|  | /* | 
|  | * Copyright © 2006-2007 Intel Corporation | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a | 
|  | * copy of this software and associated documentation files (the "Software"), | 
|  | * to deal in the Software without restriction, including without limitation | 
|  | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | * and/or sell copies of the Software, and to permit persons to whom the | 
|  | * Software is furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice (including the next | 
|  | * paragraph) shall be included in all copies or substantial portions of the | 
|  | * Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
|  | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | 
|  | * DEALINGS IN THE SOFTWARE. | 
|  | * | 
|  | * Authors: | 
|  | *	Eric Anholt <eric@anholt.net> | 
|  | */ | 
|  |  | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/input.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vgaarb.h> | 
|  | #include <drm/drm_edid.h> | 
|  | #include <drm/drmP.h> | 
|  | #include "intel_drv.h" | 
|  | #include <drm/i915_drm.h> | 
|  | #include "i915_drv.h" | 
|  | #include "i915_trace.h" | 
|  | #include <drm/drm_dp_helper.h> | 
|  | #include <drm/drm_crtc_helper.h> | 
|  | #include <drm/drm_plane_helper.h> | 
|  | #include <drm/drm_rect.h> | 
|  | #include <linux/dma_remapping.h> | 
|  |  | 
|  | /* Primary plane formats supported by all gen */ | 
|  | #define COMMON_PRIMARY_FORMATS \ | 
|  | DRM_FORMAT_C8, \ | 
|  | DRM_FORMAT_RGB565, \ | 
|  | DRM_FORMAT_XRGB8888, \ | 
|  | DRM_FORMAT_ARGB8888 | 
|  |  | 
|  | /* Primary plane formats for gen <= 3 */ | 
|  | static const uint32_t intel_primary_formats_gen2[] = { | 
|  | COMMON_PRIMARY_FORMATS, | 
|  | DRM_FORMAT_XRGB1555, | 
|  | DRM_FORMAT_ARGB1555, | 
|  | }; | 
|  |  | 
|  | /* Primary plane formats for gen >= 4 */ | 
|  | static const uint32_t intel_primary_formats_gen4[] = { | 
|  | COMMON_PRIMARY_FORMATS, \ | 
|  | DRM_FORMAT_XBGR8888, | 
|  | DRM_FORMAT_ABGR8888, | 
|  | DRM_FORMAT_XRGB2101010, | 
|  | DRM_FORMAT_ARGB2101010, | 
|  | DRM_FORMAT_XBGR2101010, | 
|  | DRM_FORMAT_ABGR2101010, | 
|  | }; | 
|  |  | 
|  | /* Cursor formats */ | 
|  | static const uint32_t intel_cursor_formats[] = { | 
|  | DRM_FORMAT_ARGB8888, | 
|  | }; | 
|  |  | 
|  | static void intel_increase_pllclock(struct drm_device *dev, | 
|  | enum pipe pipe); | 
|  | static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on); | 
|  |  | 
|  | static void i9xx_crtc_clock_get(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config); | 
|  | static void ironlake_pch_clock_get(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config); | 
|  |  | 
|  | static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode, | 
|  | int x, int y, struct drm_framebuffer *old_fb); | 
|  | static int intel_framebuffer_init(struct drm_device *dev, | 
|  | struct intel_framebuffer *ifb, | 
|  | struct drm_mode_fb_cmd2 *mode_cmd, | 
|  | struct drm_i915_gem_object *obj); | 
|  | static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc); | 
|  | static void intel_set_pipe_timings(struct intel_crtc *intel_crtc); | 
|  | static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, | 
|  | struct intel_link_m_n *m_n, | 
|  | struct intel_link_m_n *m2_n2); | 
|  | static void ironlake_set_pipeconf(struct drm_crtc *crtc); | 
|  | static void haswell_set_pipeconf(struct drm_crtc *crtc); | 
|  | static void intel_set_pipe_csc(struct drm_crtc *crtc); | 
|  | static void vlv_prepare_pll(struct intel_crtc *crtc); | 
|  | static void chv_prepare_pll(struct intel_crtc *crtc); | 
|  |  | 
|  | static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe) | 
|  | { | 
|  | if (!connector->mst_port) | 
|  | return connector->encoder; | 
|  | else | 
|  | return &connector->mst_port->mst_encoders[pipe]->base; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | int	min, max; | 
|  | } intel_range_t; | 
|  |  | 
|  | typedef struct { | 
|  | int	dot_limit; | 
|  | int	p2_slow, p2_fast; | 
|  | } intel_p2_t; | 
|  |  | 
|  | typedef struct intel_limit intel_limit_t; | 
|  | struct intel_limit { | 
|  | intel_range_t   dot, vco, n, m, m1, m2, p, p1; | 
|  | intel_p2_t	    p2; | 
|  | }; | 
|  |  | 
|  | int | 
|  | intel_pch_rawclk(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | WARN_ON(!HAS_PCH_SPLIT(dev)); | 
|  |  | 
|  | return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK; | 
|  | } | 
|  |  | 
|  | static inline u32 /* units of 100MHz */ | 
|  | intel_fdi_link_freq(struct drm_device *dev) | 
|  | { | 
|  | if (IS_GEN5(dev)) { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2; | 
|  | } else | 
|  | return 27; | 
|  | } | 
|  |  | 
|  | static const intel_limit_t intel_limits_i8xx_dac = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 908000, .max = 1512000 }, | 
|  | .n = { .min = 2, .max = 16 }, | 
|  | .m = { .min = 96, .max = 140 }, | 
|  | .m1 = { .min = 18, .max = 26 }, | 
|  | .m2 = { .min = 6, .max = 16 }, | 
|  | .p = { .min = 4, .max = 128 }, | 
|  | .p1 = { .min = 2, .max = 33 }, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 4, .p2_fast = 2 }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_i8xx_dvo = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 908000, .max = 1512000 }, | 
|  | .n = { .min = 2, .max = 16 }, | 
|  | .m = { .min = 96, .max = 140 }, | 
|  | .m1 = { .min = 18, .max = 26 }, | 
|  | .m2 = { .min = 6, .max = 16 }, | 
|  | .p = { .min = 4, .max = 128 }, | 
|  | .p1 = { .min = 2, .max = 33 }, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 4, .p2_fast = 4 }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_i8xx_lvds = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 908000, .max = 1512000 }, | 
|  | .n = { .min = 2, .max = 16 }, | 
|  | .m = { .min = 96, .max = 140 }, | 
|  | .m1 = { .min = 18, .max = 26 }, | 
|  | .m2 = { .min = 6, .max = 16 }, | 
|  | .p = { .min = 4, .max = 128 }, | 
|  | .p1 = { .min = 1, .max = 6 }, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 14, .p2_fast = 7 }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_i9xx_sdvo = { | 
|  | .dot = { .min = 20000, .max = 400000 }, | 
|  | .vco = { .min = 1400000, .max = 2800000 }, | 
|  | .n = { .min = 1, .max = 6 }, | 
|  | .m = { .min = 70, .max = 120 }, | 
|  | .m1 = { .min = 8, .max = 18 }, | 
|  | .m2 = { .min = 3, .max = 7 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 200000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_i9xx_lvds = { | 
|  | .dot = { .min = 20000, .max = 400000 }, | 
|  | .vco = { .min = 1400000, .max = 2800000 }, | 
|  | .n = { .min = 1, .max = 6 }, | 
|  | .m = { .min = 70, .max = 120 }, | 
|  | .m1 = { .min = 8, .max = 18 }, | 
|  | .m2 = { .min = 3, .max = 7 }, | 
|  | .p = { .min = 7, .max = 98 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 112000, | 
|  | .p2_slow = 14, .p2_fast = 7 }, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static const intel_limit_t intel_limits_g4x_sdvo = { | 
|  | .dot = { .min = 25000, .max = 270000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000}, | 
|  | .n = { .min = 1, .max = 4 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 17, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 10, .max = 30 }, | 
|  | .p1 = { .min = 1, .max = 3}, | 
|  | .p2 = { .dot_limit = 270000, | 
|  | .p2_slow = 10, | 
|  | .p2_fast = 10 | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_g4x_hdmi = { | 
|  | .dot = { .min = 22000, .max = 400000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000}, | 
|  | .n = { .min = 1, .max = 4 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 16, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8}, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_g4x_single_channel_lvds = { | 
|  | .dot = { .min = 20000, .max = 115000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 17, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 28, .max = 112 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 0, | 
|  | .p2_slow = 14, .p2_fast = 14 | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { | 
|  | .dot = { .min = 80000, .max = 224000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 17, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 14, .max = 42 }, | 
|  | .p1 = { .min = 2, .max = 6 }, | 
|  | .p2 = { .dot_limit = 0, | 
|  | .p2_slow = 7, .p2_fast = 7 | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_pineview_sdvo = { | 
|  | .dot = { .min = 20000, .max = 400000}, | 
|  | .vco = { .min = 1700000, .max = 3500000 }, | 
|  | /* Pineview's Ncounter is a ring counter */ | 
|  | .n = { .min = 3, .max = 6 }, | 
|  | .m = { .min = 2, .max = 256 }, | 
|  | /* Pineview only has one combined m divider, which we treat as m2. */ | 
|  | .m1 = { .min = 0, .max = 0 }, | 
|  | .m2 = { .min = 0, .max = 254 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 200000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_pineview_lvds = { | 
|  | .dot = { .min = 20000, .max = 400000 }, | 
|  | .vco = { .min = 1700000, .max = 3500000 }, | 
|  | .n = { .min = 3, .max = 6 }, | 
|  | .m = { .min = 2, .max = 256 }, | 
|  | .m1 = { .min = 0, .max = 0 }, | 
|  | .m2 = { .min = 0, .max = 254 }, | 
|  | .p = { .min = 7, .max = 112 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 112000, | 
|  | .p2_slow = 14, .p2_fast = 14 }, | 
|  | }; | 
|  |  | 
|  | /* Ironlake / Sandybridge | 
|  | * | 
|  | * We calculate clock using (register_value + 2) for N/M1/M2, so here | 
|  | * the range value for them is (actual_value - 2). | 
|  | */ | 
|  | static const intel_limit_t intel_limits_ironlake_dac = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 5 }, | 
|  | .m = { .min = 79, .max = 127 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_ironlake_single_lvds = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 79, .max = 118 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 28, .max = 112 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 14, .p2_fast = 14 }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_ironlake_dual_lvds = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 79, .max = 127 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 14, .max = 56 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 7, .p2_fast = 7 }, | 
|  | }; | 
|  |  | 
|  | /* LVDS 100mhz refclk limits. */ | 
|  | static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 2 }, | 
|  | .m = { .min = 79, .max = 126 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 28, .max = 112 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 14, .p2_fast = 14 }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 79, .max = 126 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 14, .max = 42 }, | 
|  | .p1 = { .min = 2, .max = 6 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 7, .p2_fast = 7 }, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_vlv = { | 
|  | /* | 
|  | * These are the data rate limits (measured in fast clocks) | 
|  | * since those are the strictest limits we have. The fast | 
|  | * clock and actual rate limits are more relaxed, so checking | 
|  | * them would make no difference. | 
|  | */ | 
|  | .dot = { .min = 25000 * 5, .max = 270000 * 5 }, | 
|  | .vco = { .min = 4000000, .max = 6000000 }, | 
|  | .n = { .min = 1, .max = 7 }, | 
|  | .m1 = { .min = 2, .max = 3 }, | 
|  | .m2 = { .min = 11, .max = 156 }, | 
|  | .p1 = { .min = 2, .max = 3 }, | 
|  | .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_chv = { | 
|  | /* | 
|  | * These are the data rate limits (measured in fast clocks) | 
|  | * since those are the strictest limits we have.  The fast | 
|  | * clock and actual rate limits are more relaxed, so checking | 
|  | * them would make no difference. | 
|  | */ | 
|  | .dot = { .min = 25000 * 5, .max = 540000 * 5}, | 
|  | .vco = { .min = 4860000, .max = 6700000 }, | 
|  | .n = { .min = 1, .max = 1 }, | 
|  | .m1 = { .min = 2, .max = 2 }, | 
|  | .m2 = { .min = 24 << 22, .max = 175 << 22 }, | 
|  | .p1 = { .min = 2, .max = 4 }, | 
|  | .p2 = {	.p2_slow = 1, .p2_fast = 14 }, | 
|  | }; | 
|  |  | 
|  | static void vlv_clock(int refclk, intel_clock_t *clock) | 
|  | { | 
|  | clock->m = clock->m1 * clock->m2; | 
|  | clock->p = clock->p1 * clock->p2; | 
|  | if (WARN_ON(clock->n == 0 || clock->p == 0)) | 
|  | return; | 
|  | clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); | 
|  | clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns whether any output on the specified pipe is of the specified type | 
|  | */ | 
|  | static bool intel_pipe_has_type(struct drm_crtc *crtc, int type) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_encoder *encoder; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->type == type) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc, | 
|  | int refclk) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | const intel_limit_t *limit; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_is_dual_link_lvds(dev)) { | 
|  | if (refclk == 100000) | 
|  | limit = &intel_limits_ironlake_dual_lvds_100m; | 
|  | else | 
|  | limit = &intel_limits_ironlake_dual_lvds; | 
|  | } else { | 
|  | if (refclk == 100000) | 
|  | limit = &intel_limits_ironlake_single_lvds_100m; | 
|  | else | 
|  | limit = &intel_limits_ironlake_single_lvds; | 
|  | } | 
|  | } else | 
|  | limit = &intel_limits_ironlake_dac; | 
|  |  | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | const intel_limit_t *limit; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_is_dual_link_lvds(dev)) | 
|  | limit = &intel_limits_g4x_dual_channel_lvds; | 
|  | else | 
|  | limit = &intel_limits_g4x_single_channel_lvds; | 
|  | } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) || | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { | 
|  | limit = &intel_limits_g4x_hdmi; | 
|  | } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) { | 
|  | limit = &intel_limits_g4x_sdvo; | 
|  | } else /* The option is for other outputs */ | 
|  | limit = &intel_limits_i9xx_sdvo; | 
|  |  | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | const intel_limit_t *limit; | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) | 
|  | limit = intel_ironlake_limit(crtc, refclk); | 
|  | else if (IS_G4X(dev)) { | 
|  | limit = intel_g4x_limit(crtc); | 
|  | } else if (IS_PINEVIEW(dev)) { | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) | 
|  | limit = &intel_limits_pineview_lvds; | 
|  | else | 
|  | limit = &intel_limits_pineview_sdvo; | 
|  | } else if (IS_CHERRYVIEW(dev)) { | 
|  | limit = &intel_limits_chv; | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | limit = &intel_limits_vlv; | 
|  | } else if (!IS_GEN2(dev)) { | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) | 
|  | limit = &intel_limits_i9xx_lvds; | 
|  | else | 
|  | limit = &intel_limits_i9xx_sdvo; | 
|  | } else { | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) | 
|  | limit = &intel_limits_i8xx_lvds; | 
|  | else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO)) | 
|  | limit = &intel_limits_i8xx_dvo; | 
|  | else | 
|  | limit = &intel_limits_i8xx_dac; | 
|  | } | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | /* m1 is reserved as 0 in Pineview, n is a ring counter */ | 
|  | static void pineview_clock(int refclk, intel_clock_t *clock) | 
|  | { | 
|  | clock->m = clock->m2 + 2; | 
|  | clock->p = clock->p1 * clock->p2; | 
|  | if (WARN_ON(clock->n == 0 || clock->p == 0)) | 
|  | return; | 
|  | clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); | 
|  | clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); | 
|  | } | 
|  |  | 
|  | static uint32_t i9xx_dpll_compute_m(struct dpll *dpll) | 
|  | { | 
|  | return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); | 
|  | } | 
|  |  | 
|  | static void i9xx_clock(int refclk, intel_clock_t *clock) | 
|  | { | 
|  | clock->m = i9xx_dpll_compute_m(clock); | 
|  | clock->p = clock->p1 * clock->p2; | 
|  | if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) | 
|  | return; | 
|  | clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); | 
|  | clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); | 
|  | } | 
|  |  | 
|  | static void chv_clock(int refclk, intel_clock_t *clock) | 
|  | { | 
|  | clock->m = clock->m1 * clock->m2; | 
|  | clock->p = clock->p1 * clock->p2; | 
|  | if (WARN_ON(clock->n == 0 || clock->p == 0)) | 
|  | return; | 
|  | clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m, | 
|  | clock->n << 22); | 
|  | clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); | 
|  | } | 
|  |  | 
|  | #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0) | 
|  | /** | 
|  | * Returns whether the given set of divisors are valid for a given refclk with | 
|  | * the given connectors. | 
|  | */ | 
|  |  | 
|  | static bool intel_PLL_is_valid(struct drm_device *dev, | 
|  | const intel_limit_t *limit, | 
|  | const intel_clock_t *clock) | 
|  | { | 
|  | if (clock->n   < limit->n.min   || limit->n.max   < clock->n) | 
|  | INTELPllInvalid("n out of range\n"); | 
|  | if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1) | 
|  | INTELPllInvalid("p1 out of range\n"); | 
|  | if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2) | 
|  | INTELPllInvalid("m2 out of range\n"); | 
|  | if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1) | 
|  | INTELPllInvalid("m1 out of range\n"); | 
|  |  | 
|  | if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev)) | 
|  | if (clock->m1 <= clock->m2) | 
|  | INTELPllInvalid("m1 <= m2\n"); | 
|  |  | 
|  | if (!IS_VALLEYVIEW(dev)) { | 
|  | if (clock->p < limit->p.min || limit->p.max < clock->p) | 
|  | INTELPllInvalid("p out of range\n"); | 
|  | if (clock->m < limit->m.min || limit->m.max < clock->m) | 
|  | INTELPllInvalid("m out of range\n"); | 
|  | } | 
|  |  | 
|  | if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) | 
|  | INTELPllInvalid("vco out of range\n"); | 
|  | /* XXX: We may need to be checking "Dot clock" depending on the multiplier, | 
|  | * connector, etc., rather than just a single range. | 
|  | */ | 
|  | if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) | 
|  | INTELPllInvalid("dot out of range\n"); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | intel_clock_t clock; | 
|  | int err = target; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | /* | 
|  | * For LVDS just rely on its current settings for dual-channel. | 
|  | * We haven't figured out how to reliably set up different | 
|  | * single/dual channel state, if we even can. | 
|  | */ | 
|  | if (intel_is_dual_link_lvds(dev)) | 
|  | clock.p2 = limit->p2.p2_fast; | 
|  | else | 
|  | clock.p2 = limit->p2.p2_slow; | 
|  | } else { | 
|  | if (target < limit->p2.dot_limit) | 
|  | clock.p2 = limit->p2.p2_slow; | 
|  | else | 
|  | clock.p2 = limit->p2.p2_fast; | 
|  | } | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  |  | 
|  | for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; | 
|  | clock.m1++) { | 
|  | for (clock.m2 = limit->m2.min; | 
|  | clock.m2 <= limit->m2.max; clock.m2++) { | 
|  | if (clock.m2 >= clock.m1) | 
|  | break; | 
|  | for (clock.n = limit->n.min; | 
|  | clock.n <= limit->n.max; clock.n++) { | 
|  | for (clock.p1 = limit->p1.min; | 
|  | clock.p1 <= limit->p1.max; clock.p1++) { | 
|  | int this_err; | 
|  |  | 
|  | i9xx_clock(refclk, &clock); | 
|  | if (!intel_PLL_is_valid(dev, limit, | 
|  | &clock)) | 
|  | continue; | 
|  | if (match_clock && | 
|  | clock.p != match_clock->p) | 
|  | continue; | 
|  |  | 
|  | this_err = abs(clock.dot - target); | 
|  | if (this_err < err) { | 
|  | *best_clock = clock; | 
|  | err = this_err; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return (err != target); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | intel_clock_t clock; | 
|  | int err = target; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | /* | 
|  | * For LVDS just rely on its current settings for dual-channel. | 
|  | * We haven't figured out how to reliably set up different | 
|  | * single/dual channel state, if we even can. | 
|  | */ | 
|  | if (intel_is_dual_link_lvds(dev)) | 
|  | clock.p2 = limit->p2.p2_fast; | 
|  | else | 
|  | clock.p2 = limit->p2.p2_slow; | 
|  | } else { | 
|  | if (target < limit->p2.dot_limit) | 
|  | clock.p2 = limit->p2.p2_slow; | 
|  | else | 
|  | clock.p2 = limit->p2.p2_fast; | 
|  | } | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  |  | 
|  | for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; | 
|  | clock.m1++) { | 
|  | for (clock.m2 = limit->m2.min; | 
|  | clock.m2 <= limit->m2.max; clock.m2++) { | 
|  | for (clock.n = limit->n.min; | 
|  | clock.n <= limit->n.max; clock.n++) { | 
|  | for (clock.p1 = limit->p1.min; | 
|  | clock.p1 <= limit->p1.max; clock.p1++) { | 
|  | int this_err; | 
|  |  | 
|  | pineview_clock(refclk, &clock); | 
|  | if (!intel_PLL_is_valid(dev, limit, | 
|  | &clock)) | 
|  | continue; | 
|  | if (match_clock && | 
|  | clock.p != match_clock->p) | 
|  | continue; | 
|  |  | 
|  | this_err = abs(clock.dot - target); | 
|  | if (this_err < err) { | 
|  | *best_clock = clock; | 
|  | err = this_err; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return (err != target); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | intel_clock_t clock; | 
|  | int max_n; | 
|  | bool found; | 
|  | /* approximately equals target * 0.00585 */ | 
|  | int err_most = (target >> 8) + (target >> 9); | 
|  | found = false; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_is_dual_link_lvds(dev)) | 
|  | clock.p2 = limit->p2.p2_fast; | 
|  | else | 
|  | clock.p2 = limit->p2.p2_slow; | 
|  | } else { | 
|  | if (target < limit->p2.dot_limit) | 
|  | clock.p2 = limit->p2.p2_slow; | 
|  | else | 
|  | clock.p2 = limit->p2.p2_fast; | 
|  | } | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  | max_n = limit->n.max; | 
|  | /* based on hardware requirement, prefer smaller n to precision */ | 
|  | for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { | 
|  | /* based on hardware requirement, prefere larger m1,m2 */ | 
|  | for (clock.m1 = limit->m1.max; | 
|  | clock.m1 >= limit->m1.min; clock.m1--) { | 
|  | for (clock.m2 = limit->m2.max; | 
|  | clock.m2 >= limit->m2.min; clock.m2--) { | 
|  | for (clock.p1 = limit->p1.max; | 
|  | clock.p1 >= limit->p1.min; clock.p1--) { | 
|  | int this_err; | 
|  |  | 
|  | i9xx_clock(refclk, &clock); | 
|  | if (!intel_PLL_is_valid(dev, limit, | 
|  | &clock)) | 
|  | continue; | 
|  |  | 
|  | this_err = abs(clock.dot - target); | 
|  | if (this_err < err_most) { | 
|  | *best_clock = clock; | 
|  | err_most = this_err; | 
|  | max_n = clock.n; | 
|  | found = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | intel_clock_t clock; | 
|  | unsigned int bestppm = 1000000; | 
|  | /* min update 19.2 MHz */ | 
|  | int max_n = min(limit->n.max, refclk / 19200); | 
|  | bool found = false; | 
|  |  | 
|  | target *= 5; /* fast clock */ | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  |  | 
|  | /* based on hardware requirement, prefer smaller n to precision */ | 
|  | for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { | 
|  | for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { | 
|  | for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; | 
|  | clock.p2 -= clock.p2 > 10 ? 2 : 1) { | 
|  | clock.p = clock.p1 * clock.p2; | 
|  | /* based on hardware requirement, prefer bigger m1,m2 values */ | 
|  | for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { | 
|  | unsigned int ppm, diff; | 
|  |  | 
|  | clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, | 
|  | refclk * clock.m1); | 
|  |  | 
|  | vlv_clock(refclk, &clock); | 
|  |  | 
|  | if (!intel_PLL_is_valid(dev, limit, | 
|  | &clock)) | 
|  | continue; | 
|  |  | 
|  | diff = abs(clock.dot - target); | 
|  | ppm = div_u64(1000000ULL * diff, target); | 
|  |  | 
|  | if (ppm < 100 && clock.p > best_clock->p) { | 
|  | bestppm = 0; | 
|  | *best_clock = clock; | 
|  | found = true; | 
|  | } | 
|  |  | 
|  | if (bestppm >= 10 && ppm < bestppm - 10) { | 
|  | bestppm = ppm; | 
|  | *best_clock = clock; | 
|  | found = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | intel_clock_t clock; | 
|  | uint64_t m2; | 
|  | int found = false; | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  |  | 
|  | /* | 
|  | * Based on hardware doc, the n always set to 1, and m1 always | 
|  | * set to 2.  If requires to support 200Mhz refclk, we need to | 
|  | * revisit this because n may not 1 anymore. | 
|  | */ | 
|  | clock.n = 1, clock.m1 = 2; | 
|  | target *= 5;	/* fast clock */ | 
|  |  | 
|  | for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { | 
|  | for (clock.p2 = limit->p2.p2_fast; | 
|  | clock.p2 >= limit->p2.p2_slow; | 
|  | clock.p2 -= clock.p2 > 10 ? 2 : 1) { | 
|  |  | 
|  | clock.p = clock.p1 * clock.p2; | 
|  |  | 
|  | m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p * | 
|  | clock.n) << 22, refclk * clock.m1); | 
|  |  | 
|  | if (m2 > INT_MAX/clock.m1) | 
|  | continue; | 
|  |  | 
|  | clock.m2 = m2; | 
|  |  | 
|  | chv_clock(refclk, &clock); | 
|  |  | 
|  | if (!intel_PLL_is_valid(dev, limit, &clock)) | 
|  | continue; | 
|  |  | 
|  | /* based on hardware requirement, prefer bigger p | 
|  | */ | 
|  | if (clock.p > best_clock->p) { | 
|  | *best_clock = clock; | 
|  | found = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | bool intel_crtc_active(struct drm_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | /* Be paranoid as we can arrive here with only partial | 
|  | * state retrieved from the hardware during setup. | 
|  | * | 
|  | * We can ditch the adjusted_mode.crtc_clock check as soon | 
|  | * as Haswell has gained clock readout/fastboot support. | 
|  | * | 
|  | * We can ditch the crtc->primary->fb check as soon as we can | 
|  | * properly reconstruct framebuffers. | 
|  | */ | 
|  | return intel_crtc->active && crtc->primary->fb && | 
|  | intel_crtc->config.adjusted_mode.crtc_clock; | 
|  | } | 
|  |  | 
|  | enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | return intel_crtc->config.cpu_transcoder; | 
|  | } | 
|  |  | 
|  | static void g4x_wait_for_vblank(struct drm_device *dev, int pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe); | 
|  |  | 
|  | frame = I915_READ(frame_reg); | 
|  |  | 
|  | if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50)) | 
|  | WARN(1, "vblank wait on pipe %c timed out\n", | 
|  | pipe_name(pipe)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_wait_for_vblank - wait for vblank on a given pipe | 
|  | * @dev: drm device | 
|  | * @pipe: pipe to wait for | 
|  | * | 
|  | * Wait for vblank to occur on a given pipe.  Needed for various bits of | 
|  | * mode setting code. | 
|  | */ | 
|  | void intel_wait_for_vblank(struct drm_device *dev, int pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipestat_reg = PIPESTAT(pipe); | 
|  |  | 
|  | if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { | 
|  | g4x_wait_for_vblank(dev, pipe); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Clear existing vblank status. Note this will clear any other | 
|  | * sticky status fields as well. | 
|  | * | 
|  | * This races with i915_driver_irq_handler() with the result | 
|  | * that either function could miss a vblank event.  Here it is not | 
|  | * fatal, as we will either wait upon the next vblank interrupt or | 
|  | * timeout.  Generally speaking intel_wait_for_vblank() is only | 
|  | * called during modeset at which time the GPU should be idle and | 
|  | * should *not* be performing page flips and thus not waiting on | 
|  | * vblanks... | 
|  | * Currently, the result of us stealing a vblank from the irq | 
|  | * handler is that a single frame will be skipped during swapbuffers. | 
|  | */ | 
|  | I915_WRITE(pipestat_reg, | 
|  | I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS); | 
|  |  | 
|  | /* Wait for vblank interrupt bit to set */ | 
|  | if (wait_for(I915_READ(pipestat_reg) & | 
|  | PIPE_VBLANK_INTERRUPT_STATUS, | 
|  | 50)) | 
|  | DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n", | 
|  | pipe_name(pipe)); | 
|  | } | 
|  |  | 
|  | static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 reg = PIPEDSL(pipe); | 
|  | u32 line1, line2; | 
|  | u32 line_mask; | 
|  |  | 
|  | if (IS_GEN2(dev)) | 
|  | line_mask = DSL_LINEMASK_GEN2; | 
|  | else | 
|  | line_mask = DSL_LINEMASK_GEN3; | 
|  |  | 
|  | line1 = I915_READ(reg) & line_mask; | 
|  | mdelay(5); | 
|  | line2 = I915_READ(reg) & line_mask; | 
|  |  | 
|  | return line1 == line2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * intel_wait_for_pipe_off - wait for pipe to turn off | 
|  | * @crtc: crtc whose pipe to wait for | 
|  | * | 
|  | * After disabling a pipe, we can't wait for vblank in the usual way, | 
|  | * spinning on the vblank interrupt status bit, since we won't actually | 
|  | * see an interrupt when the pipe is disabled. | 
|  | * | 
|  | * On Gen4 and above: | 
|  | *   wait for the pipe register state bit to turn off | 
|  | * | 
|  | * Otherwise: | 
|  | *   wait for the display line value to settle (it usually | 
|  | *   ends up stopping at the start of the next frame). | 
|  | * | 
|  | */ | 
|  | static void intel_wait_for_pipe_off(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum transcoder cpu_transcoder = crtc->config.cpu_transcoder; | 
|  | enum pipe pipe = crtc->pipe; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | int reg = PIPECONF(cpu_transcoder); | 
|  |  | 
|  | /* Wait for the Pipe State to go off */ | 
|  | if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, | 
|  | 100)) | 
|  | WARN(1, "pipe_off wait timed out\n"); | 
|  | } else { | 
|  | /* Wait for the display line to settle */ | 
|  | if (wait_for(pipe_dsl_stopped(dev, pipe), 100)) | 
|  | WARN(1, "pipe_off wait timed out\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ibx_digital_port_connected - is the specified port connected? | 
|  | * @dev_priv: i915 private structure | 
|  | * @port: the port to test | 
|  | * | 
|  | * Returns true if @port is connected, false otherwise. | 
|  | */ | 
|  | bool ibx_digital_port_connected(struct drm_i915_private *dev_priv, | 
|  | struct intel_digital_port *port) | 
|  | { | 
|  | u32 bit; | 
|  |  | 
|  | if (HAS_PCH_IBX(dev_priv->dev)) { | 
|  | switch (port->port) { | 
|  | case PORT_B: | 
|  | bit = SDE_PORTB_HOTPLUG; | 
|  | break; | 
|  | case PORT_C: | 
|  | bit = SDE_PORTC_HOTPLUG; | 
|  | break; | 
|  | case PORT_D: | 
|  | bit = SDE_PORTD_HOTPLUG; | 
|  | break; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | switch (port->port) { | 
|  | case PORT_B: | 
|  | bit = SDE_PORTB_HOTPLUG_CPT; | 
|  | break; | 
|  | case PORT_C: | 
|  | bit = SDE_PORTC_HOTPLUG_CPT; | 
|  | break; | 
|  | case PORT_D: | 
|  | bit = SDE_PORTD_HOTPLUG_CPT; | 
|  | break; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return I915_READ(SDEISR) & bit; | 
|  | } | 
|  |  | 
|  | static const char *state_string(bool enabled) | 
|  | { | 
|  | return enabled ? "on" : "off"; | 
|  | } | 
|  |  | 
|  | /* Only for pre-ILK configs */ | 
|  | void assert_pll(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  |  | 
|  | reg = DPLL(pipe); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & DPLL_VCO_ENABLE); | 
|  | WARN(cur_state != state, | 
|  | "PLL state assertion failure (expected %s, current %s)\n", | 
|  | state_string(state), state_string(cur_state)); | 
|  | } | 
|  |  | 
|  | /* XXX: the dsi pll is shared between MIPI DSI ports */ | 
|  | static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) | 
|  | { | 
|  | u32 val; | 
|  | bool cur_state; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  | val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  |  | 
|  | cur_state = val & DSI_PLL_VCO_EN; | 
|  | WARN(cur_state != state, | 
|  | "DSI PLL state assertion failure (expected %s, current %s)\n", | 
|  | state_string(state), state_string(cur_state)); | 
|  | } | 
|  | #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true) | 
|  | #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false) | 
|  |  | 
|  | struct intel_shared_dpll * | 
|  | intel_crtc_to_shared_dpll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; | 
|  |  | 
|  | if (crtc->config.shared_dpll < 0) | 
|  | return NULL; | 
|  |  | 
|  | return &dev_priv->shared_dplls[crtc->config.shared_dpll]; | 
|  | } | 
|  |  | 
|  | /* For ILK+ */ | 
|  | void assert_shared_dpll(struct drm_i915_private *dev_priv, | 
|  | struct intel_shared_dpll *pll, | 
|  | bool state) | 
|  | { | 
|  | bool cur_state; | 
|  | struct intel_dpll_hw_state hw_state; | 
|  |  | 
|  | if (WARN (!pll, | 
|  | "asserting DPLL %s with no DPLL\n", state_string(state))) | 
|  | return; | 
|  |  | 
|  | cur_state = pll->get_hw_state(dev_priv, pll, &hw_state); | 
|  | WARN(cur_state != state, | 
|  | "%s assertion failure (expected %s, current %s)\n", | 
|  | pll->name, state_string(state), state_string(cur_state)); | 
|  | } | 
|  |  | 
|  | static void assert_fdi_tx(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  | enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, | 
|  | pipe); | 
|  |  | 
|  | if (HAS_DDI(dev_priv->dev)) { | 
|  | /* DDI does not have a specific FDI_TX register */ | 
|  | reg = TRANS_DDI_FUNC_CTL(cpu_transcoder); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); | 
|  | } else { | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & FDI_TX_ENABLE); | 
|  | } | 
|  | WARN(cur_state != state, | 
|  | "FDI TX state assertion failure (expected %s, current %s)\n", | 
|  | state_string(state), state_string(cur_state)); | 
|  | } | 
|  | #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) | 
|  | #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) | 
|  |  | 
|  | static void assert_fdi_rx(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & FDI_RX_ENABLE); | 
|  | WARN(cur_state != state, | 
|  | "FDI RX state assertion failure (expected %s, current %s)\n", | 
|  | state_string(state), state_string(cur_state)); | 
|  | } | 
|  | #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) | 
|  | #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) | 
|  |  | 
|  | static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | /* ILK FDI PLL is always enabled */ | 
|  | if (INTEL_INFO(dev_priv->dev)->gen == 5) | 
|  | return; | 
|  |  | 
|  | /* On Haswell, DDI ports are responsible for the FDI PLL setup */ | 
|  | if (HAS_DDI(dev_priv->dev)) | 
|  | return; | 
|  |  | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | val = I915_READ(reg); | 
|  | WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); | 
|  | } | 
|  |  | 
|  | void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & FDI_RX_PLL_ENABLE); | 
|  | WARN(cur_state != state, | 
|  | "FDI RX PLL assertion failure (expected %s, current %s)\n", | 
|  | state_string(state), state_string(cur_state)); | 
|  | } | 
|  |  | 
|  | static void assert_panel_unlocked(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | int pp_reg; | 
