ro_block_group_free_space( | 
|  | &sinfo->block_groups[i]); | 
|  |  | 
|  | spin_unlock(&sinfo->lock); | 
|  |  | 
|  | return free_bytes; | 
|  | } | 
|  |  | 
|  | void btrfs_set_block_group_rw(struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_space_info *sinfo = cache->space_info; | 
|  | u64 num_bytes; | 
|  |  | 
|  | BUG_ON(!cache->ro); | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | spin_lock(&cache->lock); | 
|  | num_bytes = cache->key.offset - cache->reserved - cache->pinned - | 
|  | cache->bytes_super - btrfs_block_group_used(&cache->item); | 
|  | sinfo->bytes_readonly -= num_bytes; | 
|  | cache->ro = 0; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&sinfo->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * checks to see if its even possible to relocate this block group. | 
|  | * | 
|  | * @return - -1 if it's not a good idea to relocate this block group, 0 if its | 
|  | * ok to go ahead and try. | 
|  | */ | 
|  | int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  | u64 min_free; | 
|  | u64 dev_min = 1; | 
|  | u64 dev_nr = 0; | 
|  | u64 target; | 
|  | int index; | 
|  | int full = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(root->fs_info, bytenr); | 
|  |  | 
|  | /* odd, couldn't find the block group, leave it alone */ | 
|  | if (!block_group) | 
|  | return -1; | 
|  |  | 
|  | min_free = btrfs_block_group_used(&block_group->item); | 
|  |  | 
|  | /* no bytes used, we're good */ | 
|  | if (!min_free) | 
|  | goto out; | 
|  |  | 
|  | space_info = block_group->space_info; | 
|  | spin_lock(&space_info->lock); | 
|  |  | 
|  | full = space_info->full; | 
|  |  | 
|  | /* | 
|  | * if this is the last block group we have in this space, we can't | 
|  | * relocate it unless we're able to allocate a new chunk below. | 
|  | * | 
|  | * Otherwise, we need to make sure we have room in the space to handle | 
|  | * all of the extents from this block group.  If we can, we're good | 
|  | */ | 
|  | if ((space_info->total_bytes != block_group->key.offset) && | 
|  | (space_info->bytes_used + space_info->bytes_reserved + | 
|  | space_info->bytes_pinned + space_info->bytes_readonly + | 
|  | min_free < space_info->total_bytes)) { | 
|  | spin_unlock(&space_info->lock); | 
|  | goto out; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | /* | 
|  | * ok we don't have enough space, but maybe we have free space on our | 
|  | * devices to allocate new chunks for relocation, so loop through our | 
|  | * alloc devices and guess if we have enough space.  if this block | 
|  | * group is going to be restriped, run checks against the target | 
|  | * profile instead of the current one. | 
|  | */ | 
|  | ret = -1; | 
|  |  | 
|  | /* | 
|  | * index: | 
|  | *      0: raid10 | 
|  | *      1: raid1 | 
|  | *      2: dup | 
|  | *      3: raid0 | 
|  | *      4: single | 
|  | */ | 
|  | target = get_restripe_target(root->fs_info, block_group->flags); | 
|  | if (target) { | 
|  | index = __get_raid_index(extended_to_chunk(target)); | 
|  | } else { | 
|  | /* | 
|  | * this is just a balance, so if we were marked as full | 
|  | * we know there is no space for a new chunk | 
|  | */ | 
|  | if (full) | 
|  | goto out; | 
|  |  | 
|  | index = get_block_group_index(block_group); | 
|  | } | 
|  |  | 
|  | if (index == BTRFS_RAID_RAID10) { | 
|  | dev_min = 4; | 
|  | /* Divide by 2 */ | 
|  | min_free >>= 1; | 
|  | } else if (index == BTRFS_RAID_RAID1) { | 
|  | dev_min = 2; | 
|  | } else if (index == BTRFS_RAID_DUP) { | 
|  | /* Multiply by 2 */ | 
|  | min_free <<= 1; | 
|  | } else if (index == BTRFS_RAID_RAID0) { | 
|  | dev_min = fs_devices->rw_devices; | 
|  | do_div(min_free, dev_min); | 
|  | } | 
|  |  | 
|  | mutex_lock(&root->fs_info->chunk_mutex); | 
|  | list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { | 
|  | u64 dev_offset; | 
|  |  | 
|  | /* | 
|  | * check to make sure we can actually find a chunk with enough | 
|  | * space to fit our block group in. | 
|  | */ | 
|  | if (device->total_bytes > device->bytes_used + min_free && | 
|  | !device->is_tgtdev_for_dev_replace) { | 
|  | ret = find_free_dev_extent(device, min_free, | 
