| /* |
| * SGI UltraViolet TLB flush routines. |
| * |
| * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI. |
| * |
| * This code is released under the GNU General Public License version 2 or |
| * later. |
| */ |
| #include <linux/seq_file.h> |
| #include <linux/proc_fs.h> |
| #include <linux/kernel.h> |
| |
| #include <asm/mmu_context.h> |
| #include <asm/uv/uv.h> |
| #include <asm/uv/uv_mmrs.h> |
| #include <asm/uv/uv_hub.h> |
| #include <asm/uv/uv_bau.h> |
| #include <asm/apic.h> |
| #include <asm/idle.h> |
| #include <asm/tsc.h> |
| #include <asm/irq_vectors.h> |
| |
| static struct bau_control **uv_bau_table_bases __read_mostly; |
| static int uv_bau_retry_limit __read_mostly; |
| |
| /* base pnode in this partition */ |
| static int uv_partition_base_pnode __read_mostly; |
| |
| static unsigned long uv_mmask __read_mostly; |
| |
| static DEFINE_PER_CPU(struct ptc_stats, ptcstats); |
| static DEFINE_PER_CPU(struct bau_control, bau_control); |
| |
| /* |
| * Determine the first node on a blade. |
| */ |
| static int __init blade_to_first_node(int blade) |
| { |
| int node, b; |
| |
| for_each_online_node(node) { |
| b = uv_node_to_blade_id(node); |
| if (blade == b) |
| return node; |
| } |
| return -1; /* shouldn't happen */ |
| } |
| |
| /* |
| * Determine the apicid of the first cpu on a blade. |
| */ |
| static int __init blade_to_first_apicid(int blade) |
| { |
| int cpu; |
| |
| for_each_present_cpu(cpu) |
| if (blade == uv_cpu_to_blade_id(cpu)) |
| return per_cpu(x86_cpu_to_apicid, cpu); |
| return -1; |
| } |
| |
| /* |
| * Free a software acknowledge hardware resource by clearing its Pending |
| * bit. This will return a reply to the sender. |
| * If the message has timed out, a reply has already been sent by the |
| * hardware but the resource has not been released. In that case our |
| * clear of the Timeout bit (as well) will free the resource. No reply will |
| * be sent (the hardware will only do one reply per message). |
| */ |
| static void uv_reply_to_message(int resource, |
| struct bau_payload_queue_entry *msg, |
| struct bau_msg_status *msp) |
| { |
| unsigned long dw; |
| |
| dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource); |
| msg->replied_to = 1; |
| msg->sw_ack_vector = 0; |
| if (msp) |
| msp->seen_by.bits = 0; |
| uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); |
| } |
| |
| /* |
| * Do all the things a cpu should do for a TLB shootdown message. |
| * Other cpu's may come here at the same time for this message. |
| */ |
| static void uv_bau_process_message(struct bau_payload_queue_entry *msg, |
| int msg_slot, int sw_ack_slot) |
| { |
| unsigned long this_cpu_mask; |
| struct bau_msg_status *msp; |
| int cpu; |
| |
| msp = __get_cpu_var(bau_control).msg_statuses + msg_slot; |
| cpu = uv_blade_processor_id(); |
| msg->number_of_cpus = |
| uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id())); |
| this_cpu_mask = 1UL << cpu; |
| if (msp->seen_by.bits & this_cpu_mask) |
| return; |
| atomic_or_long(&msp->seen_by.bits, this_cpu_mask); |
| |
| if (msg->replied_to == 1) |
| return; |
| |
| if (msg->address == TLB_FLUSH_ALL) { |
| local_flush_tlb(); |
| __get_cpu_var(ptcstats).alltlb++; |
| } else { |
| __flush_tlb_one(msg->address); |
| __get_cpu_var(ptcstats).onetlb++; |
| } |
| |
| __get_cpu_var(ptcstats).requestee++; |
| |
| atomic_inc_short(&msg->acknowledge_count); |
| if (msg->number_of_cpus == msg->acknowledge_count) |
| uv_reply_to_message(sw_ack_slot, msg, msp); |
| } |
| |
| /* |
| * Examine the payload queue on one distribution node to see |
| * which messages have not been seen, and which cpu(s) have not seen them. |
