|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * This module enables machines with Intel VT-x extensions to run virtual | 
|  | * machines without emulation or binary translation. | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "iodev.h" | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/kvm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/miscdevice.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/kvm_para.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/srcu.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/bsearch.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/ioctl.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | #include "coalesced_mmio.h" | 
|  | #include "async_pf.h" | 
|  | #include "vfio.h" | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/kvm.h> | 
|  |  | 
|  | MODULE_AUTHOR("Qumranet"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | /* | 
|  | * Ordering of locks: | 
|  | * | 
|  | * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock | 
|  | */ | 
|  |  | 
|  | DEFINE_SPINLOCK(kvm_lock); | 
|  | static DEFINE_RAW_SPINLOCK(kvm_count_lock); | 
|  | LIST_HEAD(vm_list); | 
|  |  | 
|  | static cpumask_var_t cpus_hardware_enabled; | 
|  | static int kvm_usage_count = 0; | 
|  | static atomic_t hardware_enable_failed; | 
|  |  | 
|  | struct kmem_cache *kvm_vcpu_cache; | 
|  | EXPORT_SYMBOL_GPL(kvm_vcpu_cache); | 
|  |  | 
|  | static __read_mostly struct preempt_ops kvm_preempt_ops; | 
|  |  | 
|  | struct dentry *kvm_debugfs_dir; | 
|  |  | 
|  | static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, | 
|  | unsigned long arg); | 
|  | #ifdef CONFIG_COMPAT | 
|  | static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, | 
|  | unsigned long arg); | 
|  | #endif | 
|  | static int hardware_enable_all(void); | 
|  | static void hardware_disable_all(void); | 
|  |  | 
|  | static void kvm_io_bus_destroy(struct kvm_io_bus *bus); | 
|  |  | 
|  | static void kvm_release_pfn_dirty(pfn_t pfn); | 
|  | static void mark_page_dirty_in_slot(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot, gfn_t gfn); | 
|  |  | 
|  | __visible bool kvm_rebooting; | 
|  | EXPORT_SYMBOL_GPL(kvm_rebooting); | 
|  |  | 
|  | static bool largepages_enabled = true; | 
|  |  | 
|  | bool kvm_is_reserved_pfn(pfn_t pfn) | 
|  | { | 
|  | if (pfn_valid(pfn)) | 
|  | return PageReserved(pfn_to_page(pfn)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switches to specified vcpu, until a matching vcpu_put() | 
|  | */ | 
|  | int vcpu_load(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (mutex_lock_killable(&vcpu->mutex)) | 
|  | return -EINTR; | 
|  | if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { | 
|  | /* The thread running this VCPU changed. */ | 
|  | struct pid *oldpid = vcpu->pid; | 
|  | struct pid *newpid = get_task_pid(current, PIDTYPE_PID); | 
|  | rcu_assign_pointer(vcpu->pid, newpid); | 
|  | if (oldpid) | 
|  | synchronize_rcu(); | 
|  | put_pid(oldpid); | 
|  | } | 
|  | cpu = get_cpu(); | 
|  | preempt_notifier_register(&vcpu->preempt_notifier); | 
|  | kvm_arch_vcpu_load(vcpu, cpu); | 
|  | put_cpu(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | preempt_disable(); | 
|  | kvm_arch_vcpu_put(vcpu); | 
|  | preempt_notifier_unregister(&vcpu->preempt_notifier); | 
|  | preempt_enable(); | 
|  | mutex_unlock(&vcpu->mutex); | 
|  | } | 
|  |  | 
|  | static void ack_flush(void *_completed) | 
|  | { | 
|  | } | 
|  |  | 
|  | bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) | 
|  | { | 
|  | int i, cpu, me; | 
|  | cpumask_var_t cpus; | 
|  | bool called = true; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | zalloc_cpumask_var(&cpus, GFP_ATOMIC); | 
|  |  | 
|  | me = get_cpu(); | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | kvm_make_request(req, vcpu); | 
|  | cpu = vcpu->cpu; | 
|  |  | 
|  | /* Set ->requests bit before we read ->mode */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (cpus != NULL && cpu != -1 && cpu != me && | 
|  | kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) | 
|  | cpumask_set_cpu(cpu, cpus); | 
|  | } | 
|  | if (unlikely(cpus == NULL)) | 
|  | smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); | 
|  | else if (!cpumask_empty(cpus)) | 
|  | smp_call_function_many(cpus, ack_flush, NULL, 1); | 
|  | else | 
|  | called = false; | 
|  | put_cpu(); | 
|  | free_cpumask_var(cpus); | 
|  | return called; | 
|  | } | 
|  |  | 
|  | void kvm_flush_remote_tlbs(struct kvm *kvm) | 
|  | { | 
|  | long dirty_count = kvm->tlbs_dirty; | 
|  |  | 
|  | smp_mb(); | 
|  | if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) | 
|  | ++kvm->stat.remote_tlb_flush; | 
|  | cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); | 
|  |  | 
|  | void kvm_reload_remote_mmus(struct kvm *kvm) | 
|  | { | 
|  | kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); | 
|  | } | 
|  |  | 
|  | void kvm_make_mclock_inprogress_request(struct kvm *kvm) | 
|  | { | 
|  | kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); | 
|  | } | 
|  |  | 
|  | void kvm_make_scan_ioapic_request(struct kvm *kvm) | 
|  | { | 
|  | kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); | 
|  | } | 
|  |  | 
|  | int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) | 
|  | { | 
|  | struct page *page; | 
|  | int r; | 
|  |  | 
|  | mutex_init(&vcpu->mutex); | 
|  | vcpu->cpu = -1; | 
|  | vcpu->kvm = kvm; | 
|  | vcpu->vcpu_id = id; | 
|  | vcpu->pid = NULL; | 
|  | init_waitqueue_head(&vcpu->wq); | 
|  | kvm_async_pf_vcpu_init(vcpu); | 
|  |  | 
|  | page = alloc_page(GFP_KERNEL | __GFP_ZERO); | 
|  | if (!page) { | 
|  | r = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | vcpu->run = page_address(page); | 
|  |  | 
|  | kvm_vcpu_set_in_spin_loop(vcpu, false); | 
|  | kvm_vcpu_set_dy_eligible(vcpu, false); | 
|  | vcpu->preempted = false; | 
|  |  | 
|  | r = kvm_arch_vcpu_init(vcpu); | 
|  | if (r < 0) | 
|  | goto fail_free_run; | 
|  | return 0; | 
|  |  | 
|  | fail_free_run: | 
|  | free_page((unsigned long)vcpu->run); | 
|  | fail: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_vcpu_init); | 
|  |  | 
|  | void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | put_pid(vcpu->pid); | 
|  | kvm_arch_vcpu_uninit(vcpu); | 
|  | free_page((unsigned long)vcpu->run); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); | 
|  |  | 
|  | #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) | 
|  | static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) | 
|  | { | 
|  | return container_of(mn, struct kvm, mmu_notifier); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, | 
|  | struct mm_struct *mm, | 
|  | unsigned long address) | 
|  | { | 
|  | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
|  | int need_tlb_flush, idx; | 
|  |  | 
|  | /* | 
|  | * When ->invalidate_page runs, the linux pte has been zapped | 
|  | * already but the page is still allocated until | 
|  | * ->invalidate_page returns. So if we increase the sequence | 
|  | * here the kvm page fault will notice if the spte can't be | 
|  | * established because the page is going to be freed. If | 
|  | * instead the kvm page fault establishes the spte before | 
|  | * ->invalidate_page runs, kvm_unmap_hva will release it | 
|  | * before returning. | 
|  | * | 
|  | * The sequence increase only need to be seen at spin_unlock | 
|  | * time, and not at spin_lock time. | 
|  | * | 
|  | * Increasing the sequence after the spin_unlock would be | 
|  | * unsafe because the kvm page fault could then establish the | 
|  | * pte after kvm_unmap_hva returned, without noticing the page | 
|  | * is going to be freed. | 
|  | */ | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | kvm->mmu_notifier_seq++; | 
|  | need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; | 
|  | /* we've to flush the tlb before the pages can be freed */ | 
|  | if (need_tlb_flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | kvm_arch_mmu_notifier_invalidate_page(kvm, address); | 
|  |  | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, | 
|  | struct mm_struct *mm, | 
|  | unsigned long address, | 
|  | pte_t pte) | 
|  | { | 
|  | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
|  | int idx; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | kvm->mmu_notifier_seq++; | 
|  | kvm_set_spte_hva(kvm, address, pte); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, | 
|  | struct mm_struct *mm, | 
|  | unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
|  | int need_tlb_flush = 0, idx; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | /* | 
|  | * The count increase must become visible at unlock time as no | 
|  | * spte can be established without taking the mmu_lock and | 
|  | * count is also read inside the mmu_lock critical section. | 
|  | */ | 
|  | kvm->mmu_notifier_count++; | 
|  | need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); | 
|  | need_tlb_flush |= kvm->tlbs_dirty; | 
|  | /* we've to flush the tlb before the pages can be freed */ | 
|  | if (need_tlb_flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, | 
|  | struct mm_struct *mm, | 
|  | unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | /* | 
|  | * This sequence increase will notify the kvm page fault that | 
|  | * the page that is going to be mapped in the spte could have | 
|  | * been freed. | 
|  | */ | 
|  | kvm->mmu_notifier_seq++; | 
|  | smp_wmb(); | 
|  | /* | 
|  | * The above sequence increase must be visible before the | 
|  | * below count decrease, which is ensured by the smp_wmb above | 
|  | * in conjunction with the smp_rmb in mmu_notifier_retry(). | 
|  | */ | 
|  | kvm->mmu_notifier_count--; | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | BUG_ON(kvm->mmu_notifier_count < 0); | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, | 
|  | struct mm_struct *mm, | 
|  | unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
|  | int young, idx; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | young = kvm_age_hva(kvm, start, end); | 
|  | if (young) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  |  | 
|  | return young; | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, | 
|  | struct mm_struct *mm, | 
|  | unsigned long address) | 
|  | { | 
|  | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
|  | int young, idx; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | young = kvm_test_age_hva(kvm, address); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  |  | 
|  | return young; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_notifier_release(struct mmu_notifier *mn, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
|  | int idx; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | kvm_arch_flush_shadow_all(kvm); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | } | 
|  |  | 
|  | static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { | 
|  | .invalidate_page	= kvm_mmu_notifier_invalidate_page, | 
|  | .invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start, | 
|  | .invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end, | 
|  | .clear_flush_young	= kvm_mmu_notifier_clear_flush_young, | 
|  | .test_young		= kvm_mmu_notifier_test_young, | 
|  | .change_pte		= kvm_mmu_notifier_change_pte, | 
|  | .release		= kvm_mmu_notifier_release, | 
|  | }; | 
|  |  | 
|  | static int kvm_init_mmu_notifier(struct kvm *kvm) | 
|  | { | 
|  | kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; | 
|  | return mmu_notifier_register(&kvm->mmu_notifier, current->mm); | 
|  | } | 
|  |  | 
|  | #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ | 
|  |  | 