|  | u32 val; | 
|  | enum pipe panel_pipe = PIPE_A; | 
|  | bool locked = true; | 
|  |  | 
|  | if (WARN_ON(HAS_DDI(dev))) | 
|  | return; | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) { | 
|  | u32 port_sel; | 
|  |  | 
|  | pp_reg = PCH_PP_CONTROL; | 
|  | port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK; | 
|  |  | 
|  | if (port_sel == PANEL_PORT_SELECT_LVDS && | 
|  | I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT) | 
|  | panel_pipe = PIPE_B; | 
|  | /* XXX: else fix for eDP */ | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | /* presumably write lock depends on pipe, not port select */ | 
|  | pp_reg = VLV_PIPE_PP_CONTROL(pipe); | 
|  | panel_pipe = pipe; | 
|  | } else { | 
|  | pp_reg = PP_CONTROL; | 
|  | if (I915_READ(LVDS) & LVDS_PIPEB_SELECT) | 
|  | panel_pipe = PIPE_B; | 
|  | } | 
|  |  | 
|  | val = I915_READ(pp_reg); | 
|  | if (!(val & PANEL_POWER_ON) || | 
|  | ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) | 
|  | locked = false; | 
|  |  | 
|  | WARN(panel_pipe == pipe && locked, | 
|  | "panel assertion failure, pipe %c regs locked\n", | 
|  | pipe_name(pipe)); | 
|  | } | 
|  |  | 
|  | static void assert_cursor(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | bool cur_state; | 
|  |  | 
|  | if (IS_845G(dev) || IS_I865G(dev)) | 
|  | cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE; | 
|  | else | 
|  | cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE; | 
|  |  | 
|  | WARN(cur_state != state, | 
|  | "cursor on pipe %c assertion failure (expected %s, current %s)\n", | 
|  | pipe_name(pipe), state_string(state), state_string(cur_state)); | 
|  | } | 
|  | #define assert_cursor_enabled(d, p) assert_cursor(d, p, true) | 
|  | #define assert_cursor_disabled(d, p) assert_cursor(d, p, false) | 
|  |  | 
|  | void assert_pipe(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  | enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, | 
|  | pipe); | 
|  |  | 
|  | /* if we need the pipe quirk it must be always on */ | 
|  | if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || | 
|  | (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) | 
|  | state = true; | 
|  |  | 
|  | if (!intel_display_power_enabled(dev_priv, | 
|  | POWER_DOMAIN_TRANSCODER(cpu_transcoder))) { | 
|  | cur_state = false; | 
|  | } else { | 
|  | reg = PIPECONF(cpu_transcoder); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & PIPECONF_ENABLE); | 
|  | } | 
|  |  | 
|  | WARN(cur_state != state, | 
|  | "pipe %c assertion failure (expected %s, current %s)\n", | 
|  | pipe_name(pipe), state_string(state), state_string(cur_state)); | 
|  | } | 
|  |  | 
|  | static void assert_plane(struct drm_i915_private *dev_priv, | 
|  | enum plane plane, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  |  | 
|  | reg = DSPCNTR(plane); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & DISPLAY_PLANE_ENABLE); | 
|  | WARN(cur_state != state, | 
|  | "plane %c assertion failure (expected %s, current %s)\n", | 
|  | plane_name(plane), state_string(state), state_string(cur_state)); | 
|  | } | 
|  |  | 
|  | #define assert_plane_enabled(d, p) assert_plane(d, p, true) | 
|  | #define assert_plane_disabled(d, p) assert_plane(d, p, false) | 
|  |  | 
|  | static void assert_planes_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | int reg, i; | 
|  | u32 val; | 
|  | int cur_pipe; | 
|  |  | 
|  | /* Primary planes are fixed to pipes on gen4+ */ | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | reg = DSPCNTR(pipe); | 
|  | val = I915_READ(reg); | 
|  | WARN(val & DISPLAY_PLANE_ENABLE, | 
|  | "plane %c assertion failure, should be disabled but not\n", | 
|  | plane_name(pipe)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Need to check both planes against the pipe */ | 
|  | for_each_pipe(dev_priv, i) { | 
|  | reg = DSPCNTR(i); | 
|  | val = I915_READ(reg); | 
|  | cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> | 
|  | DISPPLANE_SEL_PIPE_SHIFT; | 
|  | WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe, | 
|  | "plane %c assertion failure, should be off on pipe %c but is still active\n", | 
|  | plane_name(i), pipe_name(pipe)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void assert_sprites_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | int reg, sprite; | 
|  | u32 val; | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev)) { | 
|  | for_each_sprite(pipe, sprite) { | 
|  | reg = SPCNTR(pipe, sprite); | 
|  | val = I915_READ(reg); | 
|  | WARN(val & SP_ENABLE, | 
|  | "sprite %c assertion failure, should be off on pipe %c but is still active\n", | 
|  | sprite_name(pipe, sprite), pipe_name(pipe)); | 
|  | } | 
|  | } else if (INTEL_INFO(dev)->gen >= 7) { | 
|  | reg = SPRCTL(pipe); | 
|  | val = I915_READ(reg); | 
|  | WARN(val & SPRITE_ENABLE, | 
|  | "sprite %c assertion failure, should be off on pipe %c but is still active\n", | 
|  | plane_name(pipe), pipe_name(pipe)); | 
|  | } else if (INTEL_INFO(dev)->gen >= 5) { | 
|  | reg = DVSCNTR(pipe); | 
|  | val = I915_READ(reg); | 
|  | WARN(val & DVS_ENABLE, | 
|  | "sprite %c assertion failure, should be off on pipe %c but is still active\n", | 
|  | plane_name(pipe), pipe_name(pipe)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void assert_vblank_disabled(struct drm_crtc *crtc) | 
|  | { | 
|  | if (WARN_ON(drm_crtc_vblank_get(crtc) == 0)) | 
|  | drm_crtc_vblank_put(crtc); | 
|  | } | 
|  |  | 
|  | static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | u32 val; | 
|  | bool enabled; | 
|  |  | 
|  | WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev))); | 
|  |  | 
|  | val = I915_READ(PCH_DREF_CONTROL); | 
|  | enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | | 
|  | DREF_SUPERSPREAD_SOURCE_MASK)); | 
|  | WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n"); | 
|  | } | 
|  |  | 
|  | static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool enabled; | 
|  |  | 
|  | reg = PCH_TRANSCONF(pipe); | 
|  | val = I915_READ(reg); | 
|  | enabled = !!(val & TRANS_ENABLE); | 
|  | WARN(enabled, | 
|  | "transcoder assertion failed, should be off on pipe %c but is still active\n", | 
|  | pipe_name(pipe)); | 
|  | } | 
|  |  | 
|  | static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, u32 port_sel, u32 val) | 
|  | { | 
|  | if ((val & DP_PORT_EN) == 0) | 
|  | return false; | 
|  |  | 
|  | if (HAS_PCH_CPT(dev_priv->dev)) { | 
|  | u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe); | 
|  | u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg); | 
|  | if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel) | 
|  | return false; | 
|  | } else if (IS_CHERRYVIEW(dev_priv->dev)) { | 
|  | if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe)) | 
|  | return false; | 
|  | } else { | 
|  | if ((val & DP_PIPE_MASK) != (pipe << 30)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, u32 val) | 
|  | { | 
|  | if ((val & SDVO_ENABLE) == 0) | 
|  | return false; | 
|  |  | 
|  | if (HAS_PCH_CPT(dev_priv->dev)) { | 
|  | if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe)) | 
|  | return false; | 
|  | } else if (IS_CHERRYVIEW(dev_priv->dev)) { | 
|  | if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe)) | 
|  | return false; | 
|  | } else { | 
|  | if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, u32 val) | 
|  | { | 
|  | if ((val & LVDS_PORT_EN) == 0) | 
|  | return false; | 
|  |  | 
|  | if (HAS_PCH_CPT(dev_priv->dev)) { | 
|  | if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) | 
|  | return false; | 
|  | } else { | 
|  | if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, u32 val) | 
|  | { | 
|  | if ((val & ADPA_DAC_ENABLE) == 0) | 
|  | return false; | 
|  | if (HAS_PCH_CPT(dev_priv->dev)) { | 
|  | if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) | 
|  | return false; | 
|  | } else { | 
|  | if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, int reg, u32 port_sel) | 
|  | { | 
|  | u32 val = I915_READ(reg); | 
|  | WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val), | 
|  | "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", | 
|  | reg, pipe_name(pipe)); | 
|  |  | 
|  | WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0 | 
|  | && (val & DP_PIPEB_SELECT), | 
|  | "IBX PCH dp port still using transcoder B\n"); | 
|  | } | 
|  |  | 
|  | static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, int reg) | 
|  | { | 
|  | u32 val = I915_READ(reg); | 
|  | WARN(hdmi_pipe_enabled(dev_priv, pipe, val), | 
|  | "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n", | 
|  | reg, pipe_name(pipe)); | 
|  |  | 
|  | WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0 | 
|  | && (val & SDVO_PIPE_B_SELECT), | 
|  | "IBX PCH hdmi port still using transcoder B\n"); | 
|  | } | 
|  |  | 
|  | static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); | 
|  | assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); | 
|  | assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); | 
|  |  | 
|  | reg = PCH_ADPA; | 
|  | val = I915_READ(reg); | 
|  | WARN(adpa_pipe_enabled(dev_priv, pipe, val), | 
|  | "PCH VGA enabled on transcoder %c, should be disabled\n", | 
|  | pipe_name(pipe)); | 
|  |  | 
|  | reg = PCH_LVDS; | 
|  | val = I915_READ(reg); | 
|  | WARN(lvds_pipe_enabled(dev_priv, pipe, val), | 
|  | "PCH LVDS enabled on transcoder %c, should be disabled\n", | 
|  | pipe_name(pipe)); | 
|  |  | 
|  | assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB); | 
|  | assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC); | 
|  | assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID); | 
|  | } | 
|  |  | 
|  | static void intel_init_dpio(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (!IS_VALLEYVIEW(dev)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C), | 
|  | * CHV x1 PHY (DP/HDMI D) | 
|  | * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C) | 
|  | */ | 
|  | if (IS_CHERRYVIEW(dev)) { | 
|  | DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2; | 
|  | DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO; | 
|  | } else { | 
|  | DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vlv_enable_pll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int reg = DPLL(crtc->pipe); | 
|  | u32 dpll = crtc->config.dpll_hw_state.dpll; | 
|  |  | 
|  | assert_pipe_disabled(dev_priv, crtc->pipe); | 
|  |  | 
|  | /* No really, not for ILK+ */ | 
|  | BUG_ON(!IS_VALLEYVIEW(dev_priv->dev)); | 
|  |  | 
|  | /* PLL is protected by panel, make sure we can write it */ | 
|  | if (IS_MOBILE(dev_priv->dev)) | 
|  | assert_panel_unlocked(dev_priv, crtc->pipe); | 
|  |  | 
|  | I915_WRITE(reg, dpll); | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) | 
|  | DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe); | 
|  |  | 
|  | I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md); | 
|  | POSTING_READ(DPLL_MD(crtc->pipe)); | 
|  |  | 
|  | /* We do this three times for luck */ | 
|  | I915_WRITE(reg, dpll); | 
|  | POSTING_READ(reg); | 
|  | udelay(150); /* wait for warmup */ | 
|  | I915_WRITE(reg, dpll); | 
|  | POSTING_READ(reg); | 
|  | udelay(150); /* wait for warmup */ | 
|  | I915_WRITE(reg, dpll); | 
|  | POSTING_READ(reg); | 
|  | udelay(150); /* wait for warmup */ | 
|  | } | 
|  |  | 
|  | static void chv_enable_pll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = crtc->pipe; | 
|  | enum dpio_channel port = vlv_pipe_to_channel(pipe); | 
|  | u32 tmp; | 
|  |  | 
|  | assert_pipe_disabled(dev_priv, crtc->pipe); | 
|  |  | 
|  | BUG_ON(!IS_CHERRYVIEW(dev_priv->dev)); | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | /* Enable back the 10bit clock to display controller */ | 
|  | tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); | 
|  | tmp |= DPIO_DCLKP_EN; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); | 
|  |  | 
|  | /* | 
|  | * Need to wait > 100ns between dclkp clock enable bit and PLL enable. | 
|  | */ | 
|  | udelay(1); | 
|  |  | 
|  | /* Enable PLL */ | 
|  | I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll); | 
|  |  | 
|  | /* Check PLL is locked */ | 
|  | if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) | 
|  | DRM_ERROR("PLL %d failed to lock\n", pipe); | 
|  |  | 
|  | /* not sure when this should be written */ | 
|  | I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md); | 
|  | POSTING_READ(DPLL_MD(pipe)); | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | static int intel_num_dvo_pipes(struct drm_device *dev) | 
|  | { | 
|  | struct intel_crtc *crtc; | 
|  | int count = 0; | 
|  |  | 
|  | for_each_intel_crtc(dev, crtc) | 
|  | count += crtc->active && | 
|  | intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void i9xx_enable_pll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int reg = DPLL(crtc->pipe); | 
|  | u32 dpll = crtc->config.dpll_hw_state.dpll; | 
|  |  | 
|  | assert_pipe_disabled(dev_priv, crtc->pipe); | 
|  |  | 
|  | /* No really, not for ILK+ */ | 
|  | BUG_ON(INTEL_INFO(dev)->gen >= 5); | 
|  |  | 
|  | /* PLL is protected by panel, make sure we can write it */ | 
|  | if (IS_MOBILE(dev) && !IS_I830(dev)) | 
|  | assert_panel_unlocked(dev_priv, crtc->pipe); | 
|  |  | 
|  | /* Enable DVO 2x clock on both PLLs if necessary */ | 
|  | if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) { | 
|  | /* | 
|  | * It appears to be important that we don't enable this | 
|  | * for the current pipe before otherwise configuring the | 
|  | * PLL. No idea how this should be handled if multiple | 
|  | * DVO outputs are enabled simultaneosly. | 
|  | */ | 
|  | dpll |= DPLL_DVO_2X_MODE; | 
|  | I915_WRITE(DPLL(!crtc->pipe), | 
|  | I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE); | 
|  | } | 
|  |  | 
|  | /* Wait for the clocks to stabilize. */ | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | I915_WRITE(DPLL_MD(crtc->pipe), | 
|  | crtc->config.dpll_hw_state.dpll_md); | 
|  | } else { | 
|  | /* The pixel multiplier can only be updated once the | 
|  | * DPLL is enabled and the clocks are stable. | 
|  | * | 
|  | * So write it again. | 
|  | */ | 
|  | I915_WRITE(reg, dpll); | 
|  | } | 
|  |  | 
|  | /* We do this three times for luck */ | 
|  | I915_WRITE(reg, dpll); | 
|  | POSTING_READ(reg); | 
|  | udelay(150); /* wait for warmup */ | 
|  | I915_WRITE(reg, dpll); | 
|  | POSTING_READ(reg); | 
|  | udelay(150); /* wait for warmup */ | 
|  | I915_WRITE(reg, dpll); | 
|  | POSTING_READ(reg); | 
|  | udelay(150); /* wait for warmup */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i9xx_disable_pll - disable a PLL | 
|  | * @dev_priv: i915 private structure | 
|  | * @pipe: pipe PLL to disable | 
|  | * | 
|  | * Disable the PLL for @pipe, making sure the pipe is off first. | 
|  | * | 
|  | * Note!  This is for pre-ILK only. | 
|  | */ | 
|  | static void i9xx_disable_pll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum pipe pipe = crtc->pipe; | 
|  |  | 
|  | /* Disable DVO 2x clock on both PLLs if necessary */ | 
|  | if (IS_I830(dev) && | 
|  | intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO) && | 
|  | intel_num_dvo_pipes(dev) == 1) { | 
|  | I915_WRITE(DPLL(PIPE_B), | 
|  | I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE); | 
|  | I915_WRITE(DPLL(PIPE_A), | 
|  | I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE); | 
|  | } | 
|  |  | 
|  | /* Don't disable pipe or pipe PLLs if needed */ | 
|  | if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || | 
|  | (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) | 
|  | return; | 
|  |  | 
|  | /* Make sure the pipe isn't still relying on us */ | 
|  | assert_pipe_disabled(dev_priv, pipe); | 
|  |  | 
|  | I915_WRITE(DPLL(pipe), 0); | 
|  | POSTING_READ(DPLL(pipe)); | 
|  | } | 
|  |  | 
|  | static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) | 
|  | { | 
|  | u32 val = 0; | 
|  |  | 
|  | /* Make sure the pipe isn't still relying on us */ | 
|  | assert_pipe_disabled(dev_priv, pipe); | 
|  |  | 
|  | /* | 
|  | * Leave integrated clock source and reference clock enabled for pipe B. | 
|  | * The latter is needed for VGA hotplug / manual detection. | 
|  | */ | 
|  | if (pipe == PIPE_B) | 
|  | val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV; | 
|  | I915_WRITE(DPLL(pipe), val); | 
|  | POSTING_READ(DPLL(pipe)); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) | 
|  | { | 
|  | enum dpio_channel port = vlv_pipe_to_channel(pipe); | 
|  | u32 val; | 
|  |  | 
|  | /* Make sure the pipe isn't still relying on us */ | 
|  | assert_pipe_disabled(dev_priv, pipe); | 
|  |  | 
|  | /* Set PLL en = 0 */ | 
|  | val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV; | 
|  | if (pipe != PIPE_A) | 
|  | val |= DPLL_INTEGRATED_CRI_CLK_VLV; | 
|  | I915_WRITE(DPLL(pipe), val); | 
|  | POSTING_READ(DPLL(pipe)); | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | /* Disable 10bit clock to display controller */ | 
|  | val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); | 
|  | val &= ~DPIO_DCLKP_EN; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); | 
|  |  | 
|  | /* disable left/right clock distribution */ | 
|  | if (pipe != PIPE_B) { | 
|  | val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); | 
|  | val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); | 
|  | vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); | 
|  | } else { | 
|  | val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); | 
|  | val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); | 
|  | vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | void vlv_wait_port_ready(struct drm_i915_private *dev_priv, | 
|  | struct intel_digital_port *dport) | 
|  | { | 
|  | u32 port_mask; | 
|  | int dpll_reg; | 
|  |  | 
|  | switch (dport->port) { | 
|  | case PORT_B: | 
|  | port_mask = DPLL_PORTB_READY_MASK; | 
|  | dpll_reg = DPLL(0); | 
|  | break; | 
|  | case PORT_C: | 
|  | port_mask = DPLL_PORTC_READY_MASK; | 
|  | dpll_reg = DPLL(0); | 
|  | break; | 
|  | case PORT_D: | 
|  | port_mask = DPLL_PORTD_READY_MASK; | 
|  | dpll_reg = DPIO_PHY_STATUS; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000)) | 
|  | WARN(1, "timed out waiting for port %c ready: 0x%08x\n", | 
|  | port_name(dport->port), I915_READ(dpll_reg)); | 
|  | } | 
|  |  | 
|  | static void intel_prepare_shared_dpll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); | 
|  |  | 
|  | if (WARN_ON(pll == NULL)) | 
|  | return; | 
|  |  | 
|  | WARN_ON(!pll->refcount); | 
|  | if (pll->active == 0) { | 
|  | DRM_DEBUG_DRIVER("setting up %s\n", pll->name); | 
|  | WARN_ON(pll->on); | 
|  | assert_shared_dpll_disabled(dev_priv, pll); | 
|  |  | 
|  | pll->mode_set(dev_priv, pll); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_enable_shared_dpll - enable PCH PLL | 
|  | * @dev_priv: i915 private structure | 
|  | * @pipe: pipe PLL to enable | 
|  | * | 
|  | * The PCH PLL needs to be enabled before the PCH transcoder, since it | 
|  | * drives the transcoder clock. | 
|  | */ | 
|  | static void intel_enable_shared_dpll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); | 
|  |  | 
|  | if (WARN_ON(pll == NULL)) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON(pll->refcount == 0)) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n", | 
|  | pll->name, pll->active, pll->on, | 
|  | crtc->base.base.id); | 
|  |  | 
|  | if (pll->active++) { | 
|  | WARN_ON(!pll->on); | 
|  | assert_shared_dpll_enabled(dev_priv, pll); | 
|  | return; | 
|  | } | 
|  | WARN_ON(pll->on); | 
|  |  | 
|  | intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS); | 
|  |  | 
|  | DRM_DEBUG_KMS("enabling %s\n", pll->name); | 
|  | pll->enable(dev_priv, pll); | 
|  | pll->on = true; | 
|  | } | 
|  |  | 
|  | static void intel_disable_shared_dpll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); | 
|  |  | 
|  | /* PCH only available on ILK+ */ | 
|  | BUG_ON(INTEL_INFO(dev)->gen < 5); | 
|  | if (WARN_ON(pll == NULL)) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON(pll->refcount == 0)) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n", | 
|  | pll->name, pll->active, pll->on, | 
|  | crtc->base.base.id); | 
|  |  | 
|  | if (WARN_ON(pll->active == 0)) { | 
|  | assert_shared_dpll_disabled(dev_priv, pll); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert_shared_dpll_enabled(dev_priv, pll); | 
|  | WARN_ON(!pll->on); | 
|  | if (--pll->active) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("disabling %s\n", pll->name); | 
|  | pll->disable(dev_priv, pll); | 
|  | pll->on = false; | 
|  |  | 
|  | intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); | 
|  | } | 
|  |  | 
|  | static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | uint32_t reg, val, pipeconf_val; | 
|  |  | 
|  | /* PCH only available on ILK+ */ | 
|  | BUG_ON(!HAS_PCH_SPLIT(dev)); | 
|  |  | 
|  | /* Make sure PCH DPLL is enabled */ | 
|  | assert_shared_dpll_enabled(dev_priv, | 
|  | intel_crtc_to_shared_dpll(intel_crtc)); | 
|  |  | 
|  | /* FDI must be feeding us bits for PCH ports */ | 
|  | assert_fdi_tx_enabled(dev_priv, pipe); | 
|  | assert_fdi_rx_enabled(dev_priv, pipe); | 
|  |  | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | /* Workaround: Set the timing override bit before enabling the | 
|  | * pch transcoder. */ | 
|  | reg = TRANS_CHICKEN2(pipe); | 
|  | val = I915_READ(reg); | 
|  | val |= TRANS_CHICKEN2_TIMING_OVERRIDE; | 
|  | I915_WRITE(reg, val); | 
|  | } | 
|  |  | 
|  | reg = PCH_TRANSCONF(pipe); | 
|  | val = I915_READ(reg); | 
|  | pipeconf_val = I915_READ(PIPECONF(pipe)); | 
|  |  | 
|  | if (HAS_PCH_IBX(dev_priv->dev)) { | 
|  | /* | 
|  | * make the BPC in transcoder be consistent with | 
|  | * that in pipeconf reg. | 
|  | */ | 
|  | val &= ~PIPECONF_BPC_MASK; | 
|  | val |= pipeconf_val & PIPECONF_BPC_MASK; | 
|  | } | 
|  |  | 
|  | val &= ~TRANS_INTERLACE_MASK; | 
|  | if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) | 
|  | if (HAS_PCH_IBX(dev_priv->dev) && | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) | 
|  | val |= TRANS_LEGACY_INTERLACED_ILK; | 
|  | else | 
|  | val |= TRANS_INTERLACED; | 
|  | else | 
|  | val |= TRANS_PROGRESSIVE; | 
|  |  | 
|  | I915_WRITE(reg, val | TRANS_ENABLE); | 
|  | if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100)) | 
|  | DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe)); | 
|  | } | 
|  |  | 
|  | static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, | 
|  | enum transcoder cpu_transcoder) | 
|  | { | 
|  | u32 val, pipeconf_val; | 
|  |  | 
|  | /* PCH only available on ILK+ */ | 
|  | BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev)); | 
|  |  | 
|  | /* FDI must be feeding us bits for PCH ports */ | 
|  | assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); | 
|  | assert_fdi_rx_enabled(dev_priv, TRANSCODER_A); | 
|  |  | 
|  | /* Workaround: set timing override bit. */ | 
|  | val = I915_READ(_TRANSA_CHICKEN2); | 
|  | val |= TRANS_CHICKEN2_TIMING_OVERRIDE; | 
|  | I915_WRITE(_TRANSA_CHICKEN2, val); | 
|  |  | 
|  | val = TRANS_ENABLE; | 
|  | pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); | 
|  |  | 
|  | if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == | 
|  | PIPECONF_INTERLACED_ILK) | 
|  | val |= TRANS_INTERLACED; | 
|  | else | 
|  | val |= TRANS_PROGRESSIVE; | 
|  |  | 
|  | I915_WRITE(LPT_TRANSCONF, val); | 
|  | if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100)) | 
|  | DRM_ERROR("Failed to enable PCH transcoder\n"); | 
|  | } | 
|  |  | 
|  | static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | uint32_t reg, val; | 
|  |  | 
|  | /* FDI relies on the transcoder */ | 
|  | assert_fdi_tx_disabled(dev_priv, pipe); | 
|  | assert_fdi_rx_disabled(dev_priv, pipe); | 
|  |  | 
|  | /* Ports must be off as well */ | 
|  | assert_pch_ports_disabled(dev_priv, pipe); | 
|  |  | 
|  | reg = PCH_TRANSCONF(pipe); | 
|  | val = I915_READ(reg); | 
|  | val &= ~TRANS_ENABLE; | 
|  | I915_WRITE(reg, val); | 
|  | /* wait for PCH transcoder off, transcoder state */ | 
|  | if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50)) | 
|  | DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe)); | 
|  |  | 
|  | if (!HAS_PCH_IBX(dev)) { | 
|  | /* Workaround: Clear the timing override chicken bit again. */ | 
|  | reg = TRANS_CHICKEN2(pipe); | 
|  | val = I915_READ(reg); | 
|  | val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; | 
|  | I915_WRITE(reg, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | val = I915_READ(LPT_TRANSCONF); | 
|  | val &= ~TRANS_ENABLE; | 
|  | I915_WRITE(LPT_TRANSCONF, val); | 
|  | /* wait for PCH transcoder off, transcoder state */ | 
|  | if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50)) | 
|  | DRM_ERROR("Failed to disable PCH transcoder\n"); | 
|  |  | 
|  | /* Workaround: clear timing override bit. */ | 
|  | val = I915_READ(_TRANSA_CHICKEN2); | 
|  | val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; | 
|  | I915_WRITE(_TRANSA_CHICKEN2, val); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_enable_pipe - enable a pipe, asserting requirements | 
|  | * @crtc: crtc responsible for the pipe | 
|  | * | 
|  | * Enable @crtc's pipe, making sure that various hardware specific requirements | 
|  | * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc. | 
|  | */ | 
|  | static void intel_enable_pipe(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum pipe pipe = crtc->pipe; | 
|  | enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, | 
|  | pipe); | 
|  | enum pipe pch_transcoder; | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | assert_planes_disabled(dev_priv, pipe); | 
|  | assert_cursor_disabled(dev_priv, pipe); | 
|  | assert_sprites_disabled(dev_priv, pipe); | 
|  |  | 
|  | if (HAS_PCH_LPT(dev_priv->dev)) | 
|  | pch_transcoder = TRANSCODER_A; | 
|  | else | 
|  | pch_transcoder = pipe; | 
|  |  | 
|  | /* | 
|  | * A pipe without a PLL won't actually be able to drive bits from | 
|  | * a plane.  On ILK+ the pipe PLLs are integrated, so we don't | 
|  | * need the check. | 
|  | */ | 
|  | if (!HAS_PCH_SPLIT(dev_priv->dev)) | 
|  | if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI)) | 
|  | assert_dsi_pll_enabled(dev_priv); | 
|  | else | 
|  | assert_pll_enabled(dev_priv, pipe); | 
|  | else { | 
|  | if (crtc->config.has_pch_encoder) { | 
|  | /* if driving the PCH, we need FDI enabled */ | 
|  | assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder); | 
|  | assert_fdi_tx_pll_enabled(dev_priv, | 
|  | (enum pipe) cpu_transcoder); | 
|  | } | 
|  | /* FIXME: assert CPU port conditions for SNB+ */ | 
|  | } | 
|  |  | 
|  | reg = PIPECONF(cpu_transcoder); | 
|  | val = I915_READ(reg); | 
|  | if (val & PIPECONF_ENABLE) { | 
|  | WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || | 
|  | (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | I915_WRITE(reg, val | PIPECONF_ENABLE); | 
|  | POSTING_READ(reg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_disable_pipe - disable a pipe, asserting requirements | 
|  | * @crtc: crtc whose pipes is to be disabled | 
|  | * | 
|  | * Disable the pipe of @crtc, making sure that various hardware | 
|  | * specific requirements are met, if applicable, e.g. plane | 
|  | * disabled, panel fitter off, etc. | 
|  | * | 
|  | * Will wait until the pipe has shut down before returning. | 
|  | */ | 
|  | static void intel_disable_pipe(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; | 
|  | enum transcoder cpu_transcoder = crtc->config.cpu_transcoder; | 
|  | enum pipe pipe = crtc->pipe; | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | /* | 
|  | * Make sure planes won't keep trying to pump pixels to us, | 
|  | * or we might hang the display. | 
|  | */ | 
|  | assert_planes_disabled(dev_priv, pipe); | 
|  | assert_cursor_disabled(dev_priv, pipe); | 
|  | assert_sprites_disabled(dev_priv, pipe); | 
|  |  | 
|  | reg = PIPECONF(cpu_transcoder); | 
|  | val = I915_READ(reg); | 
|  | if ((val & PIPECONF_ENABLE) == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Double wide has implications for planes | 
|  | * so best keep it disabled when not needed. | 
|  | */ | 
|  | if (crtc->config.double_wide) | 
|  | val &= ~PIPECONF_DOUBLE_WIDE; | 
|  |  | 
|  | /* Don't disable pipe or pipe PLLs if needed */ | 
|  | if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) && | 
|  | !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) | 
|  | val &= ~PIPECONF_ENABLE; | 
|  |  | 
|  | I915_WRITE(reg, val); | 
|  | if ((val & PIPECONF_ENABLE) == 0) | 
|  | intel_wait_for_pipe_off(crtc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Plane regs are double buffered, going from enabled->disabled needs a | 
|  | * trigger in order to latch.  The display address reg provides this. | 
|  | */ | 
|  | void intel_flush_primary_plane(struct drm_i915_private *dev_priv, | 
|  | enum plane plane) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane); | 
|  |  | 
|  | I915_WRITE(reg, I915_READ(reg)); | 
|  | POSTING_READ(reg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_enable_primary_hw_plane - enable the primary plane on a given pipe | 
|  | * @plane:  plane to be enabled | 
|  | * @crtc: crtc for the plane | 
|  | * | 
|  | * Enable @plane on @crtc, making sure that the pipe is running first. | 
|  | */ | 
|  | static void intel_enable_primary_hw_plane(struct drm_plane *plane, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = plane->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | /* If the pipe isn't enabled, we can't pump pixels and may hang */ | 
|  | assert_pipe_enabled(dev_priv, intel_crtc->pipe); | 
|  |  | 
|  | if (intel_crtc->primary_enabled) | 
|  | return; | 
|  |  | 
|  | intel_crtc->primary_enabled = true; | 
|  |  | 
|  | dev_priv->display.update_primary_plane(crtc, plane->fb, | 
|  | crtc->x, crtc->y); | 
|  |  | 
|  | /* | 
|  | * BDW signals flip done immediately if the plane | 
|  | * is disabled, even if the plane enable is already | 
|  | * armed to occur at the next vblank :( | 
|  | */ | 
|  | if (IS_BROADWELL(dev)) | 
|  | intel_wait_for_vblank(dev, intel_crtc->pipe); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_disable_primary_hw_plane - disable the primary hardware plane | 
|  | * @plane: plane to be disabled | 
|  | * @crtc: crtc for the plane | 
|  | * | 
|  | * Disable @plane on @crtc, making sure that the pipe is running first. | 
|  | */ | 
|  | static void intel_disable_primary_hw_plane(struct drm_plane *plane, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = plane->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | assert_pipe_enabled(dev_priv, intel_crtc->pipe); | 
|  |  | 
|  | if (!intel_crtc->primary_enabled) | 
|  | return; | 
|  |  | 
|  | intel_crtc->primary_enabled = false; | 
|  |  | 
|  | dev_priv->display.update_primary_plane(crtc, plane->fb, | 
|  | crtc->x, crtc->y); | 
|  | } | 
|  |  | 
|  | static bool need_vtd_wa(struct drm_device *dev) | 
|  | { | 
|  | #ifdef CONFIG_INTEL_IOMMU | 
|  | if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped) | 
|  | return true; | 
|  | #endif | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int intel_align_height(struct drm_device *dev, int height, bool tiled) | 
|  | { | 
|  | int tile_height; | 
|  |  | 
|  | tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1; | 
|  | return ALIGN(height, tile_height); | 
|  | } | 
|  |  | 
|  | int | 
|  | intel_pin_and_fence_fb_obj(struct drm_device *dev, | 
|  | struct drm_i915_gem_object *obj, | 
|  | struct intel_engine_cs *pipelined) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 alignment; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&dev->struct_mutex)); | 
|  |  | 
|  | switch (obj->tiling_mode) { | 
|  | case I915_TILING_NONE: | 
|  | if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) | 
|  | alignment = 128 * 1024; | 
|  | else if (INTEL_INFO(dev)->gen >= 4) | 
|  | alignment = 4 * 1024; | 
|  | else | 
|  | alignment = 64 * 1024; | 
|  | break; | 
|  | case I915_TILING_X: | 
|  | /* pin() will align the object as required by fence */ | 
|  | alignment = 0; | 
|  | break; | 
|  | case I915_TILING_Y: | 
|  | WARN(1, "Y tiled bo slipped through, driver bug!\n"); | 
|  | return -EINVAL; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Note that the w/a also requires 64 PTE of padding following the | 
|  | * bo. We currently fill all unused PTE with the shadow page and so | 
|  | * we should always have valid PTE following the scanout preventing | 
|  | * the VT-d warning. | 
|  | */ | 
|  | if (need_vtd_wa(dev) && alignment < 256 * 1024) | 
|  | alignment = 256 * 1024; | 
|  |  | 
|  | /* | 
|  | * Global gtt pte registers are special registers which actually forward | 
|  | * writes to a chunk of system memory. Which means that there is no risk | 
|  | * that the register values disappear as soon as we call | 
|  | * intel_runtime_pm_put(), so it is correct to wrap only the | 
|  | * pin/unpin/fence and not more. | 
|  | */ | 
|  | intel_runtime_pm_get(dev_priv); | 
|  |  | 
|  | dev_priv->mm.interruptible = false; | 
|  | ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined); | 
|  | if (ret) | 
|  | goto err_interruptible; | 
|  |  | 
|  | /* Install a fence for tiled scan-out. Pre-i965 always needs a | 
|  | * fence, whereas 965+ only requires a fence if using | 
|  | * framebuffer compression.  For simplicity, we always install | 
|  | * a fence as the cost is not that onerous. | 
|  | */ | 
|  | ret = i915_gem_object_get_fence(obj); | 
|  | if (ret) | 
|  | goto err_unpin; | 
|  |  | 
|  | i915_gem_object_pin_fence(obj); | 
|  |  | 
|  | dev_priv->mm.interruptible = true; | 
|  | intel_runtime_pm_put(dev_priv); | 
|  | return 0; | 
|  |  | 
|  | err_unpin: | 
|  | i915_gem_object_unpin_from_display_plane(obj); | 
|  | err_interruptible: | 
|  | dev_priv->mm.interruptible = true; | 
|  | intel_runtime_pm_put(dev_priv); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void intel_unpin_fb_obj(struct drm_i915_gem_object *obj) | 
|  | { | 
|  | WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex)); | 
|  |  | 
|  | i915_gem_object_unpin_fence(obj); | 
|  | i915_gem_object_unpin_from_display_plane(obj); | 
|  | } | 
|  |  | 
|  | /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel | 
|  | * is assumed to be a power-of-two. */ | 
|  | unsigned long intel_gen4_compute_page_offset(int *x, int *y, | 
|  | unsigned int tiling_mode, | 
|  | unsigned int cpp, | 
|  | unsigned int pitch) | 
|  | { | 
|  | if (tiling_mode != I915_TILING_NONE) { | 
|  | unsigned int tile_rows, tiles; | 
|  |  | 
|  | tile_rows = *y / 8; | 
|  | *y %= 8; | 
|  |  | 
|  | tiles = *x / (512/cpp); | 
|  | *x %= 512/cpp; | 
|  |  | 
|  | return tile_rows * pitch * 8 + tiles * 4096; | 
|  | } else { | 
|  | unsigned int offset; | 
|  |  | 
|  | offset = *y * pitch + *x * cpp; | 
|  | *y = 0; | 
|  | *x = (offset & 4095) / cpp; | 
|  | return offset & -4096; | 
|  | } | 
|  | } | 
|  |  | 