| * |
| * Returns the number of cpu's that have not responded. |
| */ |
| static int uv_examine_destination(struct bau_control *bau_tablesp, int sender) |
| { |
| struct bau_payload_queue_entry *msg; |
| struct bau_msg_status *msp; |
| int count = 0; |
| int i; |
| int j; |
| |
| for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE; |
| msg++, i++) { |
| if ((msg->sending_cpu == sender) && (!msg->replied_to)) { |
| msp = bau_tablesp->msg_statuses + i; |
| printk(KERN_DEBUG |
| "blade %d: address:%#lx %d of %d, not cpu(s): ", |
| i, msg->address, msg->acknowledge_count, |
| msg->number_of_cpus); |
| for (j = 0; j < msg->number_of_cpus; j++) { |
| if (!((1L << j) & msp->seen_by.bits)) { |
| count++; |
| printk("%d ", j); |
| } |
| } |
| printk("\n"); |
| } |
| } |
| return count; |
| } |
| |
| /* |
| * Examine the payload queue on all the distribution nodes to see |
| * which messages have not been seen, and which cpu(s) have not seen them. |
| * |
| * Returns the number of cpu's that have not responded. |
| */ |
| static int uv_examine_destinations(struct bau_target_nodemask *distribution) |
| { |
| int sender; |
| int i; |
| int count = 0; |
| |
| sender = smp_processor_id(); |
| for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) { |
| if (!bau_node_isset(i, distribution)) |
| continue; |
| count += uv_examine_destination(uv_bau_table_bases[i], sender); |
| } |
| return count; |
| } |
| |
| /* |
| * wait for completion of a broadcast message |
| * |
| * return COMPLETE, RETRY or GIVEUP |
| */ |
| static int uv_wait_completion(struct bau_desc *bau_desc, |
| unsigned long mmr_offset, int right_shift) |
| { |
| int exams = 0; |
| long destination_timeouts = 0; |
| long source_timeouts = 0; |
| unsigned long descriptor_status; |
| |
| while ((descriptor_status = (((unsigned long) |
| uv_read_local_mmr(mmr_offset) >> |
| right_shift) & UV_ACT_STATUS_MASK)) != |
| DESC_STATUS_IDLE) { |
| if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { |
| source_timeouts++; |
| if (source_timeouts > SOURCE_TIMEOUT_LIMIT) |
| source_timeouts = 0; |
| __get_cpu_var(ptcstats).s_retry++; |
| return FLUSH_RETRY; |
| } |
| /* |
| * spin here looking for progress at the destinations |
| */ |
| if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) { |
| destination_timeouts++; |
| if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) { |
| /* |
| * returns number of cpus not responding |
| */ |
| if (uv_examine_destinations |
| (&bau_desc->distribution) == 0) { |
| __get_cpu_var(ptcstats).d_retry++; |
| return FLUSH_RETRY; |
| } |
| exams++; |
| if (exams >= uv_bau_retry_limit) { |
| printk(KERN_DEBUG |
| "uv_flush_tlb_others"); |
| printk("giving up on cpu %d\n", |
| smp_processor_id()); |
| return FLUSH_GIVEUP; |
| } |
| /* |
| * delays can hang the simulator |
| udelay(1000); |
| */ |
| destination_timeouts = 0; |
| } |
| } |
| cpu_relax(); |
| } |
| return FLUSH_COMPLETE; |
| } |
| |
| /** |
| * uv_flush_send_and_wait |
| * |
| * Send a broadcast and wait for a broadcast message to complete. |
| * |
| * The flush_mask contains the cpus the broadcast was sent to. |
| * |
| * Returns NULL if all remote flushing was done. The mask is zeroed. |
| * Returns @flush_mask if some remote flushing remains to be done. The |
| * mask will have some bits still set. |
| */ |
| const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode, |
| struct bau_desc *bau_desc, |
| struct cpumask *flush_mask) |
| { |
| int completion_status = 0; |
| int right_shift; |
| int tries = 0; |
| int pnode; |
| int bit; |
| unsigned long mmr_offset; |
| unsigned long index; |