|  | static int kvm_init_mmu_notifier(struct kvm *kvm) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ | 
|  |  | 
|  | static void kvm_init_memslots_id(struct kvm *kvm) | 
|  | { | 
|  | int i; | 
|  | struct kvm_memslots *slots = kvm->memslots; | 
|  |  | 
|  | for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) | 
|  | slots->id_to_index[i] = slots->memslots[i].id = i; | 
|  | } | 
|  |  | 
|  | static struct kvm *kvm_create_vm(unsigned long type) | 
|  | { | 
|  | int r, i; | 
|  | struct kvm *kvm = kvm_arch_alloc_vm(); | 
|  |  | 
|  | if (!kvm) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | r = kvm_arch_init_vm(kvm, type); | 
|  | if (r) | 
|  | goto out_err_no_disable; | 
|  |  | 
|  | r = hardware_enable_all(); | 
|  | if (r) | 
|  | goto out_err_no_disable; | 
|  |  | 
|  | #ifdef CONFIG_HAVE_KVM_IRQCHIP | 
|  | INIT_HLIST_HEAD(&kvm->mask_notifier_list); | 
|  | #endif | 
|  | #ifdef CONFIG_HAVE_KVM_IRQFD | 
|  | INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); | 
|  | #endif | 
|  |  | 
|  | BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); | 
|  |  | 
|  | r = -ENOMEM; | 
|  | kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); | 
|  | if (!kvm->memslots) | 
|  | goto out_err_no_srcu; | 
|  |  | 
|  | /* | 
|  | * Init kvm generation close to the maximum to easily test the | 
|  | * code of handling generation number wrap-around. | 
|  | */ | 
|  | kvm->memslots->generation = -150; | 
|  |  | 
|  | kvm_init_memslots_id(kvm); | 
|  | if (init_srcu_struct(&kvm->srcu)) | 
|  | goto out_err_no_srcu; | 
|  | if (init_srcu_struct(&kvm->irq_srcu)) | 
|  | goto out_err_no_irq_srcu; | 
|  | for (i = 0; i < KVM_NR_BUSES; i++) { | 
|  | kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), | 
|  | GFP_KERNEL); | 
|  | if (!kvm->buses[i]) | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&kvm->mmu_lock); | 
|  | kvm->mm = current->mm; | 
|  | atomic_inc(&kvm->mm->mm_count); | 
|  | kvm_eventfd_init(kvm); | 
|  | mutex_init(&kvm->lock); | 
|  | mutex_init(&kvm->irq_lock); | 
|  | mutex_init(&kvm->slots_lock); | 
|  | atomic_set(&kvm->users_count, 1); | 
|  | INIT_LIST_HEAD(&kvm->devices); | 
|  |  | 
|  | r = kvm_init_mmu_notifier(kvm); | 
|  | if (r) | 
|  | goto out_err; | 
|  |  | 
|  | spin_lock(&kvm_lock); | 
|  | list_add(&kvm->vm_list, &vm_list); | 
|  | spin_unlock(&kvm_lock); | 
|  |  | 
|  | return kvm; | 
|  |  | 
|  | out_err: | 
|  | cleanup_srcu_struct(&kvm->irq_srcu); | 
|  | out_err_no_irq_srcu: | 
|  | cleanup_srcu_struct(&kvm->srcu); | 
|  | out_err_no_srcu: | 
|  | hardware_disable_all(); | 
|  | out_err_no_disable: | 
|  | for (i = 0; i < KVM_NR_BUSES; i++) | 
|  | kfree(kvm->buses[i]); | 
|  | kfree(kvm->memslots); | 
|  | kvm_arch_free_vm(kvm); | 
|  | return ERR_PTR(r); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Avoid using vmalloc for a small buffer. | 
|  | * Should not be used when the size is statically known. | 
|  | */ | 
|  | void *kvm_kvzalloc(unsigned long size) | 
|  | { | 
|  | if (size > PAGE_SIZE) | 
|  | return vzalloc(size); | 
|  | else | 
|  | return kzalloc(size, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | void kvm_kvfree(const void *addr) | 
|  | { | 
|  | if (is_vmalloc_addr(addr)) | 
|  | vfree(addr); | 
|  | else | 
|  | kfree(addr); | 
|  | } | 
|  |  | 
|  | static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) | 
|  | { | 
|  | if (!memslot->dirty_bitmap) | 
|  | return; | 
|  |  | 
|  | kvm_kvfree(memslot->dirty_bitmap); | 
|  | memslot->dirty_bitmap = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free any memory in @free but not in @dont. | 
|  | */ | 
|  | static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free, | 
|  | struct kvm_memory_slot *dont) | 
|  | { | 
|  | if (!dont || free->dirty_bitmap != dont->dirty_bitmap) | 
|  | kvm_destroy_dirty_bitmap(free); | 
|  |  | 
|  | kvm_arch_free_memslot(kvm, free, dont); | 
|  |  | 
|  | free->npages = 0; | 
|  | } | 
|  |  | 
|  | static void kvm_free_physmem(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_memslots *slots = kvm->memslots; | 
|  | struct kvm_memory_slot *memslot; | 
|  |  | 
|  | kvm_for_each_memslot(memslot, slots) | 
|  | kvm_free_physmem_slot(kvm, memslot, NULL); | 
|  |  | 
|  | kfree(kvm->memslots); | 
|  | } | 
|  |  | 
|  | static void kvm_destroy_devices(struct kvm *kvm) | 
|  | { | 
|  | struct list_head *node, *tmp; | 
|  |  | 
|  | list_for_each_safe(node, tmp, &kvm->devices) { | 
|  | struct kvm_device *dev = | 
|  | list_entry(node, struct kvm_device, vm_node); | 
|  |  | 
|  | list_del(node); | 
|  | dev->ops->destroy(dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_destroy_vm(struct kvm *kvm) | 
|  | { | 
|  | int i; | 
|  | struct mm_struct *mm = kvm->mm; | 
|  |  | 
|  | kvm_arch_sync_events(kvm); | 
|  | spin_lock(&kvm_lock); | 
|  | list_del(&kvm->vm_list); | 
|  | spin_unlock(&kvm_lock); | 
|  | kvm_free_irq_routing(kvm); | 
|  | for (i = 0; i < KVM_NR_BUSES; i++) | 
|  | kvm_io_bus_destroy(kvm->buses[i]); | 
|  | kvm_coalesced_mmio_free(kvm); | 
|  | #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) | 
|  | mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); | 
|  | #else | 
|  | kvm_arch_flush_shadow_all(kvm); | 
|  | #endif | 
|  | kvm_arch_destroy_vm(kvm); | 
|  | kvm_destroy_devices(kvm); | 
|  | kvm_free_physmem(kvm); | 
|  | cleanup_srcu_struct(&kvm->irq_srcu); | 
|  | cleanup_srcu_struct(&kvm->srcu); | 
|  | kvm_arch_free_vm(kvm); | 
|  | hardware_disable_all(); | 
|  | mmdrop(mm); | 
|  | } | 
|  |  | 
|  | void kvm_get_kvm(struct kvm *kvm) | 
|  | { | 
|  | atomic_inc(&kvm->users_count); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_get_kvm); | 
|  |  | 
|  | void kvm_put_kvm(struct kvm *kvm) | 
|  | { | 
|  | if (atomic_dec_and_test(&kvm->users_count)) | 
|  | kvm_destroy_vm(kvm); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_put_kvm); | 
|  |  | 
|  |  | 
|  | static int kvm_vm_release(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct kvm *kvm = filp->private_data; | 
|  |  | 
|  | kvm_irqfd_release(kvm); | 
|  |  | 
|  | kvm_put_kvm(kvm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocation size is twice as large as the actual dirty bitmap size. | 
|  | * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. | 
|  | */ | 
|  | static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) | 
|  | { | 
|  | unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); | 
|  |  | 
|  | memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); | 
|  | if (!memslot->dirty_bitmap) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cmp_memslot(const void *slot1, const void *slot2) | 
|  | { | 
|  | struct kvm_memory_slot *s1, *s2; | 
|  |  | 
|  | s1 = (struct kvm_memory_slot *)slot1; | 
|  | s2 = (struct kvm_memory_slot *)slot2; | 
|  |  | 
|  | if (s1->npages < s2->npages) | 
|  | return 1; | 
|  | if (s1->npages > s2->npages) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sort the memslots base on its size, so the larger slots | 
|  | * will get better fit. | 
|  | */ | 
|  | static void sort_memslots(struct kvm_memslots *slots) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | sort(slots->memslots, KVM_MEM_SLOTS_NUM, | 
|  | sizeof(struct kvm_memory_slot), cmp_memslot, NULL); | 
|  |  | 
|  | for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) | 
|  | slots->id_to_index[slots->memslots[i].id] = i; | 
|  | } | 
|  |  | 
|  | static void update_memslots(struct kvm_memslots *slots, | 
|  | struct kvm_memory_slot *new) | 
|  | { | 
|  | if (new) { | 
|  | int id = new->id; | 
|  | struct kvm_memory_slot *old = id_to_memslot(slots, id); | 
|  | unsigned long npages = old->npages; | 
|  |  | 
|  | *old = *new; | 
|  | if (new->npages != npages) | 
|  | sort_memslots(slots); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) | 
|  | { | 
|  | u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; | 
|  |  | 
|  | #ifdef __KVM_HAVE_READONLY_MEM | 
|  | valid_flags |= KVM_MEM_READONLY; | 
|  | #endif | 
|  |  | 
|  | if (mem->flags & ~valid_flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kvm_memslots *install_new_memslots(struct kvm *kvm, | 
|  | struct kvm_memslots *slots, struct kvm_memory_slot *new) | 
|  | { | 
|  | struct kvm_memslots *old_memslots = kvm->memslots; | 
|  |  | 
|  | /* | 
|  | * Set the low bit in the generation, which disables SPTE caching | 
|  | * until the end of synchronize_srcu_expedited. | 
|  | */ | 
|  | WARN_ON(old_memslots->generation & 1); | 
|  | slots->generation = old_memslots->generation + 1; | 
|  |  | 
|  | update_memslots(slots, new); | 
|  | rcu_assign_pointer(kvm->memslots, slots); | 
|  | synchronize_srcu_expedited(&kvm->srcu); | 
|  |  | 
|  | /* | 
|  | * Increment the new memslot generation a second time. This prevents | 
|  | * vm exits that race with memslot updates from caching a memslot | 
|  | * generation that will (potentially) be valid forever. | 
|  | */ | 
|  | slots->generation++; | 
|  |  | 
|  | kvm_arch_memslots_updated(kvm); | 
|  |  | 
|  | return old_memslots; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate some memory and give it an address in the guest physical address | 
|  | * space. | 
|  | * | 
|  | * Discontiguous memory is allowed, mostly for framebuffers. | 
|  | * | 
|  | * Must be called holding mmap_sem for write. | 
|  | */ | 
|  | int __kvm_set_memory_region(struct kvm *kvm, | 
|  | struct kvm_userspace_memory_region *mem) | 
|  | { | 
|  | int r; | 
|  | gfn_t base_gfn; | 
|  | unsigned long npages; | 
|  | struct kvm_memory_slot *slot; | 
|  | struct kvm_memory_slot old, new; | 
|  | struct kvm_memslots *slots = NULL, *old_memslots; | 
|  | enum kvm_mr_change change; | 
|  |  | 
|  | r = check_memory_region_flags(mem); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | r = -EINVAL; | 
|  | /* General sanity checks */ | 
|  | if (mem->memory_size & (PAGE_SIZE - 1)) | 
|  | goto out; | 
|  | if (mem->guest_phys_addr & (PAGE_SIZE - 1)) | 
|  | goto out; | 
|  | /* We can read the guest memory with __xxx_user() later on. */ | 
|  | if ((mem->slot < KVM_USER_MEM_SLOTS) && | 
|  | ((mem->userspace_addr & (PAGE_SIZE - 1)) || | 
|  | !access_ok(VERIFY_WRITE, | 
|  | (void __user *)(unsigned long)mem->userspace_addr, | 
|  | mem->memory_size))) | 
|  | goto out; | 
|  | if (mem->slot >= KVM_MEM_SLOTS_NUM) | 
|  | goto out; | 
|  | if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) | 
|  | goto out; | 
|  |  | 
|  | slot = id_to_memslot(kvm->memslots, mem->slot); | 
|  | base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; | 
|  | npages = mem->memory_size >> PAGE_SHIFT; | 
|  |  | 
|  | if (npages > KVM_MEM_MAX_NR_PAGES) | 
|  | goto out; | 
|  |  | 
|  | if (!npages) | 
|  | mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; | 
|  |  | 
|  | new = old = *slot; | 
|  |  | 
|  | new.id = mem->slot; | 
|  | new.base_gfn = base_gfn; | 
|  | new.npages = npages; | 
|  | new.flags = mem->flags; | 
|  |  | 
|  | if (npages) { | 
|  | if (!old.npages) | 
|  | change = KVM_MR_CREATE; | 
|  | else { /* Modify an existing slot. */ | 
|  | if ((mem->userspace_addr != old.userspace_addr) || | 
|  | (npages != old.npages) || | 
|  | ((new.flags ^ old.flags) & KVM_MEM_READONLY)) | 
|  | goto out; | 
|  |  | 
|  | if (base_gfn != old.base_gfn) | 
|  | change = KVM_MR_MOVE; | 
|  | else if (new.flags != old.flags) | 
|  | change = KVM_MR_FLAGS_ONLY; | 
|  | else { /* Nothing to change. */ | 
|  | r = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } else if (old.npages) { | 
|  | change = KVM_MR_DELETE; | 
|  | } else /* Modify a non-existent slot: disallowed. */ | 
|  | goto out; | 
|  |  | 