|  | int intel_format_to_fourcc(int format) | 
|  | { | 
|  | switch (format) { | 
|  | case DISPPLANE_8BPP: | 
|  | return DRM_FORMAT_C8; | 
|  | case DISPPLANE_BGRX555: | 
|  | return DRM_FORMAT_XRGB1555; | 
|  | case DISPPLANE_BGRX565: | 
|  | return DRM_FORMAT_RGB565; | 
|  | default: | 
|  | case DISPPLANE_BGRX888: | 
|  | return DRM_FORMAT_XRGB8888; | 
|  | case DISPPLANE_RGBX888: | 
|  | return DRM_FORMAT_XBGR8888; | 
|  | case DISPPLANE_BGRX101010: | 
|  | return DRM_FORMAT_XRGB2101010; | 
|  | case DISPPLANE_RGBX101010: | 
|  | return DRM_FORMAT_XBGR2101010; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool intel_alloc_plane_obj(struct intel_crtc *crtc, | 
|  | struct intel_plane_config *plane_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_gem_object *obj = NULL; | 
|  | struct drm_mode_fb_cmd2 mode_cmd = { 0 }; | 
|  | u32 base = plane_config->base; | 
|  |  | 
|  | if (plane_config->size == 0) | 
|  | return false; | 
|  |  | 
|  | obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base, | 
|  | plane_config->size); | 
|  | if (!obj) | 
|  | return false; | 
|  |  | 
|  | if (plane_config->tiled) { | 
|  | obj->tiling_mode = I915_TILING_X; | 
|  | obj->stride = crtc->base.primary->fb->pitches[0]; | 
|  | } | 
|  |  | 
|  | mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format; | 
|  | mode_cmd.width = crtc->base.primary->fb->width; | 
|  | mode_cmd.height = crtc->base.primary->fb->height; | 
|  | mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0]; | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  |  | 
|  | if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb), | 
|  | &mode_cmd, obj)) { | 
|  | DRM_DEBUG_KMS("intel fb init failed\n"); | 
|  | goto out_unref_obj; | 
|  | } | 
|  |  | 
|  | obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | DRM_DEBUG_KMS("plane fb obj %p\n", obj); | 
|  | return true; | 
|  |  | 
|  | out_unref_obj: | 
|  | drm_gem_object_unreference(&obj->base); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void intel_find_plane_obj(struct intel_crtc *intel_crtc, | 
|  | struct intel_plane_config *plane_config) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_crtc *c; | 
|  | struct intel_crtc *i; | 
|  | struct drm_i915_gem_object *obj; | 
|  |  | 
|  | if (!intel_crtc->base.primary->fb) | 
|  | return; | 
|  |  | 
|  | if (intel_alloc_plane_obj(intel_crtc, plane_config)) | 
|  | return; | 
|  |  | 
|  | kfree(intel_crtc->base.primary->fb); | 
|  | intel_crtc->base.primary->fb = NULL; | 
|  |  | 
|  | /* | 
|  | * Failed to alloc the obj, check to see if we should share | 
|  | * an fb with another CRTC instead | 
|  | */ | 
|  | for_each_crtc(dev, c) { | 
|  | i = to_intel_crtc(c); | 
|  |  | 
|  | if (c == &intel_crtc->base) | 
|  | continue; | 
|  |  | 
|  | if (!i->active) | 
|  | continue; | 
|  |  | 
|  | obj = intel_fb_obj(c->primary->fb); | 
|  | if (obj == NULL) | 
|  | continue; | 
|  |  | 
|  | if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) { | 
|  | drm_framebuffer_reference(c->primary->fb); | 
|  | intel_crtc->base.primary->fb = c->primary->fb; | 
|  | obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void i9xx_update_primary_plane(struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | int x, int y) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct drm_i915_gem_object *obj; | 
|  | int plane = intel_crtc->plane; | 
|  | unsigned long linear_offset; | 
|  | u32 dspcntr; | 
|  | u32 reg = DSPCNTR(plane); | 
|  | int pixel_size; | 
|  |  | 
|  | if (!intel_crtc->primary_enabled) { | 
|  | I915_WRITE(reg, 0); | 
|  | if (INTEL_INFO(dev)->gen >= 4) | 
|  | I915_WRITE(DSPSURF(plane), 0); | 
|  | else | 
|  | I915_WRITE(DSPADDR(plane), 0); | 
|  | POSTING_READ(reg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | obj = intel_fb_obj(fb); | 
|  | if (WARN_ON(obj == NULL)) | 
|  | return; | 
|  |  | 
|  | pixel_size = drm_format_plane_cpp(fb->pixel_format, 0); | 
|  |  | 
|  | dspcntr = DISPPLANE_GAMMA_ENABLE; | 
|  |  | 
|  | dspcntr |= DISPLAY_PLANE_ENABLE; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen < 4) { | 
|  | if (intel_crtc->pipe == PIPE_B) | 
|  | dspcntr |= DISPPLANE_SEL_PIPE_B; | 
|  |  | 
|  | /* pipesrc and dspsize control the size that is scaled from, | 
|  | * which should always be the user's requested size. | 
|  | */ | 
|  | I915_WRITE(DSPSIZE(plane), | 
|  | ((intel_crtc->config.pipe_src_h - 1) << 16) | | 
|  | (intel_crtc->config.pipe_src_w - 1)); | 
|  | I915_WRITE(DSPPOS(plane), 0); | 
|  | } | 
|  |  | 
|  | switch (fb->pixel_format) { | 
|  | case DRM_FORMAT_C8: | 
|  | dspcntr |= DISPPLANE_8BPP; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB1555: | 
|  | case DRM_FORMAT_ARGB1555: | 
|  | dspcntr |= DISPPLANE_BGRX555; | 
|  | break; | 
|  | case DRM_FORMAT_RGB565: | 
|  | dspcntr |= DISPPLANE_BGRX565; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB8888: | 
|  | case DRM_FORMAT_ARGB8888: | 
|  | dspcntr |= DISPPLANE_BGRX888; | 
|  | break; | 
|  | case DRM_FORMAT_XBGR8888: | 
|  | case DRM_FORMAT_ABGR8888: | 
|  | dspcntr |= DISPPLANE_RGBX888; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB2101010: | 
|  | case DRM_FORMAT_ARGB2101010: | 
|  | dspcntr |= DISPPLANE_BGRX101010; | 
|  | break; | 
|  | case DRM_FORMAT_XBGR2101010: | 
|  | case DRM_FORMAT_ABGR2101010: | 
|  | dspcntr |= DISPPLANE_RGBX101010; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4 && | 
|  | obj->tiling_mode != I915_TILING_NONE) | 
|  | dspcntr |= DISPPLANE_TILED; | 
|  |  | 
|  | if (IS_G4X(dev)) | 
|  | dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; | 
|  |  | 
|  | linear_offset = y * fb->pitches[0] + x * pixel_size; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | intel_crtc->dspaddr_offset = | 
|  | intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode, | 
|  | pixel_size, | 
|  | fb->pitches[0]); | 
|  | linear_offset -= intel_crtc->dspaddr_offset; | 
|  | } else { | 
|  | intel_crtc->dspaddr_offset = linear_offset; | 
|  | } | 
|  |  | 
|  | if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) { | 
|  | dspcntr |= DISPPLANE_ROTATE_180; | 
|  |  | 
|  | x += (intel_crtc->config.pipe_src_w - 1); | 
|  | y += (intel_crtc->config.pipe_src_h - 1); | 
|  |  | 
|  | /* Finding the last pixel of the last line of the display | 
|  | data and adding to linear_offset*/ | 
|  | linear_offset += | 
|  | (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] + | 
|  | (intel_crtc->config.pipe_src_w - 1) * pixel_size; | 
|  | } | 
|  |  | 
|  | I915_WRITE(reg, dspcntr); | 
|  |  | 
|  | DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n", | 
|  | i915_gem_obj_ggtt_offset(obj), linear_offset, x, y, | 
|  | fb->pitches[0]); | 
|  | I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | I915_WRITE(DSPSURF(plane), | 
|  | i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset); | 
|  | I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); | 
|  | I915_WRITE(DSPLINOFF(plane), linear_offset); | 
|  | } else | 
|  | I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset); | 
|  | POSTING_READ(reg); | 
|  | } | 
|  |  | 
|  | static void ironlake_update_primary_plane(struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | int x, int y) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct drm_i915_gem_object *obj; | 
|  | int plane = intel_crtc->plane; | 
|  | unsigned long linear_offset; | 
|  | u32 dspcntr; | 
|  | u32 reg = DSPCNTR(plane); | 
|  | int pixel_size; | 
|  |  | 
|  | if (!intel_crtc->primary_enabled) { | 
|  | I915_WRITE(reg, 0); | 
|  | I915_WRITE(DSPSURF(plane), 0); | 
|  | POSTING_READ(reg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | obj = intel_fb_obj(fb); | 
|  | if (WARN_ON(obj == NULL)) | 
|  | return; | 
|  |  | 
|  | pixel_size = drm_format_plane_cpp(fb->pixel_format, 0); | 
|  |  | 
|  | dspcntr = DISPPLANE_GAMMA_ENABLE; | 
|  |  | 
|  | dspcntr |= DISPLAY_PLANE_ENABLE; | 
|  |  | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) | 
|  | dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; | 
|  |  | 
|  | switch (fb->pixel_format) { | 
|  | case DRM_FORMAT_C8: | 
|  | dspcntr |= DISPPLANE_8BPP; | 
|  | break; | 
|  | case DRM_FORMAT_RGB565: | 
|  | dspcntr |= DISPPLANE_BGRX565; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB8888: | 
|  | case DRM_FORMAT_ARGB8888: | 
|  | dspcntr |= DISPPLANE_BGRX888; | 
|  | break; | 
|  | case DRM_FORMAT_XBGR8888: | 
|  | case DRM_FORMAT_ABGR8888: | 
|  | dspcntr |= DISPPLANE_RGBX888; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB2101010: | 
|  | case DRM_FORMAT_ARGB2101010: | 
|  | dspcntr |= DISPPLANE_BGRX101010; | 
|  | break; | 
|  | case DRM_FORMAT_XBGR2101010: | 
|  | case DRM_FORMAT_ABGR2101010: | 
|  | dspcntr |= DISPPLANE_RGBX101010; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (obj->tiling_mode != I915_TILING_NONE) | 
|  | dspcntr |= DISPPLANE_TILED; | 
|  |  | 
|  | if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) | 
|  | dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; | 
|  |  | 
|  | linear_offset = y * fb->pitches[0] + x * pixel_size; | 
|  | intel_crtc->dspaddr_offset = | 
|  | intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode, | 
|  | pixel_size, | 
|  | fb->pitches[0]); | 
|  | linear_offset -= intel_crtc->dspaddr_offset; | 
|  | if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) { | 
|  | dspcntr |= DISPPLANE_ROTATE_180; | 
|  |  | 
|  | if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) { | 
|  | x += (intel_crtc->config.pipe_src_w - 1); | 
|  | y += (intel_crtc->config.pipe_src_h - 1); | 
|  |  | 
|  | /* Finding the last pixel of the last line of the display | 
|  | data and adding to linear_offset*/ | 
|  | linear_offset += | 
|  | (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] + | 
|  | (intel_crtc->config.pipe_src_w - 1) * pixel_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | I915_WRITE(reg, dspcntr); | 
|  |  | 
|  | DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n", | 
|  | i915_gem_obj_ggtt_offset(obj), linear_offset, x, y, | 
|  | fb->pitches[0]); | 
|  | I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); | 
|  | I915_WRITE(DSPSURF(plane), | 
|  | i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset); | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { | 
|  | I915_WRITE(DSPOFFSET(plane), (y << 16) | x); | 
|  | } else { | 
|  | I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); | 
|  | I915_WRITE(DSPLINOFF(plane), linear_offset); | 
|  | } | 
|  | POSTING_READ(reg); | 
|  | } | 
|  |  | 
|  | /* Assume fb object is pinned & idle & fenced and just update base pointers */ | 
|  | static int | 
|  | intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, | 
|  | int x, int y, enum mode_set_atomic state) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (dev_priv->display.disable_fbc) | 
|  | dev_priv->display.disable_fbc(dev); | 
|  | intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe); | 
|  |  | 
|  | dev_priv->display.update_primary_plane(crtc, fb, x, y); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void intel_display_handle_reset(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc; | 
|  |  | 
|  | /* | 
|  | * Flips in the rings have been nuked by the reset, | 
|  | * so complete all pending flips so that user space | 
|  | * will get its events and not get stuck. | 
|  | * | 
|  | * Also update the base address of all primary | 
|  | * planes to the the last fb to make sure we're | 
|  | * showing the correct fb after a reset. | 
|  | * | 
|  | * Need to make two loops over the crtcs so that we | 
|  | * don't try to grab a crtc mutex before the | 
|  | * pending_flip_queue really got woken up. | 
|  | */ | 
|  |  | 
|  | for_each_crtc(dev, crtc) { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum plane plane = intel_crtc->plane; | 
|  |  | 
|  | intel_prepare_page_flip(dev, plane); | 
|  | intel_finish_page_flip_plane(dev, plane); | 
|  | } | 
|  |  | 
|  | for_each_crtc(dev, crtc) { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | drm_modeset_lock(&crtc->mutex, NULL); | 
|  | /* | 
|  | * FIXME: Once we have proper support for primary planes (and | 
|  | * disabling them without disabling the entire crtc) allow again | 
|  | * a NULL crtc->primary->fb. | 
|  | */ | 
|  | if (intel_crtc->active && crtc->primary->fb) | 
|  | dev_priv->display.update_primary_plane(crtc, | 
|  | crtc->primary->fb, | 
|  | crtc->x, | 
|  | crtc->y); | 
|  | drm_modeset_unlock(&crtc->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_finish_fb(struct drm_framebuffer *old_fb) | 
|  | { | 
|  | struct drm_i915_gem_object *obj = intel_fb_obj(old_fb); | 
|  | struct drm_i915_private *dev_priv = obj->base.dev->dev_private; | 
|  | bool was_interruptible = dev_priv->mm.interruptible; | 
|  | int ret; | 
|  |  | 
|  | /* Big Hammer, we also need to ensure that any pending | 
|  | * MI_WAIT_FOR_EVENT inside a user batch buffer on the | 
|  | * current scanout is retired before unpinning the old | 
|  | * framebuffer. | 
|  | * | 
|  | * This should only fail upon a hung GPU, in which case we | 
|  | * can safely continue. | 
|  | */ | 
|  | dev_priv->mm.interruptible = false; | 
|  | ret = i915_gem_object_finish_gpu(obj); | 
|  | dev_priv->mm.interruptible = was_interruptible; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | unsigned long flags; | 
|  | bool pending; | 
|  |  | 
|  | if (i915_reset_in_progress(&dev_priv->gpu_error) || | 
|  | intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) | 
|  | return false; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | pending = to_intel_crtc(crtc)->unpin_work != NULL; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | return pending; | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, | 
|  | struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | struct drm_framebuffer *old_fb = crtc->primary->fb; | 
|  | struct drm_i915_gem_object *obj = intel_fb_obj(fb); | 
|  | struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb); | 
|  | int ret; | 
|  |  | 
|  | if (intel_crtc_has_pending_flip(crtc)) { | 
|  | DRM_ERROR("pipe is still busy with an old pageflip\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* no fb bound */ | 
|  | if (!fb) { | 
|  | DRM_ERROR("No FB bound\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) { | 
|  | DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n", | 
|  | plane_name(intel_crtc->plane), | 
|  | INTEL_INFO(dev)->num_pipes); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | ret = intel_pin_and_fence_fb_obj(dev, obj, NULL); | 
|  | if (ret == 0) | 
|  | i915_gem_track_fb(old_obj, obj, | 
|  | INTEL_FRONTBUFFER_PRIMARY(pipe)); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | if (ret != 0) { | 
|  | DRM_ERROR("pin & fence failed\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update pipe size and adjust fitter if needed: the reason for this is | 
|  | * that in compute_mode_changes we check the native mode (not the pfit | 
|  | * mode) to see if we can flip rather than do a full mode set. In the | 
|  | * fastboot case, we'll flip, but if we don't update the pipesrc and | 
|  | * pfit state, we'll end up with a big fb scanned out into the wrong | 
|  | * sized surface. | 
|  | * | 
|  | * To fix this properly, we need to hoist the checks up into | 
|  | * compute_mode_changes (or above), check the actual pfit state and | 
|  | * whether the platform allows pfit disable with pipe active, and only | 
|  | * then update the pipesrc and pfit state, even on the flip path. | 
|  | */ | 
|  | if (i915.fastboot) { | 
|  | const struct drm_display_mode *adjusted_mode = | 
|  | &intel_crtc->config.adjusted_mode; | 
|  |  | 
|  | I915_WRITE(PIPESRC(intel_crtc->pipe), | 
|  | ((adjusted_mode->crtc_hdisplay - 1) << 16) | | 
|  | (adjusted_mode->crtc_vdisplay - 1)); | 
|  | if (!intel_crtc->config.pch_pfit.enabled && | 
|  | (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { | 
|  | I915_WRITE(PF_CTL(intel_crtc->pipe), 0); | 
|  | I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0); | 
|  | I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0); | 
|  | } | 
|  | intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay; | 
|  | intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay; | 
|  | } | 
|  |  | 
|  | dev_priv->display.update_primary_plane(crtc, fb, x, y); | 
|  |  | 
|  | if (intel_crtc->active) | 
|  | intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe)); | 
|  |  | 
|  | crtc->primary->fb = fb; | 
|  | crtc->x = x; | 
|  | crtc->y = y; | 
|  |  | 
|  | if (old_fb) { | 
|  | if (intel_crtc->active && old_fb != fb) | 
|  | intel_wait_for_vblank(dev, intel_crtc->pipe); | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_unpin_fb_obj(old_obj); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_fdi_normal_train(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  | /* enable normal train */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if (IS_IVYBRIDGE(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE_IVB; | 
|  | temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; | 
|  | } else { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; | 
|  | } | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_NORMAL_CPT; | 
|  | } else { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_NONE; | 
|  | } | 
|  | I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); | 
|  |  | 
|  | /* wait one idle pattern time */ | 
|  | POSTING_READ(reg); | 
|  | udelay(1000); | 
|  |  | 
|  | /* IVB wants error correction enabled */ | 
|  | if (IS_IVYBRIDGE(dev)) | 
|  | I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | | 
|  | FDI_FE_ERRC_ENABLE); | 
|  | } | 
|  |  | 
|  | static bool pipe_has_enabled_pch(struct intel_crtc *crtc) | 
|  | { | 
|  | return crtc->base.enabled && crtc->active && | 
|  | crtc->config.has_pch_encoder; | 
|  | } | 
|  |  | 
|  | static void ivb_modeset_global_resources(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *pipe_B_crtc = | 
|  | to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]); | 
|  | struct intel_crtc *pipe_C_crtc = | 
|  | to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]); | 
|  | uint32_t temp; | 
|  |  | 
|  | /* | 
|  | * When everything is off disable fdi C so that we could enable fdi B | 
|  | * with all lanes. Note that we don't care about enabled pipes without | 
|  | * an enabled pch encoder. | 
|  | */ | 
|  | if (!pipe_has_enabled_pch(pipe_B_crtc) && | 
|  | !pipe_has_enabled_pch(pipe_C_crtc)) { | 
|  | WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); | 
|  | WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); | 
|  |  | 
|  | temp = I915_READ(SOUTH_CHICKEN1); | 
|  | temp &= ~FDI_BC_BIFURCATION_SELECT; | 
|  | DRM_DEBUG_KMS("disabling fdi C rx\n"); | 
|  | I915_WRITE(SOUTH_CHICKEN1, temp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The FDI link training functions for ILK/Ibexpeak. */ | 
|  | static void ironlake_fdi_link_train(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp, tries; | 
|  |  | 
|  | /* FDI needs bits from pipe first */ | 
|  | assert_pipe_enabled(dev_priv, pipe); | 
|  |  | 
|  | /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit | 
|  | for train result */ | 
|  | reg = FDI_RX_IMR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_RX_SYMBOL_LOCK; | 
|  | temp &= ~FDI_RX_BIT_LOCK; | 
|  | I915_WRITE(reg, temp); | 
|  | I915_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | /* enable CPU FDI TX and PCH FDI RX */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_DP_PORT_WIDTH_MASK; | 
|  | temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | I915_WRITE(reg, temp | FDI_TX_ENABLE); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | I915_WRITE(reg, temp | FDI_RX_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | /* Ironlake workaround, enable clock pointer after FDI enable*/ | 
|  | I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); | 
|  | I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | | 
|  | FDI_RX_PHASE_SYNC_POINTER_EN); | 
|  |  | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | for (tries = 0; tries < 5; tries++) { | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  |  | 
|  | if ((temp & FDI_RX_BIT_LOCK)) { | 
|  | DRM_DEBUG_KMS("FDI train 1 done.\n"); | 
|  | I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (tries == 5) | 
|  | DRM_ERROR("FDI train 1 fail!\n"); | 
|  |  | 
|  | /* Train 2 */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | for (tries = 0; tries < 5; tries++) { | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  |  | 
|  | if (temp & FDI_RX_SYMBOL_LOCK) { | 
|  | I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); | 
|  | DRM_DEBUG_KMS("FDI train 2 done.\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (tries == 5) | 
|  | DRM_ERROR("FDI train 2 fail!\n"); | 
|  |  | 
|  | DRM_DEBUG_KMS("FDI train done\n"); | 
|  |  | 
|  | } | 
|  |  | 
|  | static const int snb_b_fdi_train_param[] = { | 
|  | FDI_LINK_TRAIN_400MV_0DB_SNB_B, | 
|  | FDI_LINK_TRAIN_400MV_6DB_SNB_B, | 
|  | FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, | 
|  | FDI_LINK_TRAIN_800MV_0DB_SNB_B, | 
|  | }; | 
|  |  | 
|  | /* The FDI link training functions for SNB/Cougarpoint. */ | 
|  | static void gen6_fdi_link_train(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp, i, retry; | 
|  |  | 
|  | /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit | 
|  | for train result */ | 
|  | reg = FDI_RX_IMR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_RX_SYMBOL_LOCK; | 
|  | temp &= ~FDI_RX_BIT_LOCK; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | /* enable CPU FDI TX and PCH FDI RX */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_DP_PORT_WIDTH_MASK; | 
|  | temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | /* SNB-B */ | 
|  | temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; | 
|  | I915_WRITE(reg, temp | FDI_TX_ENABLE); | 
|  |  | 
|  | I915_WRITE(FDI_RX_MISC(pipe), | 
|  | FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; | 
|  | } else { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | } | 
|  | I915_WRITE(reg, temp | FDI_RX_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | temp |= snb_b_fdi_train_param[i]; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(500); | 
|  |  | 
|  | for (retry = 0; retry < 5; retry++) { | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  | if (temp & FDI_RX_BIT_LOCK) { | 
|  | I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); | 
|  | DRM_DEBUG_KMS("FDI train 1 done.\n"); | 
|  | break; | 
|  | } | 
|  | udelay(50); | 
|  | } | 
|  | if (retry < 5) | 
|  | break; | 
|  | } | 
|  | if (i == 4) | 
|  | DRM_ERROR("FDI train 1 fail!\n"); | 
|  |  | 
|  | /* Train 2 */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2; | 
|  | if (IS_GEN6(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | /* SNB-B */ | 
|  | temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; | 
|  | } | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; | 
|  | } else { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2; | 
|  | } | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | temp |= snb_b_fdi_train_param[i]; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(500); | 
|  |  | 
|  | for (retry = 0; retry < 5; retry++) { | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  | if (temp & FDI_RX_SYMBOL_LOCK) { | 
|  | I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); | 
|  | DRM_DEBUG_KMS("FDI train 2 done.\n"); | 
|  | break; | 
|  | } | 
|  | udelay(50); | 
|  | } | 
|  | if (retry < 5) | 
|  | break; | 
|  | } | 
|  | if (i == 4) | 
|  | DRM_ERROR("FDI train 2 fail!\n"); | 
|  |  | 
|  | DRM_DEBUG_KMS("FDI train done.\n"); | 
|  | } | 
|  |  | 
|  | /* Manual link training for Ivy Bridge A0 parts */ | 
|  | static void ivb_manual_fdi_link_train(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp, i, j; | 
|  |  | 
|  | /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit | 
|  | for train result */ | 
|  | reg = FDI_RX_IMR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_RX_SYMBOL_LOCK; | 
|  | temp &= ~FDI_RX_BIT_LOCK; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", | 
|  | I915_READ(FDI_RX_IIR(pipe))); | 
|  |  | 
|  | /* Try each vswing and preemphasis setting twice before moving on */ | 
|  | for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { | 
|  | /* disable first in case we need to retry */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); | 
|  | temp &= ~FDI_TX_ENABLE; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_AUTO; | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp &= ~FDI_RX_ENABLE; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | /* enable CPU FDI TX and PCH FDI RX */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_DP_PORT_WIDTH_MASK; | 
|  | temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | temp |= snb_b_fdi_train_param[j/2]; | 
|  | temp |= FDI_COMPOSITE_SYNC; | 
|  | I915_WRITE(reg, temp | FDI_TX_ENABLE); | 
|  |  | 
|  | I915_WRITE(FDI_RX_MISC(pipe), | 
|  | FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; | 
|  | temp |= FDI_COMPOSITE_SYNC; | 
|  | I915_WRITE(reg, temp | FDI_RX_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(1); /* should be 0.5us */ | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  |  | 
|  | if (temp & FDI_RX_BIT_LOCK || | 
|  | (I915_READ(reg) & FDI_RX_BIT_LOCK)) { | 
|  | I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); | 
|  | DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", | 
|  | i); | 
|  | break; | 
|  | } | 
|  | udelay(1); /* should be 0.5us */ | 
|  | } | 
|  | if (i == 4) { | 
|  | DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Train 2 */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE_IVB; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(2); /* should be 1.5us */ | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  |  | 
|  | if (temp & FDI_RX_SYMBOL_LOCK || | 
|  | (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) { | 
|  | I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); | 
|  | DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", | 
|  | i); | 
|  | goto train_done; | 
|  | } | 
|  | udelay(2); /* should be 1.5us */ | 
|  | } | 
|  | if (i == 4) | 
|  | DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2); | 
|  | } | 
|  |  | 
|  | train_done: | 
|  | DRM_DEBUG_KMS("FDI train done.\n"); | 
|  | } | 
|  |  | 
|  | static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  |  | 
|  | /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); | 
|  | temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); | 
|  | temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; | 
|  | I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(200); | 
|  |  | 
|  | /* Switch from Rawclk to PCDclk */ | 
|  | temp = I915_READ(reg); | 
|  | I915_WRITE(reg, temp | FDI_PCDCLK); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(200); | 
|  |  | 
|  | /* Enable CPU FDI TX PLL, always on for Ironlake */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if ((temp & FDI_TX_PLL_ENABLE) == 0) { | 
|  | I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(100); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  | /* Switch from PCDclk to Rawclk */ | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | I915_WRITE(reg, temp & ~FDI_PCDCLK); | 
|  |  | 
|  | /* Disable CPU FDI TX PLL */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(100); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); | 
|  |  | 
|  | /* Wait for the clocks to turn off. */ | 
|  | POSTING_READ(reg); | 
|  | udelay(100); | 
|  | } | 
|  |  | 
|  | static void ironlake_fdi_disable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  | /* disable CPU FDI tx and PCH FDI rx */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | I915_WRITE(reg, temp & ~FDI_TX_ENABLE); | 
|  | POSTING_READ(reg); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(0x7 << 16); | 
|  | temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; | 
|  | I915_WRITE(reg, temp & ~FDI_RX_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(100); | 
|  |  | 
|  | /* Ironlake workaround, disable clock pointer after downing FDI */ | 
|  | if (HAS_PCH_IBX(dev)) | 
|  | I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); | 
|  |  | 
|  | /* still set train pattern 1 */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; | 
|  | } else { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | } | 
|  | /* BPC in FDI rx is consistent with that in PIPECONF */ | 
|  | temp &= ~(0x07 << 16); | 
|  | temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(100); | 
|  | } | 
|  |  | 
|  | bool intel_has_pending_fb_unpin(struct drm_device *dev) | 
|  | { | 
|  | struct intel_crtc *crtc; | 
|  |  | 
|  | /* Note that we don't need to be called with mode_config.lock here | 
|  | * as our list of CRTC objects is static for the lifetime of the | 
|  | * device and so cannot disappear as we iterate. Similarly, we can | 
|  | * happily treat the predicates as racy, atomic checks as userspace | 
|  | * cannot claim and pin a new fb without at least acquring the | 
|  | * struct_mutex and so serialising with us. | 
|  | */ | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | if (atomic_read(&crtc->unpin_work_count) == 0) | 
|  | continue; | 
|  |  | 
|  | if (crtc->unpin_work) | 
|  | intel_wait_for_vblank(dev, crtc->pipe); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void page_flip_completed(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); | 
|  | struct intel_unpin_work *work = intel_crtc->unpin_work; | 
|  |  | 
|  | /* ensure that the unpin work is consistent wrt ->pending. */ | 
|  | smp_rmb(); | 
|  | intel_crtc->unpin_work = NULL; | 
|  |  | 
|  | if (work->event) | 
|  | drm_send_vblank_event(intel_crtc->base.dev, | 
|  | intel_crtc->pipe, | 
|  | work->event); | 
|  |  | 
|  | drm_crtc_vblank_put(&intel_crtc->base); | 
|  |  | 
|  | wake_up_all(&dev_priv->pending_flip_queue); | 
|  | queue_work(dev_priv->wq, &work->work); | 
|  |  | 
|  | trace_i915_flip_complete(intel_crtc->plane, | 
|  | work->pending_flip_obj); | 
|  | } | 
|  |  | 
|  | void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue)); | 
|  | if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue, | 
|  | !intel_crtc_has_pending_flip(crtc), | 
|  | 60*HZ) == 0)) { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | if (intel_crtc->unpin_work) { | 
|  | WARN_ONCE(1, "Removing stuck page flip\n"); | 
|  | page_flip_completed(intel_crtc); | 
|  | } | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | } | 
|  |  | 
|  | if (crtc->primary->fb) { | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_finish_fb(crtc->primary->fb); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Program iCLKIP clock to the desired frequency */ | 
|  | static void lpt_program_iclkip(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock; | 
|  | u32 divsel, phaseinc, auxdiv, phasedir = 0; | 
|  | u32 temp; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | /* It is necessary to ungate the pixclk gate prior to programming | 
|  | * the divisors, and gate it back when it is done. | 
|  | */ | 
|  | I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); | 
|  |  | 
|  | /* Disable SSCCTL */ | 
|  | intel_sbi_write(dev_priv, SBI_SSCCTL6, | 
|  | intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) | | 
|  | SBI_SSCCTL_DISABLE, | 
|  | SBI_ICLK); | 
|  |  | 
|  | /* 20MHz is a corner case which is out of range for the 7-bit divisor */ | 
|  | if (clock == 20000) { | 
|  | auxdiv = 1; | 
|  | divsel = 0x41; | 
|  | phaseinc = 0x20; | 
|  | } else { | 
|  | /* The iCLK virtual clock root frequency is in MHz, | 
|  | * but the adjusted_mode->crtc_clock in in KHz. To get the | 
|  | * divisors, it is necessary to divide one by another, so we | 
|  | * convert the virtual clock precision to KHz here for higher | 
|  | * precision. | 
|  | */ | 
|  | u32 iclk_virtual_root_freq = 172800 * 1000; | 
|  | u32 iclk_pi_range = 64; | 
|  | u32 desired_divisor, msb_divisor_value, pi_value; | 
|  |  | 
|  | desired_divisor = (iclk_virtual_root_freq / clock); | 
|  | msb_divisor_value = desired_divisor / iclk_pi_range; | 
|  | pi_value = desired_divisor % iclk_pi_range; | 
|  |  | 
|  | auxdiv = 0; | 
|  | divsel = msb_divisor_value - 2; | 
|  | phaseinc = pi_value; | 
|  | } | 
|  |  | 
|  | /* This should not happen with any sane values */ | 
|  | WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & | 
|  | ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); | 
|  | WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & | 
|  | ~SBI_SSCDIVINTPHASE_INCVAL_MASK); | 
|  |  | 
|  | DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", | 
|  | clock, | 
|  | auxdiv, | 
|  | divsel, | 
|  | phasedir, | 
|  | phaseinc); | 
|  |  | 
|  | /* Program SSCDIVINTPHASE6 */ | 
|  | temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); | 
|  | temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; | 
|  | temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); | 
|  | temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; | 
|  | temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); | 
|  | temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); | 
|  | temp |= SBI_SSCDIVINTPHASE_PROPAGATE; | 
|  | intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); | 
|  |  | 
|  | /* Program SSCAUXDIV */ | 
|  | temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); | 
|  | temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); | 
|  | temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); | 
|  | intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); | 
|  |  | 
|  | /* Enable modulator and associated divider */ | 
|  | temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); | 
|  | temp &= ~SBI_SSCCTL_DISABLE; | 
|  | intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); | 
|  |  | 
|  | /* Wait for initialization time */ | 
|  | udelay(24); | 
|  |  | 
|  | I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc, | 
|  | enum pipe pch_transcoder) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum transcoder cpu_transcoder = crtc->config.cpu_transcoder; | 
|  |  | 
|  | I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder), | 
|  | I915_READ(HTOTAL(cpu_transcoder))); | 
|  | I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder), | 
|  | I915_READ(HBLANK(cpu_transcoder))); | 
|  | I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder), | 
|  | I915_READ(HSYNC(cpu_transcoder))); | 
|  |  | 
|  | I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder), | 
|  | I915_READ(VTOTAL(cpu_transcoder))); | 
|  | I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder), | 
|  | I915_READ(VBLANK(cpu_transcoder))); | 
|  | I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder), | 
|  | I915_READ(VSYNC(cpu_transcoder))); | 
|  | I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder), | 