| cycles_t time1; |
| cycles_t time2; |
| |
| if (cpu < UV_CPUS_PER_ACT_STATUS) { |
| mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; |
| right_shift = cpu * UV_ACT_STATUS_SIZE; |
| } else { |
| mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1; |
| right_shift = |
| ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE); |
| } |
| time1 = get_cycles(); |
| do { |
| tries++; |
| index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | |
| cpu; |
| uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); |
| completion_status = uv_wait_completion(bau_desc, mmr_offset, |
| right_shift); |
| } while (completion_status == FLUSH_RETRY); |
| time2 = get_cycles(); |
| __get_cpu_var(ptcstats).sflush += (time2 - time1); |
| if (tries > 1) |
| __get_cpu_var(ptcstats).retriesok++; |
| |
| if (completion_status == FLUSH_GIVEUP) { |
| /* |
| * Cause the caller to do an IPI-style TLB shootdown on |
| * the cpu's, all of which are still in the mask. |
| */ |
| __get_cpu_var(ptcstats).ptc_i++; |
| return flush_mask; |
| } |
| |
| /* |
| * Success, so clear the remote cpu's from the mask so we don't |
| * use the IPI method of shootdown on them. |
| */ |
| for_each_cpu(bit, flush_mask) { |
| pnode = uv_cpu_to_pnode(bit); |
| if (pnode == this_pnode) |
| continue; |
| cpumask_clear_cpu(bit, flush_mask); |
| } |
| if (!cpumask_empty(flush_mask)) |
| return flush_mask; |
| return NULL; |
| } |
| |
| static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); |
| |
| /** |
| * uv_flush_tlb_others - globally purge translation cache of a virtual |
| * address or all TLB's |
| * @cpumask: mask of all cpu's in which the address is to be removed |
| * @mm: mm_struct containing virtual address range |
| * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu) |
| * @cpu: the current cpu |
| * |
| * This is the entry point for initiating any UV global TLB shootdown. |
| * |
| * Purges the translation caches of all specified processors of the given |
| * virtual address, or purges all TLB's on specified processors. |
| * |
| * The caller has derived the cpumask from the mm_struct. This function |
| * is called only if there are bits set in the mask. (e.g. flush_tlb_page()) |
| * |
| * The cpumask is converted into a nodemask of the nodes containing |
| * the cpus. |
| * |
| * Note that this function should be called with preemption disabled. |
| * |
| * Returns NULL if all remote flushing was done. |
| * Returns pointer to cpumask if some remote flushing remains to be |
| * done. The returned pointer is valid till preemption is re-enabled. |
| */ |
| const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, |
| struct mm_struct *mm, |
| unsigned long va, unsigned int cpu) |
| { |
| struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask); |
| int i; |
| int bit; |
| int pnode; |
| int uv_cpu; |
| int this_pnode; |
| int locals = 0; |
| struct bau_desc *bau_desc; |
| |
| cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); |
| |
| uv_cpu = uv_blade_processor_id(); |
| this_pnode = uv_hub_info->pnode; |
| bau_desc = __get_cpu_var(bau_control).descriptor_base; |
| bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu; |
| |
| bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); |
| |
| i = 0; |
| for_each_cpu(bit, flush_mask) { |
| pnode = uv_cpu_to_pnode(bit); |
| BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1)); |
| if (pnode == this_pnode) { |
| locals++; |
| continue; |
| } |
| bau_node_set(pnode - uv_partition_base_pnode, |
| &bau_desc->distribution); |
| i++; |
| } |
| if (i == 0) { |
| /* |
| * no off_node flushing; return status for local node |