|  | if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { | 
|  | /* Check for overlaps */ | 
|  | r = -EEXIST; | 
|  | kvm_for_each_memslot(slot, kvm->memslots) { | 
|  | if ((slot->id >= KVM_USER_MEM_SLOTS) || | 
|  | (slot->id == mem->slot)) | 
|  | continue; | 
|  | if (!((base_gfn + npages <= slot->base_gfn) || | 
|  | (base_gfn >= slot->base_gfn + slot->npages))) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Free page dirty bitmap if unneeded */ | 
|  | if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) | 
|  | new.dirty_bitmap = NULL; | 
|  |  | 
|  | r = -ENOMEM; | 
|  | if (change == KVM_MR_CREATE) { | 
|  | new.userspace_addr = mem->userspace_addr; | 
|  |  | 
|  | if (kvm_arch_create_memslot(kvm, &new, npages)) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* Allocate page dirty bitmap if needed */ | 
|  | if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { | 
|  | if (kvm_create_dirty_bitmap(&new) < 0) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { | 
|  | slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), | 
|  | GFP_KERNEL); | 
|  | if (!slots) | 
|  | goto out_free; | 
|  | slot = id_to_memslot(slots, mem->slot); | 
|  | slot->flags |= KVM_MEMSLOT_INVALID; | 
|  |  | 
|  | old_memslots = install_new_memslots(kvm, slots, NULL); | 
|  |  | 
|  | /* slot was deleted or moved, clear iommu mapping */ | 
|  | kvm_iommu_unmap_pages(kvm, &old); | 
|  | /* From this point no new shadow pages pointing to a deleted, | 
|  | * or moved, memslot will be created. | 
|  | * | 
|  | * validation of sp->gfn happens in: | 
|  | * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn) | 
|  | * 	- kvm_is_visible_gfn (mmu_check_roots) | 
|  | */ | 
|  | kvm_arch_flush_shadow_memslot(kvm, slot); | 
|  | slots = old_memslots; | 
|  | } | 
|  |  | 
|  | r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); | 
|  | if (r) | 
|  | goto out_slots; | 
|  |  | 
|  | r = -ENOMEM; | 
|  | /* | 
|  | * We can re-use the old_memslots from above, the only difference | 
|  | * from the currently installed memslots is the invalid flag.  This | 
|  | * will get overwritten by update_memslots anyway. | 
|  | */ | 
|  | if (!slots) { | 
|  | slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), | 
|  | GFP_KERNEL); | 
|  | if (!slots) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* actual memory is freed via old in kvm_free_physmem_slot below */ | 
|  | if (change == KVM_MR_DELETE) { | 
|  | new.dirty_bitmap = NULL; | 
|  | memset(&new.arch, 0, sizeof(new.arch)); | 
|  | } | 
|  |  | 
|  | old_memslots = install_new_memslots(kvm, slots, &new); | 
|  |  | 
|  | kvm_arch_commit_memory_region(kvm, mem, &old, change); | 
|  |  | 
|  | kvm_free_physmem_slot(kvm, &old, &new); | 
|  | kfree(old_memslots); | 
|  |  | 
|  | /* | 
|  | * IOMMU mapping:  New slots need to be mapped.  Old slots need to be | 
|  | * un-mapped and re-mapped if their base changes.  Since base change | 
|  | * unmapping is handled above with slot deletion, mapping alone is | 
|  | * needed here.  Anything else the iommu might care about for existing | 
|  | * slots (size changes, userspace addr changes and read-only flag | 
|  | * changes) is disallowed above, so any other attribute changes getting | 
|  | * here can be skipped. | 
|  | */ | 
|  | if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { | 
|  | r = kvm_iommu_map_pages(kvm, &new); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_slots: | 
|  | kfree(slots); | 
|  | out_free: | 
|  | kvm_free_physmem_slot(kvm, &new, &old); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__kvm_set_memory_region); | 
|  |  | 
|  | int kvm_set_memory_region(struct kvm *kvm, | 
|  | struct kvm_userspace_memory_region *mem) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  | r = __kvm_set_memory_region(kvm, mem); | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_set_memory_region); | 
|  |  | 
|  | static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, | 
|  | struct kvm_userspace_memory_region *mem) | 
|  | { | 
|  | if (mem->slot >= KVM_USER_MEM_SLOTS) | 
|  | return -EINVAL; | 
|  | return kvm_set_memory_region(kvm, mem); | 
|  | } | 
|  |  | 
|  | int kvm_get_dirty_log(struct kvm *kvm, | 
|  | struct kvm_dirty_log *log, int *is_dirty) | 
|  | { | 
|  | struct kvm_memory_slot *memslot; | 
|  | int r, i; | 
|  | unsigned long n; | 
|  | unsigned long any = 0; | 
|  |  | 
|  | r = -EINVAL; | 
|  | if (log->slot >= KVM_USER_MEM_SLOTS) | 
|  | goto out; | 
|  |  | 
|  | memslot = id_to_memslot(kvm->memslots, log->slot); | 
|  | r = -ENOENT; | 
|  | if (!memslot->dirty_bitmap) | 
|  | goto out; | 
|  |  | 
|  | n = kvm_dirty_bitmap_bytes(memslot); | 
|  |  | 
|  | for (i = 0; !any && i < n/sizeof(long); ++i) | 
|  | any = memslot->dirty_bitmap[i]; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) | 
|  | goto out; | 
|  |  | 
|  | if (any) | 
|  | *is_dirty = 1; | 
|  |  | 
|  | r = 0; | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_get_dirty_log); | 
|  |  | 
|  | bool kvm_largepages_enabled(void) | 
|  | { | 
|  | return largepages_enabled; | 
|  | } | 
|  |  | 
|  | void kvm_disable_largepages(void) | 
|  | { | 
|  | largepages_enabled = false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_disable_largepages); | 
|  |  | 
|  | struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | return __gfn_to_memslot(kvm_memslots(kvm), gfn); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gfn_to_memslot); | 
|  |  | 
|  | int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); | 
|  |  | 
|  | if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || | 
|  | memslot->flags & KVM_MEMSLOT_INVALID) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); | 
|  |  | 
|  | unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long addr, size; | 
|  |  | 
|  | size = PAGE_SIZE; | 
|  |  | 
|  | addr = gfn_to_hva(kvm, gfn); | 
|  | if (kvm_is_error_hva(addr)) | 
|  | return PAGE_SIZE; | 
|  |  | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | vma = find_vma(current->mm, addr); | 
|  | if (!vma) | 
|  | goto out; | 
|  |  | 
|  | size = vma_kernel_pagesize(vma); | 
|  |  | 
|  | out: | 
|  | up_read(¤t->mm->mmap_sem); | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static bool memslot_is_readonly(struct kvm_memory_slot *slot) | 
|  | { | 
|  | return slot->flags & KVM_MEM_READONLY; | 
|  | } | 
|  |  | 
|  | static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, | 
|  | gfn_t *nr_pages, bool write) | 
|  | { | 
|  | if (!slot || slot->flags & KVM_MEMSLOT_INVALID) | 
|  | return KVM_HVA_ERR_BAD; | 
|  |  | 
|  | if (memslot_is_readonly(slot) && write) | 
|  | return KVM_HVA_ERR_RO_BAD; | 
|  |  | 
|  | if (nr_pages) | 
|  | *nr_pages = slot->npages - (gfn - slot->base_gfn); | 
|  |  | 
|  | return __gfn_to_hva_memslot(slot, gfn); | 
|  | } | 
|  |  | 
|  | static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, | 
|  | gfn_t *nr_pages) | 
|  | { | 
|  | return __gfn_to_hva_many(slot, gfn, nr_pages, true); | 
|  | } | 
|  |  | 
|  | unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, | 
|  | gfn_t gfn) | 
|  | { | 
|  | return gfn_to_hva_many(slot, gfn, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); | 
|  |  | 
|  | unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gfn_to_hva); | 
|  |  | 
|  | /* | 
|  | * If writable is set to false, the hva returned by this function is only | 
|  | * allowed to be read. | 
|  | */ | 
|  | unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, | 
|  | gfn_t gfn, bool *writable) | 
|  | { | 
|  | unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); | 
|  |  | 
|  | if (!kvm_is_error_hva(hva) && writable) | 
|  | *writable = !memslot_is_readonly(slot); | 
|  |  | 
|  | return hva; | 
|  | } | 
|  |  | 
|  | unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) | 
|  | { | 
|  | struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); | 
|  |  | 
|  | return gfn_to_hva_memslot_prot(slot, gfn, writable); | 
|  | } | 
|  |  | 
|  | static int kvm_read_hva(void *data, void __user *hva, int len) | 
|  | { | 
|  | return __copy_from_user(data, hva, len); | 
|  | } | 
|  |  | 
|  | static int kvm_read_hva_atomic(void *data, void __user *hva, int len) | 
|  | { | 
|  | return __copy_from_user_inatomic(data, hva, len); | 
|  | } | 
|  |  | 
|  | static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, | 
|  | unsigned long start, int write, struct page **page) | 
|  | { | 
|  | int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; | 
|  |  | 
|  | if (write) | 
|  | flags |= FOLL_WRITE; | 
|  |  | 
|  | return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); | 
|  | } | 
|  |  | 
|  | int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm, | 
|  | unsigned long addr, bool write_fault, | 
|  | struct page **pagep) | 
|  | { | 
|  | int npages; | 
|  | int locked = 1; | 
|  | int flags = FOLL_TOUCH | FOLL_HWPOISON | | 
|  | (pagep ? FOLL_GET : 0) | | 
|  | (write_fault ? FOLL_WRITE : 0); | 
|  |  | 
|  | /* | 
|  | * If retrying the fault, we get here *not* having allowed the filemap | 
|  | * to wait on the page lock. We should now allow waiting on the IO with | 
|  | * the mmap semaphore released. | 
|  | */ | 
|  | down_read(&mm->mmap_sem); | 
|  | npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL, | 
|  | &locked); | 
|  | if (!locked) { | 
|  | VM_BUG_ON(npages); | 
|  |  | 
|  | if (!pagep) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The previous call has now waited on the IO. Now we can | 
|  | * retry and complete. Pass TRIED to ensure we do not re | 
|  | * schedule async IO (see e.g. filemap_fault). | 
|  | */ | 
|  | down_read(&mm->mmap_sem); | 
|  | npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED, | 
|  | pagep, NULL, NULL); | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  | return npages; | 
|  | } | 
|  |  | 
|  | static inline int check_user_page_hwpoison(unsigned long addr) | 
|  | { | 
|  | int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; | 
|  |  | 
|  | rc = __get_user_pages(current, current->mm, addr, 1, | 
|  | flags, NULL, NULL, NULL); | 
|  | return rc == -EHWPOISON; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The atomic path to get the writable pfn which will be stored in @pfn, | 
|  | * true indicates success, otherwise false is returned. | 
|  | */ | 
|  | static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, | 
|  | bool write_fault, bool *writable, pfn_t *pfn) | 
|  | { | 
|  | struct page *page[1]; | 
|  | int npages; | 
|  |  | 
|  | if (!(async || atomic)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Fast pin a writable pfn only if it is a write fault request | 
|  | * or the caller allows to map a writable pfn for a read fault | 
|  | * request. | 
|  | */ | 
|  | if (!(write_fault || writable)) | 
|  | return false; | 
|  |  | 
|  | npages = __get_user_pages_fast(addr, 1, 1, page); | 
|  | if (npages == 1) { | 
|  | *pfn = page_to_pfn(page[0]); | 
|  |  | 
|  | if (writable) | 
|  | *writable = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The slow path to get the pfn of the specified host virtual address, | 
|  | * 1 indicates success, -errno is returned if error is detected. | 
|  | */ | 
|  | static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, | 
|  | bool *writable, pfn_t *pfn) | 
|  | { | 
|  | struct page *page[1]; | 
|  | int npages = 0; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | if (writable) | 
|  | *writable = write_fault; | 
|  |  | 
|  | if (async) { | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | npages = get_user_page_nowait(current, current->mm, | 