|  | I915_READ(VSYNCSHIFT(cpu_transcoder))); | 
|  | } | 
|  |  | 
|  | static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t temp; | 
|  |  | 
|  | temp = I915_READ(SOUTH_CHICKEN1); | 
|  | if (temp & FDI_BC_BIFURCATION_SELECT) | 
|  | return; | 
|  |  | 
|  | WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); | 
|  | WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); | 
|  |  | 
|  | temp |= FDI_BC_BIFURCATION_SELECT; | 
|  | DRM_DEBUG_KMS("enabling fdi C rx\n"); | 
|  | I915_WRITE(SOUTH_CHICKEN1, temp); | 
|  | POSTING_READ(SOUTH_CHICKEN1); | 
|  | } | 
|  |  | 
|  | static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | switch (intel_crtc->pipe) { | 
|  | case PIPE_A: | 
|  | break; | 
|  | case PIPE_B: | 
|  | if (intel_crtc->config.fdi_lanes > 2) | 
|  | WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT); | 
|  | else | 
|  | cpt_enable_fdi_bc_bifurcation(dev); | 
|  |  | 
|  | break; | 
|  | case PIPE_C: | 
|  | cpt_enable_fdi_bc_bifurcation(dev); | 
|  |  | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable PCH resources required for PCH ports: | 
|  | *   - PCH PLLs | 
|  | *   - FDI training & RX/TX | 
|  | *   - update transcoder timings | 
|  | *   - DP transcoding bits | 
|  | *   - transcoder | 
|  | */ | 
|  | static void ironlake_pch_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  | assert_pch_transcoder_disabled(dev_priv, pipe); | 
|  |  | 
|  | if (IS_IVYBRIDGE(dev)) | 
|  | ivybridge_update_fdi_bc_bifurcation(intel_crtc); | 
|  |  | 
|  | /* Write the TU size bits before fdi link training, so that error | 
|  | * detection works. */ | 
|  | I915_WRITE(FDI_RX_TUSIZE1(pipe), | 
|  | I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); | 
|  |  | 
|  | /* For PCH output, training FDI link */ | 
|  | dev_priv->display.fdi_link_train(crtc); | 
|  |  | 
|  | /* We need to program the right clock selection before writing the pixel | 
|  | * mutliplier into the DPLL. */ | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | u32 sel; | 
|  |  | 
|  | temp = I915_READ(PCH_DPLL_SEL); | 
|  | temp |= TRANS_DPLL_ENABLE(pipe); | 
|  | sel = TRANS_DPLLB_SEL(pipe); | 
|  | if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B) | 
|  | temp |= sel; | 
|  | else | 
|  | temp &= ~sel; | 
|  | I915_WRITE(PCH_DPLL_SEL, temp); | 
|  | } | 
|  |  | 
|  | /* XXX: pch pll's can be enabled any time before we enable the PCH | 
|  | * transcoder, and we actually should do this to not upset any PCH | 
|  | * transcoder that already use the clock when we share it. | 
|  | * | 
|  | * Note that enable_shared_dpll tries to do the right thing, but | 
|  | * get_shared_dpll unconditionally resets the pll - we need that to have | 
|  | * the right LVDS enable sequence. */ | 
|  | intel_enable_shared_dpll(intel_crtc); | 
|  |  | 
|  | /* set transcoder timing, panel must allow it */ | 
|  | assert_panel_unlocked(dev_priv, pipe); | 
|  | ironlake_pch_transcoder_set_timings(intel_crtc, pipe); | 
|  |  | 
|  | intel_fdi_normal_train(crtc); | 
|  |  | 
|  | /* For PCH DP, enable TRANS_DP_CTL */ | 
|  | if (HAS_PCH_CPT(dev) && | 
|  | (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { | 
|  | u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; | 
|  | reg = TRANS_DP_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(TRANS_DP_PORT_SEL_MASK | | 
|  | TRANS_DP_SYNC_MASK | | 
|  | TRANS_DP_BPC_MASK); | 
|  | temp |= (TRANS_DP_OUTPUT_ENABLE | | 
|  | TRANS_DP_ENH_FRAMING); | 
|  | temp |= bpc << 9; /* same format but at 11:9 */ | 
|  |  | 
|  | if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC) | 
|  | temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; | 
|  | if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC) | 
|  | temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; | 
|  |  | 
|  | switch (intel_trans_dp_port_sel(crtc)) { | 
|  | case PCH_DP_B: | 
|  | temp |= TRANS_DP_PORT_SEL_B; | 
|  | break; | 
|  | case PCH_DP_C: | 
|  | temp |= TRANS_DP_PORT_SEL_C; | 
|  | break; | 
|  | case PCH_DP_D: | 
|  | temp |= TRANS_DP_PORT_SEL_D; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | I915_WRITE(reg, temp); | 
|  | } | 
|  |  | 
|  | ironlake_enable_pch_transcoder(dev_priv, pipe); | 
|  | } | 
|  |  | 
|  | static void lpt_pch_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; | 
|  |  | 
|  | assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A); | 
|  |  | 
|  | lpt_program_iclkip(crtc); | 
|  |  | 
|  | /* Set transcoder timing. */ | 
|  | ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A); | 
|  |  | 
|  | lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); | 
|  | } | 
|  |  | 
|  | void intel_put_shared_dpll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); | 
|  |  | 
|  | if (pll == NULL) | 
|  | return; | 
|  |  | 
|  | if (pll->refcount == 0) { | 
|  | WARN(1, "bad %s refcount\n", pll->name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (--pll->refcount == 0) { | 
|  | WARN_ON(pll->on); | 
|  | WARN_ON(pll->active); | 
|  | } | 
|  |  | 
|  | crtc->config.shared_dpll = DPLL_ID_PRIVATE; | 
|  | } | 
|  |  | 
|  | struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; | 
|  | struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); | 
|  | enum intel_dpll_id i; | 
|  |  | 
|  | if (pll) { | 
|  | DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n", | 
|  | crtc->base.base.id, pll->name); | 
|  | intel_put_shared_dpll(crtc); | 
|  | } | 
|  |  | 
|  | if (HAS_PCH_IBX(dev_priv->dev)) { | 
|  | /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ | 
|  | i = (enum intel_dpll_id) crtc->pipe; | 
|  | pll = &dev_priv->shared_dplls[i]; | 
|  |  | 
|  | DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n", | 
|  | crtc->base.base.id, pll->name); | 
|  |  | 
|  | WARN_ON(pll->refcount); | 
|  |  | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < dev_priv->num_shared_dpll; i++) { | 
|  | pll = &dev_priv->shared_dplls[i]; | 
|  |  | 
|  | /* Only want to check enabled timings first */ | 
|  | if (pll->refcount == 0) | 
|  | continue; | 
|  |  | 
|  | if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state, | 
|  | sizeof(pll->hw_state)) == 0) { | 
|  | DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n", | 
|  | crtc->base.base.id, | 
|  | pll->name, pll->refcount, pll->active); | 
|  |  | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ok no matching timings, maybe there's a free one? */ | 
|  | for (i = 0; i < dev_priv->num_shared_dpll; i++) { | 
|  | pll = &dev_priv->shared_dplls[i]; | 
|  | if (pll->refcount == 0) { | 
|  | DRM_DEBUG_KMS("CRTC:%d allocated %s\n", | 
|  | crtc->base.base.id, pll->name); | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  |  | 
|  | found: | 
|  | if (pll->refcount == 0) | 
|  | pll->hw_state = crtc->config.dpll_hw_state; | 
|  |  | 
|  | crtc->config.shared_dpll = i; | 
|  | DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name, | 
|  | pipe_name(crtc->pipe)); | 
|  |  | 
|  | pll->refcount++; | 
|  |  | 
|  | return pll; | 
|  | } | 
|  |  | 
|  | static void cpt_verify_modeset(struct drm_device *dev, int pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int dslreg = PIPEDSL(pipe); | 
|  | u32 temp; | 
|  |  | 
|  | temp = I915_READ(dslreg); | 
|  | udelay(500); | 
|  | if (wait_for(I915_READ(dslreg) != temp, 5)) { | 
|  | if (wait_for(I915_READ(dslreg) != temp, 5)) | 
|  | DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ironlake_pfit_enable(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = crtc->pipe; | 
|  |  | 
|  | if (crtc->config.pch_pfit.enabled) { | 
|  | /* Force use of hard-coded filter coefficients | 
|  | * as some pre-programmed values are broken, | 
|  | * e.g. x201. | 
|  | */ | 
|  | if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) | 
|  | I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | | 
|  | PF_PIPE_SEL_IVB(pipe)); | 
|  | else | 
|  | I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); | 
|  | I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos); | 
|  | I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_enable_planes(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | enum pipe pipe = to_intel_crtc(crtc)->pipe; | 
|  | struct drm_plane *plane; | 
|  | struct intel_plane *intel_plane; | 
|  |  | 
|  | drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) { | 
|  | intel_plane = to_intel_plane(plane); | 
|  | if (intel_plane->pipe == pipe) | 
|  | intel_plane_restore(&intel_plane->base); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_disable_planes(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | enum pipe pipe = to_intel_crtc(crtc)->pipe; | 
|  | struct drm_plane *plane; | 
|  | struct intel_plane *intel_plane; | 
|  |  | 
|  | drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) { | 
|  | intel_plane = to_intel_plane(plane); | 
|  | if (intel_plane->pipe == pipe) | 
|  | intel_plane_disable(&intel_plane->base); | 
|  | } | 
|  | } | 
|  |  | 
|  | void hsw_enable_ips(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (!crtc->config.ips_enabled) | 
|  | return; | 
|  |  | 
|  | /* We can only enable IPS after we enable a plane and wait for a vblank */ | 
|  | intel_wait_for_vblank(dev, crtc->pipe); | 
|  |  | 
|  | assert_plane_enabled(dev_priv, crtc->plane); | 
|  | if (IS_BROADWELL(dev)) { | 
|  | mutex_lock(&dev_priv->rps.hw_lock); | 
|  | WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000)); | 
|  | mutex_unlock(&dev_priv->rps.hw_lock); | 
|  | /* Quoting Art Runyan: "its not safe to expect any particular | 
|  | * value in IPS_CTL bit 31 after enabling IPS through the | 
|  | * mailbox." Moreover, the mailbox may return a bogus state, | 
|  | * so we need to just enable it and continue on. | 
|  | */ | 
|  | } else { | 
|  | I915_WRITE(IPS_CTL, IPS_ENABLE); | 
|  | /* The bit only becomes 1 in the next vblank, so this wait here | 
|  | * is essentially intel_wait_for_vblank. If we don't have this | 
|  | * and don't wait for vblanks until the end of crtc_enable, then | 
|  | * the HW state readout code will complain that the expected | 
|  | * IPS_CTL value is not the one we read. */ | 
|  | if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50)) | 
|  | DRM_ERROR("Timed out waiting for IPS enable\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void hsw_disable_ips(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (!crtc->config.ips_enabled) | 
|  | return; | 
|  |  | 
|  | assert_plane_enabled(dev_priv, crtc->plane); | 
|  | if (IS_BROADWELL(dev)) { | 
|  | mutex_lock(&dev_priv->rps.hw_lock); | 
|  | WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); | 
|  | mutex_unlock(&dev_priv->rps.hw_lock); | 
|  | /* wait for pcode to finish disabling IPS, which may take up to 42ms */ | 
|  | if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42)) | 
|  | DRM_ERROR("Timed out waiting for IPS disable\n"); | 
|  | } else { | 
|  | I915_WRITE(IPS_CTL, 0); | 
|  | POSTING_READ(IPS_CTL); | 
|  | } | 
|  |  | 
|  | /* We need to wait for a vblank before we can disable the plane. */ | 
|  | intel_wait_for_vblank(dev, crtc->pipe); | 
|  | } | 
|  |  | 
|  | /** Loads the palette/gamma unit for the CRTC with the prepared values */ | 
|  | static void intel_crtc_load_lut(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | int palreg = PALETTE(pipe); | 
|  | int i; | 
|  | bool reenable_ips = false; | 
|  |  | 
|  | /* The clocks have to be on to load the palette. */ | 
|  | if (!crtc->enabled || !intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | if (!HAS_PCH_SPLIT(dev_priv->dev)) { | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) | 
|  | assert_dsi_pll_enabled(dev_priv); | 
|  | else | 
|  | assert_pll_enabled(dev_priv, pipe); | 
|  | } | 
|  |  | 
|  | /* use legacy palette for Ironlake */ | 
|  | if (!HAS_GMCH_DISPLAY(dev)) | 
|  | palreg = LGC_PALETTE(pipe); | 
|  |  | 
|  | /* Workaround : Do not read or write the pipe palette/gamma data while | 
|  | * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. | 
|  | */ | 
|  | if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled && | 
|  | ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) == | 
|  | GAMMA_MODE_MODE_SPLIT)) { | 
|  | hsw_disable_ips(intel_crtc); | 
|  | reenable_ips = true; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 256; i++) { | 
|  | I915_WRITE(palreg + 4 * i, | 
|  | (intel_crtc->lut_r[i] << 16) | | 
|  | (intel_crtc->lut_g[i] << 8) | | 
|  | intel_crtc->lut_b[i]); | 
|  | } | 
|  |  | 
|  | if (reenable_ips) | 
|  | hsw_enable_ips(intel_crtc); | 
|  | } | 
|  |  | 
|  | static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable) | 
|  | { | 
|  | if (!enable && intel_crtc->overlay) { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | dev_priv->mm.interruptible = false; | 
|  | (void) intel_overlay_switch_off(intel_crtc->overlay); | 
|  | dev_priv->mm.interruptible = true; | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | /* Let userspace switch the overlay on again. In most cases userspace | 
|  | * has to recompute where to put it anyway. | 
|  | */ | 
|  | } | 
|  |  | 
|  | static void intel_crtc_enable_planes(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  |  | 
|  | assert_vblank_disabled(crtc); | 
|  |  | 
|  | drm_vblank_on(dev, pipe); | 
|  |  | 
|  | intel_enable_primary_hw_plane(crtc->primary, crtc); | 
|  | intel_enable_planes(crtc); | 
|  | intel_crtc_update_cursor(crtc, true); | 
|  | intel_crtc_dpms_overlay(intel_crtc, true); | 
|  |  | 
|  | hsw_enable_ips(intel_crtc); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | /* | 
|  | * FIXME: Once we grow proper nuclear flip support out of this we need | 
|  | * to compute the mask of flip planes precisely. For the time being | 
|  | * consider this a flip from a NULL plane. | 
|  | */ | 
|  | intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe)); | 
|  | } | 
|  |  | 
|  | static void intel_crtc_disable_planes(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  |  | 
|  | intel_crtc_wait_for_pending_flips(crtc); | 
|  |  | 
|  | if (dev_priv->fbc.plane == plane) | 
|  | intel_disable_fbc(dev); | 
|  |  | 
|  | hsw_disable_ips(intel_crtc); | 
|  |  | 
|  | intel_crtc_dpms_overlay(intel_crtc, false); | 
|  | intel_crtc_update_cursor(crtc, false); | 
|  | intel_disable_planes(crtc); | 
|  | intel_disable_primary_hw_plane(crtc->primary, crtc); | 
|  |  | 
|  | /* | 
|  | * FIXME: Once we grow proper nuclear flip support out of this we need | 
|  | * to compute the mask of flip planes precisely. For the time being | 
|  | * consider this a flip to a NULL plane. | 
|  | */ | 
|  | intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe)); | 
|  |  | 
|  | drm_vblank_off(dev, pipe); | 
|  |  | 
|  | assert_vblank_disabled(crtc); | 
|  | } | 
|  |  | 
|  | static void ironlake_crtc_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  |  | 
|  | WARN_ON(!crtc->enabled); | 
|  |  | 
|  | if (intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) | 
|  | intel_prepare_shared_dpll(intel_crtc); | 
|  |  | 
|  | if (intel_crtc->config.has_dp_encoder) | 
|  | intel_dp_set_m_n(intel_crtc); | 
|  |  | 
|  | intel_set_pipe_timings(intel_crtc); | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) { | 
|  | intel_cpu_transcoder_set_m_n(intel_crtc, | 
|  | &intel_crtc->config.fdi_m_n, NULL); | 
|  | } | 
|  |  | 
|  | ironlake_set_pipeconf(crtc); | 
|  |  | 
|  | intel_crtc->active = true; | 
|  |  | 
|  | intel_set_cpu_fifo_underrun_reporting(dev, pipe, true); | 
|  | intel_set_pch_fifo_underrun_reporting(dev, pipe, true); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_enable) | 
|  | encoder->pre_enable(encoder); | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) { | 
|  | /* Note: FDI PLL enabling _must_ be done before we enable the | 
|  | * cpu pipes, hence this is separate from all the other fdi/pch | 
|  | * enabling. */ | 
|  | ironlake_fdi_pll_enable(intel_crtc); | 
|  | } else { | 
|  | assert_fdi_tx_disabled(dev_priv, pipe); | 
|  | assert_fdi_rx_disabled(dev_priv, pipe); | 
|  | } | 
|  |  | 
|  | ironlake_pfit_enable(intel_crtc); | 
|  |  | 
|  | /* | 
|  | * On ILK+ LUT must be loaded before the pipe is running but with | 
|  | * clocks enabled | 
|  | */ | 
|  | intel_crtc_load_lut(crtc); | 
|  |  | 
|  | intel_update_watermarks(crtc); | 
|  | intel_enable_pipe(intel_crtc); | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) | 
|  | ironlake_pch_enable(crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->enable(encoder); | 
|  |  | 
|  | if (HAS_PCH_CPT(dev)) | 
|  | cpt_verify_modeset(dev, intel_crtc->pipe); | 
|  |  | 
|  | intel_crtc_enable_planes(crtc); | 
|  | } | 
|  |  | 
|  | /* IPS only exists on ULT machines and is tied to pipe A. */ | 
|  | static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) | 
|  | { | 
|  | return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This implements the workaround described in the "notes" section of the mode | 
|  | * set sequence documentation. When going from no pipes or single pipe to | 
|  | * multiple pipes, and planes are enabled after the pipe, we need to wait at | 
|  | * least 2 vblanks on the first pipe before enabling planes on the second pipe. | 
|  | */ | 
|  | static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct intel_crtc *crtc_it, *other_active_crtc = NULL; | 
|  |  | 
|  | /* We want to get the other_active_crtc only if there's only 1 other | 
|  | * active crtc. */ | 
|  | for_each_intel_crtc(dev, crtc_it) { | 
|  | if (!crtc_it->active || crtc_it == crtc) | 
|  | continue; | 
|  |  | 
|  | if (other_active_crtc) | 
|  | return; | 
|  |  | 
|  | other_active_crtc = crtc_it; | 
|  | } | 
|  | if (!other_active_crtc) | 
|  | return; | 
|  |  | 
|  | intel_wait_for_vblank(dev, other_active_crtc->pipe); | 
|  | intel_wait_for_vblank(dev, other_active_crtc->pipe); | 
|  | } | 
|  |  | 
|  | static void haswell_crtc_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  |  | 
|  | WARN_ON(!crtc->enabled); | 
|  |  | 
|  | if (intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | if (intel_crtc_to_shared_dpll(intel_crtc)) | 
|  | intel_enable_shared_dpll(intel_crtc); | 
|  |  | 
|  | if (intel_crtc->config.has_dp_encoder) | 
|  | intel_dp_set_m_n(intel_crtc); | 
|  |  | 
|  | intel_set_pipe_timings(intel_crtc); | 
|  |  | 
|  | if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) { | 
|  | I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder), | 
|  | intel_crtc->config.pixel_multiplier - 1); | 
|  | } | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) { | 
|  | intel_cpu_transcoder_set_m_n(intel_crtc, | 
|  | &intel_crtc->config.fdi_m_n, NULL); | 
|  | } | 
|  |  | 
|  | haswell_set_pipeconf(crtc); | 
|  |  | 
|  | intel_set_pipe_csc(crtc); | 
|  |  | 
|  | intel_crtc->active = true; | 
|  |  | 
|  | intel_set_cpu_fifo_underrun_reporting(dev, pipe, true); | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_enable) | 
|  | encoder->pre_enable(encoder); | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) { | 
|  | intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true); | 
|  | dev_priv->display.fdi_link_train(crtc); | 
|  | } | 
|  |  | 
|  | intel_ddi_enable_pipe_clock(intel_crtc); | 
|  |  | 
|  | ironlake_pfit_enable(intel_crtc); | 
|  |  | 
|  | /* | 
|  | * On ILK+ LUT must be loaded before the pipe is running but with | 
|  | * clocks enabled | 
|  | */ | 
|  | intel_crtc_load_lut(crtc); | 
|  |  | 
|  | intel_ddi_set_pipe_settings(crtc); | 
|  | intel_ddi_enable_transcoder_func(crtc); | 
|  |  | 
|  | intel_update_watermarks(crtc); | 
|  | intel_enable_pipe(intel_crtc); | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) | 
|  | lpt_pch_enable(crtc); | 
|  |  | 
|  | if (intel_crtc->config.dp_encoder_is_mst) | 
|  | intel_ddi_set_vc_payload_alloc(crtc, true); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) { | 
|  | encoder->enable(encoder); | 
|  | intel_opregion_notify_encoder(encoder, true); | 
|  | } | 
|  |  | 
|  | /* If we change the relative order between pipe/planes enabling, we need | 
|  | * to change the workaround. */ | 
|  | haswell_mode_set_planes_workaround(intel_crtc); | 
|  | intel_crtc_enable_planes(crtc); | 
|  | } | 
|  |  | 
|  | static void ironlake_pfit_disable(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = crtc->pipe; | 
|  |  | 
|  | /* To avoid upsetting the power well on haswell only disable the pfit if | 
|  | * it's in use. The hw state code will make sure we get this right. */ | 
|  | if (crtc->config.pch_pfit.enabled) { | 
|  | I915_WRITE(PF_CTL(pipe), 0); | 
|  | I915_WRITE(PF_WIN_POS(pipe), 0); | 
|  | I915_WRITE(PF_WIN_SZ(pipe), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ironlake_crtc_disable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  | if (!intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | intel_crtc_disable_planes(crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->disable(encoder); | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) | 
|  | intel_set_pch_fifo_underrun_reporting(dev, pipe, false); | 
|  |  | 
|  | intel_disable_pipe(intel_crtc); | 
|  |  | 
|  | ironlake_pfit_disable(intel_crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->post_disable) | 
|  | encoder->post_disable(encoder); | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) { | 
|  | ironlake_fdi_disable(crtc); | 
|  |  | 
|  | ironlake_disable_pch_transcoder(dev_priv, pipe); | 
|  |  | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | /* disable TRANS_DP_CTL */ | 
|  | reg = TRANS_DP_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(TRANS_DP_OUTPUT_ENABLE | | 
|  | TRANS_DP_PORT_SEL_MASK); | 
|  | temp |= TRANS_DP_PORT_SEL_NONE; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | /* disable DPLL_SEL */ | 
|  | temp = I915_READ(PCH_DPLL_SEL); | 
|  | temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); | 
|  | I915_WRITE(PCH_DPLL_SEL, temp); | 
|  | } | 
|  |  | 
|  | /* disable PCH DPLL */ | 
|  | intel_disable_shared_dpll(intel_crtc); | 
|  |  | 
|  | ironlake_fdi_pll_disable(intel_crtc); | 
|  | } | 
|  |  | 
|  | intel_crtc->active = false; | 
|  | intel_update_watermarks(crtc); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | static void haswell_crtc_disable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; | 
|  |  | 
|  | if (!intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | intel_crtc_disable_planes(crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) { | 
|  | intel_opregion_notify_encoder(encoder, false); | 
|  | encoder->disable(encoder); | 
|  | } | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) | 
|  | intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false); | 
|  | intel_disable_pipe(intel_crtc); | 
|  |  | 
|  | if (intel_crtc->config.dp_encoder_is_mst) | 
|  | intel_ddi_set_vc_payload_alloc(crtc, false); | 
|  |  | 
|  | intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder); | 
|  |  | 
|  | ironlake_pfit_disable(intel_crtc); | 
|  |  | 
|  | intel_ddi_disable_pipe_clock(intel_crtc); | 
|  |  | 
|  | if (intel_crtc->config.has_pch_encoder) { | 
|  | lpt_disable_pch_transcoder(dev_priv); | 
|  | intel_ddi_fdi_disable(crtc); | 
|  | } | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->post_disable) | 
|  | encoder->post_disable(encoder); | 
|  |  | 
|  | intel_crtc->active = false; | 
|  | intel_update_watermarks(crtc); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | if (intel_crtc_to_shared_dpll(intel_crtc)) | 
|  | intel_disable_shared_dpll(intel_crtc); | 
|  | } | 
|  |  | 
|  | static void ironlake_crtc_off(struct drm_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | intel_put_shared_dpll(intel_crtc); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void i9xx_pfit_enable(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc_config *pipe_config = &crtc->config; | 
|  |  | 
|  | if (!crtc->config.gmch_pfit.control) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The panel fitter should only be adjusted whilst the pipe is disabled, | 
|  | * according to register description and PRM. | 
|  | */ | 
|  | WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE); | 
|  | assert_pipe_disabled(dev_priv, crtc->pipe); | 
|  |  | 
|  | I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios); | 
|  | I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control); | 
|  |  | 
|  | /* Border color in case we don't scale up to the full screen. Black by | 
|  | * default, change to something else for debugging. */ | 
|  | I915_WRITE(BCLRPAT(crtc->pipe), 0); | 
|  | } | 
|  |  | 
|  | static enum intel_display_power_domain port_to_power_domain(enum port port) | 
|  | { | 
|  | switch (port) { | 
|  | case PORT_A: | 
|  | return POWER_DOMAIN_PORT_DDI_A_4_LANES; | 
|  | case PORT_B: | 
|  | return POWER_DOMAIN_PORT_DDI_B_4_LANES; | 
|  | case PORT_C: | 
|  | return POWER_DOMAIN_PORT_DDI_C_4_LANES; | 
|  | case PORT_D: | 
|  | return POWER_DOMAIN_PORT_DDI_D_4_LANES; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | return POWER_DOMAIN_PORT_OTHER; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define for_each_power_domain(domain, mask)				\ | 
|  | for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\ | 
|  | if ((1 << (domain)) & (mask)) | 
|  |  | 
|  | enum intel_display_power_domain | 
|  | intel_display_port_power_domain(struct intel_encoder *intel_encoder) | 
|  | { | 
|  | struct drm_device *dev = intel_encoder->base.dev; | 
|  | struct intel_digital_port *intel_dig_port; | 
|  |  | 
|  | switch (intel_encoder->type) { | 
|  | case INTEL_OUTPUT_UNKNOWN: | 
|  | /* Only DDI platforms should ever use this output type */ | 
|  | WARN_ON_ONCE(!HAS_DDI(dev)); | 
|  | case INTEL_OUTPUT_DISPLAYPORT: | 
|  | case INTEL_OUTPUT_HDMI: | 
|  | case INTEL_OUTPUT_EDP: | 
|  | intel_dig_port = enc_to_dig_port(&intel_encoder->base); | 
|  | return port_to_power_domain(intel_dig_port->port); | 
|  | case INTEL_OUTPUT_DP_MST: | 
|  | intel_dig_port = enc_to_mst(&intel_encoder->base)->primary; | 
|  | return port_to_power_domain(intel_dig_port->port); | 
|  | case INTEL_OUTPUT_ANALOG: | 
|  | return POWER_DOMAIN_PORT_CRT; | 
|  | case INTEL_OUTPUT_DSI: | 
|  | return POWER_DOMAIN_PORT_DSI; | 
|  | default: | 
|  | return POWER_DOMAIN_PORT_OTHER; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long get_crtc_power_domains(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_encoder *intel_encoder; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | unsigned long mask; | 
|  | enum transcoder transcoder; | 
|  |  | 
|  | transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe); | 
|  |  | 
|  | mask = BIT(POWER_DOMAIN_PIPE(pipe)); | 
|  | mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder)); | 
|  | if (intel_crtc->config.pch_pfit.enabled || | 
|  | intel_crtc->config.pch_pfit.force_thru) | 
|  | mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) | 
|  | mask |= BIT(intel_display_port_power_domain(intel_encoder)); | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | void intel_display_set_init_power(struct drm_i915_private *dev_priv, | 
|  | bool enable) | 
|  | { | 
|  | if (dev_priv->power_domains.init_power_on == enable) | 
|  | return; | 
|  |  | 
|  | if (enable) | 
|  | intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); | 
|  | else | 
|  | intel_display_power_put(dev_priv, POWER_DOMAIN_INIT); | 
|  |  | 
|  | dev_priv->power_domains.init_power_on = enable; | 
|  | } | 
|  |  | 
|  | static void modeset_update_crtc_power_domains(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | unsigned long pipe_domains[I915_MAX_PIPES] = { 0, }; | 
|  | struct intel_crtc *crtc; | 
|  |  | 
|  | /* | 
|  | * First get all needed power domains, then put all unneeded, to avoid | 
|  | * any unnecessary toggling of the power wells. | 
|  | */ | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | enum intel_display_power_domain domain; | 
|  |  | 
|  | if (!crtc->base.enabled) | 
|  | continue; | 
|  |  | 
|  | pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base); | 
|  |  | 
|  | for_each_power_domain(domain, pipe_domains[crtc->pipe]) | 
|  | intel_display_power_get(dev_priv, domain); | 
|  | } | 
|  |  | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | enum intel_display_power_domain domain; | 
|  |  | 
|  | for_each_power_domain(domain, crtc->enabled_power_domains) | 
|  | intel_display_power_put(dev_priv, domain); | 
|  |  | 
|  | crtc->enabled_power_domains = pipe_domains[crtc->pipe]; | 
|  | } | 
|  |  | 
|  | intel_display_set_init_power(dev_priv, false); | 
|  | } | 
|  |  | 
|  | /* returns HPLL frequency in kHz */ | 
|  | static int valleyview_get_vco(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; | 
|  |  | 
|  | /* Obtain SKU information */ | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  | hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & | 
|  | CCK_FUSE_HPLL_FREQ_MASK; | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  |  | 
|  | return vco_freq[hpll_freq] * 1000; | 
|  | } | 
|  |  | 
|  | static void vlv_update_cdclk(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev); | 
|  | DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz", | 
|  | dev_priv->vlv_cdclk_freq); | 
|  |  | 
|  | /* | 
|  | * Program the gmbus_freq based on the cdclk frequency. | 
|  | * BSpec erroneously claims we should aim for 4MHz, but | 
|  | * in fact 1MHz is the correct frequency. | 
|  | */ | 
|  | I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000)); | 
|  | } | 
|  |  | 
|  | /* Adjust CDclk dividers to allow high res or save power if possible */ | 
|  | static void valleyview_set_cdclk(struct drm_device *dev, int cdclk) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 val, cmd; | 
|  |  | 
|  | WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq); | 
|  |  | 
|  | if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ | 
|  | cmd = 2; | 
|  | else if (cdclk == 266667) | 
|  | cmd = 1; | 
|  | else | 
|  | cmd = 0; | 
|  |  | 
|  | mutex_lock(&dev_priv->rps.hw_lock); | 
|  | val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); | 
|  | val &= ~DSPFREQGUAR_MASK; | 
|  | val |= (cmd << DSPFREQGUAR_SHIFT); | 
|  | vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); | 
|  | if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & | 
|  | DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), | 
|  | 50)) { | 
|  | DRM_ERROR("timed out waiting for CDclk change\n"); | 
|  | } | 
|  | mutex_unlock(&dev_priv->rps.hw_lock); | 
|  |  | 
|  | if (cdclk == 400000) { | 
|  | u32 divider, vco; | 
|  |  | 
|  | vco = valleyview_get_vco(dev_priv); | 
|  | divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  | /* adjust cdclk divider */ | 
|  | val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); | 
|  | val &= ~DISPLAY_FREQUENCY_VALUES; | 
|  | val |= divider; | 
|  | vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); | 
|  |  | 
|  | if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & | 
|  | DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT), | 
|  | 50)) | 
|  | DRM_ERROR("timed out waiting for CDclk change\n"); | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  | /* adjust self-refresh exit latency value */ | 
|  | val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); | 
|  | val &= ~0x7f; | 
|  |  | 
|  | /* | 
|  | * For high bandwidth configs, we set a higher latency in the bunit | 
|  | * so that the core display fetch happens in time to avoid underruns. | 
|  | */ | 
|  | if (cdclk == 400000) | 
|  | val |= 4500 / 250; /* 4.5 usec */ | 
|  | else | 
|  | val |= 3000 / 250; /* 3.0 usec */ | 
|  | vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  |  | 
|  | vlv_update_cdclk(dev); | 
|  | } | 
|  |  | 
|  | static void cherryview_set_cdclk(struct drm_device *dev, int cdclk) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 val, cmd; | 
|  |  | 
|  | WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq); | 
|  |  | 
|  | switch (cdclk) { | 
|  | case 400000: | 
|  | cmd = 3; | 
|  | break; | 
|  | case 333333: | 
|  | case 320000: | 
|  | cmd = 2; | 
|  | break; | 
|  | case 266667: | 
|  | cmd = 1; | 
|  | break; | 
|  | case 200000: | 
|  | cmd = 0; | 
|  | break; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mutex_lock(&dev_priv->rps.hw_lock); | 
|  | val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); | 
|  | val &= ~DSPFREQGUAR_MASK_CHV; | 
|  | val |= (cmd << DSPFREQGUAR_SHIFT_CHV); | 
|  | vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); | 
|  | if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & | 
|  | DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), | 
|  | 50)) { | 
|  | DRM_ERROR("timed out waiting for CDclk change\n"); | 
|  | } | 
|  | mutex_unlock(&dev_priv->rps.hw_lock); | 
|  |  | 
|  | vlv_update_cdclk(dev); | 
|  | } | 
|  |  | 
|  | static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv, | 
|  | int max_pixclk) | 
|  | { | 
|  | int vco = valleyview_get_vco(dev_priv); | 
|  | int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000; | 
|  |  | 
|  | /* FIXME: Punit isn't quite ready yet */ | 
|  | if (IS_CHERRYVIEW(dev_priv->dev)) | 
|  | return 400000; | 
|  |  | 
|  | /* | 
|  | * Really only a few cases to deal with, as only 4 CDclks are supported: | 
|  | *   200MHz | 
|  | *   267MHz | 
|  | *   320/333MHz (depends on HPLL freq) | 
|  | *   400MHz | 
|  | * So we check to see whether we're above 90% of the lower bin and | 
|  | * adjust if needed. | 
|  | * | 
|  | * We seem to get an unstable or solid color picture at 200MHz. | 
|  | * Not sure what's wrong. For now use 200MHz only when all pipes | 
|  | * are off. | 
|  | */ | 
|  | if (max_pixclk > freq_320*9/10) | 
|  | return 400000; | 
|  | else if (max_pixclk > 266667*9/10) | 
|  | return freq_320; | 
|  | else if (max_pixclk > 0) | 
|  | return 266667; | 
|  | else | 
|  | return 200000; | 
|  | } | 
|  |  | 
|  | /* compute the max pixel clock for new configuration */ | 
|  | static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | struct intel_crtc *intel_crtc; | 
|  | int max_pixclk = 0; | 
|  |  | 
|  | for_each_intel_crtc(dev, intel_crtc) { | 
|  | if (intel_crtc->new_enabled) | 
|  | max_pixclk = max(max_pixclk, | 
|  | intel_crtc->new_config->adjusted_mode.crtc_clock); | 
|  | } | 
|  |  | 
|  | return max_pixclk; | 
|  | } | 
|  |  | 
|  | static void valleyview_modeset_global_pipes(struct drm_device *dev, | 
|  | unsigned *prepare_pipes) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc; | 
|  | int max_pixclk = intel_mode_max_pixclk(dev_priv); | 
|  |  | 
|  | if (valleyview_calc_cdclk(dev_priv, max_pixclk) == | 
|  | dev_priv->vlv_cdclk_freq) | 
|  | return; | 
|  |  | 
|  | /* disable/enable all currently active pipes while we change cdclk */ | 
|  | for_each_intel_crtc(dev, intel_crtc) | 
|  | if (intel_crtc->base.enabled) | 
|  | *prepare_pipes |= (1 << intel_crtc->pipe); | 
|  | } | 
|  |  | 
|  | static void valleyview_modeset_global_resources(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int max_pixclk = intel_mode_max_pixclk(dev_priv); | 