| */ |
| if (locals) |
| return flush_mask; |
| else |
| return NULL; |
| } |
| __get_cpu_var(ptcstats).requestor++; |
| __get_cpu_var(ptcstats).ntargeted += i; |
| |
| bau_desc->payload.address = va; |
| bau_desc->payload.sending_cpu = cpu; |
| |
| return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask); |
| } |
| |
| /* |
| * The BAU message interrupt comes here. (registered by set_intr_gate) |
| * See entry_64.S |
| * |
| * We received a broadcast assist message. |
| * |
| * Interrupts may have been disabled; this interrupt could represent |
| * the receipt of several messages. |
| * |
| * All cores/threads on this node get this interrupt. |
| * The last one to see it does the s/w ack. |
| * (the resource will not be freed until noninterruptable cpus see this |
| * interrupt; hardware will timeout the s/w ack and reply ERROR) |
| */ |
| void uv_bau_message_interrupt(struct pt_regs *regs) |
| { |
| struct bau_payload_queue_entry *va_queue_first; |
| struct bau_payload_queue_entry *va_queue_last; |
| struct bau_payload_queue_entry *msg; |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| cycles_t time1; |
| cycles_t time2; |
| int msg_slot; |
| int sw_ack_slot; |
| int fw; |
| int count = 0; |
| unsigned long local_pnode; |
| |
| ack_APIC_irq(); |
| exit_idle(); |
| irq_enter(); |
| |
| time1 = get_cycles(); |
| |
| local_pnode = uv_blade_to_pnode(uv_numa_blade_id()); |
| |
| va_queue_first = __get_cpu_var(bau_control).va_queue_first; |
| va_queue_last = __get_cpu_var(bau_control).va_queue_last; |
| |
| msg = __get_cpu_var(bau_control).bau_msg_head; |
| while (msg->sw_ack_vector) { |
| count++; |
| fw = msg->sw_ack_vector; |
| msg_slot = msg - va_queue_first; |
| sw_ack_slot = ffs(fw) - 1; |
| |
| uv_bau_process_message(msg, msg_slot, sw_ack_slot); |
| |
| msg++; |
| if (msg > va_queue_last) |
| msg = va_queue_first; |
| __get_cpu_var(bau_control).bau_msg_head = msg; |
| } |
| if (!count) |
| __get_cpu_var(ptcstats).nomsg++; |
| else if (count > 1) |
| __get_cpu_var(ptcstats).multmsg++; |
| |
| time2 = get_cycles(); |
| __get_cpu_var(ptcstats).dflush += (time2 - time1); |
| |
| irq_exit(); |
| set_irq_regs(old_regs); |
| } |
| |
| /* |
| * uv_enable_timeouts |
| * |
| * Each target blade (i.e. blades that have cpu's) needs to have |
| * shootdown message timeouts enabled. The timeout does not cause |
| * an interrupt, but causes an error message to be returned to |
| * the sender. |
| */ |
| static void uv_enable_timeouts(void) |
| { |
| int blade; |
| int nblades; |
| int pnode; |
| unsigned long mmr_image; |
| |
| nblades = uv_num_possible_blades(); |
| |
| for (blade = 0; blade < nblades; blade++) { |
| if (!uv_blade_nr_possible_cpus(blade)) |
| continue; |
| |
| pnode = uv_blade_to_pnode(blade); |
| mmr_image = |
| uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL); |
| /* |
| * Set the timeout period and then lock it in, in three |
| * steps; captures and locks in the period. |
| * |
| * To program the period, the SOFT_ACK_MODE must be off. |
| */ |
| mmr_image &= ~((unsigned long)1 << |
| UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT); |
| uv_write_global_mmr64 |
| (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); |
| /* |
| * Set the 4-bit period. |
| */ |
| mmr_image &= ~((unsigned long)0xf << |
| UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT); |
| mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD << |
| UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT); |
| uv_write_global_mmr64 |
| (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); |
| /* |
| * Subsequent reversals of the timebase bit (3) cause an |