|  | addr, write_fault, page); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | } else { | 
|  | /* | 
|  | * By now we have tried gup_fast, and possibly async_pf, and we | 
|  | * are certainly not atomic. Time to retry the gup, allowing | 
|  | * mmap semaphore to be relinquished in the case of IO. | 
|  | */ | 
|  | npages = kvm_get_user_page_io(current, current->mm, addr, | 
|  | write_fault, page); | 
|  | } | 
|  | if (npages != 1) | 
|  | return npages; | 
|  |  | 
|  | /* map read fault as writable if possible */ | 
|  | if (unlikely(!write_fault) && writable) { | 
|  | struct page *wpage[1]; | 
|  |  | 
|  | npages = __get_user_pages_fast(addr, 1, 1, wpage); | 
|  | if (npages == 1) { | 
|  | *writable = true; | 
|  | put_page(page[0]); | 
|  | page[0] = wpage[0]; | 
|  | } | 
|  |  | 
|  | npages = 1; | 
|  | } | 
|  | *pfn = page_to_pfn(page[0]); | 
|  | return npages; | 
|  | } | 
|  |  | 
|  | static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) | 
|  | { | 
|  | if (unlikely(!(vma->vm_flags & VM_READ))) | 
|  | return false; | 
|  |  | 
|  | if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pin guest page in memory and return its pfn. | 
|  | * @addr: host virtual address which maps memory to the guest | 
|  | * @atomic: whether this function can sleep | 
|  | * @async: whether this function need to wait IO complete if the | 
|  | *         host page is not in the memory | 
|  | * @write_fault: whether we should get a writable host page | 
|  | * @writable: whether it allows to map a writable host page for !@write_fault | 
|  | * | 
|  | * The function will map a writable host page for these two cases: | 
|  | * 1): @write_fault = true | 
|  | * 2): @write_fault = false && @writable, @writable will tell the caller | 
|  | *     whether the mapping is writable. | 
|  | */ | 
|  | static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, | 
|  | bool write_fault, bool *writable) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | pfn_t pfn = 0; | 
|  | int npages; | 
|  |  | 
|  | /* we can do it either atomically or asynchronously, not both */ | 
|  | BUG_ON(atomic && async); | 
|  |  | 
|  | if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) | 
|  | return pfn; | 
|  |  | 
|  | if (atomic) | 
|  | return KVM_PFN_ERR_FAULT; | 
|  |  | 
|  | npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); | 
|  | if (npages == 1) | 
|  | return pfn; | 
|  |  | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | if (npages == -EHWPOISON || | 
|  | (!async && check_user_page_hwpoison(addr))) { | 
|  | pfn = KVM_PFN_ERR_HWPOISON; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | vma = find_vma_intersection(current->mm, addr, addr + 1); | 
|  |  | 
|  | if (vma == NULL) | 
|  | pfn = KVM_PFN_ERR_FAULT; | 
|  | else if ((vma->vm_flags & VM_PFNMAP)) { | 
|  | pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + | 
|  | vma->vm_pgoff; | 
|  | BUG_ON(!kvm_is_reserved_pfn(pfn)); | 
|  | } else { | 
|  | if (async && vma_is_valid(vma, write_fault)) | 
|  | *async = true; | 
|  | pfn = KVM_PFN_ERR_FAULT; | 
|  | } | 
|  | exit: | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | return pfn; | 
|  | } | 
|  |  | 
|  | static pfn_t | 
|  | __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, | 
|  | bool *async, bool write_fault, bool *writable) | 
|  | { | 
|  | unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); | 
|  |  | 
|  | if (addr == KVM_HVA_ERR_RO_BAD) | 
|  | return KVM_PFN_ERR_RO_FAULT; | 
|  |  | 
|  | if (kvm_is_error_hva(addr)) | 
|  | return KVM_PFN_NOSLOT; | 
|  |  | 
|  | /* Do not map writable pfn in the readonly memslot. */ | 
|  | if (writable && memslot_is_readonly(slot)) { | 
|  | *writable = false; | 
|  | writable = NULL; | 
|  | } | 
|  |  | 
|  | return hva_to_pfn(addr, atomic, async, write_fault, | 
|  | writable); | 
|  | } | 
|  |  | 
|  | static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, | 
|  | bool write_fault, bool *writable) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | if (async) | 
|  | *async = false; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  |  | 
|  | return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, | 
|  | writable); | 
|  | } | 
|  |  | 
|  | pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); | 
|  |  | 
|  | pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, | 
|  | bool write_fault, bool *writable) | 
|  | { | 
|  | return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gfn_to_pfn_async); | 
|  |  | 
|  | pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gfn_to_pfn); | 
|  |  | 
|  | pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, | 
|  | bool *writable) | 
|  | { | 
|  | return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); | 
|  |  | 
|  | pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) | 
|  | { | 
|  | return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); | 
|  | } | 
|  |  | 
|  | pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) | 
|  | { | 
|  | return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); | 
|  |  | 
|  | int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, | 
|  | int nr_pages) | 
|  | { | 
|  | unsigned long addr; | 
|  | gfn_t entry; | 
|  |  | 
|  | addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); | 
|  | if (kvm_is_error_hva(addr)) | 
|  | return -1; | 
|  |  | 
|  | if (entry < nr_pages) | 
|  | return 0; | 
|  |  | 
|  | return __get_user_pages_fast(addr, nr_pages, 1, pages); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); | 
|  |  | 
|  | static struct page *kvm_pfn_to_page(pfn_t pfn) | 
|  | { | 
|  | if (is_error_noslot_pfn(pfn)) | 
|  | return KVM_ERR_PTR_BAD_PAGE; | 
|  |  | 
|  | if (kvm_is_reserved_pfn(pfn)) { | 
|  | WARN_ON(1); | 
|  | return KVM_ERR_PTR_BAD_PAGE; | 
|  | } | 
|  |  | 
|  | return pfn_to_page(pfn); | 
|  | } | 
|  |  | 
|  | struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | pfn_t pfn; | 
|  |  | 
|  | pfn = gfn_to_pfn(kvm, gfn); | 
|  |  | 
|  | return kvm_pfn_to_page(pfn); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(gfn_to_page); | 
|  |  | 
|  | void kvm_release_page_clean(struct page *page) | 
|  | { | 
|  | WARN_ON(is_error_page(page)); | 
|  |  | 
|  | kvm_release_pfn_clean(page_to_pfn(page)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_release_page_clean); | 
|  |  | 
|  | void kvm_release_pfn_clean(pfn_t pfn) | 
|  | { | 
|  | if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) | 
|  | put_page(pfn_to_page(pfn)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); | 
|  |  | 
|  | void kvm_release_page_dirty(struct page *page) | 
|  | { | 
|  | WARN_ON(is_error_page(page)); | 
|  |  | 
|  | kvm_release_pfn_dirty(page_to_pfn(page)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_release_page_dirty); | 
|  |  | 
|  | static void kvm_release_pfn_dirty(pfn_t pfn) | 
|  | { | 
|  | kvm_set_pfn_dirty(pfn); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | } | 
|  |  | 
|  | void kvm_set_pfn_dirty(pfn_t pfn) | 
|  | { | 
|  | if (!kvm_is_reserved_pfn(pfn)) { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  | if (!PageReserved(page)) | 
|  | SetPageDirty(page); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); | 
|  |  | 
|  | void kvm_set_pfn_accessed(pfn_t pfn) | 
|  | { | 
|  | if (!kvm_is_reserved_pfn(pfn)) | 
|  | mark_page_accessed(pfn_to_page(pfn)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); | 
|  |  | 
|  | void kvm_get_pfn(pfn_t pfn) | 
|  | { | 
|  | if (!kvm_is_reserved_pfn(pfn)) | 
|  | get_page(pfn_to_page(pfn)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_get_pfn); | 
|  |  | 
|  | static int next_segment(unsigned long len, int offset) | 
|  | { | 
|  | if (len > PAGE_SIZE - offset) | 
|  | return PAGE_SIZE - offset; | 
|  | else | 
|  | return len; | 
|  | } | 
|  |  | 
|  | int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, | 
|  | int len) | 
|  | { | 
|  | int r; | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = gfn_to_hva_prot(kvm, gfn, NULL); | 
|  | if (kvm_is_error_hva(addr)) | 
|  | return -EFAULT; | 
|  | r = kvm_read_hva(data, (void __user *)addr + offset, len); | 
|  | if (r) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_read_guest_page); | 
|  |  | 
|  | int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) | 
|  | { | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | int seg; | 
|  | int offset = offset_in_page(gpa); | 
|  | int ret; | 
|  |  | 
|  | while ((seg = next_segment(len, offset)) != 0) { | 
|  | ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | offset = 0; | 
|  | len -= seg; | 
|  | data += seg; | 
|  | ++gfn; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_read_guest); | 
|  |  | 
|  | int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, | 
|  | unsigned long len) | 
|  | { | 
|  | int r; | 
|  | unsigned long addr; | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | int offset = offset_in_page(gpa); | 
|  |  | 
|  | addr = gfn_to_hva_prot(kvm, gfn, NULL); | 
|  | if (kvm_is_error_hva(addr)) | 
|  | return -EFAULT; | 
|  | pagefault_disable(); | 
|  | r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); | 
|  | pagefault_enable(); | 
|  | if (r) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(kvm_read_guest_atomic); | 
|  |  | 
|  | int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, | 
|  | int offset, int len) | 
|  | { | 
|  | int r; | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = gfn_to_hva(kvm, gfn); | 
|  | if (kvm_is_error_hva(addr)) | 
|  | return -EFAULT; | 
|  | r = __copy_to_user((void __user *)addr + offset, data, len); | 
|  | if (r) | 
|  | return -EFAULT; | 
|  | mark_page_dirty(kvm, gfn); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_write_guest_page); | 
|  |  | 
|  | int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, | 
|  | unsigned long len) | 
|  | { | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | int seg; | 
|  | int offset = offset_in_page(gpa); | 
|  | int ret; | 
|  |  | 
|  | while ((seg = next_segment(len, offset)) != 0) { | 
|  | ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | offset = 0; | 
|  | len -= seg; | 
|  | data += seg; | 
|  | ++gfn; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 
|  | gpa_t gpa, unsigned long len) | 
|  | { | 
|  | struct kvm_memslots *slots = kvm_memslots(kvm); | 
|  | int offset = offset_in_page(gpa); | 
|  | gfn_t start_gfn = gpa >> PAGE_SHIFT; | 
|  | gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; | 
|  | gfn_t nr_pages_needed = end_gfn - start_gfn + 1; | 
|  | gfn_t nr_pages_avail; | 
|  |  | 
|  | ghc->gpa = gpa; | 
|  | ghc->generation = slots->generation; | 
|  | ghc->len = len; | 
|  | ghc->memslot = gfn_to_memslot(kvm, start_gfn); | 
|  | ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); | 
|  | if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { | 
|  | ghc->hva += offset; | 
|  | } else { | 
|  | /* | 
|  | * If the requested region crosses two memslots, we still | 
|  | * verify that the entire region is valid here. | 
|  | */ | 
|  | while (start_gfn <= end_gfn) { | 
|  | ghc->memslot = gfn_to_memslot(kvm, start_gfn); | 
|  | ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, | 
|  | &nr_pages_avail); | 
|  | if (kvm_is_error_hva(ghc->hva)) | 
|  | return -EFAULT; | 
|  | start_gfn += nr_pages_avail; | 
|  | } | 
|  | /* Use the slow path for cross page reads and writes. */ | 
|  | ghc->memslot = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); | 
|  |  | 
|  | int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 
|  | void *data, unsigned long len) | 
|  | { | 
|  | struct kvm_memslots *slots = kvm_memslots(kvm); | 
|  | int r; | 