|  | &dev_offset, NULL); | 
|  | if (!ret) | 
|  | dev_nr++; | 
|  |  | 
|  | if (dev_nr >= dev_min) | 
|  | break; | 
|  |  | 
|  | ret = -1; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&root->fs_info->chunk_mutex); | 
|  | out: | 
|  | btrfs_put_block_group(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int find_first_block_group(struct btrfs_root *root, | 
|  | struct btrfs_path *path, struct btrfs_key *key) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf; | 
|  | int slot; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | while (1) { | 
|  | slot = path->slots[0]; | 
|  | leaf = path->nodes[0]; | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | if (found_key.objectid >= key->objectid && | 
|  | found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_put_block_group_cache(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | u64 last = 0; | 
|  |  | 
|  | while (1) { | 
|  | struct inode *inode; | 
|  |  | 
|  | block_group = btrfs_lookup_first_block_group(info, last); | 
|  | while (block_group) { | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->iref) | 
|  | break; | 
|  | spin_unlock(&block_group->lock); | 
|  | block_group = next_block_group(info->tree_root, | 
|  | block_group); | 
|  | } | 
|  | if (!block_group) { | 
|  | if (last == 0) | 
|  | break; | 
|  | last = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | inode = block_group->inode; | 
|  | block_group->iref = 0; | 
|  | block_group->inode = NULL; | 
|  | spin_unlock(&block_group->lock); | 
|  | iput(inode); | 
|  | last = block_group->key.objectid + block_group->key.offset; | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | } | 
|  |  | 
|  | int btrfs_free_block_groups(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | struct rb_node *n; | 
|  |  | 
|  | down_write(&info->extent_commit_sem); | 
|  | while (!list_empty(&info->caching_block_groups)) { | 
|  | caching_ctl = list_entry(info->caching_block_groups.next, | 
|  | struct btrfs_caching_control, list); | 
|  | list_del(&caching_ctl->list); | 
|  | put_caching_control(caching_ctl); | 
|  | } | 
|  | up_write(&info->extent_commit_sem); | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { | 
|  | block_group = rb_entry(n, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | rb_erase(&block_group->cache_node, | 
|  | &info->block_group_cache_tree); | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | down_write(&block_group->space_info->groups_sem); | 
|  | list_del(&block_group->list); | 
|  | up_write(&block_group->space_info->groups_sem); | 
|  |  | 
|  | if (block_group->cached == BTRFS_CACHE_STARTED) | 
|  | wait_block_group_cache_done(block_group); | 
|  |  | 
|  | /* | 
|  | * We haven't cached this block group, which means we could | 
|  | * possibly have excluded extents on this block group. | 
|  | */ | 
|  | if (block_group->cached == BTRFS_CACHE_NO) | 
|  | free_excluded_extents(info->extent_root, block_group); | 
|  |  | 
|  | btrfs_remove_free_space_cache(block_group); | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | } | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | /* now that all the block groups are freed, go through and | 
|  | * free all the space_info structs.  This is only called during | 
|  | * the final stages of unmount, and so we know nobody is | 
|  | * using them.  We call synchronize_rcu() once before we start, | 
|  | * just to be on the safe side. | 
|  | */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | release_global_block_rsv(info); | 
|  |  | 
|  | while(!list_empty(&info->space_info)) { | 
|  | space_info = list_entry(info->space_info.next, | 
|  | struct btrfs_space_info, | 
|  | list); | 
|  | if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { | 
|  | if (space_info->bytes_pinned > 0 || | 
|  | space_info->bytes_reserved > 0 || | 
|  | space_info->bytes_may_use > 0) { | 
|  | WARN_ON(1); | 
|  | dump_space_info(space_info, 0, 0); | 
|  | } | 
|  | } | 
|  | list_del(&space_info->list); | 
|  | kfree(space_info); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __link_block_group(struct btrfs_space_info *space_info, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | int index = get_block_group_index(cache); | 