| * immediate timeout of one or all INTD resources as |
| * indicated in bits 2:0 (7 causes all of them to timeout). |
| */ |
| mmr_image |= ((unsigned long)1 << |
| UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT); |
| uv_write_global_mmr64 |
| (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image); |
| } |
| } |
| |
| static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset) |
| { |
| if (*offset < num_possible_cpus()) |
| return offset; |
| return NULL; |
| } |
| |
| static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) |
| { |
| (*offset)++; |
| if (*offset < num_possible_cpus()) |
| return offset; |
| return NULL; |
| } |
| |
| static void uv_ptc_seq_stop(struct seq_file *file, void *data) |
| { |
| } |
| |
| /* |
| * Display the statistics thru /proc |
| * data points to the cpu number |
| */ |
| static int uv_ptc_seq_show(struct seq_file *file, void *data) |
| { |
| struct ptc_stats *stat; |
| int cpu; |
| |
| cpu = *(loff_t *)data; |
| |
| if (!cpu) { |
| seq_printf(file, |
| "# cpu requestor requestee one all sretry dretry ptc_i "); |
| seq_printf(file, |
| "sw_ack sflush dflush sok dnomsg dmult starget\n"); |
| } |
| if (cpu < num_possible_cpus() && cpu_online(cpu)) { |
| stat = &per_cpu(ptcstats, cpu); |
| seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ", |
| cpu, stat->requestor, |
| stat->requestee, stat->onetlb, stat->alltlb, |
| stat->s_retry, stat->d_retry, stat->ptc_i); |
| seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n", |
| uv_read_global_mmr64(uv_cpu_to_pnode(cpu), |
| UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), |
| stat->sflush, stat->dflush, |
| stat->retriesok, stat->nomsg, |
| stat->multmsg, stat->ntargeted); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * 0: display meaning of the statistics |
| * >0: retry limit |
| */ |
| static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user, |
| size_t count, loff_t *data) |
| { |
| long newmode; |
| char optstr[64]; |
| |
| if (count == 0 || count > sizeof(optstr)) |
| return -EINVAL; |
| if (copy_from_user(optstr, user, count)) |
| return -EFAULT; |
| optstr[count - 1] = '\0'; |
| if (strict_strtoul(optstr, 10, &newmode) < 0) { |
| printk(KERN_DEBUG "%s is invalid\n", optstr); |
| return -EINVAL; |
| } |
| |
| if (newmode == 0) { |
| printk(KERN_DEBUG "# cpu: cpu number\n"); |
| printk(KERN_DEBUG |
| "requestor: times this cpu was the flush requestor\n"); |
| printk(KERN_DEBUG |
| "requestee: times this cpu was requested to flush its TLBs\n"); |
| printk(KERN_DEBUG |
| "one: times requested to flush a single address\n"); |
| printk(KERN_DEBUG |
| "all: times requested to flush all TLB's\n"); |
| printk(KERN_DEBUG |
| "sretry: number of retries of source-side timeouts\n"); |
| printk(KERN_DEBUG |
| "dretry: number of retries of destination-side timeouts\n"); |
| printk(KERN_DEBUG |
| "ptc_i: times UV fell through to IPI-style flushes\n"); |
| printk(KERN_DEBUG |
| "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); |
| printk(KERN_DEBUG |
| "sflush_us: cycles spent in uv_flush_tlb_others()\n"); |
| printk(KERN_DEBUG |
| "dflush_us: cycles spent in handling flush requests\n"); |
| printk(KERN_DEBUG "sok: successes on retry\n"); |
| printk(KERN_DEBUG "dnomsg: interrupts with no message\n"); |
| printk(KERN_DEBUG |
| "dmult: interrupts with multiple messages\n"); |
| printk(KERN_DEBUG "starget: nodes targeted\n"); |
| } else { |
| uv_bau_retry_limit = newmode; |
| printk(KERN_DEBUG "timeout retry limit:%d\n", |
| uv_bau_retry_limit); |
| } |
| |
| return count; |
| } |
| |