|  | int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk); | 
|  |  | 
|  | if (req_cdclk != dev_priv->vlv_cdclk_freq) { | 
|  | if (IS_CHERRYVIEW(dev)) | 
|  | cherryview_set_cdclk(dev, req_cdclk); | 
|  | else | 
|  | valleyview_set_cdclk(dev, req_cdclk); | 
|  | } | 
|  |  | 
|  | modeset_update_crtc_power_domains(dev); | 
|  | } | 
|  |  | 
|  | static void valleyview_crtc_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  | bool is_dsi; | 
|  |  | 
|  | WARN_ON(!crtc->enabled); | 
|  |  | 
|  | if (intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI); | 
|  |  | 
|  | if (!is_dsi) { | 
|  | if (IS_CHERRYVIEW(dev)) | 
|  | chv_prepare_pll(intel_crtc); | 
|  | else | 
|  | vlv_prepare_pll(intel_crtc); | 
|  | } | 
|  |  | 
|  | if (intel_crtc->config.has_dp_encoder) | 
|  | intel_dp_set_m_n(intel_crtc); | 
|  |  | 
|  | intel_set_pipe_timings(intel_crtc); | 
|  |  | 
|  | i9xx_set_pipeconf(intel_crtc); | 
|  |  | 
|  | intel_crtc->active = true; | 
|  |  | 
|  | intel_set_cpu_fifo_underrun_reporting(dev, pipe, true); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_pll_enable) | 
|  | encoder->pre_pll_enable(encoder); | 
|  |  | 
|  | if (!is_dsi) { | 
|  | if (IS_CHERRYVIEW(dev)) | 
|  | chv_enable_pll(intel_crtc); | 
|  | else | 
|  | vlv_enable_pll(intel_crtc); | 
|  | } | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_enable) | 
|  | encoder->pre_enable(encoder); | 
|  |  | 
|  | i9xx_pfit_enable(intel_crtc); | 
|  |  | 
|  | intel_crtc_load_lut(crtc); | 
|  |  | 
|  | intel_update_watermarks(crtc); | 
|  | intel_enable_pipe(intel_crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->enable(encoder); | 
|  |  | 
|  | intel_crtc_enable_planes(crtc); | 
|  |  | 
|  | /* Underruns don't raise interrupts, so check manually. */ | 
|  | i9xx_check_fifo_underruns(dev); | 
|  | } | 
|  |  | 
|  | static void i9xx_set_pll_dividers(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0); | 
|  | I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1); | 
|  | } | 
|  |  | 
|  | static void i9xx_crtc_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  |  | 
|  | WARN_ON(!crtc->enabled); | 
|  |  | 
|  | if (intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | i9xx_set_pll_dividers(intel_crtc); | 
|  |  | 
|  | if (intel_crtc->config.has_dp_encoder) | 
|  | intel_dp_set_m_n(intel_crtc); | 
|  |  | 
|  | intel_set_pipe_timings(intel_crtc); | 
|  |  | 
|  | i9xx_set_pipeconf(intel_crtc); | 
|  |  | 
|  | intel_crtc->active = true; | 
|  |  | 
|  | if (!IS_GEN2(dev)) | 
|  | intel_set_cpu_fifo_underrun_reporting(dev, pipe, true); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_enable) | 
|  | encoder->pre_enable(encoder); | 
|  |  | 
|  | i9xx_enable_pll(intel_crtc); | 
|  |  | 
|  | i9xx_pfit_enable(intel_crtc); | 
|  |  | 
|  | intel_crtc_load_lut(crtc); | 
|  |  | 
|  | intel_update_watermarks(crtc); | 
|  | intel_enable_pipe(intel_crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->enable(encoder); | 
|  |  | 
|  | intel_crtc_enable_planes(crtc); | 
|  |  | 
|  | /* | 
|  | * Gen2 reports pipe underruns whenever all planes are disabled. | 
|  | * So don't enable underrun reporting before at least some planes | 
|  | * are enabled. | 
|  | * FIXME: Need to fix the logic to work when we turn off all planes | 
|  | * but leave the pipe running. | 
|  | */ | 
|  | if (IS_GEN2(dev)) | 
|  | intel_set_cpu_fifo_underrun_reporting(dev, pipe, true); | 
|  |  | 
|  | /* Underruns don't raise interrupts, so check manually. */ | 
|  | i9xx_check_fifo_underruns(dev); | 
|  | } | 
|  |  | 
|  | static void i9xx_pfit_disable(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (!crtc->config.gmch_pfit.control) | 
|  | return; | 
|  |  | 
|  | assert_pipe_disabled(dev_priv, crtc->pipe); | 
|  |  | 
|  | DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", | 
|  | I915_READ(PFIT_CONTROL)); | 
|  | I915_WRITE(PFIT_CONTROL, 0); | 
|  | } | 
|  |  | 
|  | static void i9xx_crtc_disable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  |  | 
|  | if (!intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Gen2 reports pipe underruns whenever all planes are disabled. | 
|  | * So diasble underrun reporting before all the planes get disabled. | 
|  | * FIXME: Need to fix the logic to work when we turn off all planes | 
|  | * but leave the pipe running. | 
|  | */ | 
|  | if (IS_GEN2(dev)) | 
|  | intel_set_cpu_fifo_underrun_reporting(dev, pipe, false); | 
|  |  | 
|  | /* | 
|  | * Vblank time updates from the shadow to live plane control register | 
|  | * are blocked if the memory self-refresh mode is active at that | 
|  | * moment. So to make sure the plane gets truly disabled, disable | 
|  | * first the self-refresh mode. The self-refresh enable bit in turn | 
|  | * will be checked/applied by the HW only at the next frame start | 
|  | * event which is after the vblank start event, so we need to have a | 
|  | * wait-for-vblank between disabling the plane and the pipe. | 
|  | */ | 
|  | intel_set_memory_cxsr(dev_priv, false); | 
|  | intel_crtc_disable_planes(crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->disable(encoder); | 
|  |  | 
|  | /* | 
|  | * On gen2 planes are double buffered but the pipe isn't, so we must | 
|  | * wait for planes to fully turn off before disabling the pipe. | 
|  | * We also need to wait on all gmch platforms because of the | 
|  | * self-refresh mode constraint explained above. | 
|  | */ | 
|  | intel_wait_for_vblank(dev, pipe); | 
|  |  | 
|  | intel_disable_pipe(intel_crtc); | 
|  |  | 
|  | i9xx_pfit_disable(intel_crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->post_disable) | 
|  | encoder->post_disable(encoder); | 
|  |  | 
|  | if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) { | 
|  | if (IS_CHERRYVIEW(dev)) | 
|  | chv_disable_pll(dev_priv, pipe); | 
|  | else if (IS_VALLEYVIEW(dev)) | 
|  | vlv_disable_pll(dev_priv, pipe); | 
|  | else | 
|  | i9xx_disable_pll(intel_crtc); | 
|  | } | 
|  |  | 
|  | if (!IS_GEN2(dev)) | 
|  | intel_set_cpu_fifo_underrun_reporting(dev, pipe, false); | 
|  |  | 
|  | intel_crtc->active = false; | 
|  | intel_update_watermarks(crtc); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | static void i9xx_crtc_off(struct drm_crtc *crtc) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void intel_crtc_update_sarea(struct drm_crtc *crtc, | 
|  | bool enabled) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_master_private *master_priv; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  |  | 
|  | if (!dev->primary->master) | 
|  | return; | 
|  |  | 
|  | master_priv = dev->primary->master->driver_priv; | 
|  | if (!master_priv->sarea_priv) | 
|  | return; | 
|  |  | 
|  | switch (pipe) { | 
|  | case 0: | 
|  | master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0; | 
|  | master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0; | 
|  | break; | 
|  | case 1: | 
|  | master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0; | 
|  | master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0; | 
|  | break; | 
|  | default: | 
|  | DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Master function to enable/disable CRTC and corresponding power wells */ | 
|  | void intel_crtc_control(struct drm_crtc *crtc, bool enable) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum intel_display_power_domain domain; | 
|  | unsigned long domains; | 
|  |  | 
|  | if (enable) { | 
|  | if (!intel_crtc->active) { | 
|  | domains = get_crtc_power_domains(crtc); | 
|  | for_each_power_domain(domain, domains) | 
|  | intel_display_power_get(dev_priv, domain); | 
|  | intel_crtc->enabled_power_domains = domains; | 
|  |  | 
|  | dev_priv->display.crtc_enable(crtc); | 
|  | } | 
|  | } else { | 
|  | if (intel_crtc->active) { | 
|  | dev_priv->display.crtc_disable(crtc); | 
|  |  | 
|  | domains = intel_crtc->enabled_power_domains; | 
|  | for_each_power_domain(domain, domains) | 
|  | intel_display_power_put(dev_priv, domain); | 
|  | intel_crtc->enabled_power_domains = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Sets the power management mode of the pipe and plane. | 
|  | */ | 
|  | void intel_crtc_update_dpms(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_encoder *intel_encoder; | 
|  | bool enable = false; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) | 
|  | enable |= intel_encoder->connectors_active; | 
|  |  | 
|  | intel_crtc_control(crtc, enable); | 
|  |  | 
|  | intel_crtc_update_sarea(crtc, enable); | 
|  | } | 
|  |  | 
|  | static void intel_crtc_disable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_connector *connector; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb); | 
|  | enum pipe pipe = to_intel_crtc(crtc)->pipe; | 
|  |  | 
|  | /* crtc should still be enabled when we disable it. */ | 
|  | WARN_ON(!crtc->enabled); | 
|  |  | 
|  | dev_priv->display.crtc_disable(crtc); | 
|  | intel_crtc_update_sarea(crtc, false); | 
|  | dev_priv->display.off(crtc); | 
|  |  | 
|  | if (crtc->primary->fb) { | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_unpin_fb_obj(old_obj); | 
|  | i915_gem_track_fb(old_obj, NULL, | 
|  | INTEL_FRONTBUFFER_PRIMARY(pipe)); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | crtc->primary->fb = NULL; | 
|  | } | 
|  |  | 
|  | /* Update computed state. */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, head) { | 
|  | if (!connector->encoder || !connector->encoder->crtc) | 
|  | continue; | 
|  |  | 
|  | if (connector->encoder->crtc != crtc) | 
|  | continue; | 
|  |  | 
|  | connector->dpms = DRM_MODE_DPMS_OFF; | 
|  | to_intel_encoder(connector->encoder)->connectors_active = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_encoder_destroy(struct drm_encoder *encoder) | 
|  | { | 
|  | struct intel_encoder *intel_encoder = to_intel_encoder(encoder); | 
|  |  | 
|  | drm_encoder_cleanup(encoder); | 
|  | kfree(intel_encoder); | 
|  | } | 
|  |  | 
|  | /* Simple dpms helper for encoders with just one connector, no cloning and only | 
|  | * one kind of off state. It clamps all !ON modes to fully OFF and changes the | 
|  | * state of the entire output pipe. */ | 
|  | static void intel_encoder_dpms(struct intel_encoder *encoder, int mode) | 
|  | { | 
|  | if (mode == DRM_MODE_DPMS_ON) { | 
|  | encoder->connectors_active = true; | 
|  |  | 
|  | intel_crtc_update_dpms(encoder->base.crtc); | 
|  | } else { | 
|  | encoder->connectors_active = false; | 
|  |  | 
|  | intel_crtc_update_dpms(encoder->base.crtc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cross check the actual hw state with our own modeset state tracking (and it's | 
|  | * internal consistency). */ | 
|  | static void intel_connector_check_state(struct intel_connector *connector) | 
|  | { | 
|  | if (connector->get_hw_state(connector)) { | 
|  | struct intel_encoder *encoder = connector->encoder; | 
|  | struct drm_crtc *crtc; | 
|  | bool encoder_enabled; | 
|  | enum pipe pipe; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", | 
|  | connector->base.base.id, | 
|  | connector->base.name); | 
|  |  | 
|  | /* there is no real hw state for MST connectors */ | 
|  | if (connector->mst_port) | 
|  | return; | 
|  |  | 
|  | WARN(connector->base.dpms == DRM_MODE_DPMS_OFF, | 
|  | "wrong connector dpms state\n"); | 
|  | WARN(connector->base.encoder != &encoder->base, | 
|  | "active connector not linked to encoder\n"); | 
|  |  | 
|  | if (encoder) { | 
|  | WARN(!encoder->connectors_active, | 
|  | "encoder->connectors_active not set\n"); | 
|  |  | 
|  | encoder_enabled = encoder->get_hw_state(encoder, &pipe); | 
|  | WARN(!encoder_enabled, "encoder not enabled\n"); | 
|  | if (WARN_ON(!encoder->base.crtc)) | 
|  | return; | 
|  |  | 
|  | crtc = encoder->base.crtc; | 
|  |  | 
|  | WARN(!crtc->enabled, "crtc not enabled\n"); | 
|  | WARN(!to_intel_crtc(crtc)->active, "crtc not active\n"); | 
|  | WARN(pipe != to_intel_crtc(crtc)->pipe, | 
|  | "encoder active on the wrong pipe\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Even simpler default implementation, if there's really no special case to | 
|  | * consider. */ | 
|  | void intel_connector_dpms(struct drm_connector *connector, int mode) | 
|  | { | 
|  | /* All the simple cases only support two dpms states. */ | 
|  | if (mode != DRM_MODE_DPMS_ON) | 
|  | mode = DRM_MODE_DPMS_OFF; | 
|  |  | 
|  | if (mode == connector->dpms) | 
|  | return; | 
|  |  | 
|  | connector->dpms = mode; | 
|  |  | 
|  | /* Only need to change hw state when actually enabled */ | 
|  | if (connector->encoder) | 
|  | intel_encoder_dpms(to_intel_encoder(connector->encoder), mode); | 
|  |  | 
|  | intel_modeset_check_state(connector->dev); | 
|  | } | 
|  |  | 
|  | /* Simple connector->get_hw_state implementation for encoders that support only | 
|  | * one connector and no cloning and hence the encoder state determines the state | 
|  | * of the connector. */ | 
|  | bool intel_connector_get_hw_state(struct intel_connector *connector) | 
|  | { | 
|  | enum pipe pipe = 0; | 
|  | struct intel_encoder *encoder = connector->encoder; | 
|  |  | 
|  | return encoder->get_hw_state(encoder, &pipe); | 
|  | } | 
|  |  | 
|  | static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *pipe_B_crtc = | 
|  | to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]); | 
|  |  | 
|  | DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n", | 
|  | pipe_name(pipe), pipe_config->fdi_lanes); | 
|  | if (pipe_config->fdi_lanes > 4) { | 
|  | DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n", | 
|  | pipe_name(pipe), pipe_config->fdi_lanes); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { | 
|  | if (pipe_config->fdi_lanes > 2) { | 
|  | DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n", | 
|  | pipe_config->fdi_lanes); | 
|  | return false; | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (INTEL_INFO(dev)->num_pipes == 2) | 
|  | return true; | 
|  |  | 
|  | /* Ivybridge 3 pipe is really complicated */ | 
|  | switch (pipe) { | 
|  | case PIPE_A: | 
|  | return true; | 
|  | case PIPE_B: | 
|  | if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled && | 
|  | pipe_config->fdi_lanes > 2) { | 
|  | DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", | 
|  | pipe_name(pipe), pipe_config->fdi_lanes); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | case PIPE_C: | 
|  | if (!pipe_has_enabled_pch(pipe_B_crtc) || | 
|  | pipe_B_crtc->config.fdi_lanes <= 2) { | 
|  | if (pipe_config->fdi_lanes > 2) { | 
|  | DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", | 
|  | pipe_name(pipe), pipe_config->fdi_lanes); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define RETRY 1 | 
|  | static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; | 
|  | int lane, link_bw, fdi_dotclock; | 
|  | bool setup_ok, needs_recompute = false; | 
|  |  | 
|  | retry: | 
|  | /* FDI is a binary signal running at ~2.7GHz, encoding | 
|  | * each output octet as 10 bits. The actual frequency | 
|  | * is stored as a divider into a 100MHz clock, and the | 
|  | * mode pixel clock is stored in units of 1KHz. | 
|  | * Hence the bw of each lane in terms of the mode signal | 
|  | * is: | 
|  | */ | 
|  | link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10; | 
|  |  | 
|  | fdi_dotclock = adjusted_mode->crtc_clock; | 
|  |  | 
|  | lane = ironlake_get_lanes_required(fdi_dotclock, link_bw, | 
|  | pipe_config->pipe_bpp); | 
|  |  | 
|  | pipe_config->fdi_lanes = lane; | 
|  |  | 
|  | intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, | 
|  | link_bw, &pipe_config->fdi_m_n); | 
|  |  | 
|  | setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev, | 
|  | intel_crtc->pipe, pipe_config); | 
|  | if (!setup_ok && pipe_config->pipe_bpp > 6*3) { | 
|  | pipe_config->pipe_bpp -= 2*3; | 
|  | DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n", | 
|  | pipe_config->pipe_bpp); | 
|  | needs_recompute = true; | 
|  | pipe_config->bw_constrained = true; | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (needs_recompute) | 
|  | return RETRY; | 
|  |  | 
|  | return setup_ok ? 0 : -EINVAL; | 
|  | } | 
|  |  | 
|  | static void hsw_compute_ips_config(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | pipe_config->ips_enabled = i915.enable_ips && | 
|  | hsw_crtc_supports_ips(crtc) && | 
|  | pipe_config->pipe_bpp <= 24; | 
|  | } | 
|  |  | 
|  | static int intel_crtc_compute_config(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; | 
|  |  | 
|  | /* FIXME should check pixel clock limits on all platforms */ | 
|  | if (INTEL_INFO(dev)->gen < 4) { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int clock_limit = | 
|  | dev_priv->display.get_display_clock_speed(dev); | 
|  |  | 
|  | /* | 
|  | * Enable pixel doubling when the dot clock | 
|  | * is > 90% of the (display) core speed. | 
|  | * | 
|  | * GDG double wide on either pipe, | 
|  | * otherwise pipe A only. | 
|  | */ | 
|  | if ((crtc->pipe == PIPE_A || IS_I915G(dev)) && | 
|  | adjusted_mode->crtc_clock > clock_limit * 9 / 10) { | 
|  | clock_limit *= 2; | 
|  | pipe_config->double_wide = true; | 
|  | } | 
|  |  | 
|  | if (adjusted_mode->crtc_clock > clock_limit * 9 / 10) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pipe horizontal size must be even in: | 
|  | * - DVO ganged mode | 
|  | * - LVDS dual channel mode | 
|  | * - Double wide pipe | 
|  | */ | 
|  | if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) && | 
|  | intel_is_dual_link_lvds(dev)) || pipe_config->double_wide) | 
|  | pipe_config->pipe_src_w &= ~1; | 
|  |  | 
|  | /* Cantiga+ cannot handle modes with a hsync front porch of 0. | 
|  | * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. | 
|  | */ | 
|  | if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) && | 
|  | adjusted_mode->hsync_start == adjusted_mode->hdisplay) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) { | 
|  | pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */ | 
|  | } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) { | 
|  | /* only a 8bpc pipe, with 6bpc dither through the panel fitter | 
|  | * for lvds. */ | 
|  | pipe_config->pipe_bpp = 8*3; | 
|  | } | 
|  |  | 
|  | if (HAS_IPS(dev)) | 
|  | hsw_compute_ips_config(crtc, pipe_config); | 
|  |  | 
|  | /* | 
|  | * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the | 
|  | * old clock survives for now. | 
|  | */ | 
|  | if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev)) | 
|  | pipe_config->shared_dpll = crtc->config.shared_dpll; | 
|  |  | 
|  | if (pipe_config->has_pch_encoder) | 
|  | return ironlake_fdi_compute_config(crtc, pipe_config); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int valleyview_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int vco = valleyview_get_vco(dev_priv); | 
|  | u32 val; | 
|  | int divider; | 
|  |  | 
|  | /* FIXME: Punit isn't quite ready yet */ | 
|  | if (IS_CHERRYVIEW(dev)) | 
|  | return 400000; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  | val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  |  | 
|  | divider = val & DISPLAY_FREQUENCY_VALUES; | 
|  |  | 
|  | WARN((val & DISPLAY_FREQUENCY_STATUS) != | 
|  | (divider << DISPLAY_FREQUENCY_STATUS_SHIFT), | 
|  | "cdclk change in progress\n"); | 
|  |  | 
|  | return DIV_ROUND_CLOSEST(vco << 1, divider + 1); | 
|  | } | 
|  |  | 
|  | static int i945_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 400000; | 
|  | } | 
|  |  | 
|  | static int i915_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 333000; | 
|  | } | 
|  |  | 
|  | static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 200000; | 
|  | } | 
|  |  | 
|  | static int pnv_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | u16 gcfgc = 0; | 
|  |  | 
|  | pci_read_config_word(dev->pdev, GCFGC, &gcfgc); | 
|  |  | 
|  | switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { | 
|  | case GC_DISPLAY_CLOCK_267_MHZ_PNV: | 
|  | return 267000; | 
|  | case GC_DISPLAY_CLOCK_333_MHZ_PNV: | 
|  | return 333000; | 
|  | case GC_DISPLAY_CLOCK_444_MHZ_PNV: | 
|  | return 444000; | 
|  | case GC_DISPLAY_CLOCK_200_MHZ_PNV: | 
|  | return 200000; | 
|  | default: | 
|  | DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc); | 
|  | case GC_DISPLAY_CLOCK_133_MHZ_PNV: | 
|  | return 133000; | 
|  | case GC_DISPLAY_CLOCK_167_MHZ_PNV: | 
|  | return 167000; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int i915gm_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | u16 gcfgc = 0; | 
|  |  | 
|  | pci_read_config_word(dev->pdev, GCFGC, &gcfgc); | 
|  |  | 
|  | if (gcfgc & GC_LOW_FREQUENCY_ENABLE) | 
|  | return 133000; | 
|  | else { | 
|  | switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { | 
|  | case GC_DISPLAY_CLOCK_333_MHZ: | 
|  | return 333000; | 
|  | default: | 
|  | case GC_DISPLAY_CLOCK_190_200_MHZ: | 
|  | return 190000; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int i865_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 266000; | 
|  | } | 
|  |  | 
|  | static int i855_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | u16 hpllcc = 0; | 
|  | /* Assume that the hardware is in the high speed state.  This | 
|  | * should be the default. | 
|  | */ | 
|  | switch (hpllcc & GC_CLOCK_CONTROL_MASK) { | 
|  | case GC_CLOCK_133_200: | 
|  | case GC_CLOCK_100_200: | 
|  | return 200000; | 
|  | case GC_CLOCK_166_250: | 
|  | return 250000; | 
|  | case GC_CLOCK_100_133: | 
|  | return 133000; | 
|  | } | 
|  |  | 
|  | /* Shouldn't happen */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int i830_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 133000; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den) | 
|  | { | 
|  | while (*num > DATA_LINK_M_N_MASK || | 
|  | *den > DATA_LINK_M_N_MASK) { | 
|  | *num >>= 1; | 
|  | *den >>= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void compute_m_n(unsigned int m, unsigned int n, | 
|  | uint32_t *ret_m, uint32_t *ret_n) | 
|  | { | 
|  | *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); | 
|  | *ret_m = div_u64((uint64_t) m * *ret_n, n); | 
|  | intel_reduce_m_n_ratio(ret_m, ret_n); | 
|  | } | 
|  |  | 
|  | void | 
|  | intel_link_compute_m_n(int bits_per_pixel, int nlanes, | 
|  | int pixel_clock, int link_clock, | 
|  | struct intel_link_m_n *m_n) | 
|  | { | 
|  | m_n->tu = 64; | 
|  |  | 
|  | compute_m_n(bits_per_pixel * pixel_clock, | 
|  | link_clock * nlanes * 8, | 
|  | &m_n->gmch_m, &m_n->gmch_n); | 
|  |  | 
|  | compute_m_n(pixel_clock, link_clock, | 
|  | &m_n->link_m, &m_n->link_n); | 
|  | } | 
|  |  | 
|  | static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | if (i915.panel_use_ssc >= 0) | 
|  | return i915.panel_use_ssc != 0; | 
|  | return dev_priv->vbt.lvds_use_ssc | 
|  | && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); | 
|  | } | 
|  |  | 
|  | static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int refclk; | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev)) { | 
|  | refclk = 100000; | 
|  | } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && | 
|  | intel_panel_use_ssc(dev_priv) && num_connectors < 2) { | 
|  | refclk = dev_priv->vbt.lvds_ssc_freq; | 
|  | DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); | 
|  | } else if (!IS_GEN2(dev)) { | 
|  | refclk = 96000; | 
|  | } else { | 
|  | refclk = 48000; | 
|  | } | 
|  |  | 
|  | return refclk; | 
|  | } | 
|  |  | 
|  | static uint32_t pnv_dpll_compute_fp(struct dpll *dpll) | 
|  | { | 
|  | return (1 << dpll->n) << 16 | dpll->m2; | 
|  | } | 
|  |  | 
|  | static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll) | 
|  | { | 
|  | return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; | 
|  | } | 
|  |  | 
|  | static void i9xx_update_pll_dividers(struct intel_crtc *crtc, | 
|  | intel_clock_t *reduced_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | u32 fp, fp2 = 0; | 
|  |  | 
|  | if (IS_PINEVIEW(dev)) { | 
|  | fp = pnv_dpll_compute_fp(&crtc->config.dpll); | 
|  | if (reduced_clock) | 
|  | fp2 = pnv_dpll_compute_fp(reduced_clock); | 
|  | } else { | 
|  | fp = i9xx_dpll_compute_fp(&crtc->config.dpll); | 
|  | if (reduced_clock) | 
|  | fp2 = i9xx_dpll_compute_fp(reduced_clock); | 
|  | } | 
|  |  | 
|  | crtc->config.dpll_hw_state.fp0 = fp; | 
|  |  | 
|  | crtc->lowfreq_avail = false; | 
|  | if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) && | 
|  | reduced_clock && i915.powersave) { | 
|  | crtc->config.dpll_hw_state.fp1 = fp2; | 
|  | crtc->lowfreq_avail = true; | 
|  | } else { | 
|  | crtc->config.dpll_hw_state.fp1 = fp; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe | 
|  | pipe) | 
|  | { | 
|  | u32 reg_val; | 
|  |  | 
|  | /* | 
|  | * PLLB opamp always calibrates to max value of 0x3f, force enable it | 
|  | * and set it to a reasonable value instead. | 
|  | */ | 
|  | reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); | 
|  | reg_val &= 0xffffff00; | 
|  | reg_val |= 0x00000030; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); | 
|  |  | 
|  | reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); | 
|  | reg_val &= 0x8cffffff; | 
|  | reg_val = 0x8c000000; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); | 
|  |  | 
|  | reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); | 
|  | reg_val &= 0xffffff00; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); | 
|  |  | 
|  | reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); | 
|  | reg_val &= 0x00ffffff; | 
|  | reg_val |= 0xb0000000; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); | 
|  | } | 
|  |  | 
|  | static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc, | 
|  | struct intel_link_m_n *m_n) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = crtc->pipe; | 
|  |  | 
|  | I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); | 
|  | I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); | 
|  | I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m); | 
|  | I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n); | 
|  | } | 
|  |  | 
|  | static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, | 
|  | struct intel_link_m_n *m_n, | 
|  | struct intel_link_m_n *m2_n2) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = crtc->pipe; | 
|  | enum transcoder transcoder = crtc->config.cpu_transcoder; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 5) { | 
|  | I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); | 
|  | I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n); | 
|  | I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m); | 
|  | I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n); | 
|  | /* M2_N2 registers to be set only for gen < 8 (M2_N2 available | 
|  | * for gen < 8) and if DRRS is supported (to make sure the | 
|  | * registers are not unnecessarily accessed). | 
|  | */ | 
|  | if (m2_n2 && INTEL_INFO(dev)->gen < 8 && | 
|  | crtc->config.has_drrs) { | 
|  | I915_WRITE(PIPE_DATA_M2(transcoder), | 
|  | TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); | 
|  | I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n); | 
|  | I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m); | 
|  | I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n); | 
|  | } | 
|  | } else { | 
|  | I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); | 
|  | I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n); | 
|  | I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m); | 
|  | I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n); | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_dp_set_m_n(struct intel_crtc *crtc) | 
|  | { | 
|  | if (crtc->config.has_pch_encoder) | 
|  | intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n); | 
|  | else | 
|  | intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n, | 
|  | &crtc->config.dp_m2_n2); | 
|  | } | 
|  |  | 
|  | static void vlv_update_pll(struct intel_crtc *crtc) | 
|  | { | 
|  | u32 dpll, dpll_md; | 
|  |  | 
|  | /* | 
|  | * Enable DPIO clock input. We should never disable the reference | 
|  | * clock for pipe B, since VGA hotplug / manual detection depends | 
|  | * on it. | 
|  | */ | 
|  | dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV | | 
|  | DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV; | 
|  | /* We should never disable this, set it here for state tracking */ | 
|  | if (crtc->pipe == PIPE_B) | 
|  | dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; | 
|  | dpll |= DPLL_VCO_ENABLE; | 
|  | crtc->config.dpll_hw_state.dpll = dpll; | 
|  |  | 
|  | dpll_md = (crtc->config.pixel_multiplier - 1) | 
|  | << DPLL_MD_UDI_MULTIPLIER_SHIFT; | 
|  | crtc->config.dpll_hw_state.dpll_md = dpll_md; | 
|  | } | 
|  |  | 
|  | static void vlv_prepare_pll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = crtc->pipe; | 
|  | u32 mdiv; | 
|  | u32 bestn, bestm1, bestm2, bestp1, bestp2; | 
|  | u32 coreclk, reg_val; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | bestn = crtc->config.dpll.n; | 
|  | bestm1 = crtc->config.dpll.m1; | 
|  | bestm2 = crtc->config.dpll.m2; | 
|  | bestp1 = crtc->config.dpll.p1; | 
|  | bestp2 = crtc->config.dpll.p2; | 
|  |  | 
|  | /* See eDP HDMI DPIO driver vbios notes doc */ | 
|  |  | 
|  | /* PLL B needs special handling */ | 
|  | if (pipe == PIPE_B) | 
|  | vlv_pllb_recal_opamp(dev_priv, pipe); | 
|  |  | 
|  | /* Set up Tx target for periodic Rcomp update */ | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); | 
|  |  | 
|  | /* Disable target IRef on PLL */ | 
|  | reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); | 
|  | reg_val &= 0x00ffffff; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); | 
|  |  | 
|  | /* Disable fast lock */ | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); | 
|  |  | 
|  | /* Set idtafcrecal before PLL is enabled */ | 
|  | mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); | 
|  | mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); | 
|  | mdiv |= ((bestn << DPIO_N_SHIFT)); | 
|  | mdiv |= (1 << DPIO_K_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, | 
|  | * but we don't support that). | 
|  | * Note: don't use the DAC post divider as it seems unstable. | 
|  | */ | 
|  | mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); | 
|  |  | 
|  | mdiv |= DPIO_ENABLE_CALIBRATION; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); | 
|  |  | 
|  | /* Set HBR and RBR LPF coefficients */ | 
|  | if (crtc->config.port_clock == 162000 || | 
|  | intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) || | 
|  | intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), | 
|  | 0x009f0003); | 
|  | else | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), | 
|  | 0x00d0000f); | 
|  |  | 
|  | if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) || | 
|  | intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) { | 
|  | /* Use SSC source */ | 
|  | if (pipe == PIPE_A) | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), | 
|  | 0x0df40000); | 
|  | else | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), | 
|  | 0x0df70000); | 
|  | } else { /* HDMI or VGA */ | 
|  | /* Use bend source */ | 
|  | if (pipe == PIPE_A) | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), | 
|  | 0x0df70000); | 
|  | else | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), | 
|  | 0x0df40000); | 
|  | } | 
|  |  | 
|  | coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); | 
|  | coreclk = (coreclk & 0x0000ff00) | 0x01c00000; | 
|  | if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) || | 
|  | intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) | 
|  | coreclk |= 0x01000000; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); | 
|  |  | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | static void chv_update_pll(struct intel_crtc *crtc) | 
|  | { | 
|  | crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV | | 
|  | DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS | | 
|  | DPLL_VCO_ENABLE; | 
|  | if (crtc->pipe != PIPE_A) | 
|  | crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; | 
|  |  | 
|  | crtc->config.dpll_hw_state.dpll_md = | 
|  | (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; | 
|  | } | 
|  |  | 
|  | static void chv_prepare_pll(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = crtc->pipe; | 
|  | int dpll_reg = DPLL(crtc->pipe); | 
|  | enum dpio_channel port = vlv_pipe_to_channel(pipe); | 
|  | u32 loopfilter, intcoeff; | 
|  | u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; | 
|  | int refclk; | 
|  |  | 
|  | bestn = crtc->config.dpll.n; | 
|  | bestm2_frac = crtc->config.dpll.m2 & 0x3fffff; | 
|  | bestm1 = crtc->config.dpll.m1; | 
|  | bestm2 = crtc->config.dpll.m2 >> 22; | 
|  | bestp1 = crtc->config.dpll.p1; | 
|  | bestp2 = crtc->config.dpll.p2; | 
|  |  | 
|  | /* | 
|  | * Enable Refclk and SSC | 
|  | */ | 
|  | I915_WRITE(dpll_reg, | 
|  | crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | /* p1 and p2 divider */ | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), | 
|  | 5 << DPIO_CHV_S1_DIV_SHIFT | | 
|  | bestp1 << DPIO_CHV_P1_DIV_SHIFT | | 
|  | bestp2 << DPIO_CHV_P2_DIV_SHIFT | | 
|  | 1 << DPIO_CHV_K_DIV_SHIFT); | 
|  |  | 
|  | /* Feedback post-divider - m2 */ | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); | 
|  |  | 
|  | /* Feedback refclk divider - n and m1 */ | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), | 
|  | DPIO_CHV_M1_DIV_BY_2 | | 
|  | 1 << DPIO_CHV_N_DIV_SHIFT); | 
|  |  | 
|  | /* M2 fraction division */ | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); | 
|  |  | 
|  | /* M2 fraction division enable */ | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), | 
|  | DPIO_CHV_FRAC_DIV_EN | | 
|  | (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT)); | 
|  |  | 
|  | /* Loop filter */ | 
|  | refclk = i9xx_get_refclk(&crtc->base, 0); | 
|  | loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT | | 
|  | 2 << DPIO_CHV_GAIN_CTRL_SHIFT; | 
|  | if (refclk == 100000) | 
|  | intcoeff = 11; | 
|  | else if (refclk == 38400) | 
|  | intcoeff = 10; | 
|  | else | 
|  | intcoeff = 9; | 
|  | loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); | 
|  |  | 
|  | /* AFC Recal */ | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), | 
|  | vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | | 
|  | DPIO_AFC_RECAL); | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | static void i9xx_update_pll(struct intel_crtc *crtc, | 
|  | intel_clock_t *reduced_clock, | 
|  | int num_connectors) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 dpll; | 
|  | bool is_sdvo; | 
|  | struct dpll *clock = &crtc->config.dpll; | 
|  |  | 
|  | i9xx_update_pll_dividers(crtc, reduced_clock); | 
|  |  | 
|  | is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) || | 
|  | intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI); | 
|  |  | 
|  | dpll = DPLL_VGA_MODE_DIS; | 