|  |  | 
|  | down_write(&space_info->groups_sem); | 
|  | list_add_tail(&cache->list, &space_info->block_groups[index]); | 
|  | up_write(&space_info->groups_sem); | 
|  | } | 
|  |  | 
|  | int btrfs_read_block_groups(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | struct btrfs_block_group_cache *cache; | 
|  | struct btrfs_fs_info *info = root->fs_info; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf; | 
|  | int need_clear = 0; | 
|  | u64 cache_gen; | 
|  |  | 
|  | root = info->extent_root; | 
|  | key.objectid = 0; | 
|  | key.offset = 0; | 
|  | btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->reada = 1; | 
|  |  | 
|  | cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); | 
|  | if (btrfs_test_opt(root, SPACE_CACHE) && | 
|  | btrfs_super_generation(root->fs_info->super_copy) != cache_gen) | 
|  | need_clear = 1; | 
|  | if (btrfs_test_opt(root, CLEAR_CACHE)) | 
|  | need_clear = 1; | 
|  |  | 
|  | while (1) { | 
|  | ret = find_first_block_group(root, path, &key); | 
|  | if (ret > 0) | 
|  | break; | 
|  | if (ret != 0) | 
|  | goto error; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | cache = kzalloc(sizeof(*cache), GFP_NOFS); | 
|  | if (!cache) { | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  | cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), | 
|  | GFP_NOFS); | 
|  | if (!cache->free_space_ctl) { | 
|  | kfree(cache); | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | atomic_set(&cache->count, 1); | 
|  | spin_lock_init(&cache->lock); | 
|  | cache->fs_info = info; | 
|  | INIT_LIST_HEAD(&cache->list); | 
|  | INIT_LIST_HEAD(&cache->cluster_list); | 
|  |  | 
|  | if (need_clear) { | 
|  | /* | 
|  | * When we mount with old space cache, we need to | 
|  | * set BTRFS_DC_CLEAR and set dirty flag. | 
|  | * | 
|  | * a) Setting 'BTRFS_DC_CLEAR' makes sure that we | 
|  | *    truncate the old free space cache inode and | 
|  | *    setup a new one. | 
|  | * b) Setting 'dirty flag' makes sure that we flush | 
|  | *    the new space cache info onto disk. | 
|  | */ | 
|  | cache->disk_cache_state = BTRFS_DC_CLEAR; | 
|  | if (btrfs_test_opt(root, SPACE_CACHE)) | 
|  | cache->dirty = 1; | 
|  | } | 
|  |  | 
|  | read_extent_buffer(leaf, &cache->item, | 
|  | btrfs_item_ptr_offset(leaf, path->slots[0]), | 
|  | sizeof(cache->item)); | 
|  | memcpy(&cache->key, &found_key, sizeof(found_key)); | 
|  |  | 
|  | key.objectid = found_key.objectid + found_key.offset; | 
|  | btrfs_release_path(path); | 
|  | cache->flags = btrfs_block_group_flags(&cache->item); | 
|  | cache->sectorsize = root->sectorsize; | 
|  | cache->full_stripe_len = btrfs_full_stripe_len(root, | 
|  | &root->fs_info->mapping_tree, | 
|  | found_key.objectid); | 
|  | btrfs_init_free_space_ctl(cache); | 
|  |  | 
|  | /* | 
|  | * We need to exclude the super stripes now so that the space | 
|  | * info has super bytes accounted for, otherwise we'll think | 
|  | * we have more space than we actually do. | 
|  | */ | 
|  | ret = exclude_super_stripes(root, cache); | 
|  | if (ret) { | 
|  | /* | 
|  | * We may have excluded something, so call this just in | 
|  | * case. | 
|  | */ | 
|  | free_excluded_extents(root, cache); | 
|  | kfree(cache->free_space_ctl); | 
|  | kfree(cache); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check for two cases, either we are full, and therefore | 
|  | * don't need to bother with the caching work since we won't | 
|  | * find any space, or we are empty, and we can just add all | 
|  | * the space in and be done with it.  This saves us _alot_ of | 
|  | * time, particularly in the full case. | 
|  | */ | 
|  | if (found_key.offset == btrfs_block_group_used(&cache->item)) { | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | free_excluded_extents(root, cache); | 
|  | } else if (btrfs_block_group_used(&cache->item) == 0) { | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | add_new_free_space(cache, root->fs_info, | 
|  | found_key.objectid, | 
|  | found_key.objectid + | 
|  | found_key.offset); | 
|  | free_excluded_extents(root, cache); | 
|  | } | 
|  |  | 