| static const struct seq_operations uv_ptc_seq_ops = { |
| .start = uv_ptc_seq_start, |
| .next = uv_ptc_seq_next, |
| .stop = uv_ptc_seq_stop, |
| .show = uv_ptc_seq_show |
| }; |
| |
| static int uv_ptc_proc_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &uv_ptc_seq_ops); |
| } |
| |
| static const struct file_operations proc_uv_ptc_operations = { |
| .open = uv_ptc_proc_open, |
| .read = seq_read, |
| .write = uv_ptc_proc_write, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| static int __init uv_ptc_init(void) |
| { |
| struct proc_dir_entry *proc_uv_ptc; |
| |
| if (!is_uv_system()) |
| return 0; |
| |
| proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL, |
| &proc_uv_ptc_operations); |
| if (!proc_uv_ptc) { |
| printk(KERN_ERR "unable to create %s proc entry\n", |
| UV_PTC_BASENAME); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * begin the initialization of the per-blade control structures |
| */ |
| static struct bau_control * __init uv_table_bases_init(int blade, int node) |
| { |
| int i; |
| struct bau_msg_status *msp; |
| struct bau_control *bau_tabp; |
| |
| bau_tabp = |
| kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node); |
| BUG_ON(!bau_tabp); |
| |
| bau_tabp->msg_statuses = |
| kmalloc_node(sizeof(struct bau_msg_status) * |
| DEST_Q_SIZE, GFP_KERNEL, node); |
| BUG_ON(!bau_tabp->msg_statuses); |
| |
| for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++) |
| bau_cpubits_clear(&msp->seen_by, (int) |
| uv_blade_nr_possible_cpus(blade)); |
| |
| uv_bau_table_bases[blade] = bau_tabp; |
| |
| return bau_tabp; |
| } |
| |
| /* |
| * finish the initialization of the per-blade control structures |
| */ |
| static void __init |
| uv_table_bases_finish(int blade, |
| struct bau_control *bau_tablesp, |
| struct bau_desc *adp) |
| { |
| struct bau_control *bcp; |
| int cpu; |
| |
| for_each_present_cpu(cpu) { |
| if (blade != uv_cpu_to_blade_id(cpu)) |
| continue; |
| |
| bcp = (struct bau_control *)&per_cpu(bau_control, cpu); |
| bcp->bau_msg_head = bau_tablesp->va_queue_first; |
| bcp->va_queue_first = bau_tablesp->va_queue_first; |
| bcp->va_queue_last = bau_tablesp->va_queue_last; |
| bcp->msg_statuses = bau_tablesp->msg_statuses; |
| bcp->descriptor_base = adp; |
| } |
| } |
| |
| /* |
| * initialize the sending side's sending buffers |
| */ |
| static struct bau_desc * __init |
| uv_activation_descriptor_init(int node, int pnode) |
| { |
| int i; |
| unsigned long pa; |
| unsigned long m; |
| unsigned long n; |
| struct bau_desc *adp; |
| struct bau_desc *ad2; |
| |
| /* |
| * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR) |
| * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade |
| */ |
| adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)* |
| UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node); |
| BUG_ON(!adp); |
| |
| pa = uv_gpa(adp); /* need the real nasid*/ |
| n = uv_gpa_to_pnode(pa); |
| m = pa & uv_mmask; |
| |
| uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE, |
| (n << UV_DESC_BASE_PNODE_SHIFT | m)); |
| |
| /* |
| * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each |
| * cpu even though we only use the first one; one descriptor can |
| * describe a broadcast to 256 nodes. |
| */ |
| for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR); |
| i++, ad2++) { |
| memset(ad2, 0, sizeof(struct bau_desc)); |
| ad2->header.sw_ack_flag = 1; |
| /* |
| * base_dest_nodeid is the first node in the partition, so |
| * the bit map will indicate partition-relative node numbers. |
| * note that base_dest_nodeid is actually a nasid. |
| */ |
| ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1; |