|  |  | 
|  | if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) | 
|  | dpll |= DPLLB_MODE_LVDS; | 
|  | else | 
|  | dpll |= DPLLB_MODE_DAC_SERIAL; | 
|  |  | 
|  | if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { | 
|  | dpll |= (crtc->config.pixel_multiplier - 1) | 
|  | << SDVO_MULTIPLIER_SHIFT_HIRES; | 
|  | } | 
|  |  | 
|  | if (is_sdvo) | 
|  | dpll |= DPLL_SDVO_HIGH_SPEED; | 
|  |  | 
|  | if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) | 
|  | dpll |= DPLL_SDVO_HIGH_SPEED; | 
|  |  | 
|  | /* compute bitmask from p1 value */ | 
|  | if (IS_PINEVIEW(dev)) | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; | 
|  | else { | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | if (IS_G4X(dev) && reduced_clock) | 
|  | dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; | 
|  | } | 
|  | switch (clock->p2) { | 
|  | case 5: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; | 
|  | break; | 
|  | case 7: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; | 
|  | break; | 
|  | case 10: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; | 
|  | break; | 
|  | case 14: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; | 
|  | break; | 
|  | } | 
|  | if (INTEL_INFO(dev)->gen >= 4) | 
|  | dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); | 
|  |  | 
|  | if (crtc->config.sdvo_tv_clock) | 
|  | dpll |= PLL_REF_INPUT_TVCLKINBC; | 
|  | else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) && | 
|  | intel_panel_use_ssc(dev_priv) && num_connectors < 2) | 
|  | dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; | 
|  | else | 
|  | dpll |= PLL_REF_INPUT_DREFCLK; | 
|  |  | 
|  | dpll |= DPLL_VCO_ENABLE; | 
|  | crtc->config.dpll_hw_state.dpll = dpll; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | u32 dpll_md = (crtc->config.pixel_multiplier - 1) | 
|  | << DPLL_MD_UDI_MULTIPLIER_SHIFT; | 
|  | crtc->config.dpll_hw_state.dpll_md = dpll_md; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void i8xx_update_pll(struct intel_crtc *crtc, | 
|  | intel_clock_t *reduced_clock, | 
|  | int num_connectors) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 dpll; | 
|  | struct dpll *clock = &crtc->config.dpll; | 
|  |  | 
|  | i9xx_update_pll_dividers(crtc, reduced_clock); | 
|  |  | 
|  | dpll = DPLL_VGA_MODE_DIS; | 
|  |  | 
|  | if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) { | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | } else { | 
|  | if (clock->p1 == 2) | 
|  | dpll |= PLL_P1_DIVIDE_BY_TWO; | 
|  | else | 
|  | dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | if (clock->p2 == 4) | 
|  | dpll |= PLL_P2_DIVIDE_BY_4; | 
|  | } | 
|  |  | 
|  | if (!IS_I830(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO)) | 
|  | dpll |= DPLL_DVO_2X_MODE; | 
|  |  | 
|  | if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) && | 
|  | intel_panel_use_ssc(dev_priv) && num_connectors < 2) | 
|  | dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; | 
|  | else | 
|  | dpll |= PLL_REF_INPUT_DREFCLK; | 
|  |  | 
|  | dpll |= DPLL_VCO_ENABLE; | 
|  | crtc->config.dpll_hw_state.dpll = dpll; | 
|  | } | 
|  |  | 
|  | static void intel_set_pipe_timings(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; | 
|  | struct drm_display_mode *adjusted_mode = | 
|  | &intel_crtc->config.adjusted_mode; | 
|  | uint32_t crtc_vtotal, crtc_vblank_end; | 
|  | int vsyncshift = 0; | 
|  |  | 
|  | /* We need to be careful not to changed the adjusted mode, for otherwise | 
|  | * the hw state checker will get angry at the mismatch. */ | 
|  | crtc_vtotal = adjusted_mode->crtc_vtotal; | 
|  | crtc_vblank_end = adjusted_mode->crtc_vblank_end; | 
|  |  | 
|  | if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { | 
|  | /* the chip adds 2 halflines automatically */ | 
|  | crtc_vtotal -= 1; | 
|  | crtc_vblank_end -= 1; | 
|  |  | 
|  | if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO)) | 
|  | vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; | 
|  | else | 
|  | vsyncshift = adjusted_mode->crtc_hsync_start - | 
|  | adjusted_mode->crtc_htotal / 2; | 
|  | if (vsyncshift < 0) | 
|  | vsyncshift += adjusted_mode->crtc_htotal; | 
|  | } | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen > 3) | 
|  | I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); | 
|  |  | 
|  | I915_WRITE(HTOTAL(cpu_transcoder), | 
|  | (adjusted_mode->crtc_hdisplay - 1) | | 
|  | ((adjusted_mode->crtc_htotal - 1) << 16)); | 
|  | I915_WRITE(HBLANK(cpu_transcoder), | 
|  | (adjusted_mode->crtc_hblank_start - 1) | | 
|  | ((adjusted_mode->crtc_hblank_end - 1) << 16)); | 
|  | I915_WRITE(HSYNC(cpu_transcoder), | 
|  | (adjusted_mode->crtc_hsync_start - 1) | | 
|  | ((adjusted_mode->crtc_hsync_end - 1) << 16)); | 
|  |  | 
|  | I915_WRITE(VTOTAL(cpu_transcoder), | 
|  | (adjusted_mode->crtc_vdisplay - 1) | | 
|  | ((crtc_vtotal - 1) << 16)); | 
|  | I915_WRITE(VBLANK(cpu_transcoder), | 
|  | (adjusted_mode->crtc_vblank_start - 1) | | 
|  | ((crtc_vblank_end - 1) << 16)); | 
|  | I915_WRITE(VSYNC(cpu_transcoder), | 
|  | (adjusted_mode->crtc_vsync_start - 1) | | 
|  | ((adjusted_mode->crtc_vsync_end - 1) << 16)); | 
|  |  | 
|  | /* Workaround: when the EDP input selection is B, the VTOTAL_B must be | 
|  | * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is | 
|  | * documented on the DDI_FUNC_CTL register description, EDP Input Select | 
|  | * bits. */ | 
|  | if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP && | 
|  | (pipe == PIPE_B || pipe == PIPE_C)) | 
|  | I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); | 
|  |  | 
|  | /* pipesrc controls the size that is scaled from, which should | 
|  | * always be the user's requested size. | 
|  | */ | 
|  | I915_WRITE(PIPESRC(pipe), | 
|  | ((intel_crtc->config.pipe_src_w - 1) << 16) | | 
|  | (intel_crtc->config.pipe_src_h - 1)); | 
|  | } | 
|  |  | 
|  | static void intel_get_pipe_timings(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; | 
|  | uint32_t tmp; | 
|  |  | 
|  | tmp = I915_READ(HTOTAL(cpu_transcoder)); | 
|  | pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; | 
|  | pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; | 
|  | tmp = I915_READ(HBLANK(cpu_transcoder)); | 
|  | pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1; | 
|  | pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1; | 
|  | tmp = I915_READ(HSYNC(cpu_transcoder)); | 
|  | pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; | 
|  | pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; | 
|  |  | 
|  | tmp = I915_READ(VTOTAL(cpu_transcoder)); | 
|  | pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; | 
|  | pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; | 
|  | tmp = I915_READ(VBLANK(cpu_transcoder)); | 
|  | pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1; | 
|  | pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1; | 
|  | tmp = I915_READ(VSYNC(cpu_transcoder)); | 
|  | pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; | 
|  | pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; | 
|  |  | 
|  | if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) { | 
|  | pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; | 
|  | pipe_config->adjusted_mode.crtc_vtotal += 1; | 
|  | pipe_config->adjusted_mode.crtc_vblank_end += 1; | 
|  | } | 
|  |  | 
|  | tmp = I915_READ(PIPESRC(crtc->pipe)); | 
|  | pipe_config->pipe_src_h = (tmp & 0xffff) + 1; | 
|  | pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; | 
|  |  | 
|  | pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h; | 
|  | pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w; | 
|  | } | 
|  |  | 
|  | void intel_mode_from_pipe_config(struct drm_display_mode *mode, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay; | 
|  | mode->htotal = pipe_config->adjusted_mode.crtc_htotal; | 
|  | mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start; | 
|  | mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end; | 
|  |  | 
|  | mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay; | 
|  | mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal; | 
|  | mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start; | 
|  | mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end; | 
|  |  | 
|  | mode->flags = pipe_config->adjusted_mode.flags; | 
|  |  | 
|  | mode->clock = pipe_config->adjusted_mode.crtc_clock; | 
|  | mode->flags |= pipe_config->adjusted_mode.flags; | 
|  | } | 
|  |  | 
|  | static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t pipeconf; | 
|  |  | 
|  | pipeconf = 0; | 
|  |  | 
|  | if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || | 
|  | (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) | 
|  | pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE; | 
|  |  | 
|  | if (intel_crtc->config.double_wide) | 
|  | pipeconf |= PIPECONF_DOUBLE_WIDE; | 
|  |  | 
|  | /* only g4x and later have fancy bpc/dither controls */ | 
|  | if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) { | 
|  | /* Bspec claims that we can't use dithering for 30bpp pipes. */ | 
|  | if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30) | 
|  | pipeconf |= PIPECONF_DITHER_EN | | 
|  | PIPECONF_DITHER_TYPE_SP; | 
|  |  | 
|  | switch (intel_crtc->config.pipe_bpp) { | 
|  | case 18: | 
|  | pipeconf |= PIPECONF_6BPC; | 
|  | break; | 
|  | case 24: | 
|  | pipeconf |= PIPECONF_8BPC; | 
|  | break; | 
|  | case 30: | 
|  | pipeconf |= PIPECONF_10BPC; | 
|  | break; | 
|  | default: | 
|  | /* Case prevented by intel_choose_pipe_bpp_dither. */ | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HAS_PIPE_CXSR(dev)) { | 
|  | if (intel_crtc->lowfreq_avail) { | 
|  | DRM_DEBUG_KMS("enabling CxSR downclocking\n"); | 
|  | pipeconf |= PIPECONF_CXSR_DOWNCLOCK; | 
|  | } else { | 
|  | DRM_DEBUG_KMS("disabling CxSR downclocking\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { | 
|  | if (INTEL_INFO(dev)->gen < 4 || | 
|  | intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO)) | 
|  | pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; | 
|  | else | 
|  | pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; | 
|  | } else | 
|  | pipeconf |= PIPECONF_PROGRESSIVE; | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range) | 
|  | pipeconf |= PIPECONF_COLOR_RANGE_SELECT; | 
|  |  | 
|  | I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf); | 
|  | POSTING_READ(PIPECONF(intel_crtc->pipe)); | 
|  | } | 
|  |  | 
|  | static int i9xx_crtc_mode_set(struct drm_crtc *crtc, | 
|  | int x, int y, | 
|  | struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int refclk, num_connectors = 0; | 
|  | intel_clock_t clock, reduced_clock; | 
|  | bool ok, has_reduced_clock = false; | 
|  | bool is_lvds = false, is_dsi = false; | 
|  | struct intel_encoder *encoder; | 
|  | const intel_limit_t *limit; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | is_lvds = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_DSI: | 
|  | is_dsi = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | num_connectors++; | 
|  | } | 
|  |  | 
|  | if (is_dsi) | 
|  | return 0; | 
|  |  | 
|  | if (!intel_crtc->config.clock_set) { | 
|  | refclk = i9xx_get_refclk(crtc, num_connectors); | 
|  |  | 
|  | /* | 
|  | * Returns a set of divisors for the desired target clock with | 
|  | * the given refclk, or FALSE.  The returned values represent | 
|  | * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + | 
|  | * 2) / p1 / p2. | 
|  | */ | 
|  | limit = intel_limit(crtc, refclk); | 
|  | ok = dev_priv->display.find_dpll(limit, crtc, | 
|  | intel_crtc->config.port_clock, | 
|  | refclk, NULL, &clock); | 
|  | if (!ok) { | 
|  | DRM_ERROR("Couldn't find PLL settings for mode!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (is_lvds && dev_priv->lvds_downclock_avail) { | 
|  | /* | 
|  | * Ensure we match the reduced clock's P to the target | 
|  | * clock.  If the clocks don't match, we can't switch | 
|  | * the display clock by using the FP0/FP1. In such case | 
|  | * we will disable the LVDS downclock feature. | 
|  | */ | 
|  | has_reduced_clock = | 
|  | dev_priv->display.find_dpll(limit, crtc, | 
|  | dev_priv->lvds_downclock, | 
|  | refclk, &clock, | 
|  | &reduced_clock); | 
|  | } | 
|  | /* Compat-code for transition, will disappear. */ | 
|  | intel_crtc->config.dpll.n = clock.n; | 
|  | intel_crtc->config.dpll.m1 = clock.m1; | 
|  | intel_crtc->config.dpll.m2 = clock.m2; | 
|  | intel_crtc->config.dpll.p1 = clock.p1; | 
|  | intel_crtc->config.dpll.p2 = clock.p2; | 
|  | } | 
|  |  | 
|  | if (IS_GEN2(dev)) { | 
|  | i8xx_update_pll(intel_crtc, | 
|  | has_reduced_clock ? &reduced_clock : NULL, | 
|  | num_connectors); | 
|  | } else if (IS_CHERRYVIEW(dev)) { | 
|  | chv_update_pll(intel_crtc); | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | vlv_update_pll(intel_crtc); | 
|  | } else { | 
|  | i9xx_update_pll(intel_crtc, | 
|  | has_reduced_clock ? &reduced_clock : NULL, | 
|  | num_connectors); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void i9xx_get_pfit_config(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t tmp; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev))) | 
|  | return; | 
|  |  | 
|  | tmp = I915_READ(PFIT_CONTROL); | 
|  | if (!(tmp & PFIT_ENABLE)) | 
|  | return; | 
|  |  | 
|  | /* Check whether the pfit is attached to our pipe. */ | 
|  | if (INTEL_INFO(dev)->gen < 4) { | 
|  | if (crtc->pipe != PIPE_B) | 
|  | return; | 
|  | } else { | 
|  | if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | pipe_config->gmch_pfit.control = tmp; | 
|  | pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS); | 
|  | if (INTEL_INFO(dev)->gen < 5) | 
|  | pipe_config->gmch_pfit.lvds_border_bits = | 
|  | I915_READ(LVDS) & LVDS_BORDER_ENABLE; | 
|  | } | 
|  |  | 
|  | static void vlv_crtc_clock_get(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = pipe_config->cpu_transcoder; | 
|  | intel_clock_t clock; | 
|  | u32 mdiv; | 
|  | int refclk = 100000; | 
|  |  | 
|  | /* In case of MIPI DPLL will not even be used */ | 
|  | if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  | mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  |  | 
|  | clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; | 
|  | clock.m2 = mdiv & DPIO_M2DIV_MASK; | 
|  | clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; | 
|  | clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; | 
|  | clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; | 
|  |  | 
|  | vlv_clock(refclk, &clock); | 
|  |  | 
|  | /* clock.dot is the fast clock */ | 
|  | pipe_config->port_clock = clock.dot / 5; | 
|  | } | 
|  |  | 
|  | static void i9xx_get_plane_config(struct intel_crtc *crtc, | 
|  | struct intel_plane_config *plane_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 val, base, offset; | 
|  | int pipe = crtc->pipe, plane = crtc->plane; | 
|  | int fourcc, pixel_format; | 
|  | int aligned_height; | 
|  |  | 
|  | crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL); | 
|  | if (!crtc->base.primary->fb) { | 
|  | DRM_DEBUG_KMS("failed to alloc fb\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | val = I915_READ(DSPCNTR(plane)); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) | 
|  | if (val & DISPPLANE_TILED) | 
|  | plane_config->tiled = true; | 
|  |  | 
|  | pixel_format = val & DISPPLANE_PIXFORMAT_MASK; | 
|  | fourcc = intel_format_to_fourcc(pixel_format); | 
|  | crtc->base.primary->fb->pixel_format = fourcc; | 
|  | crtc->base.primary->fb->bits_per_pixel = | 
|  | drm_format_plane_cpp(fourcc, 0) * 8; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | if (plane_config->tiled) | 
|  | offset = I915_READ(DSPTILEOFF(plane)); | 
|  | else | 
|  | offset = I915_READ(DSPLINOFF(plane)); | 
|  | base = I915_READ(DSPSURF(plane)) & 0xfffff000; | 
|  | } else { | 
|  | base = I915_READ(DSPADDR(plane)); | 
|  | } | 
|  | plane_config->base = base; | 
|  |  | 
|  | val = I915_READ(PIPESRC(pipe)); | 
|  | crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1; | 
|  | crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1; | 
|  |  | 
|  | val = I915_READ(DSPSTRIDE(pipe)); | 
|  | crtc->base.primary->fb->pitches[0] = val & 0xffffffc0; | 
|  |  | 
|  | aligned_height = intel_align_height(dev, crtc->base.primary->fb->height, | 
|  | plane_config->tiled); | 
|  |  | 
|  | plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] * | 
|  | aligned_height); | 
|  |  | 
|  | DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", | 
|  | pipe, plane, crtc->base.primary->fb->width, | 
|  | crtc->base.primary->fb->height, | 
|  | crtc->base.primary->fb->bits_per_pixel, base, | 
|  | crtc->base.primary->fb->pitches[0], | 
|  | plane_config->size); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void chv_crtc_clock_get(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = pipe_config->cpu_transcoder; | 
|  | enum dpio_channel port = vlv_pipe_to_channel(pipe); | 
|  | intel_clock_t clock; | 
|  | u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2; | 
|  | int refclk = 100000; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  | cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); | 
|  | pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); | 
|  | pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); | 
|  | pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  |  | 
|  | clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; | 
|  | clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff); | 
|  | clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; | 
|  | clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; | 
|  | clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; | 
|  |  | 
|  | chv_clock(refclk, &clock); | 
|  |  | 
|  | /* clock.dot is the fast clock */ | 
|  | pipe_config->port_clock = clock.dot / 5; | 
|  | } | 
|  |  | 
|  | static bool i9xx_get_pipe_config(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t tmp; | 
|  |  | 
|  | if (!intel_display_power_enabled(dev_priv, | 
|  | POWER_DOMAIN_PIPE(crtc->pipe))) | 
|  | return false; | 
|  |  | 
|  | pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; | 
|  | pipe_config->shared_dpll = DPLL_ID_PRIVATE; | 
|  |  | 
|  | tmp = I915_READ(PIPECONF(crtc->pipe)); | 
|  | if (!(tmp & PIPECONF_ENABLE)) | 
|  | return false; | 
|  |  | 
|  | if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) { | 
|  | switch (tmp & PIPECONF_BPC_MASK) { | 
|  | case PIPECONF_6BPC: | 
|  | pipe_config->pipe_bpp = 18; | 
|  | break; | 
|  | case PIPECONF_8BPC: | 
|  | pipe_config->pipe_bpp = 24; | 
|  | break; | 
|  | case PIPECONF_10BPC: | 
|  | pipe_config->pipe_bpp = 30; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT)) | 
|  | pipe_config->limited_color_range = true; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen < 4) | 
|  | pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; | 
|  |  | 
|  | intel_get_pipe_timings(crtc, pipe_config); | 
|  |  | 
|  | i9xx_get_pfit_config(crtc, pipe_config); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | tmp = I915_READ(DPLL_MD(crtc->pipe)); | 
|  | pipe_config->pixel_multiplier = | 
|  | ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) | 
|  | >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; | 
|  | pipe_config->dpll_hw_state.dpll_md = tmp; | 
|  | } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { | 
|  | tmp = I915_READ(DPLL(crtc->pipe)); | 
|  | pipe_config->pixel_multiplier = | 
|  | ((tmp & SDVO_MULTIPLIER_MASK) | 
|  | >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; | 
|  | } else { | 
|  | /* Note that on i915G/GM the pixel multiplier is in the sdvo | 
|  | * port and will be fixed up in the encoder->get_config | 
|  | * function. */ | 
|  | pipe_config->pixel_multiplier = 1; | 
|  | } | 
|  | pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe)); | 
|  | if (!IS_VALLEYVIEW(dev)) { | 
|  | /* | 
|  | * DPLL_DVO_2X_MODE must be enabled for both DPLLs | 
|  | * on 830. Filter it out here so that we don't | 
|  | * report errors due to that. | 
|  | */ | 
|  | if (IS_I830(dev)) | 
|  | pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE; | 
|  |  | 
|  | pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe)); | 
|  | pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe)); | 
|  | } else { | 
|  | /* Mask out read-only status bits. */ | 
|  | pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | | 
|  | DPLL_PORTC_READY_MASK | | 
|  | DPLL_PORTB_READY_MASK); | 
|  | } | 
|  |  | 
|  | if (IS_CHERRYVIEW(dev)) | 
|  | chv_crtc_clock_get(crtc, pipe_config); | 
|  | else if (IS_VALLEYVIEW(dev)) | 
|  | vlv_crtc_clock_get(crtc, pipe_config); | 
|  | else | 
|  | i9xx_crtc_clock_get(crtc, pipe_config); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void ironlake_init_pch_refclk(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *encoder; | 
|  | u32 val, final; | 
|  | bool has_lvds = false; | 
|  | bool has_cpu_edp = false; | 
|  | bool has_panel = false; | 
|  | bool has_ck505 = false; | 
|  | bool can_ssc = false; | 
|  |  | 
|  | /* We need to take the global config into account */ | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | has_panel = true; | 
|  | has_lvds = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_EDP: | 
|  | has_panel = true; | 
|  | if (enc_to_dig_port(&encoder->base)->port == PORT_A) | 
|  | has_cpu_edp = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HAS_PCH_IBX(dev)) { | 
|  | has_ck505 = dev_priv->vbt.display_clock_mode; | 
|  | can_ssc = has_ck505; | 
|  | } else { | 
|  | has_ck505 = false; | 
|  | can_ssc = true; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n", | 
|  | has_panel, has_lvds, has_ck505); | 
|  |  | 
|  | /* Ironlake: try to setup display ref clock before DPLL | 
|  | * enabling. This is only under driver's control after | 
|  | * PCH B stepping, previous chipset stepping should be | 
|  | * ignoring this setting. | 
|  | */ | 
|  | val = I915_READ(PCH_DREF_CONTROL); | 
|  |  | 
|  | /* As we must carefully and slowly disable/enable each source in turn, | 
|  | * compute the final state we want first and check if we need to | 
|  | * make any changes at all. | 
|  | */ | 
|  | final = val; | 
|  | final &= ~DREF_NONSPREAD_SOURCE_MASK; | 
|  | if (has_ck505) | 
|  | final |= DREF_NONSPREAD_CK505_ENABLE; | 
|  | else | 
|  | final |= DREF_NONSPREAD_SOURCE_ENABLE; | 
|  |  | 
|  | final &= ~DREF_SSC_SOURCE_MASK; | 
|  | final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; | 
|  | final &= ~DREF_SSC1_ENABLE; | 
|  |  | 
|  | if (has_panel) { | 
|  | final |= DREF_SSC_SOURCE_ENABLE; | 
|  |  | 
|  | if (intel_panel_use_ssc(dev_priv) && can_ssc) | 
|  | final |= DREF_SSC1_ENABLE; | 
|  |  | 
|  | if (has_cpu_edp) { | 
|  | if (intel_panel_use_ssc(dev_priv) && can_ssc) | 
|  | final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; | 
|  | else | 
|  | final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; | 
|  | } else | 
|  | final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; | 
|  | } else { | 
|  | final |= DREF_SSC_SOURCE_DISABLE; | 
|  | final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; | 
|  | } | 
|  |  | 
|  | if (final == val) | 
|  | return; | 
|  |  | 
|  | /* Always enable nonspread source */ | 
|  | val &= ~DREF_NONSPREAD_SOURCE_MASK; | 
|  |  | 
|  | if (has_ck505) | 
|  | val |= DREF_NONSPREAD_CK505_ENABLE; | 
|  | else | 
|  | val |= DREF_NONSPREAD_SOURCE_ENABLE; | 
|  |  | 
|  | if (has_panel) { | 
|  | val &= ~DREF_SSC_SOURCE_MASK; | 
|  | val |= DREF_SSC_SOURCE_ENABLE; | 
|  |  | 
|  | /* SSC must be turned on before enabling the CPU output  */ | 
|  | if (intel_panel_use_ssc(dev_priv) && can_ssc) { | 
|  | DRM_DEBUG_KMS("Using SSC on panel\n"); | 
|  | val |= DREF_SSC1_ENABLE; | 
|  | } else | 
|  | val &= ~DREF_SSC1_ENABLE; | 
|  |  | 
|  | /* Get SSC going before enabling the outputs */ | 
|  | I915_WRITE(PCH_DREF_CONTROL, val); | 
|  | POSTING_READ(PCH_DREF_CONTROL); | 
|  | udelay(200); | 
|  |  | 
|  | val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; | 
|  |  | 
|  | /* Enable CPU source on CPU attached eDP */ | 
|  | if (has_cpu_edp) { | 
|  | if (intel_panel_use_ssc(dev_priv) && can_ssc) { | 
|  | DRM_DEBUG_KMS("Using SSC on eDP\n"); | 
|  | val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; | 
|  | } else | 
|  | val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; | 
|  | } else | 
|  | val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; | 
|  |  | 
|  | I915_WRITE(PCH_DREF_CONTROL, val); | 
|  | POSTING_READ(PCH_DREF_CONTROL); | 
|  | udelay(200); | 
|  | } else { | 
|  | DRM_DEBUG_KMS("Disabling SSC entirely\n"); | 
|  |  | 
|  | val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; | 
|  |  | 
|  | /* Turn off CPU output */ | 
|  | val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; | 
|  |  | 
|  | I915_WRITE(PCH_DREF_CONTROL, val); | 
|  | POSTING_READ(PCH_DREF_CONTROL); | 
|  | udelay(200); | 
|  |  | 
|  | /* Turn off the SSC source */ | 
|  | val &= ~DREF_SSC_SOURCE_MASK; | 
|  | val |= DREF_SSC_SOURCE_DISABLE; | 
|  |  | 
|  | /* Turn off SSC1 */ | 
|  | val &= ~DREF_SSC1_ENABLE; | 
|  |  | 
|  | I915_WRITE(PCH_DREF_CONTROL, val); | 
|  | POSTING_READ(PCH_DREF_CONTROL); | 
|  | udelay(200); | 
|  | } | 
|  |  | 
|  | BUG_ON(val != final); | 
|  | } | 
|  |  | 
|  | static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | tmp = I915_READ(SOUTH_CHICKEN2); | 
|  | tmp |= FDI_MPHY_IOSFSB_RESET_CTL; | 
|  | I915_WRITE(SOUTH_CHICKEN2, tmp); | 
|  |  | 
|  | if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) & | 
|  | FDI_MPHY_IOSFSB_RESET_STATUS, 100)) | 
|  | DRM_ERROR("FDI mPHY reset assert timeout\n"); | 
|  |  | 
|  | tmp = I915_READ(SOUTH_CHICKEN2); | 
|  | tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; | 
|  | I915_WRITE(SOUTH_CHICKEN2, tmp); | 
|  |  | 
|  | if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) & | 
|  | FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) | 
|  | DRM_ERROR("FDI mPHY reset de-assert timeout\n"); | 
|  | } | 
|  |  | 
|  | /* WaMPhyProgramming:hsw */ | 
|  | static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); | 
|  | tmp &= ~(0xFF << 24); | 
|  | tmp |= (0x12 << 24); | 
|  | intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); | 
|  | tmp |= (1 << 11); | 
|  | intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); | 
|  | tmp |= (1 << 11); | 
|  | intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); | 
|  | tmp |= (1 << 24) | (1 << 21) | (1 << 18); | 
|  | intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); | 
|  | tmp |= (1 << 24) | (1 << 21) | (1 << 18); | 
|  | intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); | 
|  | tmp &= ~(7 << 13); | 
|  | tmp |= (5 << 13); | 
|  | intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); | 
|  | tmp &= ~(7 << 13); | 
|  | tmp |= (5 << 13); | 
|  | intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); | 
|  | tmp &= ~0xFF; | 
|  | tmp |= 0x1C; | 
|  | intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); | 
|  | tmp &= ~0xFF; | 
|  | tmp |= 0x1C; | 
|  | intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); | 
|  | tmp &= ~(0xFF << 16); | 
|  | tmp |= (0x1C << 16); | 
|  | intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); | 
|  | tmp &= ~(0xFF << 16); | 
|  | tmp |= (0x1C << 16); | 
|  | intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); | 
|  | tmp |= (1 << 27); | 
|  | intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); | 
|  | tmp |= (1 << 27); | 
|  | intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); | 
|  | tmp &= ~(0xF << 28); | 
|  | tmp |= (4 << 28); | 
|  | intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); | 
|  | tmp &= ~(0xF << 28); | 
|  | tmp |= (4 << 28); | 
|  | intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); | 
|  | } | 
|  |  | 
|  | /* Implements 3 different sequences from BSpec chapter "Display iCLK | 
|  | * Programming" based on the parameters passed: | 
|  | * - Sequence to enable CLKOUT_DP | 
|  | * - Sequence to enable CLKOUT_DP without spread | 
|  | * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O | 
|  | */ | 
|  | static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread, | 
|  | bool with_fdi) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t reg, tmp; | 
|  |  | 
|  | if (WARN(with_fdi && !with_spread, "FDI requires downspread\n")) | 
|  | with_spread = true; | 
|  | if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE && | 
|  | with_fdi, "LP PCH doesn't have FDI\n")) | 
|  | with_fdi = false; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); | 
|  | tmp &= ~SBI_SSCCTL_DISABLE; | 
|  | tmp |= SBI_SSCCTL_PATHALT; | 
|  | intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); | 
|  |  | 
|  | udelay(24); | 
|  |  | 
|  | if (with_spread) { | 
|  | tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); | 
|  | tmp &= ~SBI_SSCCTL_PATHALT; | 
|  | intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); | 
|  |  | 
|  | if (with_fdi) { | 
|  | lpt_reset_fdi_mphy(dev_priv); | 
|  | lpt_program_fdi_mphy(dev_priv); | 
|  | } | 
|  | } | 
|  |  | 
|  | reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ? | 
|  | SBI_GEN0 : SBI_DBUFF0; | 
|  | tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); | 
|  | tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; | 
|  | intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | /* Sequence to disable CLKOUT_DP */ | 
|  | static void lpt_disable_clkout_dp(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t reg, tmp; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ? | 
|  | SBI_GEN0 : SBI_DBUFF0; | 
|  | tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); | 
|  | tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; | 
|  | intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); | 
|  | if (!(tmp & SBI_SSCCTL_DISABLE)) { | 
|  | if (!(tmp & SBI_SSCCTL_PATHALT)) { | 
|  | tmp |= SBI_SSCCTL_PATHALT; | 
|  | intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); | 
|  | udelay(32); | 
|  | } | 
|  | tmp |= SBI_SSCCTL_DISABLE; | 
|  | intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | static void lpt_init_pch_refclk(struct drm_device *dev) | 
|  | { | 
|  | struct intel_encoder *encoder; | 
|  | bool has_vga = false; | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_ANALOG: | 
|  | has_vga = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (has_vga) | 
|  | lpt_enable_clkout_dp(dev, true, true); | 
|  | else | 
|  | lpt_disable_clkout_dp(dev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize reference clocks when the driver loads | 
|  | */ | 
|  | void intel_init_pch_refclk(struct drm_device *dev) | 
|  | { | 
|  | if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) | 
|  | ironlake_init_pch_refclk(dev); | 
|  | else if (HAS_PCH_LPT(dev)) | 
|  | lpt_init_pch_refclk(dev); | 
|  | } | 
|  |  | 
|  | static int ironlake_get_refclk(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *encoder; | 
|  | int num_connectors = 0; | 
|  | bool is_lvds = false; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | is_lvds = true; | 
|  | break; | 
|  | } | 
|  | num_connectors++; | 
|  | } | 
|  |  | 
|  | if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) { | 
|  | DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", | 
|  | dev_priv->vbt.lvds_ssc_freq); | 
|  | return dev_priv->vbt.lvds_ssc_freq; | 
|  | } | 
|  |  | 
|  | return 120000; | 
|  | } | 
|  |  | 
|  | static void ironlake_set_pipeconf(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = crtc->dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | uint32_t val; | 
|  |  | 
|  | val = 0; | 
|  |  | 
|  | switch (intel_crtc->config.pipe_bpp) { | 
|  | case 18: | 
|  | val |= PIPECONF_6BPC; | 
|  | break; | 
|  | case 24: | 
|  | val |= PIPECONF_8BPC; | 
|  | break; | 
|  | case 30: | 
|  | val |= PIPECONF_10BPC; | 
|  | break; | 
|  | case 36: | 
|  | val |= PIPECONF_12BPC; | 
|  | break; | 
|  | default: | 
|  | /* Case prevented by intel_choose_pipe_bpp_dither. */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (intel_crtc->config.dither) | 
|  | val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); | 
|  |  | 
|  | if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) | 
|  | val |= PIPECONF_INTERLACED_ILK; | 
|  | else | 
|  | val |= PIPECONF_PROGRESSIVE; | 
|  |  | 
|  | if (intel_crtc->config.limited_color_range) | 
|  | val |= PIPECONF_COLOR_RANGE_SELECT; | 
|  |  | 
|  | I915_WRITE(PIPECONF(pipe), val); | 
|  | POSTING_READ(PIPECONF(pipe)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the pipe CSC unit. | 
|  | * | 
|  | * Currently only full range RGB to limited range RGB conversion | 
|  | * is supported, but eventually this should handle various | 
|  | * RGB<->YCbCr scenarios as well. | 
|  | */ | 
|  | static void intel_set_pipe_csc(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | uint16_t coeff = 0x7800; /* 1.0 */ | 
|  |  | 
|  | /* | 
|  | * TODO: Check what kind of values actually come out of the pipe | 
|  | * with these coeff/postoff values and adjust to get the best | 
|  | * accuracy. Perhaps we even need to take the bpc value into | 
|  | * consideration. | 
|  | */ | 
|  |  | 
|  | if (intel_crtc->config.limited_color_range) | 
|  | coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */ | 
|  |  | 
|  | /* | 
|  | * GY/GU and RY/RU should be the other way around according | 
|  | * to BSpec, but reality doesn't agree. Just set them up in | 
|  | * a way that results in the correct picture. | 
|  | */ | 
|  | I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16); | 
|  | I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0); | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff); | 
|  | I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0); | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0); | 
|  | I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16); | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0); | 
|  | I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0); | 
|  | I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen > 6) { | 
|  | uint16_t postoff = 0; | 
|  |  | 
|  | if (intel_crtc->config.limited_color_range) | 
|  | postoff = (16 * (1 << 12) / 255) & 0x1fff; | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff); | 
|  | I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff); | 
|  | I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff); | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_MODE(pipe), 0); | 
|  | } else { | 
|  | uint32_t mode = CSC_MODE_YUV_TO_RGB; | 
|  |  | 
|  | if (intel_crtc->config.limited_color_range) | 
|  | mode |= CSC_BLACK_SCREEN_OFFSET; | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_MODE(pipe), mode); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void haswell_set_pipeconf(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; | 
|  | uint32_t val; | 