|  | ret = update_space_info(info, cache->flags, found_key.offset, | 
|  | btrfs_block_group_used(&cache->item), | 
|  | &space_info); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | cache->space_info = space_info; | 
|  | spin_lock(&cache->space_info->lock); | 
|  | cache->space_info->bytes_readonly += cache->bytes_super; | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | __link_block_group(space_info, cache); | 
|  |  | 
|  | ret = btrfs_add_block_group_cache(root->fs_info, cache); | 
|  | BUG_ON(ret); /* Logic error */ | 
|  |  | 
|  | set_avail_alloc_bits(root->fs_info, cache->flags); | 
|  | if (btrfs_chunk_readonly(root, cache->key.objectid)) | 
|  | set_block_group_ro(cache, 1); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { | 
|  | if (!(get_alloc_profile(root, space_info->flags) & | 
|  | (BTRFS_BLOCK_GROUP_RAID10 | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID5 | | 
|  | BTRFS_BLOCK_GROUP_RAID6 | | 
|  | BTRFS_BLOCK_GROUP_DUP))) | 
|  | continue; | 
|  | /* | 
|  | * avoid allocating from un-mirrored block group if there are | 
|  | * mirrored block groups. | 
|  | */ | 
|  | list_for_each_entry(cache, &space_info->block_groups[3], list) | 
|  | set_block_group_ro(cache, 1); | 
|  | list_for_each_entry(cache, &space_info->block_groups[4], list) | 
|  | set_block_group_ro(cache, 1); | 
|  | } | 
|  |  | 
|  | init_global_block_rsv(info); | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group, *tmp; | 
|  | struct btrfs_root *extent_root = root->fs_info->extent_root; | 
|  | struct btrfs_block_group_item item; | 
|  | struct btrfs_key key; | 
|  | int ret = 0; | 
|  |  | 
|  | list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, | 
|  | new_bg_list) { | 
|  | list_del_init(&block_group->new_bg_list); | 
|  |  | 
|  | if (ret) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | memcpy(&item, &block_group->item, sizeof(item)); | 
|  | memcpy(&key, &block_group->key, sizeof(key)); | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | ret = btrfs_insert_item(trans, extent_root, &key, &item, | 
|  | sizeof(item)); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, extent_root, ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | int btrfs_make_block_group(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 bytes_used, | 
|  | u64 type, u64 chunk_objectid, u64 chunk_offset, | 
|  | u64 size) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_root *extent_root; | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | extent_root = root->fs_info->extent_root; | 
|  |  | 
|  | root->fs_info->last_trans_log_full_commit = trans->transid; | 
|  |  | 
|  | cache = kzalloc(sizeof(*cache), GFP_NOFS); | 
|  | if (!cache) | 
|  | return -ENOMEM; | 
|  | cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), | 
|  | GFP_NOFS); | 
|  | if (!cache->free_space_ctl) { | 
|  | kfree(cache); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | cache->key.objectid = chunk_offset; | 
|  | cache->key.offset = size; | 
|  | cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; | 
|  | cache->sectorsize = root->sectorsize; | 
|  | cache->fs_info = root->fs_info; | 
|  | cache->full_stripe_len = btrfs_full_stripe_len(root, | 
|  | &root->fs_info->mapping_tree, | 
|  | chunk_offset); | 
|  |  | 
|  | atomic_set(&cache->count, 1); | 
|  | spin_lock_init(&cache->lock); | 
|  | INIT_LIST_HEAD(&cache->list); | 
|  | INIT_LIST_HEAD(&cache->cluster_list); | 
|  | INIT_LIST_HEAD(&cache->new_bg_list); | 
|  |  | 
|  | btrfs_init_free_space_ctl(cache); | 
|  |  | 
|  | btrfs_set_block_group_used(&cache->item, bytes_used); | 
|  | btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); | 
|  | cache->flags = type; | 
|  | btrfs_set_block_group_flags(&cache->item, type); | 
|  |  | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | ret = exclude_super_stripes(root, cache); | 
|  | if (ret) { | 
|  | /* | 
|  | * We may have excluded something, so call this just in | 
|  | * case. | 
|  | */ | 
|  | free_excluded_extents(root, cache); | 
|  | kfree(cache->free_space_ctl); | 
|  | kfree(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | add_new_free_space(cache, root->fs_info, chunk_offset, | 
|  | chunk_offset + size); | 