|  |  | 
|  | BUG_ON(len > ghc->len); | 
|  |  | 
|  | if (slots->generation != ghc->generation) | 
|  | kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); | 
|  |  | 
|  | if (unlikely(!ghc->memslot)) | 
|  | return kvm_write_guest(kvm, ghc->gpa, data, len); | 
|  |  | 
|  | if (kvm_is_error_hva(ghc->hva)) | 
|  | return -EFAULT; | 
|  |  | 
|  | r = __copy_to_user((void __user *)ghc->hva, data, len); | 
|  | if (r) | 
|  | return -EFAULT; | 
|  | mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_write_guest_cached); | 
|  |  | 
|  | int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 
|  | void *data, unsigned long len) | 
|  | { | 
|  | struct kvm_memslots *slots = kvm_memslots(kvm); | 
|  | int r; | 
|  |  | 
|  | BUG_ON(len > ghc->len); | 
|  |  | 
|  | if (slots->generation != ghc->generation) | 
|  | kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); | 
|  |  | 
|  | if (unlikely(!ghc->memslot)) | 
|  | return kvm_read_guest(kvm, ghc->gpa, data, len); | 
|  |  | 
|  | if (kvm_is_error_hva(ghc->hva)) | 
|  | return -EFAULT; | 
|  |  | 
|  | r = __copy_from_user(data, (void __user *)ghc->hva, len); | 
|  | if (r) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_read_guest_cached); | 
|  |  | 
|  | int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) | 
|  | { | 
|  | const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); | 
|  |  | 
|  | return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_clear_guest_page); | 
|  |  | 
|  | int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) | 
|  | { | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | int seg; | 
|  | int offset = offset_in_page(gpa); | 
|  | int ret; | 
|  |  | 
|  | while ((seg = next_segment(len, offset)) != 0) { | 
|  | ret = kvm_clear_guest_page(kvm, gfn, offset, seg); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | offset = 0; | 
|  | len -= seg; | 
|  | ++gfn; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_clear_guest); | 
|  |  | 
|  | static void mark_page_dirty_in_slot(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot, | 
|  | gfn_t gfn) | 
|  | { | 
|  | if (memslot && memslot->dirty_bitmap) { | 
|  | unsigned long rel_gfn = gfn - memslot->base_gfn; | 
|  |  | 
|  | set_bit_le(rel_gfn, memslot->dirty_bitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | void mark_page_dirty(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_memory_slot *memslot; | 
|  |  | 
|  | memslot = gfn_to_memslot(kvm, gfn); | 
|  | mark_page_dirty_in_slot(kvm, memslot, gfn); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mark_page_dirty); | 
|  |  | 
|  | /* | 
|  | * The vCPU has executed a HLT instruction with in-kernel mode enabled. | 
|  | */ | 
|  | void kvm_vcpu_block(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | for (;;) { | 
|  | prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); | 
|  |  | 
|  | if (kvm_arch_vcpu_runnable(vcpu)) { | 
|  | kvm_make_request(KVM_REQ_UNHALT, vcpu); | 
|  | break; | 
|  | } | 
|  | if (kvm_cpu_has_pending_timer(vcpu)) | 
|  | break; | 
|  | if (signal_pending(current)) | 
|  | break; | 
|  |  | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | finish_wait(&vcpu->wq, &wait); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_vcpu_block); | 
|  |  | 
|  | #ifndef CONFIG_S390 | 
|  | /* | 
|  | * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. | 
|  | */ | 
|  | void kvm_vcpu_kick(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int me; | 
|  | int cpu = vcpu->cpu; | 
|  | wait_queue_head_t *wqp; | 
|  |  | 
|  | wqp = kvm_arch_vcpu_wq(vcpu); | 
|  | if (waitqueue_active(wqp)) { | 
|  | wake_up_interruptible(wqp); | 
|  | ++vcpu->stat.halt_wakeup; | 
|  | } | 
|  |  | 
|  | me = get_cpu(); | 
|  | if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) | 
|  | if (kvm_arch_vcpu_should_kick(vcpu)) | 
|  | smp_send_reschedule(cpu); | 
|  | put_cpu(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_vcpu_kick); | 
|  | #endif /* !CONFIG_S390 */ | 
|  |  | 
|  | int kvm_vcpu_yield_to(struct kvm_vcpu *target) | 
|  | { | 
|  | struct pid *pid; | 
|  | struct task_struct *task = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | pid = rcu_dereference(target->pid); | 
|  | if (pid) | 
|  | task = get_pid_task(pid, PIDTYPE_PID); | 
|  | rcu_read_unlock(); | 
|  | if (!task) | 
|  | return ret; | 
|  | if (task->flags & PF_VCPU) { | 
|  | put_task_struct(task); | 
|  | return ret; | 
|  | } | 
|  | ret = yield_to(task, 1); | 
|  | put_task_struct(task); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); | 
|  |  | 
|  | /* | 
|  | * Helper that checks whether a VCPU is eligible for directed yield. | 
|  | * Most eligible candidate to yield is decided by following heuristics: | 
|  | * | 
|  | *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently | 
|  | *  (preempted lock holder), indicated by @in_spin_loop. | 
|  | *  Set at the beiginning and cleared at the end of interception/PLE handler. | 
|  | * | 
|  | *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get | 
|  | *  chance last time (mostly it has become eligible now since we have probably | 
|  | *  yielded to lockholder in last iteration. This is done by toggling | 
|  | *  @dy_eligible each time a VCPU checked for eligibility.) | 
|  | * | 
|  | *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding | 
|  | *  to preempted lock-holder could result in wrong VCPU selection and CPU | 
|  | *  burning. Giving priority for a potential lock-holder increases lock | 
|  | *  progress. | 
|  | * | 
|  | *  Since algorithm is based on heuristics, accessing another VCPU data without | 
|  | *  locking does not harm. It may result in trying to yield to  same VCPU, fail | 
|  | *  and continue with next VCPU and so on. | 
|  | */ | 
|  | static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT | 
|  | bool eligible; | 
|  |  | 
|  | eligible = !vcpu->spin_loop.in_spin_loop || | 
|  | vcpu->spin_loop.dy_eligible; | 
|  |  | 
|  | if (vcpu->spin_loop.in_spin_loop) | 
|  | kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); | 
|  |  | 
|  | return eligible; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void kvm_vcpu_on_spin(struct kvm_vcpu *me) | 
|  | { | 
|  | struct kvm *kvm = me->kvm; | 
|  | struct kvm_vcpu *vcpu; | 
|  | int last_boosted_vcpu = me->kvm->last_boosted_vcpu; | 
|  | int yielded = 0; | 
|  | int try = 3; | 
|  | int pass; | 
|  | int i; | 
|  |  | 
|  | kvm_vcpu_set_in_spin_loop(me, true); | 
|  | /* | 
|  | * We boost the priority of a VCPU that is runnable but not | 
|  | * currently running, because it got preempted by something | 
|  | * else and called schedule in __vcpu_run.  Hopefully that | 
|  | * VCPU is holding the lock that we need and will release it. | 
|  | * We approximate round-robin by starting at the last boosted VCPU. | 
|  | */ | 
|  | for (pass = 0; pass < 2 && !yielded && try; pass++) { | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | if (!pass && i <= last_boosted_vcpu) { | 
|  | i = last_boosted_vcpu; | 
|  | continue; | 
|  | } else if (pass && i > last_boosted_vcpu) | 
|  | break; | 
|  | if (!ACCESS_ONCE(vcpu->preempted)) | 
|  | continue; | 
|  | if (vcpu == me) | 
|  | continue; | 
|  | if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) | 
|  | continue; | 
|  | if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) | 
|  | continue; | 
|  |  | 
|  | yielded = kvm_vcpu_yield_to(vcpu); | 
|  | if (yielded > 0) { | 
|  | kvm->last_boosted_vcpu = i; | 
|  | break; | 
|  | } else if (yielded < 0) { | 
|  | try--; | 
|  | if (!try) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | kvm_vcpu_set_in_spin_loop(me, false); | 
|  |  | 
|  | /* Ensure vcpu is not eligible during next spinloop */ | 
|  | kvm_vcpu_set_dy_eligible(me, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); | 
|  |  | 
|  | static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = vma->vm_file->private_data; | 
|  | struct page *page; | 
|  |  | 
|  | if (vmf->pgoff == 0) | 
|  | page = virt_to_page(vcpu->run); | 
|  | #ifdef CONFIG_X86 | 
|  | else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) | 
|  | page = virt_to_page(vcpu->arch.pio_data); | 
|  | #endif | 
|  | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET | 
|  | else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) | 
|  | page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); | 
|  | #endif | 
|  | else | 
|  | return kvm_arch_vcpu_fault(vcpu, vmf); | 
|  | get_page(page); | 
|  | vmf->page = page; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct kvm_vcpu_vm_ops = { | 
|  | .fault = kvm_vcpu_fault, | 
|  | }; | 
|  |  | 
|  | static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | vma->vm_ops = &kvm_vcpu_vm_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_release(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = filp->private_data; | 
|  |  | 
|  | kvm_put_kvm(vcpu->kvm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct file_operations kvm_vcpu_fops = { | 
|  | .release        = kvm_vcpu_release, | 
|  | .unlocked_ioctl = kvm_vcpu_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl   = kvm_vcpu_compat_ioctl, | 
|  | #endif | 
|  | .mmap           = kvm_vcpu_mmap, | 
|  | .llseek		= noop_llseek, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Allocates an inode for the vcpu. | 
|  | */ | 
|  | static int create_vcpu_fd(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Creates some virtual cpus.  Good luck creating more than one. | 
|  | */ | 
|  | static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) | 
|  | { | 
|  | int r; | 
|  | struct kvm_vcpu *vcpu, *v; | 
|  |  | 
|  | if (id >= KVM_MAX_VCPUS) | 
|  | return -EINVAL; | 
|  |  | 
|  | vcpu = kvm_arch_vcpu_create(kvm, id); | 
|  | if (IS_ERR(vcpu)) | 
|  | return PTR_ERR(vcpu); | 
|  |  | 
|  | preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); | 
|  |  | 
|  | r = kvm_arch_vcpu_setup(vcpu); | 
|  | if (r) | 
|  | goto vcpu_destroy; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  | if (!kvm_vcpu_compatible(vcpu)) { | 
|  | r = -EINVAL; | 
|  | goto unlock_vcpu_destroy; | 
|  | } | 
|  | if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { | 
|  | r = -EINVAL; | 
|  | goto unlock_vcpu_destroy; | 
|  | } | 
|  |  | 
|  | kvm_for_each_vcpu(r, v, kvm) | 
|  | if (v->vcpu_id == id) { | 
|  | r = -EEXIST; | 
|  | goto unlock_vcpu_destroy; | 
|  | } | 
|  |  | 
|  | BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); | 
|  |  | 
|  | /* Now it's all set up, let userspace reach it */ | 
|  | kvm_get_kvm(kvm); | 
|  | r = create_vcpu_fd(vcpu); | 
|  | if (r < 0) { | 
|  | kvm_put_kvm(kvm); | 
|  | goto unlock_vcpu_destroy; | 
|  | } | 
|  |  | 
|  | kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; | 
|  | smp_wmb(); | 
|  | atomic_inc(&kvm->online_vcpus); | 
|  |  | 
|  | mutex_unlock(&kvm->lock); | 
|  | kvm_arch_vcpu_postcreate(vcpu); | 
|  | return r; | 
|  |  | 
|  | unlock_vcpu_destroy: | 
|  | mutex_unlock(&kvm->lock); | 
|  | vcpu_destroy: | 
|  | kvm_arch_vcpu_destroy(vcpu); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) | 
|  | { | 
|  | if (sigset) { | 
|  | sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
|  | vcpu->sigset_active = 1; | 
|  | vcpu->sigset = *sigset; | 
|  | } else | 
|  | vcpu->sigset_active = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long kvm_vcpu_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = filp->private_data; | 
|  | void __user *argp = (void __user *)arg; | 
|  | int r; | 
|  | struct kvm_fpu *fpu = NULL; | 
|  | struct kvm_sregs *kvm_sregs = NULL; | 
|  |  | 
|  | if (vcpu->kvm->mm != current->mm) | 