|  |  | 
|  | val = 0; | 
|  |  | 
|  | if (IS_HASWELL(dev) && intel_crtc->config.dither) | 
|  | val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); | 
|  |  | 
|  | if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) | 
|  | val |= PIPECONF_INTERLACED_ILK; | 
|  | else | 
|  | val |= PIPECONF_PROGRESSIVE; | 
|  |  | 
|  | I915_WRITE(PIPECONF(cpu_transcoder), val); | 
|  | POSTING_READ(PIPECONF(cpu_transcoder)); | 
|  |  | 
|  | I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT); | 
|  | POSTING_READ(GAMMA_MODE(intel_crtc->pipe)); | 
|  |  | 
|  | if (IS_BROADWELL(dev)) { | 
|  | val = 0; | 
|  |  | 
|  | switch (intel_crtc->config.pipe_bpp) { | 
|  | case 18: | 
|  | val |= PIPEMISC_DITHER_6_BPC; | 
|  | break; | 
|  | case 24: | 
|  | val |= PIPEMISC_DITHER_8_BPC; | 
|  | break; | 
|  | case 30: | 
|  | val |= PIPEMISC_DITHER_10_BPC; | 
|  | break; | 
|  | case 36: | 
|  | val |= PIPEMISC_DITHER_12_BPC; | 
|  | break; | 
|  | default: | 
|  | /* Case prevented by pipe_config_set_bpp. */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (intel_crtc->config.dither) | 
|  | val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; | 
|  |  | 
|  | I915_WRITE(PIPEMISC(pipe), val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool ironlake_compute_clocks(struct drm_crtc *crtc, | 
|  | intel_clock_t *clock, | 
|  | bool *has_reduced_clock, | 
|  | intel_clock_t *reduced_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *intel_encoder; | 
|  | int refclk; | 
|  | const intel_limit_t *limit; | 
|  | bool ret, is_lvds = false; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) { | 
|  | switch (intel_encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | is_lvds = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | refclk = ironlake_get_refclk(crtc); | 
|  |  | 
|  | /* | 
|  | * Returns a set of divisors for the desired target clock with the given | 
|  | * refclk, or FALSE.  The returned values represent the clock equation: | 
|  | * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. | 
|  | */ | 
|  | limit = intel_limit(crtc, refclk); | 
|  | ret = dev_priv->display.find_dpll(limit, crtc, | 
|  | to_intel_crtc(crtc)->config.port_clock, | 
|  | refclk, NULL, clock); | 
|  | if (!ret) | 
|  | return false; | 
|  |  | 
|  | if (is_lvds && dev_priv->lvds_downclock_avail) { | 
|  | /* | 
|  | * Ensure we match the reduced clock's P to the target clock. | 
|  | * If the clocks don't match, we can't switch the display clock | 
|  | * by using the FP0/FP1. In such case we will disable the LVDS | 
|  | * downclock feature. | 
|  | */ | 
|  | *has_reduced_clock = | 
|  | dev_priv->display.find_dpll(limit, crtc, | 
|  | dev_priv->lvds_downclock, | 
|  | refclk, clock, | 
|  | reduced_clock); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) | 
|  | { | 
|  | /* | 
|  | * Account for spread spectrum to avoid | 
|  | * oversubscribing the link. Max center spread | 
|  | * is 2.5%; use 5% for safety's sake. | 
|  | */ | 
|  | u32 bps = target_clock * bpp * 21 / 20; | 
|  | return DIV_ROUND_UP(bps, link_bw * 8); | 
|  | } | 
|  |  | 
|  | static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor) | 
|  | { | 
|  | return i9xx_dpll_compute_m(dpll) < factor * dpll->n; | 
|  | } | 
|  |  | 
|  | static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc, | 
|  | u32 *fp, | 
|  | intel_clock_t *reduced_clock, u32 *fp2) | 
|  | { | 
|  | struct drm_crtc *crtc = &intel_crtc->base; | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *intel_encoder; | 
|  | uint32_t dpll; | 
|  | int factor, num_connectors = 0; | 
|  | bool is_lvds = false, is_sdvo = false; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) { | 
|  | switch (intel_encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | is_lvds = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_SDVO: | 
|  | case INTEL_OUTPUT_HDMI: | 
|  | is_sdvo = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | num_connectors++; | 
|  | } | 
|  |  | 
|  | /* Enable autotuning of the PLL clock (if permissible) */ | 
|  | factor = 21; | 
|  | if (is_lvds) { | 
|  | if ((intel_panel_use_ssc(dev_priv) && | 
|  | dev_priv->vbt.lvds_ssc_freq == 100000) || | 
|  | (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev))) | 
|  | factor = 25; | 
|  | } else if (intel_crtc->config.sdvo_tv_clock) | 
|  | factor = 20; | 
|  |  | 
|  | if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor)) | 
|  | *fp |= FP_CB_TUNE; | 
|  |  | 
|  | if (fp2 && (reduced_clock->m < factor * reduced_clock->n)) | 
|  | *fp2 |= FP_CB_TUNE; | 
|  |  | 
|  | dpll = 0; | 
|  |  | 
|  | if (is_lvds) | 
|  | dpll |= DPLLB_MODE_LVDS; | 
|  | else | 
|  | dpll |= DPLLB_MODE_DAC_SERIAL; | 
|  |  | 
|  | dpll |= (intel_crtc->config.pixel_multiplier - 1) | 
|  | << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; | 
|  |  | 
|  | if (is_sdvo) | 
|  | dpll |= DPLL_SDVO_HIGH_SPEED; | 
|  | if (intel_crtc->config.has_dp_encoder) | 
|  | dpll |= DPLL_SDVO_HIGH_SPEED; | 
|  |  | 
|  | /* compute bitmask from p1 value */ | 
|  | dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | /* also FPA1 */ | 
|  | dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; | 
|  |  | 
|  | switch (intel_crtc->config.dpll.p2) { | 
|  | case 5: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; | 
|  | break; | 
|  | case 7: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; | 
|  | break; | 
|  | case 10: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; | 
|  | break; | 
|  | case 14: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) | 
|  | dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; | 
|  | else | 
|  | dpll |= PLL_REF_INPUT_DREFCLK; | 
|  |  | 
|  | return dpll | DPLL_VCO_ENABLE; | 
|  | } | 
|  |  | 
|  | static int ironlake_crtc_mode_set(struct drm_crtc *crtc, | 
|  | int x, int y, | 
|  | struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int num_connectors = 0; | 
|  | intel_clock_t clock, reduced_clock; | 
|  | u32 dpll = 0, fp = 0, fp2 = 0; | 
|  | bool ok, has_reduced_clock = false; | 
|  | bool is_lvds = false; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_shared_dpll *pll; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | is_lvds = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | num_connectors++; | 
|  | } | 
|  |  | 
|  | WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)), | 
|  | "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev)); | 
|  |  | 
|  | ok = ironlake_compute_clocks(crtc, &clock, | 
|  | &has_reduced_clock, &reduced_clock); | 
|  | if (!ok && !intel_crtc->config.clock_set) { | 
|  | DRM_ERROR("Couldn't find PLL settings for mode!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* Compat-code for transition, will disappear. */ | 
|  | if (!intel_crtc->config.clock_set) { | 
|  | intel_crtc->config.dpll.n = clock.n; | 
|  | intel_crtc->config.dpll.m1 = clock.m1; | 
|  | intel_crtc->config.dpll.m2 = clock.m2; | 
|  | intel_crtc->config.dpll.p1 = clock.p1; | 
|  | intel_crtc->config.dpll.p2 = clock.p2; | 
|  | } | 
|  |  | 
|  | /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ | 
|  | if (intel_crtc->config.has_pch_encoder) { | 
|  | fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll); | 
|  | if (has_reduced_clock) | 
|  | fp2 = i9xx_dpll_compute_fp(&reduced_clock); | 
|  |  | 
|  | dpll = ironlake_compute_dpll(intel_crtc, | 
|  | &fp, &reduced_clock, | 
|  | has_reduced_clock ? &fp2 : NULL); | 
|  |  | 
|  | intel_crtc->config.dpll_hw_state.dpll = dpll; | 
|  | intel_crtc->config.dpll_hw_state.fp0 = fp; | 
|  | if (has_reduced_clock) | 
|  | intel_crtc->config.dpll_hw_state.fp1 = fp2; | 
|  | else | 
|  | intel_crtc->config.dpll_hw_state.fp1 = fp; | 
|  |  | 
|  | pll = intel_get_shared_dpll(intel_crtc); | 
|  | if (pll == NULL) { | 
|  | DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", | 
|  | pipe_name(intel_crtc->pipe)); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else | 
|  | intel_put_shared_dpll(intel_crtc); | 
|  |  | 
|  | if (is_lvds && has_reduced_clock && i915.powersave) | 
|  | intel_crtc->lowfreq_avail = true; | 
|  | else | 
|  | intel_crtc->lowfreq_avail = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, | 
|  | struct intel_link_m_n *m_n) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum pipe pipe = crtc->pipe; | 
|  |  | 
|  | m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe)); | 
|  | m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe)); | 
|  | m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe)) | 
|  | & ~TU_SIZE_MASK; | 
|  | m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe)); | 
|  | m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe)) | 
|  | & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; | 
|  | } | 
|  |  | 
|  | static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, | 
|  | enum transcoder transcoder, | 
|  | struct intel_link_m_n *m_n, | 
|  | struct intel_link_m_n *m2_n2) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum pipe pipe = crtc->pipe; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 5) { | 
|  | m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder)); | 
|  | m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder)); | 
|  | m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder)) | 
|  | & ~TU_SIZE_MASK; | 
|  | m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder)); | 
|  | m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder)) | 
|  | & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; | 
|  | /* Read M2_N2 registers only for gen < 8 (M2_N2 available for | 
|  | * gen < 8) and if DRRS is supported (to make sure the | 
|  | * registers are not unnecessarily read). | 
|  | */ | 
|  | if (m2_n2 && INTEL_INFO(dev)->gen < 8 && | 
|  | crtc->config.has_drrs) { | 
|  | m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder)); | 
|  | m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder)); | 
|  | m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder)) | 
|  | & ~TU_SIZE_MASK; | 
|  | m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder)); | 
|  | m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder)) | 
|  | & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; | 
|  | } | 
|  | } else { | 
|  | m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe)); | 
|  | m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe)); | 
|  | m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe)) | 
|  | & ~TU_SIZE_MASK; | 
|  | m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe)); | 
|  | m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe)) | 
|  | & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_dp_get_m_n(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | if (crtc->config.has_pch_encoder) | 
|  | intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); | 
|  | else | 
|  | intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, | 
|  | &pipe_config->dp_m_n, | 
|  | &pipe_config->dp_m2_n2); | 
|  | } | 
|  |  | 
|  | static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, | 
|  | &pipe_config->fdi_m_n, NULL); | 
|  | } | 
|  |  | 
|  | static void ironlake_get_pfit_config(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t tmp; | 
|  |  | 
|  | tmp = I915_READ(PF_CTL(crtc->pipe)); | 
|  |  | 
|  | if (tmp & PF_ENABLE) { | 
|  | pipe_config->pch_pfit.enabled = true; | 
|  | pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe)); | 
|  | pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe)); | 
|  |  | 
|  | /* We currently do not free assignements of panel fitters on | 
|  | * ivb/hsw (since we don't use the higher upscaling modes which | 
|  | * differentiates them) so just WARN about this case for now. */ | 
|  | if (IS_GEN7(dev)) { | 
|  | WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) != | 
|  | PF_PIPE_SEL_IVB(crtc->pipe)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ironlake_get_plane_config(struct intel_crtc *crtc, | 
|  | struct intel_plane_config *plane_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 val, base, offset; | 
|  | int pipe = crtc->pipe, plane = crtc->plane; | 
|  | int fourcc, pixel_format; | 
|  | int aligned_height; | 
|  |  | 
|  | crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL); | 
|  | if (!crtc->base.primary->fb) { | 
|  | DRM_DEBUG_KMS("failed to alloc fb\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | val = I915_READ(DSPCNTR(plane)); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) | 
|  | if (val & DISPPLANE_TILED) | 
|  | plane_config->tiled = true; | 
|  |  | 
|  | pixel_format = val & DISPPLANE_PIXFORMAT_MASK; | 
|  | fourcc = intel_format_to_fourcc(pixel_format); | 
|  | crtc->base.primary->fb->pixel_format = fourcc; | 
|  | crtc->base.primary->fb->bits_per_pixel = | 
|  | drm_format_plane_cpp(fourcc, 0) * 8; | 
|  |  | 
|  | base = I915_READ(DSPSURF(plane)) & 0xfffff000; | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { | 
|  | offset = I915_READ(DSPOFFSET(plane)); | 
|  | } else { | 
|  | if (plane_config->tiled) | 
|  | offset = I915_READ(DSPTILEOFF(plane)); | 
|  | else | 
|  | offset = I915_READ(DSPLINOFF(plane)); | 
|  | } | 
|  | plane_config->base = base; | 
|  |  | 
|  | val = I915_READ(PIPESRC(pipe)); | 
|  | crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1; | 
|  | crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1; | 
|  |  | 
|  | val = I915_READ(DSPSTRIDE(pipe)); | 
|  | crtc->base.primary->fb->pitches[0] = val & 0xffffffc0; | 
|  |  | 
|  | aligned_height = intel_align_height(dev, crtc->base.primary->fb->height, | 
|  | plane_config->tiled); | 
|  |  | 
|  | plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] * | 
|  | aligned_height); | 
|  |  | 
|  | DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", | 
|  | pipe, plane, crtc->base.primary->fb->width, | 
|  | crtc->base.primary->fb->height, | 
|  | crtc->base.primary->fb->bits_per_pixel, base, | 
|  | crtc->base.primary->fb->pitches[0], | 
|  | plane_config->size); | 
|  | } | 
|  |  | 
|  | static bool ironlake_get_pipe_config(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t tmp; | 
|  |  | 
|  | if (!intel_display_power_enabled(dev_priv, | 
|  | POWER_DOMAIN_PIPE(crtc->pipe))) | 
|  | return false; | 
|  |  | 
|  | pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; | 
|  | pipe_config->shared_dpll = DPLL_ID_PRIVATE; | 
|  |  | 
|  | tmp = I915_READ(PIPECONF(crtc->pipe)); | 
|  | if (!(tmp & PIPECONF_ENABLE)) | 
|  | return false; | 
|  |  | 
|  | switch (tmp & PIPECONF_BPC_MASK) { | 
|  | case PIPECONF_6BPC: | 
|  | pipe_config->pipe_bpp = 18; | 
|  | break; | 
|  | case PIPECONF_8BPC: | 
|  | pipe_config->pipe_bpp = 24; | 
|  | break; | 
|  | case PIPECONF_10BPC: | 
|  | pipe_config->pipe_bpp = 30; | 
|  | break; | 
|  | case PIPECONF_12BPC: | 
|  | pipe_config->pipe_bpp = 36; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (tmp & PIPECONF_COLOR_RANGE_SELECT) | 
|  | pipe_config->limited_color_range = true; | 
|  |  | 
|  | if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { | 
|  | struct intel_shared_dpll *pll; | 
|  |  | 
|  | pipe_config->has_pch_encoder = true; | 
|  |  | 
|  | tmp = I915_READ(FDI_RX_CTL(crtc->pipe)); | 
|  | pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> | 
|  | FDI_DP_PORT_WIDTH_SHIFT) + 1; | 
|  |  | 
|  | ironlake_get_fdi_m_n_config(crtc, pipe_config); | 
|  |  | 
|  | if (HAS_PCH_IBX(dev_priv->dev)) { | 
|  | pipe_config->shared_dpll = | 
|  | (enum intel_dpll_id) crtc->pipe; | 
|  | } else { | 
|  | tmp = I915_READ(PCH_DPLL_SEL); | 
|  | if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) | 
|  | pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B; | 
|  | else | 
|  | pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A; | 
|  | } | 
|  |  | 
|  | pll = &dev_priv->shared_dplls[pipe_config->shared_dpll]; | 
|  |  | 
|  | WARN_ON(!pll->get_hw_state(dev_priv, pll, | 
|  | &pipe_config->dpll_hw_state)); | 
|  |  | 
|  | tmp = pipe_config->dpll_hw_state.dpll; | 
|  | pipe_config->pixel_multiplier = | 
|  | ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) | 
|  | >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; | 
|  |  | 
|  | ironlake_pch_clock_get(crtc, pipe_config); | 
|  | } else { | 
|  | pipe_config->pixel_multiplier = 1; | 
|  | } | 
|  |  | 
|  | intel_get_pipe_timings(crtc, pipe_config); | 
|  |  | 
|  | ironlake_get_pfit_config(crtc, pipe_config); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | struct intel_crtc *crtc; | 
|  |  | 
|  | for_each_intel_crtc(dev, crtc) | 
|  | WARN(crtc->active, "CRTC for pipe %c enabled\n", | 
|  | pipe_name(crtc->pipe)); | 
|  |  | 
|  | WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n"); | 
|  | WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n"); | 
|  | WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n"); | 
|  | WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n"); | 
|  | WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n"); | 
|  | WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE, | 
|  | "CPU PWM1 enabled\n"); | 
|  | if (IS_HASWELL(dev)) | 
|  | WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE, | 
|  | "CPU PWM2 enabled\n"); | 
|  | WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE, | 
|  | "PCH PWM1 enabled\n"); | 
|  | WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE, | 
|  | "Utility pin enabled\n"); | 
|  | WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n"); | 
|  |  | 
|  | /* | 
|  | * In theory we can still leave IRQs enabled, as long as only the HPD | 
|  | * interrupts remain enabled. We used to check for that, but since it's | 
|  | * gen-specific and since we only disable LCPLL after we fully disable | 
|  | * the interrupts, the check below should be enough. | 
|  | */ | 
|  | WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n"); | 
|  | } | 
|  |  | 
|  | static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  |  | 
|  | if (IS_HASWELL(dev)) | 
|  | return I915_READ(D_COMP_HSW); | 
|  | else | 
|  | return I915_READ(D_COMP_BDW); | 
|  | } | 
|  |  | 
|  | static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  |  | 
|  | if (IS_HASWELL(dev)) { | 
|  | mutex_lock(&dev_priv->rps.hw_lock); | 
|  | if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, | 
|  | val)) | 
|  | DRM_ERROR("Failed to write to D_COMP\n"); | 
|  | mutex_unlock(&dev_priv->rps.hw_lock); | 
|  | } else { | 
|  | I915_WRITE(D_COMP_BDW, val); | 
|  | POSTING_READ(D_COMP_BDW); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function implements pieces of two sequences from BSpec: | 
|  | * - Sequence for display software to disable LCPLL | 
|  | * - Sequence for display software to allow package C8+ | 
|  | * The steps implemented here are just the steps that actually touch the LCPLL | 
|  | * register. Callers should take care of disabling all the display engine | 
|  | * functions, doing the mode unset, fixing interrupts, etc. | 
|  | */ | 
|  | static void hsw_disable_lcpll(struct drm_i915_private *dev_priv, | 
|  | bool switch_to_fclk, bool allow_power_down) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | assert_can_disable_lcpll(dev_priv); | 
|  |  | 
|  | val = I915_READ(LCPLL_CTL); | 
|  |  | 
|  | if (switch_to_fclk) { | 
|  | val |= LCPLL_CD_SOURCE_FCLK; | 
|  | I915_WRITE(LCPLL_CTL, val); | 
|  |  | 
|  | if (wait_for_atomic_us(I915_READ(LCPLL_CTL) & | 
|  | LCPLL_CD_SOURCE_FCLK_DONE, 1)) | 
|  | DRM_ERROR("Switching to FCLK failed\n"); | 
|  |  | 
|  | val = I915_READ(LCPLL_CTL); | 
|  | } | 
|  |  | 
|  | val |= LCPLL_PLL_DISABLE; | 
|  | I915_WRITE(LCPLL_CTL, val); | 
|  | POSTING_READ(LCPLL_CTL); | 
|  |  | 
|  | if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1)) | 
|  | DRM_ERROR("LCPLL still locked\n"); | 
|  |  | 
|  | val = hsw_read_dcomp(dev_priv); | 
|  | val |= D_COMP_COMP_DISABLE; | 
|  | hsw_write_dcomp(dev_priv, val); | 
|  | ndelay(100); | 
|  |  | 
|  | if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0, | 
|  | 1)) | 
|  | DRM_ERROR("D_COMP RCOMP still in progress\n"); | 
|  |  | 
|  | if (allow_power_down) { | 
|  | val = I915_READ(LCPLL_CTL); | 
|  | val |= LCPLL_POWER_DOWN_ALLOW; | 
|  | I915_WRITE(LCPLL_CTL, val); | 
|  | POSTING_READ(LCPLL_CTL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fully restores LCPLL, disallowing power down and switching back to LCPLL | 
|  | * source. | 
|  | */ | 
|  | static void hsw_restore_lcpll(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | uint32_t val; | 
|  | unsigned long irqflags; | 
|  |  | 
|  | val = I915_READ(LCPLL_CTL); | 
|  |  | 
|  | if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK | | 
|  | LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Make sure we're not on PC8 state before disabling PC8, otherwise | 
|  | * we'll hang the machine. To prevent PC8 state, just enable force_wake. | 
|  | * | 
|  | * The other problem is that hsw_restore_lcpll() is called as part of | 
|  | * the runtime PM resume sequence, so we can't just call | 
|  | * gen6_gt_force_wake_get() because that function calls | 
|  | * intel_runtime_pm_get(), and we can't change the runtime PM refcount | 
|  | * while we are on the resume sequence. So to solve this problem we have | 
|  | * to call special forcewake code that doesn't touch runtime PM and | 
|  | * doesn't enable the forcewake delayed work. | 
|  | */ | 
|  | spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); | 
|  | if (dev_priv->uncore.forcewake_count++ == 0) | 
|  | dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL); | 
|  | spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); | 
|  |  | 
|  | if (val & LCPLL_POWER_DOWN_ALLOW) { | 
|  | val &= ~LCPLL_POWER_DOWN_ALLOW; | 
|  | I915_WRITE(LCPLL_CTL, val); | 
|  | POSTING_READ(LCPLL_CTL); | 
|  | } | 
|  |  | 
|  | val = hsw_read_dcomp(dev_priv); | 
|  | val |= D_COMP_COMP_FORCE; | 
|  | val &= ~D_COMP_COMP_DISABLE; | 
|  | hsw_write_dcomp(dev_priv, val); | 
|  |  | 
|  | val = I915_READ(LCPLL_CTL); | 
|  | val &= ~LCPLL_PLL_DISABLE; | 
|  | I915_WRITE(LCPLL_CTL, val); | 
|  |  | 
|  | if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5)) | 
|  | DRM_ERROR("LCPLL not locked yet\n"); | 
|  |  | 
|  | if (val & LCPLL_CD_SOURCE_FCLK) { | 
|  | val = I915_READ(LCPLL_CTL); | 
|  | val &= ~LCPLL_CD_SOURCE_FCLK; | 
|  | I915_WRITE(LCPLL_CTL, val); | 
|  |  | 
|  | if (wait_for_atomic_us((I915_READ(LCPLL_CTL) & | 
|  | LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) | 
|  | DRM_ERROR("Switching back to LCPLL failed\n"); | 
|  | } | 
|  |  | 
|  | /* See the big comment above. */ | 
|  | spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); | 
|  | if (--dev_priv->uncore.forcewake_count == 0) | 
|  | dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL); | 
|  | spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Package states C8 and deeper are really deep PC states that can only be | 
|  | * reached when all the devices on the system allow it, so even if the graphics | 
|  | * device allows PC8+, it doesn't mean the system will actually get to these | 
|  | * states. Our driver only allows PC8+ when going into runtime PM. | 
|  | * | 
|  | * The requirements for PC8+ are that all the outputs are disabled, the power | 
|  | * well is disabled and most interrupts are disabled, and these are also | 
|  | * requirements for runtime PM. When these conditions are met, we manually do | 
|  | * the other conditions: disable the interrupts, clocks and switch LCPLL refclk | 
|  | * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard | 
|  | * hang the machine. | 
|  | * | 
|  | * When we really reach PC8 or deeper states (not just when we allow it) we lose | 
|  | * the state of some registers, so when we come back from PC8+ we need to | 
|  | * restore this state. We don't get into PC8+ if we're not in RC6, so we don't | 
|  | * need to take care of the registers kept by RC6. Notice that this happens even | 
|  | * if we don't put the device in PCI D3 state (which is what currently happens | 
|  | * because of the runtime PM support). | 
|  | * | 
|  | * For more, read "Display Sequences for Package C8" on the hardware | 
|  | * documentation. | 
|  | */ | 
|  | void hsw_enable_pc8(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | uint32_t val; | 
|  |  | 
|  | DRM_DEBUG_KMS("Enabling package C8+\n"); | 
|  |  | 
|  | if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) { | 
|  | val = I915_READ(SOUTH_DSPCLK_GATE_D); | 
|  | val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; | 
|  | I915_WRITE(SOUTH_DSPCLK_GATE_D, val); | 
|  | } | 
|  |  | 
|  | lpt_disable_clkout_dp(dev); | 
|  | hsw_disable_lcpll(dev_priv, true, true); | 
|  | } | 
|  |  | 
|  | void hsw_disable_pc8(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | uint32_t val; | 
|  |  | 
|  | DRM_DEBUG_KMS("Disabling package C8+\n"); | 
|  |  | 
|  | hsw_restore_lcpll(dev_priv); | 
|  | lpt_init_pch_refclk(dev); | 
|  |  | 
|  | if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) { | 
|  | val = I915_READ(SOUTH_DSPCLK_GATE_D); | 
|  | val |= PCH_LP_PARTITION_LEVEL_DISABLE; | 
|  | I915_WRITE(SOUTH_DSPCLK_GATE_D, val); | 
|  | } | 
|  |  | 
|  | intel_prepare_ddi(dev); | 
|  | } | 
|  |  | 
|  | static void snb_modeset_global_resources(struct drm_device *dev) | 
|  | { | 
|  | modeset_update_crtc_power_domains(dev); | 
|  | } | 
|  |  | 
|  | static void haswell_modeset_global_resources(struct drm_device *dev) | 
|  | { | 
|  | modeset_update_crtc_power_domains(dev); | 
|  | } | 
|  |  | 
|  | static int haswell_crtc_mode_set(struct drm_crtc *crtc, | 
|  | int x, int y, | 
|  | struct drm_framebuffer *fb) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | if (!intel_ddi_pll_select(intel_crtc)) | 
|  | return -EINVAL; | 
|  |  | 
|  | intel_crtc->lowfreq_avail = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv, | 
|  | enum port port, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port)); | 
|  |  | 
|  | switch (pipe_config->ddi_pll_sel) { | 
|  | case PORT_CLK_SEL_WRPLL1: | 
|  | pipe_config->shared_dpll = DPLL_ID_WRPLL1; | 
|  | break; | 
|  | case PORT_CLK_SEL_WRPLL2: | 
|  | pipe_config->shared_dpll = DPLL_ID_WRPLL2; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void haswell_get_ddi_port_state(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_shared_dpll *pll; | 
|  | enum port port; | 
|  | uint32_t tmp; | 
|  |  | 
|  | tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); | 
|  |  | 
|  | port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT; | 
|  |  | 
|  | haswell_get_ddi_pll(dev_priv, port, pipe_config); | 
|  |  | 
|  | if (pipe_config->shared_dpll >= 0) { | 
|  | pll = &dev_priv->shared_dplls[pipe_config->shared_dpll]; | 
|  |  | 
|  | WARN_ON(!pll->get_hw_state(dev_priv, pll, | 
|  | &pipe_config->dpll_hw_state)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Haswell has only FDI/PCH transcoder A. It is which is connected to | 
|  | * DDI E. So just check whether this pipe is wired to DDI E and whether | 
|  | * the PCH transcoder is on. | 
|  | */ | 
|  | if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) { | 
|  | pipe_config->has_pch_encoder = true; | 
|  |  | 
|  | tmp = I915_READ(FDI_RX_CTL(PIPE_A)); | 
|  | pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> | 
|  | FDI_DP_PORT_WIDTH_SHIFT) + 1; | 
|  |  | 
|  | ironlake_get_fdi_m_n_config(crtc, pipe_config); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool haswell_get_pipe_config(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum intel_display_power_domain pfit_domain; | 
|  | uint32_t tmp; | 
|  |  | 
|  | if (!intel_display_power_enabled(dev_priv, | 
|  | POWER_DOMAIN_PIPE(crtc->pipe))) | 
|  | return false; | 
|  |  | 
|  | pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; | 
|  | pipe_config->shared_dpll = DPLL_ID_PRIVATE; | 
|  |  | 
|  | tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); | 
|  | if (tmp & TRANS_DDI_FUNC_ENABLE) { | 
|  | enum pipe trans_edp_pipe; | 
|  | switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { | 
|  | default: | 
|  | WARN(1, "unknown pipe linked to edp transcoder\n"); | 
|  | case TRANS_DDI_EDP_INPUT_A_ONOFF: | 
|  | case TRANS_DDI_EDP_INPUT_A_ON: | 
|  | trans_edp_pipe = PIPE_A; | 
|  | break; | 
|  | case TRANS_DDI_EDP_INPUT_B_ONOFF: | 
|  | trans_edp_pipe = PIPE_B; | 
|  | break; | 
|  | case TRANS_DDI_EDP_INPUT_C_ONOFF: | 
|  | trans_edp_pipe = PIPE_C; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (trans_edp_pipe == crtc->pipe) | 
|  | pipe_config->cpu_transcoder = TRANSCODER_EDP; | 
|  | } | 
|  |  | 
|  | if (!intel_display_power_enabled(dev_priv, | 
|  | POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) | 
|  | return false; | 
|  |  | 
|  | tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); | 
|  | if (!(tmp & PIPECONF_ENABLE)) | 
|  | return false; | 
|  |  | 
|  | haswell_get_ddi_port_state(crtc, pipe_config); | 
|  |  | 
|  | intel_get_pipe_timings(crtc, pipe_config); | 
|  |  | 
|  | pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); | 
|  | if (intel_display_power_enabled(dev_priv, pfit_domain)) | 
|  | ironlake_get_pfit_config(crtc, pipe_config); | 
|  |  | 
|  | if (IS_HASWELL(dev)) | 
|  | pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) && | 
|  | (I915_READ(IPS_CTL) & IPS_ENABLE); | 
|  |  | 
|  | if (pipe_config->cpu_transcoder != TRANSCODER_EDP) { | 
|  | pipe_config->pixel_multiplier = | 
|  | I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1; | 
|  | } else { | 
|  | pipe_config->pixel_multiplier = 1; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct { | 
|  | int clock; | 
|  | u32 config; | 
|  | } hdmi_audio_clock[] = { | 
|  | { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 }, | 
|  | { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */ | 
|  | { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 }, | 
|  | { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 }, | 
|  | { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 }, | 
|  | { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 }, | 
|  | { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 }, | 
|  | { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 }, | 
|  | { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 }, | 
|  | { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 }, | 
|  | }; | 
|  |  | 
|  | /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */ | 
|  | static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) { | 
|  | if (mode->clock == hdmi_audio_clock[i].clock) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == ARRAY_SIZE(hdmi_audio_clock)) { | 
|  | DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock); | 
|  | i = 1; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n", | 
|  | hdmi_audio_clock[i].clock, | 
|  | hdmi_audio_clock[i].config); | 
|  |  | 
|  | return hdmi_audio_clock[i].config; | 
|  | } | 
|  |  | 
|  | static bool intel_eld_uptodate(struct drm_connector *connector, | 
|  | int reg_eldv, uint32_t bits_eldv, | 
|  | int reg_elda, uint32_t bits_elda, | 
|  | int reg_edid) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = connector->dev->dev_private; | 
|  | uint8_t *eld = connector->eld; | 
|  | uint32_t i; | 
|  |  | 
|  | i = I915_READ(reg_eldv); | 
|  | i &= bits_eldv; | 
|  |  | 
|  | if (!eld[0]) | 
|  | return !i; | 
|  |  | 
|  | if (!i) | 
|  | return false; | 
|  |  | 
|  | i = I915_READ(reg_elda); | 
|  | i &= ~bits_elda; | 
|  | I915_WRITE(reg_elda, i); | 
|  |  | 
|  | for (i = 0; i < eld[2]; i++) | 
|  | if (I915_READ(reg_edid) != *((uint32_t *)eld + i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void g4x_write_eld(struct drm_connector *connector, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = connector->dev->dev_private; | 
|  | uint8_t *eld = connector->eld; | 
|  | uint32_t eldv; | 
|  | uint32_t len; | 
|  | uint32_t i; | 
|  |  | 
|  | i = I915_READ(G4X_AUD_VID_DID); | 
|  |  | 
|  | if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL) | 
|  | eldv = G4X_ELDV_DEVCL_DEVBLC; | 
|  | else | 
|  | eldv = G4X_ELDV_DEVCTG; | 
|  |  | 
|  | if (intel_eld_uptodate(connector, | 
|  | G4X_AUD_CNTL_ST, eldv, | 
|  | G4X_AUD_CNTL_ST, G4X_ELD_ADDR, | 
|  | G4X_HDMIW_HDMIEDID)) | 
|  | return; | 
|  |  | 
|  | i = I915_READ(G4X_AUD_CNTL_ST); | 
|  | i &= ~(eldv | G4X_ELD_ADDR); | 
|  | len = (i >> 9) & 0x1f;		/* ELD buffer size */ | 
|  | I915_WRITE(G4X_AUD_CNTL_ST, i); | 
|  |  | 
|  | if (!eld[0]) | 
|  | return; | 
|  |  | 
|  | len = min_t(uint8_t, eld[2], len); | 
|  | DRM_DEBUG_DRIVER("ELD size %d\n", len); | 
|  | for (i = 0; i < len; i++) | 
|  | I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i)); | 
|  |  | 
|  | i = I915_READ(G4X_AUD_CNTL_ST); | 
|  | i |= eldv; | 
|  | I915_WRITE(G4X_AUD_CNTL_ST, i); | 
|  | } | 
|  |  | 
|  | static void haswell_write_eld(struct drm_connector *connector, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = connector->dev->dev_private; | 
|  | uint8_t *eld = connector->eld; | 
|  | uint32_t eldv; | 
|  | uint32_t i; | 
|  | int len; | 
|  | int pipe = to_intel_crtc(crtc)->pipe; | 
|  | int tmp; | 
|  |  | 
|  | int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe); | 
|  | int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe); | 
|  | int aud_config = HSW_AUD_CFG(pipe); | 
|  | int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD; | 
|  |  | 
|  | /* Audio output enable */ | 
|  | DRM_DEBUG_DRIVER("HDMI audio: enable codec\n"); | 
|  | tmp = I915_READ(aud_cntrl_st2); | 
|  | tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4)); | 
|  | I915_WRITE(aud_cntrl_st2, tmp); | 
|  | POSTING_READ(aud_cntrl_st2); | 
|  |  | 
|  | assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe); | 
|  |  | 
|  | /* Set ELD valid state */ | 
|  | tmp = I915_READ(aud_cntrl_st2); | 
|  | DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp); | 
|  | tmp |= (AUDIO_ELD_VALID_A << (pipe * 4)); | 
|  | I915_WRITE(aud_cntrl_st2, tmp); | 
|  | tmp = I915_READ(aud_cntrl_st2); | 
|  | DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp); | 
|  |  | 
|  | /* Enable HDMI mode */ | 
|  | tmp = I915_READ(aud_config); | 
|  | DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp); | 
|  | /* clear N_programing_enable and N_value_index */ | 
|  | tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE); | 
|  | I915_WRITE(aud_config, tmp); | 
|  |  | 
|  | DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe)); | 
|  |  | 
|  | eldv = AUDIO_ELD_VALID_A << (pipe * 4); | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { | 
|  | DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n"); | 
|  | eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */ | 
|  | I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */ | 
|  | } else { | 
|  | I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode)); | 
|  | } | 
|  |  | 
|  | if (intel_eld_uptodate(connector, | 
|  | aud_cntrl_st2, eldv, | 
|  | aud_cntl_st, IBX_ELD_ADDRESS, | 
|  | hdmiw_hdmiedid)) | 
|  | return; | 