|  |  | 
|  | free_excluded_extents(root, cache); | 
|  |  | 
|  | ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, | 
|  | &cache->space_info); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | update_global_block_rsv(root->fs_info); | 
|  |  | 
|  | spin_lock(&cache->space_info->lock); | 
|  | cache->space_info->bytes_readonly += cache->bytes_super; | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | __link_block_group(cache->space_info, cache); | 
|  |  | 
|  | ret = btrfs_add_block_group_cache(root->fs_info, cache); | 
|  | BUG_ON(ret); /* Logic error */ | 
|  |  | 
|  | list_add_tail(&cache->new_bg_list, &trans->new_bgs); | 
|  |  | 
|  | set_avail_alloc_bits(extent_root->fs_info, type); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) | 
|  | { | 
|  | u64 extra_flags = chunk_to_extended(flags) & | 
|  | BTRFS_EXTENDED_PROFILE_MASK; | 
|  |  | 
|  | write_seqlock(&fs_info->profiles_lock); | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | fs_info->avail_data_alloc_bits &= ~extra_flags; | 
|  | if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | fs_info->avail_metadata_alloc_bits &= ~extra_flags; | 
|  | if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | fs_info->avail_system_alloc_bits &= ~extra_flags; | 
|  | write_sequnlock(&fs_info->profiles_lock); | 
|  | } | 
|  |  | 
|  | int btrfs_remove_block_group(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 group_start) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_free_cluster *cluster; | 
|  | struct btrfs_root *tree_root = root->fs_info->tree_root; | 
|  | struct btrfs_key key; | 
|  | struct inode *inode; | 
|  | int ret; | 
|  | int index; | 
|  | int factor; | 
|  |  | 
|  | root = root->fs_info->extent_root; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(root->fs_info, group_start); | 
|  | BUG_ON(!block_group); | 
|  | BUG_ON(!block_group->ro); | 
|  |  | 
|  | /* | 
|  | * Free the reserved super bytes from this block group before | 
|  | * remove it. | 
|  | */ | 
|  | free_excluded_extents(root, block_group); | 
|  |  | 
|  | memcpy(&key, &block_group->key, sizeof(key)); | 
|  | index = get_block_group_index(block_group); | 
|  | if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) | 
|  | factor = 2; | 
|  | else | 
|  | factor = 1; | 
|  |  | 
|  | /* make sure this block group isn't part of an allocation cluster */ | 
|  | cluster = &root->fs_info->data_alloc_cluster; | 
|  | spin_lock(&cluster->refill_lock); | 
|  | btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | spin_unlock(&cluster->refill_lock); | 
|  |  | 
|  | /* | 
|  | * make sure this block group isn't part of a metadata | 
|  | * allocation cluster | 
|  | */ | 
|  | cluster = &root->fs_info->meta_alloc_cluster; | 
|  | spin_lock(&cluster->refill_lock); | 
|  | btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | spin_unlock(&cluster->refill_lock); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inode = lookup_free_space_inode(tree_root, block_group, path); | 
|  | if (!IS_ERR(inode)) { | 
|  | ret = btrfs_orphan_add(trans, inode); | 
|  | if (ret) { | 
|  | btrfs_add_delayed_iput(inode); | 
|  | goto out; | 
|  | } | 
|  | clear_nlink(inode); | 
|  | /* One for the block groups ref */ | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->iref) { | 
|  | block_group->iref = 0; | 
|  | block_group->inode = NULL; | 
|  | spin_unlock(&block_group->lock); | 
|  | iput(inode); | 
|  | } else { | 
|  | spin_unlock(&block_group->lock); | 
|  | } | 
|  | /* One for our lookup ref */ | 
|  | btrfs_add_delayed_iput(inode); | 
|  | } | 
|  |  | 
|  | key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
|  | key.offset = block_group->key.objectid; | 
|  | key.type = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) | 
|  | btrfs_release_path(path); | 
|  | if (ret == 0) { | 
|  | ret = btrfs_del_item(trans, tree_root, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  |  | 
|  | spin_lock(&root->fs_info->block_group_cache_lock); | 
|  | rb_erase(&block_group->cache_node, | 
|  | &root->fs_info->block_group_cache_tree); | 
|  |  | 
|  | if (root->fs_info->first_logical_byte == block_group->key.objectid) | 