| ad2->header.dest_subnodeid = 0x10; /* the LB */ |
| ad2->header.command = UV_NET_ENDPOINT_INTD; |
| ad2->header.int_both = 1; |
| /* |
| * all others need to be set to zero: |
| * fairness chaining multilevel count replied_to |
| */ |
| } |
| return adp; |
| } |
| |
| /* |
| * initialize the destination side's receiving buffers |
| */ |
| static struct bau_payload_queue_entry * __init |
| uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp) |
| { |
| struct bau_payload_queue_entry *pqp; |
| unsigned long pa; |
| int pn; |
| char *cp; |
| |
| pqp = (struct bau_payload_queue_entry *) kmalloc_node( |
| (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry), |
| GFP_KERNEL, node); |
| BUG_ON(!pqp); |
| |
| cp = (char *)pqp + 31; |
| pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); |
| bau_tablesp->va_queue_first = pqp; |
| /* |
| * need the pnode of where the memory was really allocated |
| */ |
| pa = uv_gpa(pqp); |
| pn = uv_gpa_to_pnode(pa); |
| uv_write_global_mmr64(pnode, |
| UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, |
| ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | |
| uv_physnodeaddr(pqp)); |
| uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, |
| uv_physnodeaddr(pqp)); |
| bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1); |
| uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, |
| (unsigned long) |
| uv_physnodeaddr(bau_tablesp->va_queue_last)); |
| memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE); |
| |
| return pqp; |
| } |
| |
| /* |
| * Initialization of each UV blade's structures |
| */ |
| static int __init uv_init_blade(int blade) |
| { |
| int node; |
| int pnode; |
| unsigned long pa; |
| unsigned long apicid; |
| struct bau_desc *adp; |
| struct bau_payload_queue_entry *pqp; |
| struct bau_control *bau_tablesp; |
| |
| node = blade_to_first_node(blade); |
| bau_tablesp = uv_table_bases_init(blade, node); |
| pnode = uv_blade_to_pnode(blade); |
| adp = uv_activation_descriptor_init(node, pnode); |
| pqp = uv_payload_queue_init(node, pnode, bau_tablesp); |
| uv_table_bases_finish(blade, bau_tablesp, adp); |
| /* |
| * the below initialization can't be in firmware because the |
| * messaging IRQ will be determined by the OS |
| */ |
| apicid = blade_to_first_apicid(blade); |
| pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG); |
| uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, |
| ((apicid << 32) | UV_BAU_MESSAGE)); |
| return 0; |
| } |
| |
| /* |
| * Initialization of BAU-related structures |
| */ |
| static int __init uv_bau_init(void) |
| { |
| int blade; |
| int nblades; |
| int cur_cpu; |
| |
| if (!is_uv_system()) |
| return 0; |
| |
| for_each_possible_cpu(cur_cpu) |
| zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu), |
| GFP_KERNEL, cpu_to_node(cur_cpu)); |
| |
| uv_bau_retry_limit = 1; |
| uv_mmask = (1UL << uv_hub_info->m_val) - 1; |
| nblades = uv_num_possible_blades(); |
| |
| uv_bau_table_bases = (struct bau_control **) |
| kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL); |
| BUG_ON(!uv_bau_table_bases); |
| |
| uv_partition_base_pnode = 0x7fffffff; |
| for (blade = 0; blade < nblades; blade++) |
| if (uv_blade_nr_possible_cpus(blade) && |
| (uv_blade_to_pnode(blade) < uv_partition_base_pnode)) |
| uv_partition_base_pnode = uv_blade_to_pnode(blade); |
| for (blade = 0; blade < nblades; blade++) |
| if (uv_blade_nr_possible_cpus(blade)) |
| uv_init_blade(blade); |
| |
| alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1); |
| uv_enable_timeouts(); |
| |
| return 0; |
| } |
| __initcall(uv_bau_init); |
| __initcall(uv_ptc_init); |