|  | return -EIO; | 
|  |  | 
|  | if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) | 
|  | return -EINVAL; | 
|  |  | 
|  | #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) | 
|  | /* | 
|  | * Special cases: vcpu ioctls that are asynchronous to vcpu execution, | 
|  | * so vcpu_load() would break it. | 
|  | */ | 
|  | if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) | 
|  | return kvm_arch_vcpu_ioctl(filp, ioctl, arg); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | r = vcpu_load(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  | switch (ioctl) { | 
|  | case KVM_RUN: | 
|  | r = -EINVAL; | 
|  | if (arg) | 
|  | goto out; | 
|  | r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); | 
|  | trace_kvm_userspace_exit(vcpu->run->exit_reason, r); | 
|  | break; | 
|  | case KVM_GET_REGS: { | 
|  | struct kvm_regs *kvm_regs; | 
|  |  | 
|  | r = -ENOMEM; | 
|  | kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); | 
|  | if (!kvm_regs) | 
|  | goto out; | 
|  | r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); | 
|  | if (r) | 
|  | goto out_free1; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) | 
|  | goto out_free1; | 
|  | r = 0; | 
|  | out_free1: | 
|  | kfree(kvm_regs); | 
|  | break; | 
|  | } | 
|  | case KVM_SET_REGS: { | 
|  | struct kvm_regs *kvm_regs; | 
|  |  | 
|  | r = -ENOMEM; | 
|  | kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); | 
|  | if (IS_ERR(kvm_regs)) { | 
|  | r = PTR_ERR(kvm_regs); | 
|  | goto out; | 
|  | } | 
|  | r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); | 
|  | kfree(kvm_regs); | 
|  | break; | 
|  | } | 
|  | case KVM_GET_SREGS: { | 
|  | kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); | 
|  | r = -ENOMEM; | 
|  | if (!kvm_sregs) | 
|  | goto out; | 
|  | r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); | 
|  | if (r) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_SET_SREGS: { | 
|  | kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); | 
|  | if (IS_ERR(kvm_sregs)) { | 
|  | r = PTR_ERR(kvm_sregs); | 
|  | kvm_sregs = NULL; | 
|  | goto out; | 
|  | } | 
|  | r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); | 
|  | break; | 
|  | } | 
|  | case KVM_GET_MP_STATE: { | 
|  | struct kvm_mp_state mp_state; | 
|  |  | 
|  | r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); | 
|  | if (r) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(argp, &mp_state, sizeof mp_state)) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_SET_MP_STATE: { | 
|  | struct kvm_mp_state mp_state; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&mp_state, argp, sizeof mp_state)) | 
|  | goto out; | 
|  | r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); | 
|  | break; | 
|  | } | 
|  | case KVM_TRANSLATE: { | 
|  | struct kvm_translation tr; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&tr, argp, sizeof tr)) | 
|  | goto out; | 
|  | r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); | 
|  | if (r) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(argp, &tr, sizeof tr)) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_SET_GUEST_DEBUG: { | 
|  | struct kvm_guest_debug dbg; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&dbg, argp, sizeof dbg)) | 
|  | goto out; | 
|  | r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); | 
|  | break; | 
|  | } | 
|  | case KVM_SET_SIGNAL_MASK: { | 
|  | struct kvm_signal_mask __user *sigmask_arg = argp; | 
|  | struct kvm_signal_mask kvm_sigmask; | 
|  | sigset_t sigset, *p; | 
|  |  | 
|  | p = NULL; | 
|  | if (argp) { | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&kvm_sigmask, argp, | 
|  | sizeof kvm_sigmask)) | 
|  | goto out; | 
|  | r = -EINVAL; | 
|  | if (kvm_sigmask.len != sizeof sigset) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&sigset, sigmask_arg->sigset, | 
|  | sizeof sigset)) | 
|  | goto out; | 
|  | p = &sigset; | 
|  | } | 
|  | r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); | 
|  | break; | 
|  | } | 
|  | case KVM_GET_FPU: { | 
|  | fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); | 
|  | r = -ENOMEM; | 
|  | if (!fpu) | 
|  | goto out; | 
|  | r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); | 
|  | if (r) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) | 
|  | goto out; | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_SET_FPU: { | 
|  | fpu = memdup_user(argp, sizeof(*fpu)); | 
|  | if (IS_ERR(fpu)) { | 
|  | r = PTR_ERR(fpu); | 
|  | fpu = NULL; | 
|  | goto out; | 
|  | } | 
|  | r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); | 
|  | } | 
|  | out: | 
|  | vcpu_put(vcpu); | 
|  | kfree(fpu); | 
|  | kfree(kvm_sregs); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | static long kvm_vcpu_compat_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = filp->private_data; | 
|  | void __user *argp = compat_ptr(arg); | 
|  | int r; | 
|  |  | 
|  | if (vcpu->kvm->mm != current->mm) | 
|  | return -EIO; | 
|  |  | 
|  | switch (ioctl) { | 
|  | case KVM_SET_SIGNAL_MASK: { | 
|  | struct kvm_signal_mask __user *sigmask_arg = argp; | 
|  | struct kvm_signal_mask kvm_sigmask; | 
|  | compat_sigset_t csigset; | 
|  | sigset_t sigset; | 
|  |  | 
|  | if (argp) { | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&kvm_sigmask, argp, | 
|  | sizeof kvm_sigmask)) | 
|  | goto out; | 
|  | r = -EINVAL; | 
|  | if (kvm_sigmask.len != sizeof csigset) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&csigset, sigmask_arg->sigset, | 
|  | sizeof csigset)) | 
|  | goto out; | 
|  | sigset_from_compat(&sigset, &csigset); | 
|  | r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); | 
|  | } else | 
|  | r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | r = kvm_vcpu_ioctl(filp, ioctl, arg); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int kvm_device_ioctl_attr(struct kvm_device *dev, | 
|  | int (*accessor)(struct kvm_device *dev, | 
|  | struct kvm_device_attr *attr), | 
|  | unsigned long arg) | 
|  | { | 
|  | struct kvm_device_attr attr; | 
|  |  | 
|  | if (!accessor) | 
|  | return -EPERM; | 
|  |  | 
|  | if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return accessor(dev, &attr); | 
|  | } | 
|  |  | 
|  | static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, | 
|  | unsigned long arg) | 
|  | { | 
|  | struct kvm_device *dev = filp->private_data; | 
|  |  | 
|  | switch (ioctl) { | 
|  | case KVM_SET_DEVICE_ATTR: | 
|  | return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); | 
|  | case KVM_GET_DEVICE_ATTR: | 
|  | return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); | 
|  | case KVM_HAS_DEVICE_ATTR: | 
|  | return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); | 
|  | default: | 
|  | if (dev->ops->ioctl) | 
|  | return dev->ops->ioctl(dev, ioctl, arg); | 
|  |  | 
|  | return -ENOTTY; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_device_release(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct kvm_device *dev = filp->private_data; | 
|  | struct kvm *kvm = dev->kvm; | 
|  |  | 
|  | kvm_put_kvm(kvm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations kvm_device_fops = { | 
|  | .unlocked_ioctl = kvm_device_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl = kvm_device_ioctl, | 
|  | #endif | 
|  | .release = kvm_device_release, | 
|  | }; | 
|  |  | 
|  | struct kvm_device *kvm_device_from_filp(struct file *filp) | 
|  | { | 
|  | if (filp->f_op != &kvm_device_fops) | 
|  | return NULL; | 
|  |  | 
|  | return filp->private_data; | 
|  | } | 
|  |  | 
|  | static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { | 
|  | #ifdef CONFIG_KVM_MPIC | 
|  | [KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops, | 
|  | [KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops, | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_KVM_XICS | 
|  | [KVM_DEV_TYPE_XICS]		= &kvm_xics_ops, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) | 
|  | { | 
|  | if (type >= ARRAY_SIZE(kvm_device_ops_table)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | if (kvm_device_ops_table[type] != NULL) | 
|  | return -EEXIST; | 
|  |  | 
|  | kvm_device_ops_table[type] = ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_unregister_device_ops(u32 type) | 
|  | { | 
|  | if (kvm_device_ops_table[type] != NULL) | 
|  | kvm_device_ops_table[type] = NULL; | 
|  | } | 
|  |  | 
|  | static int kvm_ioctl_create_device(struct kvm *kvm, | 
|  | struct kvm_create_device *cd) | 
|  | { | 
|  | struct kvm_device_ops *ops = NULL; | 
|  | struct kvm_device *dev; | 
|  | bool test = cd->flags & KVM_CREATE_DEVICE_TEST; | 
|  | int ret; | 
|  |  | 
|  | if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) | 
|  | return -ENODEV; | 
|  |  | 
|  | ops = kvm_device_ops_table[cd->type]; | 
|  | if (ops == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (test) | 
|  | return 0; | 
|  |  | 
|  | dev = kzalloc(sizeof(*dev), GFP_KERNEL); | 
|  | if (!dev) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dev->ops = ops; | 
|  | dev->kvm = kvm; | 
|  |  | 
|  | ret = ops->create(dev, cd->type); | 
|  | if (ret < 0) { | 
|  | kfree(dev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); | 
|  | if (ret < 0) { | 
|  | ops->destroy(dev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | list_add(&dev->vm_node, &kvm->devices); | 
|  | kvm_get_kvm(kvm); | 
|  | cd->fd = ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) | 
|  | { | 
|  | switch (arg) { | 
|  | case KVM_CAP_USER_MEMORY: | 
|  | case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: | 
|  | case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: | 
|  | #ifdef CONFIG_KVM_APIC_ARCHITECTURE | 
|  | case KVM_CAP_SET_BOOT_CPU_ID: | 
|  | #endif | 
|  | case KVM_CAP_INTERNAL_ERROR_DATA: | 
|  | #ifdef CONFIG_HAVE_KVM_MSI | 
|  | case KVM_CAP_SIGNAL_MSI: | 
|  | #endif | 
|  | #ifdef CONFIG_HAVE_KVM_IRQFD | 
|  | case KVM_CAP_IRQFD_RESAMPLE: | 
|  | #endif | 
|  | case KVM_CAP_CHECK_EXTENSION_VM: | 
|  | return 1; | 
|  | #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING | 
|  | case KVM_CAP_IRQ_ROUTING: | 
|  | return KVM_MAX_IRQ_ROUTES; | 
|  | #endif | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return kvm_vm_ioctl_check_extension(kvm, arg); | 
|  | } | 
|  |  | 
|  | static long kvm_vm_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | struct kvm *kvm = filp->private_data; | 
|  | void __user *argp = (void __user *)arg; | 
|  | int r; | 
|  |  | 
|  | if (kvm->mm != current->mm) | 
|  | return -EIO; | 
|  | switch (ioctl) { | 
|  | case KVM_CREATE_VCPU: | 
|  | r = kvm_vm_ioctl_create_vcpu(kvm, arg); | 
|  | break; | 
|  | case KVM_SET_USER_MEMORY_REGION: { | 
|  | struct kvm_userspace_memory_region kvm_userspace_mem; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&kvm_userspace_mem, argp, | 
|  | sizeof kvm_userspace_mem)) | 
|  | goto out; | 
|  |  | 
|  | r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); | 
|  | break; | 
|  | } | 
|  | case KVM_GET_DIRTY_LOG: { | 
|  | struct kvm_dirty_log log; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&log, argp, sizeof log)) | 
|  | goto out; | 
|  | r = kvm_vm_ioctl_get_dirty_log(kvm, &log); | 
|  | break; | 
|  | } | 
|  | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET | 
|  | case KVM_REGISTER_COALESCED_MMIO: { | 
|  | struct kvm_coalesced_mmio_zone zone; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&zone, argp, sizeof zone)) | 
|  | goto out; | 
|  | r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); | 
|  | break; | 
|  | } | 
|  | case KVM_UNREGISTER_COALESCED_MMIO: { | 
|  | struct kvm_coalesced_mmio_zone zone; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&zone, argp, sizeof zone)) | 