|  | root->fs_info->first_logical_byte = (u64)-1; | 
|  | spin_unlock(&root->fs_info->block_group_cache_lock); | 
|  |  | 
|  | down_write(&block_group->space_info->groups_sem); | 
|  | /* | 
|  | * we must use list_del_init so people can check to see if they | 
|  | * are still on the list after taking the semaphore | 
|  | */ | 
|  | list_del_init(&block_group->list); | 
|  | if (list_empty(&block_group->space_info->block_groups[index])) | 
|  | clear_avail_alloc_bits(root->fs_info, block_group->flags); | 
|  | up_write(&block_group->space_info->groups_sem); | 
|  |  | 
|  | if (block_group->cached == BTRFS_CACHE_STARTED) | 
|  | wait_block_group_cache_done(block_group); | 
|  |  | 
|  | btrfs_remove_free_space_cache(block_group); | 
|  |  | 
|  | spin_lock(&block_group->space_info->lock); | 
|  | block_group->space_info->total_bytes -= block_group->key.offset; | 
|  | block_group->space_info->bytes_readonly -= block_group->key.offset; | 
|  | block_group->space_info->disk_total -= block_group->key.offset * factor; | 
|  | spin_unlock(&block_group->space_info->lock); | 
|  |  | 
|  | memcpy(&key, &block_group->key, sizeof(key)); | 
|  |  | 
|  | btrfs_clear_space_info_full(root->fs_info); | 
|  |  | 
|  | btrfs_put_block_group(block_group); | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) | 
|  | ret = -EIO; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_init_space_info(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_super_block *disk_super; | 
|  | u64 features; | 
|  | u64 flags; | 
|  | int mixed = 0; | 
|  | int ret; | 
|  |  | 
|  | disk_super = fs_info->super_copy; | 
|  | if (!btrfs_super_root(disk_super)) | 
|  | return 1; | 
|  |  | 
|  | features = btrfs_super_incompat_flags(disk_super); | 
|  | if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) | 
|  | mixed = 1; | 
|  |  | 
|  | flags = BTRFS_BLOCK_GROUP_SYSTEM; | 
|  | ret = update_space_info(fs_info, flags, 0, 0, &space_info); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (mixed) { | 
|  | flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; | 
|  | ret = update_space_info(fs_info, flags, 0, 0, &space_info); | 
|  | } else { | 
|  | flags = BTRFS_BLOCK_GROUP_METADATA; | 
|  | ret = update_space_info(fs_info, flags, 0, 0, &space_info); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | flags = BTRFS_BLOCK_GROUP_DATA; | 
|  | ret = update_space_info(fs_info, flags, 0, 0, &space_info); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) | 
|  | { | 
|  | return unpin_extent_range(root, start, end); | 
|  | } | 
|  |  | 
|  | int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, | 
|  | u64 num_bytes, u64 *actual_bytes) | 
|  | { | 
|  | return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); | 
|  | } | 
|  |  | 
|  | int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | u64 group_trimmed; | 
|  | u64 start; | 
|  | u64 end; | 
|  | u64 trimmed = 0; | 
|  | u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * try to trim all FS space, our block group may start from non-zero. | 
|  | */ | 
|  | if (range->len == total_bytes) | 
|  | cache = btrfs_lookup_first_block_group(fs_info, range->start); | 
|  | else | 
|  | cache = btrfs_lookup_block_group(fs_info, range->start); | 
|  |  | 
|  | while (cache) { | 
|  | if (cache->key.objectid >= (range->start + range->len)) { | 
|  | btrfs_put_block_group(cache); | 
|  | break; | 
|  | } | 
|  |  | 
|  | start = max(range->start, cache->key.objectid); | 
|  | end = min(range->start + range->len, | 
|  | cache->key.objectid + cache->key.offset); | 
|  |  | 
|  | if (end - start >= range->minlen) { | 
|  | if (!block_group_cache_done(cache)) { | 
|  | ret = cache_block_group(cache, 0); | 
|  | if (!ret) | 
|  | wait_block_group_cache_done(cache); | 
|  | } | 
|  | ret = btrfs_trim_block_group(cache, | 
|  | &group_trimmed, | 
|  | start, | 
|  | end, | 
|  | range->minlen); | 
|  |  | 
|  | trimmed += group_trimmed; | 
|  | if (ret) { | 
|  | btrfs_put_block_group(cache); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | cache = next_block_group(fs_info->tree_root, cache); | 
|  | } | 
|  |  | 
|  | range->len = trimmed; | 
|  | return ret; | 
|  | } |