|  | goto out; | 
|  | r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | case KVM_IRQFD: { | 
|  | struct kvm_irqfd data; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&data, argp, sizeof data)) | 
|  | goto out; | 
|  | r = kvm_irqfd(kvm, &data); | 
|  | break; | 
|  | } | 
|  | case KVM_IOEVENTFD: { | 
|  | struct kvm_ioeventfd data; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&data, argp, sizeof data)) | 
|  | goto out; | 
|  | r = kvm_ioeventfd(kvm, &data); | 
|  | break; | 
|  | } | 
|  | #ifdef CONFIG_KVM_APIC_ARCHITECTURE | 
|  | case KVM_SET_BOOT_CPU_ID: | 
|  | r = 0; | 
|  | mutex_lock(&kvm->lock); | 
|  | if (atomic_read(&kvm->online_vcpus) != 0) | 
|  | r = -EBUSY; | 
|  | else | 
|  | kvm->bsp_vcpu_id = arg; | 
|  | mutex_unlock(&kvm->lock); | 
|  | break; | 
|  | #endif | 
|  | #ifdef CONFIG_HAVE_KVM_MSI | 
|  | case KVM_SIGNAL_MSI: { | 
|  | struct kvm_msi msi; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&msi, argp, sizeof msi)) | 
|  | goto out; | 
|  | r = kvm_send_userspace_msi(kvm, &msi); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | #ifdef __KVM_HAVE_IRQ_LINE | 
|  | case KVM_IRQ_LINE_STATUS: | 
|  | case KVM_IRQ_LINE: { | 
|  | struct kvm_irq_level irq_event; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&irq_event, argp, sizeof irq_event)) | 
|  | goto out; | 
|  |  | 
|  | r = kvm_vm_ioctl_irq_line(kvm, &irq_event, | 
|  | ioctl == KVM_IRQ_LINE_STATUS); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (ioctl == KVM_IRQ_LINE_STATUS) { | 
|  | if (copy_to_user(argp, &irq_event, sizeof irq_event)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING | 
|  | case KVM_SET_GSI_ROUTING: { | 
|  | struct kvm_irq_routing routing; | 
|  | struct kvm_irq_routing __user *urouting; | 
|  | struct kvm_irq_routing_entry *entries; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&routing, argp, sizeof(routing))) | 
|  | goto out; | 
|  | r = -EINVAL; | 
|  | if (routing.nr >= KVM_MAX_IRQ_ROUTES) | 
|  | goto out; | 
|  | if (routing.flags) | 
|  | goto out; | 
|  | r = -ENOMEM; | 
|  | entries = vmalloc(routing.nr * sizeof(*entries)); | 
|  | if (!entries) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | urouting = argp; | 
|  | if (copy_from_user(entries, urouting->entries, | 
|  | routing.nr * sizeof(*entries))) | 
|  | goto out_free_irq_routing; | 
|  | r = kvm_set_irq_routing(kvm, entries, routing.nr, | 
|  | routing.flags); | 
|  | out_free_irq_routing: | 
|  | vfree(entries); | 
|  | break; | 
|  | } | 
|  | #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ | 
|  | case KVM_CREATE_DEVICE: { | 
|  | struct kvm_create_device cd; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&cd, argp, sizeof(cd))) | 
|  | goto out; | 
|  |  | 
|  | r = kvm_ioctl_create_device(kvm, &cd); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(argp, &cd, sizeof(cd))) | 
|  | goto out; | 
|  |  | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  | case KVM_CHECK_EXTENSION: | 
|  | r = kvm_vm_ioctl_check_extension_generic(kvm, arg); | 
|  | break; | 
|  | default: | 
|  | r = kvm_arch_vm_ioctl(filp, ioctl, arg); | 
|  | if (r == -ENOTTY) | 
|  | r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); | 
|  | } | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | struct compat_kvm_dirty_log { | 
|  | __u32 slot; | 
|  | __u32 padding1; | 
|  | union { | 
|  | compat_uptr_t dirty_bitmap; /* one bit per page */ | 
|  | __u64 padding2; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | static long kvm_vm_compat_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | struct kvm *kvm = filp->private_data; | 
|  | int r; | 
|  |  | 
|  | if (kvm->mm != current->mm) | 
|  | return -EIO; | 
|  | switch (ioctl) { | 
|  | case KVM_GET_DIRTY_LOG: { | 
|  | struct compat_kvm_dirty_log compat_log; | 
|  | struct kvm_dirty_log log; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&compat_log, (void __user *)arg, | 
|  | sizeof(compat_log))) | 
|  | goto out; | 
|  | log.slot	 = compat_log.slot; | 
|  | log.padding1	 = compat_log.padding1; | 
|  | log.padding2	 = compat_log.padding2; | 
|  | log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); | 
|  |  | 
|  | r = kvm_vm_ioctl_get_dirty_log(kvm, &log); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | r = kvm_vm_ioctl(filp, ioctl, arg); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct file_operations kvm_vm_fops = { | 
|  | .release        = kvm_vm_release, | 
|  | .unlocked_ioctl = kvm_vm_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl   = kvm_vm_compat_ioctl, | 
|  | #endif | 
|  | .llseek		= noop_llseek, | 
|  | }; | 
|  |  | 
|  | static int kvm_dev_ioctl_create_vm(unsigned long type) | 
|  | { | 
|  | int r; | 
|  | struct kvm *kvm; | 
|  |  | 
|  | kvm = kvm_create_vm(type); | 
|  | if (IS_ERR(kvm)) | 
|  | return PTR_ERR(kvm); | 
|  | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET | 
|  | r = kvm_coalesced_mmio_init(kvm); | 
|  | if (r < 0) { | 
|  | kvm_put_kvm(kvm); | 
|  | return r; | 
|  | } | 
|  | #endif | 
|  | r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); | 
|  | if (r < 0) | 
|  | kvm_put_kvm(kvm); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static long kvm_dev_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | long r = -EINVAL; | 
|  |  | 
|  | switch (ioctl) { | 
|  | case KVM_GET_API_VERSION: | 
|  | if (arg) | 
|  | goto out; | 
|  | r = KVM_API_VERSION; | 
|  | break; | 
|  | case KVM_CREATE_VM: | 
|  | r = kvm_dev_ioctl_create_vm(arg); | 
|  | break; | 
|  | case KVM_CHECK_EXTENSION: | 
|  | r = kvm_vm_ioctl_check_extension_generic(NULL, arg); | 
|  | break; | 
|  | case KVM_GET_VCPU_MMAP_SIZE: | 
|  | if (arg) | 
|  | goto out; | 
|  | r = PAGE_SIZE;     /* struct kvm_run */ | 
|  | #ifdef CONFIG_X86 | 
|  | r += PAGE_SIZE;    /* pio data page */ | 
|  | #endif | 
|  | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET | 
|  | r += PAGE_SIZE;    /* coalesced mmio ring page */ | 
|  | #endif | 
|  | break; | 
|  | case KVM_TRACE_ENABLE: | 
|  | case KVM_TRACE_PAUSE: | 
|  | case KVM_TRACE_DISABLE: | 
|  | r = -EOPNOTSUPP; | 
|  | break; | 
|  | default: | 
|  | return kvm_arch_dev_ioctl(filp, ioctl, arg); | 
|  | } | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static struct file_operations kvm_chardev_ops = { | 
|  | .unlocked_ioctl = kvm_dev_ioctl, | 
|  | .compat_ioctl   = kvm_dev_ioctl, | 
|  | .llseek		= noop_llseek, | 
|  | }; | 
|  |  | 
|  | static struct miscdevice kvm_dev = { | 
|  | KVM_MINOR, | 
|  | "kvm", | 
|  | &kvm_chardev_ops, | 
|  | }; | 
|  |  | 
|  | static void hardware_enable_nolock(void *junk) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  | int r; | 
|  |  | 
|  | if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) | 
|  | return; | 
|  |  | 
|  | cpumask_set_cpu(cpu, cpus_hardware_enabled); | 
|  |  | 
|  | r = kvm_arch_hardware_enable(); | 
|  |  | 
|  | if (r) { | 
|  | cpumask_clear_cpu(cpu, cpus_hardware_enabled); | 
|  | atomic_inc(&hardware_enable_failed); | 
|  | printk(KERN_INFO "kvm: enabling virtualization on " | 
|  | "CPU%d failed\n", cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hardware_enable(void) | 
|  | { | 
|  | raw_spin_lock(&kvm_count_lock); | 
|  | if (kvm_usage_count) | 
|  | hardware_enable_nolock(NULL); | 
|  | raw_spin_unlock(&kvm_count_lock); | 
|  | } | 
|  |  | 
|  | static void hardware_disable_nolock(void *junk) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) | 
|  | return; | 
|  | cpumask_clear_cpu(cpu, cpus_hardware_enabled); | 
|  | kvm_arch_hardware_disable(); | 
|  | } | 
|  |  | 
|  | static void hardware_disable(void) | 
|  | { | 
|  | raw_spin_lock(&kvm_count_lock); | 
|  | if (kvm_usage_count) | 
|  | hardware_disable_nolock(NULL); | 
|  | raw_spin_unlock(&kvm_count_lock); | 
|  | } | 
|  |  | 
|  | static void hardware_disable_all_nolock(void) | 
|  | { | 
|  | BUG_ON(!kvm_usage_count); | 
|  |  | 
|  | kvm_usage_count--; | 
|  | if (!kvm_usage_count) | 
|  | on_each_cpu(hardware_disable_nolock, NULL, 1); | 
|  | } | 
|  |  | 
|  | static void hardware_disable_all(void) | 
|  | { | 
|  | raw_spin_lock(&kvm_count_lock); | 
|  | hardware_disable_all_nolock(); | 
|  | raw_spin_unlock(&kvm_count_lock); | 
|  | } | 
|  |  | 
|  | static int hardware_enable_all(void) | 
|  | { | 
|  | int r = 0; | 
|  |  | 
|  | raw_spin_lock(&kvm_count_lock); | 
|  |  | 
|  | kvm_usage_count++; | 
|  | if (kvm_usage_count == 1) { | 
|  | atomic_set(&hardware_enable_failed, 0); | 
|  | on_each_cpu(hardware_enable_nolock, NULL, 1); | 
|  |  | 
|  | if (atomic_read(&hardware_enable_failed)) { | 
|  | hardware_disable_all_nolock(); | 
|  | r = -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | raw_spin_unlock(&kvm_count_lock); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, | 
|  | void *v) | 
|  | { | 
|  | int cpu = (long)v; | 
|  |  | 
|  | val &= ~CPU_TASKS_FROZEN; | 
|  | switch (val) { | 
|  | case CPU_DYING: | 
|  | printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", | 
|  | cpu); | 
|  | hardware_disable(); | 
|  | break; | 
|  | case CPU_STARTING: | 
|  | printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", | 
|  | cpu); | 
|  | hardware_enable(); | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static int kvm_reboot(struct notifier_block *notifier, unsigned long val, | 
|  | void *v) | 
|  | { | 
|  | /* | 
|  | * Some (well, at least mine) BIOSes hang on reboot if | 
|  | * in vmx root mode. | 
|  | * | 
|  | * And Intel TXT required VMX off for all cpu when system shutdown. | 
|  | */ | 
|  | printk(KERN_INFO "kvm: exiting hardware virtualization\n"); | 
|  | kvm_rebooting = true; | 
|  | on_each_cpu(hardware_disable_nolock, NULL, 1); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block kvm_reboot_notifier = { | 
|  | .notifier_call = kvm_reboot, | 
|  | .priority = 0, | 
|  | }; | 
|  |  | 
|  | static void kvm_io_bus_destroy(struct kvm_io_bus *bus) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < bus->dev_count; i++) { | 
|  | struct kvm_io_device *pos = bus->range[i].dev; | 
|  |  | 
|  | kvm_iodevice_destructor(pos); | 
|  | } | 
|  | kfree(bus); | 
|  | } | 
|  |  | 
|  | static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, | 
|  | const struct kvm_io_range *r2) | 
|  | { | 
|  | if (r1->addr < r2->addr) | 
|  | return -1; | 
|  | if (r1->addr + r1->len > r2->addr + r2->len) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) | 
|  | { | 
|  | return kvm_io_bus_cmp(p1, p2); | 
|  | } | 
|  |  | 
|  | static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, | 
|  | gpa_t addr, int len) | 
|  | { | 
|  | bus->range[bus->dev_count++] = (struct kvm_io_range) { | 
|  | .addr = addr, | 
|  | .len = len, | 
|  | .dev = dev, | 
|  | }; | 
|  |  | 
|  | sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), | 
|  | kvm_io_bus_sort_cmp, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, | 
|  | gpa_t addr, int len) | 
|  | { | 
|  | struct kvm_io_range *range, key; | 
|  | int off; | 
|  |  | 
|  | key = (struct kvm_io_range) { | 
|  | .addr = addr, | 
|  | .len = len, | 
|  | }; | 
|  |  | 
|  | range = bsearch(&key, bus->range, bus->dev_count, | 
|  | sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); | 
|  | if (range == NULL) | 
|  | return -ENOENT; | 
|  |  | 
|  | off = range - bus->range; | 
|  |  | 
|  | while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) | 
|  | off--; | 
|  |  | 
|  | return off; | 
|  | } | 
|  |  | 
|  | static int __kvm_io_bus_write(struct kvm_io_bus *bus, | 
|  | struct kvm_io_range *range, const void *val) | 
|  | { | 
|  | int idx; | 
|  |  | 
|  | idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); | 
|  | if (idx < 0) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | while (idx < bus->dev_count && | 
|  | kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { | 
|  | if (!kvm_iodevice_write(bus->range[idx].dev, range->addr, | 
|  | range->len, val)) | 
|  | return idx; | 
|  | idx++; | 
|  | } | 
|  |  | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /* kvm_io_bus_write - called under kvm->slots_lock */ | 
|  | int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, | 
|  | int len, const void *val) | 
|  | { | 
|  | struct kvm_io_bus *bus; | 
|  | struct kvm_io_range range; | 
|  | int r; | 
|  |  | 
|  | range = (struct kvm_io_range) { | 
|  | .addr = addr, | 
|  | .len = len, | 
|  | }; | 
|  |  | 
|  | bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); | 
|  | r = __kvm_io_bus_write(bus, &range, val); | 
|  | return r < 0 ? r : 0; | 
|  | } | 
|  |  | 
|  | /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ | 
|  | int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, | 
|  | int len, const void *val, long cookie) | 
|  | { | 
|  | struct kvm_io_bus *bus; | 
|  | struct kvm_io_range range; | 
|  |  | 
|  | range = (struct kvm_io_range) { | 
|  | .addr = addr, | 
|  | .len = len, | 
|  | }; | 
|  |  | 
|  | bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); | 
|  |  | 
|  | /* First try the device referenced by cookie. */ | 
|  | if ((cookie >= 0) && (cookie < bus->dev_count) && | 
|  | (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) | 
|  | if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len, | 
|  | val)) | 
|  | return cookie; | 
|  |  | 
|  | /* | 
|  | * cookie contained garbage; fall back to search and return the | 
|  | * correct cookie value. | 
|  | */ | 
|  | return __kvm_io_bus_write(bus, &range, val); | 
|  | } | 
|  |  | 
|  | static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range, | 
|  | void *val) | 
|  | { | 
|  | int idx; | 
|  |  | 
|  | idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); | 
|  | if (idx < 0) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | while (idx < bus->dev_count && | 
|  | kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { | 
|  | if (!kvm_iodevice_read(bus->range[idx].dev, range->addr, | 
|  | range->len, val)) | 
|  | return idx; | 
|  | idx++; | 
|  | } | 
|  |  | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_io_bus_write); | 
|  |  | 
|  | /* kvm_io_bus_read - called under kvm->slots_lock */ | 
|  | int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, | 
|  | int len, void *val) | 
|  | { | 
|  | struct kvm_io_bus *bus; | 
|  | struct kvm_io_range range; | 
|  | int r; | 
|  |  | 
|  | range = (struct kvm_io_range) { | 
|  | .addr = addr, | 
|  | .len = len, | 
|  | }; | 
|  |  | 
|  | bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); | 
|  | r = __kvm_io_bus_read(bus, &range, val); | 
|  | return r < 0 ? r : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Caller must hold slots_lock. */ | 
|  | int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, | 
|  | int len, struct kvm_io_device *dev) | 
|  | { | 
|  | struct kvm_io_bus *new_bus, *bus; | 
|  |  | 
|  | bus = kvm->buses[bus_idx]; | 
|  | /* exclude ioeventfd which is limited by maximum fd */ | 
|  | if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) | 
|  | return -ENOSPC; | 
|  |  | 
|  | new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * | 
|  | sizeof(struct kvm_io_range)), GFP_KERNEL); | 
|  | if (!new_bus) | 
|  | return -ENOMEM; | 
|  | memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * | 
|  | sizeof(struct kvm_io_range))); | 
|  | kvm_io_bus_insert_dev(new_bus, dev, addr, len); | 
|  | rcu_assign_pointer(kvm->buses[bus_idx], new_bus); | 
|  | synchronize_srcu_expedited(&kvm->srcu); | 
|  | kfree(bus); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Caller must hold slots_lock. */ | 
|  | int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, | 
|  | struct kvm_io_device *dev) | 
|  | { | 
|  | int i, r; | 
|  | struct kvm_io_bus *new_bus, *bus; | 
|  |  | 
|  | bus = kvm->buses[bus_idx]; | 
|  | r = -ENOENT; | 
|  | for (i = 0; i < bus->dev_count; i++) | 
|  | if (bus->range[i].dev == dev) { | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * | 
|  | sizeof(struct kvm_io_range)), GFP_KERNEL); | 
|  | if (!new_bus) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); | 
|  | new_bus->dev_count--; | 
|  | memcpy(new_bus->range + i, bus->range + i + 1, | 
|  | (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); | 
|  |  | 
|  | rcu_assign_pointer(kvm->buses[bus_idx], new_bus); | 
|  | synchronize_srcu_expedited(&kvm->srcu); | 
|  | kfree(bus); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static struct notifier_block kvm_cpu_notifier = { | 
|  | .notifier_call = kvm_cpu_hotplug, | 
|  | }; | 
|  |  | 
|  | static int vm_stat_get(void *_offset, u64 *val) | 
|  | { | 
|  | unsigned offset = (long)_offset; | 
|  | struct kvm *kvm; | 
|  |  | 
|  | *val = 0; | 
|  | spin_lock(&kvm_lock); | 
|  | list_for_each_entry(kvm, &vm_list, vm_list) | 
|  | *val += *(u32 *)((void *)kvm + offset); | 
|  | spin_unlock(&kvm_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); | 
|  |  | 
|  | static int vcpu_stat_get(void *_offset, u64 *val) | 
|  | { | 
|  | unsigned offset = (long)_offset; | 
|  | struct kvm *kvm; | 
|  | struct kvm_vcpu *vcpu; | 
|  | int i; | 
|  |  | 
|  | *val = 0; | 
|  | spin_lock(&kvm_lock); | 
|  | list_for_each_entry(kvm, &vm_list, vm_list) | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) | 
|  | *val += *(u32 *)((void *)vcpu + offset); | 
|  |  | 
|  | spin_unlock(&kvm_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); | 
|  |  | 
|  | static const struct file_operations *stat_fops[] = { | 
|  | [KVM_STAT_VCPU] = &vcpu_stat_fops, | 
|  | [KVM_STAT_VM]   = &vm_stat_fops, | 
|  | }; | 
|  |  | 
|  | static int kvm_init_debug(void) | 
|  | { | 
|  | int r = -EEXIST; | 
|  | struct kvm_stats_debugfs_item *p; | 
|  |  | 
|  | kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); | 
|  | if (kvm_debugfs_dir == NULL) | 
|  | goto out; | 
|  |  | 
|  | for (p = debugfs_entries; p->name; ++p) { | 
|  | p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, | 
|  | (void *)(long)p->offset, | 
|  | stat_fops[p->kind]); | 
|  | if (p->dentry == NULL) | 
|  | goto out_dir; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_dir: | 
|  | debugfs_remove_recursive(kvm_debugfs_dir); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void kvm_exit_debug(void) | 
|  | { | 
|  | struct kvm_stats_debugfs_item *p; | 
|  |  | 
|  | for (p = debugfs_entries; p->name; ++p) | 
|  | debugfs_remove(p->dentry); | 
|  | debugfs_remove(kvm_debugfs_dir); | 
|  | } | 
|  |  | 
|  | static int kvm_suspend(void) | 
|  | { | 
|  | if (kvm_usage_count) | 
|  | hardware_disable_nolock(NULL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_resume(void) | 
|  | { | 
|  | if (kvm_usage_count) { | 
|  | WARN_ON(raw_spin_is_locked(&kvm_count_lock)); | 
|  | hardware_enable_nolock(NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct syscore_ops kvm_syscore_ops = { | 
|  | .suspend = kvm_suspend, | 
|  | .resume = kvm_resume, | 
|  | }; | 
|  |  | 
|  | static inline | 
|  | struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) | 
|  | { | 
|  | return container_of(pn, struct kvm_vcpu, preempt_notifier); | 
|  | } | 
|  |  | 
|  | static void kvm_sched_in(struct preempt_notifier *pn, int cpu) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); | 
|  | if (vcpu->preempted) | 
|  | vcpu->preempted = false; | 
|  |  | 
|  | kvm_arch_sched_in(vcpu, cpu); | 
|  |  | 
|  | kvm_arch_vcpu_load(vcpu, cpu); | 
|  | } | 
|  |  | 
|  | static void kvm_sched_out(struct preempt_notifier *pn, | 
|  | struct task_struct *next) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); | 
|  |  | 
|  | if (current->state == TASK_RUNNING) | 
|  | vcpu->preempted = true; | 
|  | kvm_arch_vcpu_put(vcpu); | 
|  | } | 
|  |  | 
|  | int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, | 
|  | struct module *module) | 
|  | { | 
|  | int r; | 
|  | int cpu; | 
|  |  | 
|  | r = kvm_arch_init(opaque); | 
|  | if (r) | 
|  | goto out_fail; | 
|  |  | 
|  | /* | 
|  | * kvm_arch_init makes sure there's at most one caller | 
|  | * for architectures that support multiple implementations, | 
|  | * like intel and amd on x86. | 
|  | * kvm_arch_init must be called before kvm_irqfd_init to avoid creating | 
|  | * conflicts in case kvm is already setup for another implementation. | 
|  | */ | 
|  | r = kvm_irqfd_init(); | 
|  | if (r) | 
|  | goto out_irqfd; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { | 
|  | r = -ENOMEM; | 
|  | goto out_free_0; | 
|  | } | 
|  |  | 
|  | r = kvm_arch_hardware_setup(); | 
|  | if (r < 0) | 
|  | goto out_free_0a; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | smp_call_function_single(cpu, | 
|  | kvm_arch_check_processor_compat, | 
|  | &r, 1); | 
|  | if (r < 0) | 
|  | goto out_free_1; | 
|  | } | 
|  |  | 
|  | r = register_cpu_notifier(&kvm_cpu_notifier); | 
|  | if (r) | 
|  | goto out_free_2; | 
|  | register_reboot_notifier(&kvm_reboot_notifier); | 
|  |  | 
|  | /* A kmem cache lets us meet the alignment requirements of fx_save. */ | 
|  | if (!vcpu_align) | 
|  | vcpu_align = __alignof__(struct kvm_vcpu); | 
|  | kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, | 
|  | 0, NULL); | 
|  | if (!kvm_vcpu_cache) { | 
|  | r = -ENOMEM; | 
|  | goto out_free_3; | 
|  | } | 
|  |  | 
|  | r = kvm_async_pf_init(); | 
|  | if (r) | 
|  | goto out_free; | 
|  |  | 
|  | kvm_chardev_ops.owner = module; | 
|  | kvm_vm_fops.owner = module; | 
|  | kvm_vcpu_fops.owner = module; | 
|  |  | 
|  | r = misc_register(&kvm_dev); | 
|  | if (r) { | 
|  | printk(KERN_ERR "kvm: misc device register failed\n"); | 
|  | goto out_unreg; | 
|  | } | 
|  |  | 
|  | register_syscore_ops(&kvm_syscore_ops); | 
|  |  | 
|  | kvm_preempt_ops.sched_in = kvm_sched_in; | 
|  | kvm_preempt_ops.sched_out = kvm_sched_out; | 
|  |  | 
|  | r = kvm_init_debug(); | 
|  | if (r) { | 
|  | printk(KERN_ERR "kvm: create debugfs files failed\n"); | 
|  | goto out_undebugfs; | 
|  | } | 
|  |  | 
|  | r = kvm_vfio_ops_init(); | 
|  | WARN_ON(r); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_undebugfs: | 
|  | unregister_syscore_ops(&kvm_syscore_ops); | 
|  | misc_deregister(&kvm_dev); | 
|  | out_unreg: | 
|  | kvm_async_pf_deinit(); | 
|  | out_free: | 
|  | kmem_cache_destroy(kvm_vcpu_cache); | 
|  | out_free_3: | 
|  | unregister_reboot_notifier(&kvm_reboot_notifier); | 
|  | unregister_cpu_notifier(&kvm_cpu_notifier); | 
|  | out_free_2: | 
|  | out_free_1: | 
|  | kvm_arch_hardware_unsetup(); | 
|  | out_free_0a: | 
|  | free_cpumask_var(cpus_hardware_enabled); | 
|  | out_free_0: | 
|  | kvm_irqfd_exit(); | 
|  | out_irqfd: | 
|  | kvm_arch_exit(); | 
|  | out_fail: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_init); | 
|  |  | 
|  | void kvm_exit(void) | 
|  | { | 
|  | kvm_exit_debug(); | 
|  | misc_deregister(&kvm_dev); | 
|  | kmem_cache_destroy(kvm_vcpu_cache); | 
|  | kvm_async_pf_deinit(); | 
|  | unregister_syscore_ops(&kvm_syscore_ops); | 
|  | unregister_reboot_notifier(&kvm_reboot_notifier); | 
|  | unregister_cpu_notifier(&kvm_cpu_notifier); | 
|  | on_each_cpu(hardware_disable_nolock, NULL, 1); | 
|  | kvm_arch_hardware_unsetup(); | 
|  | kvm_arch_exit(); | 
|  | kvm_irqfd_exit(); | 
|  | free_cpumask_var(cpus_hardware_enabled); | 
|  | kvm_vfio_ops_exit(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_exit); |