|  |  | 
|  | i = I915_READ(aud_cntrl_st2); | 
|  | i &= ~eldv; | 
|  | I915_WRITE(aud_cntrl_st2, i); | 
|  |  | 
|  | if (!eld[0]) | 
|  | return; | 
|  |  | 
|  | i = I915_READ(aud_cntl_st); | 
|  | i &= ~IBX_ELD_ADDRESS; | 
|  | I915_WRITE(aud_cntl_st, i); | 
|  | i = (i >> 29) & DIP_PORT_SEL_MASK;		/* DIP_Port_Select, 0x1 = PortB */ | 
|  | DRM_DEBUG_DRIVER("port num:%d\n", i); | 
|  |  | 
|  | len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */ | 
|  | DRM_DEBUG_DRIVER("ELD size %d\n", len); | 
|  | for (i = 0; i < len; i++) | 
|  | I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i)); | 
|  |  | 
|  | i = I915_READ(aud_cntrl_st2); | 
|  | i |= eldv; | 
|  | I915_WRITE(aud_cntrl_st2, i); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void ironlake_write_eld(struct drm_connector *connector, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = connector->dev->dev_private; | 
|  | uint8_t *eld = connector->eld; | 
|  | uint32_t eldv; | 
|  | uint32_t i; | 
|  | int len; | 
|  | int hdmiw_hdmiedid; | 
|  | int aud_config; | 
|  | int aud_cntl_st; | 
|  | int aud_cntrl_st2; | 
|  | int pipe = to_intel_crtc(crtc)->pipe; | 
|  |  | 
|  | if (HAS_PCH_IBX(connector->dev)) { | 
|  | hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe); | 
|  | aud_config = IBX_AUD_CFG(pipe); | 
|  | aud_cntl_st = IBX_AUD_CNTL_ST(pipe); | 
|  | aud_cntrl_st2 = IBX_AUD_CNTL_ST2; | 
|  | } else if (IS_VALLEYVIEW(connector->dev)) { | 
|  | hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe); | 
|  | aud_config = VLV_AUD_CFG(pipe); | 
|  | aud_cntl_st = VLV_AUD_CNTL_ST(pipe); | 
|  | aud_cntrl_st2 = VLV_AUD_CNTL_ST2; | 
|  | } else { | 
|  | hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe); | 
|  | aud_config = CPT_AUD_CFG(pipe); | 
|  | aud_cntl_st = CPT_AUD_CNTL_ST(pipe); | 
|  | aud_cntrl_st2 = CPT_AUD_CNTRL_ST2; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe)); | 
|  |  | 
|  | if (IS_VALLEYVIEW(connector->dev))  { | 
|  | struct intel_encoder *intel_encoder; | 
|  | struct intel_digital_port *intel_dig_port; | 
|  |  | 
|  | intel_encoder = intel_attached_encoder(connector); | 
|  | intel_dig_port = enc_to_dig_port(&intel_encoder->base); | 
|  | i = intel_dig_port->port; | 
|  | } else { | 
|  | i = I915_READ(aud_cntl_st); | 
|  | i = (i >> 29) & DIP_PORT_SEL_MASK; | 
|  | /* DIP_Port_Select, 0x1 = PortB */ | 
|  | } | 
|  |  | 
|  | if (!i) { | 
|  | DRM_DEBUG_DRIVER("Audio directed to unknown port\n"); | 
|  | /* operate blindly on all ports */ | 
|  | eldv = IBX_ELD_VALIDB; | 
|  | eldv |= IBX_ELD_VALIDB << 4; | 
|  | eldv |= IBX_ELD_VALIDB << 8; | 
|  | } else { | 
|  | DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i)); | 
|  | eldv = IBX_ELD_VALIDB << ((i - 1) * 4); | 
|  | } | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { | 
|  | DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n"); | 
|  | eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */ | 
|  | I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */ | 
|  | } else { | 
|  | I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode)); | 
|  | } | 
|  |  | 
|  | if (intel_eld_uptodate(connector, | 
|  | aud_cntrl_st2, eldv, | 
|  | aud_cntl_st, IBX_ELD_ADDRESS, | 
|  | hdmiw_hdmiedid)) | 
|  | return; | 
|  |  | 
|  | i = I915_READ(aud_cntrl_st2); | 
|  | i &= ~eldv; | 
|  | I915_WRITE(aud_cntrl_st2, i); | 
|  |  | 
|  | if (!eld[0]) | 
|  | return; | 
|  |  | 
|  | i = I915_READ(aud_cntl_st); | 
|  | i &= ~IBX_ELD_ADDRESS; | 
|  | I915_WRITE(aud_cntl_st, i); | 
|  |  | 
|  | len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */ | 
|  | DRM_DEBUG_DRIVER("ELD size %d\n", len); | 
|  | for (i = 0; i < len; i++) | 
|  | I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i)); | 
|  |  | 
|  | i = I915_READ(aud_cntrl_st2); | 
|  | i |= eldv; | 
|  | I915_WRITE(aud_cntrl_st2, i); | 
|  | } | 
|  |  | 
|  | void intel_write_eld(struct drm_encoder *encoder, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | struct drm_crtc *crtc = encoder->crtc; | 
|  | struct drm_connector *connector; | 
|  | struct drm_device *dev = encoder->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | connector = drm_select_eld(encoder, mode); | 
|  | if (!connector) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", | 
|  | connector->base.id, | 
|  | connector->name, | 
|  | connector->encoder->base.id, | 
|  | connector->encoder->name); | 
|  |  | 
|  | connector->eld[6] = drm_av_sync_delay(connector, mode) / 2; | 
|  |  | 
|  | if (dev_priv->display.write_eld) | 
|  | dev_priv->display.write_eld(connector, crtc, mode); | 
|  | } | 
|  |  | 
|  | static void i845_update_cursor(struct drm_crtc *crtc, u32 base) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | uint32_t cntl = 0, size = 0; | 
|  |  | 
|  | if (base) { | 
|  | unsigned int width = intel_crtc->cursor_width; | 
|  | unsigned int height = intel_crtc->cursor_height; | 
|  | unsigned int stride = roundup_pow_of_two(width) * 4; | 
|  |  | 
|  | switch (stride) { | 
|  | default: | 
|  | WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n", | 
|  | width, stride); | 
|  | stride = 256; | 
|  | /* fallthrough */ | 
|  | case 256: | 
|  | case 512: | 
|  | case 1024: | 
|  | case 2048: | 
|  | break; | 
|  | } | 
|  |  | 
|  | cntl |= CURSOR_ENABLE | | 
|  | CURSOR_GAMMA_ENABLE | | 
|  | CURSOR_FORMAT_ARGB | | 
|  | CURSOR_STRIDE(stride); | 
|  |  | 
|  | size = (height << 12) | width; | 
|  | } | 
|  |  | 
|  | if (intel_crtc->cursor_cntl != 0 && | 
|  | (intel_crtc->cursor_base != base || | 
|  | intel_crtc->cursor_size != size || | 
|  | intel_crtc->cursor_cntl != cntl)) { | 
|  | /* On these chipsets we can only modify the base/size/stride | 
|  | * whilst the cursor is disabled. | 
|  | */ | 
|  | I915_WRITE(_CURACNTR, 0); | 
|  | POSTING_READ(_CURACNTR); | 
|  | intel_crtc->cursor_cntl = 0; | 
|  | } | 
|  |  | 
|  | if (intel_crtc->cursor_base != base) | 
|  | I915_WRITE(_CURABASE, base); | 
|  |  | 
|  | if (intel_crtc->cursor_size != size) { | 
|  | I915_WRITE(CURSIZE, size); | 
|  | intel_crtc->cursor_size = size; | 
|  | } | 
|  |  | 
|  | if (intel_crtc->cursor_cntl != cntl) { | 
|  | I915_WRITE(_CURACNTR, cntl); | 
|  | POSTING_READ(_CURACNTR); | 
|  | intel_crtc->cursor_cntl = cntl; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | uint32_t cntl; | 
|  |  | 
|  | cntl = 0; | 
|  | if (base) { | 
|  | cntl = MCURSOR_GAMMA_ENABLE; | 
|  | switch (intel_crtc->cursor_width) { | 
|  | case 64: | 
|  | cntl |= CURSOR_MODE_64_ARGB_AX; | 
|  | break; | 
|  | case 128: | 
|  | cntl |= CURSOR_MODE_128_ARGB_AX; | 
|  | break; | 
|  | case 256: | 
|  | cntl |= CURSOR_MODE_256_ARGB_AX; | 
|  | break; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | return; | 
|  | } | 
|  | cntl |= pipe << 28; /* Connect to correct pipe */ | 
|  | } | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) | 
|  | cntl |= CURSOR_PIPE_CSC_ENABLE; | 
|  |  | 
|  | if (intel_crtc->cursor_cntl != cntl) { | 
|  | I915_WRITE(CURCNTR(pipe), cntl); | 
|  | POSTING_READ(CURCNTR(pipe)); | 
|  | intel_crtc->cursor_cntl = cntl; | 
|  | } | 
|  |  | 
|  | /* and commit changes on next vblank */ | 
|  | I915_WRITE(CURBASE(pipe), base); | 
|  | POSTING_READ(CURBASE(pipe)); | 
|  | } | 
|  |  | 
|  | /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ | 
|  | static void intel_crtc_update_cursor(struct drm_crtc *crtc, | 
|  | bool on) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | int x = crtc->cursor_x; | 
|  | int y = crtc->cursor_y; | 
|  | u32 base = 0, pos = 0; | 
|  |  | 
|  | if (on) | 
|  | base = intel_crtc->cursor_addr; | 
|  |  | 
|  | if (x >= intel_crtc->config.pipe_src_w) | 
|  | base = 0; | 
|  |  | 
|  | if (y >= intel_crtc->config.pipe_src_h) | 
|  | base = 0; | 
|  |  | 
|  | if (x < 0) { | 
|  | if (x + intel_crtc->cursor_width <= 0) | 
|  | base = 0; | 
|  |  | 
|  | pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; | 
|  | x = -x; | 
|  | } | 
|  | pos |= x << CURSOR_X_SHIFT; | 
|  |  | 
|  | if (y < 0) { | 
|  | if (y + intel_crtc->cursor_height <= 0) | 
|  | base = 0; | 
|  |  | 
|  | pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; | 
|  | y = -y; | 
|  | } | 
|  | pos |= y << CURSOR_Y_SHIFT; | 
|  |  | 
|  | if (base == 0 && intel_crtc->cursor_base == 0) | 
|  | return; | 
|  |  | 
|  | I915_WRITE(CURPOS(pipe), pos); | 
|  |  | 
|  | if (IS_845G(dev) || IS_I865G(dev)) | 
|  | i845_update_cursor(crtc, base); | 
|  | else | 
|  | i9xx_update_cursor(crtc, base); | 
|  | intel_crtc->cursor_base = base; | 
|  | } | 
|  |  | 
|  | static bool cursor_size_ok(struct drm_device *dev, | 
|  | uint32_t width, uint32_t height) | 
|  | { | 
|  | if (width == 0 || height == 0) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * 845g/865g are special in that they are only limited by | 
|  | * the width of their cursors, the height is arbitrary up to | 
|  | * the precision of the register. Everything else requires | 
|  | * square cursors, limited to a few power-of-two sizes. | 
|  | */ | 
|  | if (IS_845G(dev) || IS_I865G(dev)) { | 
|  | if ((width & 63) != 0) | 
|  | return false; | 
|  |  | 
|  | if (width > (IS_845G(dev) ? 64 : 512)) | 
|  | return false; | 
|  |  | 
|  | if (height > 1023) | 
|  | return false; | 
|  | } else { | 
|  | switch (width | height) { | 
|  | case 256: | 
|  | case 128: | 
|  | if (IS_GEN2(dev)) | 
|  | return false; | 
|  | case 64: | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * intel_crtc_cursor_set_obj - Set cursor to specified GEM object | 
|  | * | 
|  | * Note that the object's reference will be consumed if the update fails.  If | 
|  | * the update succeeds, the reference of the old object (if any) will be | 
|  | * consumed. | 
|  | */ | 
|  | static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc, | 
|  | struct drm_i915_gem_object *obj, | 
|  | uint32_t width, uint32_t height) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | unsigned old_width, stride; | 
|  | uint32_t addr; | 
|  | int ret; | 
|  |  | 
|  | /* if we want to turn off the cursor ignore width and height */ | 
|  | if (!obj) { | 
|  | DRM_DEBUG_KMS("cursor off\n"); | 
|  | addr = 0; | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | /* Check for which cursor types we support */ | 
|  | if (!cursor_size_ok(dev, width, height)) { | 
|  | DRM_DEBUG("Cursor dimension not supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | stride = roundup_pow_of_two(width) * 4; | 
|  | if (obj->base.size < stride * height) { | 
|  | DRM_DEBUG_KMS("buffer is too small\n"); | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* we only need to pin inside GTT if cursor is non-phy */ | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | if (!INTEL_INFO(dev)->cursor_needs_physical) { | 
|  | unsigned alignment; | 
|  |  | 
|  | if (obj->tiling_mode) { | 
|  | DRM_DEBUG_KMS("cursor cannot be tiled\n"); | 
|  | ret = -EINVAL; | 
|  | goto fail_locked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Global gtt pte registers are special registers which actually | 
|  | * forward writes to a chunk of system memory. Which means that | 
|  | * there is no risk that the register values disappear as soon | 
|  | * as we call intel_runtime_pm_put(), so it is correct to wrap | 
|  | * only the pin/unpin/fence and not more. | 
|  | */ | 
|  | intel_runtime_pm_get(dev_priv); | 
|  |  | 
|  | /* Note that the w/a also requires 2 PTE of padding following | 
|  | * the bo. We currently fill all unused PTE with the shadow | 
|  | * page and so we should always have valid PTE following the | 
|  | * cursor preventing the VT-d warning. | 
|  | */ | 
|  | alignment = 0; | 
|  | if (need_vtd_wa(dev)) | 
|  | alignment = 64*1024; | 
|  |  | 
|  | ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL); | 
|  | if (ret) { | 
|  | DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n"); | 
|  | intel_runtime_pm_put(dev_priv); | 
|  | goto fail_locked; | 
|  | } | 
|  |  | 
|  | ret = i915_gem_object_put_fence(obj); | 
|  | if (ret) { | 
|  | DRM_DEBUG_KMS("failed to release fence for cursor"); | 
|  | intel_runtime_pm_put(dev_priv); | 
|  | goto fail_unpin; | 
|  | } | 
|  |  | 
|  | addr = i915_gem_obj_ggtt_offset(obj); | 
|  |  | 
|  | intel_runtime_pm_put(dev_priv); | 
|  | } else { | 
|  | int align = IS_I830(dev) ? 16 * 1024 : 256; | 
|  | ret = i915_gem_object_attach_phys(obj, align); | 
|  | if (ret) { | 
|  | DRM_DEBUG_KMS("failed to attach phys object\n"); | 
|  | goto fail_locked; | 
|  | } | 
|  | addr = obj->phys_handle->busaddr; | 
|  | } | 
|  |  | 
|  | finish: | 
|  | if (intel_crtc->cursor_bo) { | 
|  | if (!INTEL_INFO(dev)->cursor_needs_physical) | 
|  | i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo); | 
|  | } | 
|  |  | 
|  | i915_gem_track_fb(intel_crtc->cursor_bo, obj, | 
|  | INTEL_FRONTBUFFER_CURSOR(pipe)); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | old_width = intel_crtc->cursor_width; | 
|  |  | 
|  | intel_crtc->cursor_addr = addr; | 
|  | intel_crtc->cursor_bo = obj; | 
|  | intel_crtc->cursor_width = width; | 
|  | intel_crtc->cursor_height = height; | 
|  |  | 
|  | if (intel_crtc->active) { | 
|  | if (old_width != width) | 
|  | intel_update_watermarks(crtc); | 
|  | intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL); | 
|  | } | 
|  |  | 
|  | intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe)); | 
|  |  | 
|  | return 0; | 
|  | fail_unpin: | 
|  | i915_gem_object_unpin_from_display_plane(obj); | 
|  | fail_locked: | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | fail: | 
|  | drm_gem_object_unreference_unlocked(&obj->base); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, | 
|  | u16 *blue, uint32_t start, uint32_t size) | 
|  | { | 
|  | int end = (start + size > 256) ? 256 : start + size, i; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | for (i = start; i < end; i++) { | 
|  | intel_crtc->lut_r[i] = red[i] >> 8; | 
|  | intel_crtc->lut_g[i] = green[i] >> 8; | 
|  | intel_crtc->lut_b[i] = blue[i] >> 8; | 
|  | } | 
|  |  | 
|  | intel_crtc_load_lut(crtc); | 
|  | } | 
|  |  | 
|  | /* VESA 640x480x72Hz mode to set on the pipe */ | 
|  | static struct drm_display_mode load_detect_mode = { | 
|  | DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, | 
|  | 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), | 
|  | }; | 
|  |  | 
|  | struct drm_framebuffer * | 
|  | __intel_framebuffer_create(struct drm_device *dev, | 
|  | struct drm_mode_fb_cmd2 *mode_cmd, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | struct intel_framebuffer *intel_fb; | 
|  | int ret; | 
|  |  | 
|  | intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); | 
|  | if (!intel_fb) { | 
|  | drm_gem_object_unreference_unlocked(&obj->base); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | return &intel_fb->base; | 
|  | err: | 
|  | drm_gem_object_unreference_unlocked(&obj->base); | 
|  | kfree(intel_fb); | 
|  |  | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static struct drm_framebuffer * | 
|  | intel_framebuffer_create(struct drm_device *dev, | 
|  | struct drm_mode_fb_cmd2 *mode_cmd, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | struct drm_framebuffer *fb; | 
|  | int ret; | 
|  |  | 
|  | ret = i915_mutex_lock_interruptible(dev); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  | fb = __intel_framebuffer_create(dev, mode_cmd, obj); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | return fb; | 
|  | } | 
|  |  | 
|  | static u32 | 
|  | intel_framebuffer_pitch_for_width(int width, int bpp) | 
|  | { | 
|  | u32 pitch = DIV_ROUND_UP(width * bpp, 8); | 
|  | return ALIGN(pitch, 64); | 
|  | } | 
|  |  | 
|  | static u32 | 
|  | intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp) | 
|  | { | 
|  | u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp); | 
|  | return PAGE_ALIGN(pitch * mode->vdisplay); | 
|  | } | 
|  |  | 
|  | static struct drm_framebuffer * | 
|  | intel_framebuffer_create_for_mode(struct drm_device *dev, | 
|  | struct drm_display_mode *mode, | 
|  | int depth, int bpp) | 
|  | { | 
|  | struct drm_i915_gem_object *obj; | 
|  | struct drm_mode_fb_cmd2 mode_cmd = { 0 }; | 
|  |  | 
|  | obj = i915_gem_alloc_object(dev, | 
|  | intel_framebuffer_size_for_mode(mode, bpp)); | 
|  | if (obj == NULL) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | mode_cmd.width = mode->hdisplay; | 
|  | mode_cmd.height = mode->vdisplay; | 
|  | mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width, | 
|  | bpp); | 
|  | mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth); | 
|  |  | 
|  | return intel_framebuffer_create(dev, &mode_cmd, obj); | 
|  | } | 
|  |  | 
|  | static struct drm_framebuffer * | 
|  | mode_fits_in_fbdev(struct drm_device *dev, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | #ifdef CONFIG_DRM_I915_FBDEV | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_i915_gem_object *obj; | 
|  | struct drm_framebuffer *fb; | 
|  |  | 
|  | if (!dev_priv->fbdev) | 
|  | return NULL; | 
|  |  | 
|  | if (!dev_priv->fbdev->fb) | 
|  | return NULL; | 
|  |  | 
|  | obj = dev_priv->fbdev->fb->obj; | 
|  | BUG_ON(!obj); | 
|  |  | 
|  | fb = &dev_priv->fbdev->fb->base; | 
|  | if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay, | 
|  | fb->bits_per_pixel)) | 
|  | return NULL; | 
|  |  | 
|  | if (obj->base.size < mode->vdisplay * fb->pitches[0]) | 
|  | return NULL; | 
|  |  | 
|  | return fb; | 
|  | #else | 
|  | return NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool intel_get_load_detect_pipe(struct drm_connector *connector, | 
|  | struct drm_display_mode *mode, | 
|  | struct intel_load_detect_pipe *old, | 
|  | struct drm_modeset_acquire_ctx *ctx) | 
|  | { | 
|  | struct intel_crtc *intel_crtc; | 
|  | struct intel_encoder *intel_encoder = | 
|  | intel_attached_encoder(connector); | 
|  | struct drm_crtc *possible_crtc; | 
|  | struct drm_encoder *encoder = &intel_encoder->base; | 
|  | struct drm_crtc *crtc = NULL; | 
|  | struct drm_device *dev = encoder->dev; | 
|  | struct drm_framebuffer *fb; | 
|  | struct drm_mode_config *config = &dev->mode_config; | 
|  | int ret, i = -1; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", | 
|  | connector->base.id, connector->name, | 
|  | encoder->base.id, encoder->name); | 
|  |  | 
|  | retry: | 
|  | ret = drm_modeset_lock(&config->connection_mutex, ctx); | 
|  | if (ret) | 
|  | goto fail_unlock; | 
|  |  | 
|  | /* | 
|  | * Algorithm gets a little messy: | 
|  | * | 
|  | *   - if the connector already has an assigned crtc, use it (but make | 
|  | *     sure it's on first) | 
|  | * | 
|  | *   - try to find the first unused crtc that can drive this connector, | 
|  | *     and use that if we find one | 
|  | */ | 
|  |  | 
|  | /* See if we already have a CRTC for this connector */ | 
|  | if (encoder->crtc) { | 
|  | crtc = encoder->crtc; | 
|  |  | 
|  | ret = drm_modeset_lock(&crtc->mutex, ctx); | 
|  | if (ret) | 
|  | goto fail_unlock; | 
|  |  | 
|  | old->dpms_mode = connector->dpms; | 
|  | old->load_detect_temp = false; | 
|  |  | 
|  | /* Make sure the crtc and connector are running */ | 
|  | if (connector->dpms != DRM_MODE_DPMS_ON) | 
|  | connector->funcs->dpms(connector, DRM_MODE_DPMS_ON); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Find an unused one (if possible) */ | 
|  | for_each_crtc(dev, possible_crtc) { | 
|  | i++; | 
|  | if (!(encoder->possible_crtcs & (1 << i))) | 
|  | continue; | 
|  | if (possible_crtc->enabled) | 
|  | continue; | 
|  | /* This can occur when applying the pipe A quirk on resume. */ | 
|  | if (to_intel_crtc(possible_crtc)->new_enabled) | 
|  | continue; | 
|  |  | 
|  | crtc = possible_crtc; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we didn't find an unused CRTC, don't use any. | 
|  | */ | 
|  | if (!crtc) { | 
|  | DRM_DEBUG_KMS("no pipe available for load-detect\n"); | 
|  | goto fail_unlock; | 
|  | } | 
|  |  | 
|  | ret = drm_modeset_lock(&crtc->mutex, ctx); | 
|  | if (ret) | 
|  | goto fail_unlock; | 
|  | intel_encoder->new_crtc = to_intel_crtc(crtc); | 
|  | to_intel_connector(connector)->new_encoder = intel_encoder; | 
|  |  | 
|  | intel_crtc = to_intel_crtc(crtc); | 
|  | intel_crtc->new_enabled = true; | 
|  | intel_crtc->new_config = &intel_crtc->config; | 
|  | old->dpms_mode = connector->dpms; | 
|  | old->load_detect_temp = true; | 
|  | old->release_fb = NULL; | 
|  |  | 
|  | if (!mode) | 
|  | mode = &load_detect_mode; | 
|  |  | 
|  | /* We need a framebuffer large enough to accommodate all accesses | 
|  | * that the plane may generate whilst we perform load detection. | 
|  | * We can not rely on the fbcon either being present (we get called | 
|  | * during its initialisation to detect all boot displays, or it may | 
|  | * not even exist) or that it is large enough to satisfy the | 
|  | * requested mode. | 
|  | */ | 
|  | fb = mode_fits_in_fbdev(dev, mode); | 
|  | if (fb == NULL) { | 
|  | DRM_DEBUG_KMS("creating tmp fb for load-detection\n"); | 
|  | fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32); | 
|  | old->release_fb = fb; | 
|  | } else | 
|  | DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n"); | 
|  | if (IS_ERR(fb)) { | 
|  | DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (intel_set_mode(crtc, mode, 0, 0, fb)) { | 
|  | DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); | 
|  | if (old->release_fb) | 
|  | old->release_fb->funcs->destroy(old->release_fb); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* let the connector get through one full cycle before testing */ | 
|  | intel_wait_for_vblank(dev, intel_crtc->pipe); | 
|  | return true; | 
|  |  | 
|  | fail: | 
|  | intel_crtc->new_enabled = crtc->enabled; | 
|  | if (intel_crtc->new_enabled) | 
|  | intel_crtc->new_config = &intel_crtc->config; | 
|  | else | 
|  | intel_crtc->new_config = NULL; | 
|  | fail_unlock: | 
|  | if (ret == -EDEADLK) { | 
|  | drm_modeset_backoff(ctx); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void intel_release_load_detect_pipe(struct drm_connector *connector, | 
|  | struct intel_load_detect_pipe *old) | 
|  | { | 
|  | struct intel_encoder *intel_encoder = | 
|  | intel_attached_encoder(connector); | 
|  | struct drm_encoder *encoder = &intel_encoder->base; | 
|  | struct drm_crtc *crtc = encoder->crtc; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", | 
|  | connector->base.id, connector->name, | 
|  | encoder->base.id, encoder->name); | 
|  |  | 
|  | if (old->load_detect_temp) { | 
|  | to_intel_connector(connector)->new_encoder = NULL; | 
|  | intel_encoder->new_crtc = NULL; | 
|  | intel_crtc->new_enabled = false; | 
|  | intel_crtc->new_config = NULL; | 
|  | intel_set_mode(crtc, NULL, 0, 0, NULL); | 
|  |  | 
|  | if (old->release_fb) { | 
|  | drm_framebuffer_unregister_private(old->release_fb); | 
|  | drm_framebuffer_unreference(old->release_fb); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Switch crtc and encoder back off if necessary */ | 
|  | if (old->dpms_mode != DRM_MODE_DPMS_ON) | 
|  | connector->funcs->dpms(connector, old->dpms_mode); | 
|  | } | 
|  |  | 
|  | static int i9xx_pll_refclk(struct drm_device *dev, | 
|  | const struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 dpll = pipe_config->dpll_hw_state.dpll; | 
|  |  | 
|  | if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) | 
|  | return dev_priv->vbt.lvds_ssc_freq; | 
|  | else if (HAS_PCH_SPLIT(dev)) | 
|  | return 120000; | 
|  | else if (!IS_GEN2(dev)) | 
|  | return 96000; | 
|  | else | 
|  | return 48000; | 
|  | } | 
|  |  | 
|  | /* Returns the clock of the currently programmed mode of the given pipe. */ | 
|  | static void i9xx_crtc_clock_get(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = pipe_config->cpu_transcoder; | 
|  | u32 dpll = pipe_config->dpll_hw_state.dpll; | 
|  | u32 fp; | 
|  | intel_clock_t clock; | 
|  | int refclk = i9xx_pll_refclk(dev, pipe_config); | 
|  |  | 
|  | if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) | 
|  | fp = pipe_config->dpll_hw_state.fp0; | 
|  | else | 
|  | fp = pipe_config->dpll_hw_state.fp1; | 
|  |  | 
|  | clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; | 
|  | if (IS_PINEVIEW(dev)) { | 
|  | clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; | 
|  | clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; | 
|  | } else { | 
|  | clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; | 
|  | clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; | 
|  | } | 
|  |  | 
|  | if (!IS_GEN2(dev)) { | 
|  | if (IS_PINEVIEW(dev)) | 
|  | clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); | 
|  | else | 
|  | clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT); | 
|  |  | 
|  | switch (dpll & DPLL_MODE_MASK) { | 
|  | case DPLLB_MODE_DAC_SERIAL: | 
|  | clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? | 
|  | 5 : 10; | 
|  | break; | 
|  | case DPLLB_MODE_LVDS: | 
|  | clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? | 
|  | 7 : 14; | 
|  | break; | 
|  | default: | 
|  | DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " | 
|  | "mode\n", (int)(dpll & DPLL_MODE_MASK)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (IS_PINEVIEW(dev)) | 
|  | pineview_clock(refclk, &clock); | 
|  | else | 
|  | i9xx_clock(refclk, &clock); | 
|  | } else { | 
|  | u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS); | 
|  | bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); | 
|  |  | 
|  | if (is_lvds) { | 
|  | clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT); | 
|  |  | 
|  | if (lvds & LVDS_CLKB_POWER_UP) | 
|  | clock.p2 = 7; | 
|  | else | 
|  | clock.p2 = 14; | 
|  | } else { | 
|  | if (dpll & PLL_P1_DIVIDE_BY_TWO) | 
|  | clock.p1 = 2; | 
|  | else { | 
|  | clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; | 
|  | } | 
|  | if (dpll & PLL_P2_DIVIDE_BY_4) | 
|  | clock.p2 = 4; | 
|  | else | 
|  | clock.p2 = 2; | 
|  | } | 
|  |  | 
|  | i9xx_clock(refclk, &clock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This value includes pixel_multiplier. We will use | 
|  | * port_clock to compute adjusted_mode.crtc_clock in the | 
|  | * encoder's get_config() function. | 
|  | */ | 
|  | pipe_config->port_clock = clock.dot; | 
|  | } | 
|  |  | 
|  | int intel_dotclock_calculate(int link_freq, | 
|  | const struct intel_link_m_n *m_n) | 
|  | { | 
|  | /* | 
|  | * The calculation for the data clock is: | 
|  | * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp | 
|  | * But we want to avoid losing precison if possible, so: | 
|  | * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) | 
|  | * | 
|  | * and the link clock is simpler: | 
|  | * link_clock = (m * link_clock) / n | 
|  | */ | 
|  |  | 
|  | if (!m_n->link_n) | 
|  | return 0; | 
|  |  | 
|  | return div_u64((u64)m_n->link_m * link_freq, m_n->link_n); | 
|  | } | 
|  |  | 
|  | static void ironlake_pch_clock_get(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  |  | 
|  | /* read out port_clock from the DPLL */ | 
|  | i9xx_crtc_clock_get(crtc, pipe_config); | 
|  |  | 
|  | /* | 
|  | * This value does not include pixel_multiplier. | 
|  | * We will check that port_clock and adjusted_mode.crtc_clock | 
|  | * agree once we know their relationship in the encoder's | 
|  | * get_config() function. | 
|  | */ | 
|  | pipe_config->adjusted_mode.crtc_clock = | 
|  | intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000, | 
|  | &pipe_config->fdi_m_n); | 
|  | } | 
|  |  | 
|  | /** Returns the currently programmed mode of the given pipe. */ | 
|  | struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; | 
|  | struct drm_display_mode *mode; | 
|  | struct intel_crtc_config pipe_config; | 
|  | int htot = I915_READ(HTOTAL(cpu_transcoder)); | 
|  | int hsync = I915_READ(HSYNC(cpu_transcoder)); | 
|  | int vtot = I915_READ(VTOTAL(cpu_transcoder)); | 
|  | int vsync = I915_READ(VSYNC(cpu_transcoder)); | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  |  | 
|  | mode = kzalloc(sizeof(*mode), GFP_KERNEL); | 
|  | if (!mode) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Construct a pipe_config sufficient for getting the clock info | 
|  | * back out of crtc_clock_get. | 
|  | * | 
|  | * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need | 
|  | * to use a real value here instead. | 
|  | */ | 
|  | pipe_config.cpu_transcoder = (enum transcoder) pipe; | 
|  | pipe_config.pixel_multiplier = 1; | 
|  | pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe)); | 
|  | pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe)); | 
|  | pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe)); | 
|  | i9xx_crtc_clock_get(intel_crtc, &pipe_config); | 
|  |  | 
|  | mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier; | 
|  | mode->hdisplay = (htot & 0xffff) + 1; | 
|  | mode->htotal = ((htot & 0xffff0000) >> 16) + 1; | 
|  | mode->hsync_start = (hsync & 0xffff) + 1; | 
|  | mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; | 
|  | mode->vdisplay = (vtot & 0xffff) + 1; | 
|  | mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; | 
|  | mode->vsync_start = (vsync & 0xffff) + 1; | 
|  | mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; | 
|  |  | 
|  | drm_mode_set_name(mode); | 
|  |  | 
|  | return mode; | 
|  | } | 
|  |  | 
|  | static void intel_increase_pllclock(struct drm_device *dev, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int dpll_reg = DPLL(pipe); | 
|  | int dpll; | 
|  |  | 
|  | if (!HAS_GMCH_DISPLAY(dev)) | 
|  | return; | 
|  |  | 
|  | if (!dev_priv->lvds_downclock_avail) | 
|  | return; | 
|  |  | 
|  | dpll = I915_READ(dpll_reg); | 
|  | if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) { | 
|  | DRM_DEBUG_DRIVER("upclocking LVDS\n"); | 
|  |  | 
|  | assert_panel_unlocked(dev_priv, pipe); | 
|  |  | 
|  | dpll &= ~DISPLAY_RATE_SELECT_FPA1; | 
|  | I915_WRITE(dpll_reg, dpll); | 
|  | intel_wait_for_vblank(dev, pipe); | 
|  |  | 
|  | dpll = I915_READ(dpll_reg); | 
|  | if (dpll & DISPLAY_RATE_SELECT_FPA1) | 
|  | DRM_DEBUG_DRIVER("failed to upclock LVDS!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_decrease_pllclock(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | if (!HAS_GMCH_DISPLAY(dev)) | 
|  | return; | 
|  |  | 
|  | if (!dev_priv->lvds_downclock_avail) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Since this is called by a timer, we should never get here in | 
|  | * the manual case. | 
|  | */ | 
|  | if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) { | 
|  | int pipe = intel_crtc->pipe; | 
|  | int dpll_reg = DPLL(pipe); | 
|  | int dpll; | 
|  |  | 
|  | DRM_DEBUG_DRIVER("downclocking LVDS\n"); | 
|  |  | 
|  | assert_panel_unlocked(dev_priv, pipe); | 
|  |  | 
|  | dpll = I915_READ(dpll_reg); | 
|  | dpll |= DISPLAY_RATE_SELECT_FPA1; | 
|  | I915_WRITE(dpll_reg, dpll); | 
|  | intel_wait_for_vblank(dev, pipe); | 
|  | dpll = I915_READ(dpll_reg); | 
|  | if (!(dpll & DISPLAY_RATE_SELECT_FPA1)) | 
|  | DRM_DEBUG_DRIVER("failed to downclock LVDS!\n"); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | void intel_mark_busy(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (dev_priv->mm.busy) | 
|  | return; | 
|  |  | 
|  | intel_runtime_pm_get(dev_priv); | 
|  | i915_update_gfx_val(dev_priv); | 
|  | dev_priv->mm.busy = true; | 
|  | } | 
|  |  | 
|  | void intel_mark_idle(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc; | 
|  |  | 
|  | if (!dev_priv->mm.busy) | 
|  | return; | 
|  |  | 
|  | dev_priv->mm.busy = false; | 
|  |  | 
|  | if (!i915.powersave) | 
|  | goto out; | 
|  |  | 
|  | for_each_crtc(dev, crtc) { | 
|  | if (!crtc->primary->fb) | 
|  | continue; | 
|  |  | 
|  | intel_decrease_pllclock(crtc); | 
|  | } | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 6) | 
|  | gen6_rps_idle(dev->dev_private); | 
|  |  | 
|  | out: | 
|  | intel_runtime_pm_put(dev_priv); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * intel_mark_fb_busy - mark given planes as busy | 
|  | * @dev: DRM device | 
|  | * @frontbuffer_bits: bits for the affected planes | 
|  | * @ring: optional ring for asynchronous commands | 
|  | * | 
|  | * This function gets called every time the screen contents change. It can be | 
|  | * used to keep e.g. the update rate at the nominal refresh rate with DRRS. | 
|  | */ | 
|  | static void intel_mark_fb_busy(struct drm_device *dev, | 
|  | unsigned frontbuffer_bits, | 
|  | struct intel_engine_cs *ring) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum pipe pipe; | 
|  |  | 
|  | if (!i915.powersave) | 
|  | return; | 
|  |  | 
|  | for_each_pipe(dev_priv, pipe) { | 
|  | if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe))) | 
|  | continue; | 
|  |  | 
|  | intel_increase_pllclock(dev, pipe); | 
|  | if (ring && intel_fbc_enabled(dev)) | 
|  | ring->fbc_dirty = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_fb_obj_invalidate - invalidate frontbuffer object | 
|  | * @obj: GEM object to invalidate | 
|  | * @ring: set for asynchronous rendering | 
|  | * | 
|  | * This function gets called every time rendering on the given object starts and | 
|  | * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must | 
|  | * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed | 
|  | * until the rendering completes or a flip on this frontbuffer plane is | 
|  | * scheduled. | 
|  | */ | 
|  | void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj, | 
|  | struct intel_engine_cs *ring) | 
|  | { | 
|  | struct drm_device *dev = obj->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&dev->struct_mutex)); | 
|  |  | 
|  | if (!obj->frontbuffer_bits) | 
|  | return; | 
|  |  | 
|  | if (ring) { | 
|  | mutex_lock(&dev_priv->fb_tracking.lock); | 
|  | dev_priv->fb_tracking.busy_bits | 
|  | |= obj->frontbuffer_bits; | 
|  | dev_priv->fb_tracking.flip_bits | 
|  | &= ~obj->frontbuffer_bits; | 
|  | mutex_unlock(&dev_priv->fb_tracking.lock); | 
|  | } | 
|  |  | 
|  | intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring); | 
|  |  | 
|  | intel_edp_psr_invalidate(dev, obj->frontbuffer_bits); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_frontbuffer_flush - flush frontbuffer | 
|  | * @dev: DRM device | 
|  | * @frontbuffer_bits: frontbuffer plane tracking bits | 
|  | * | 
|  | * This function gets called every time rendering on the given planes has | 
|  | * completed and frontbuffer caching can be started again. Flushes will get | 
|  | * delayed if they're blocked by some oustanding asynchronous rendering. | 
|  | * | 
|  | * Can be called without any locks held. | 
|  | */ | 
|  | void intel_frontbuffer_flush(struct drm_device *dev, | 
|  | unsigned frontbuffer_bits) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | /* Delay flushing when rings are still busy.*/ | 
|  | mutex_lock(&dev_priv->fb_tracking.lock); | 
|  | frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits; | 
|  | mutex_unlock(&dev_priv->fb_tracking.lock); | 
|  |  | 
|  | intel_mark_fb_busy(dev, frontbuffer_bits, NULL); | 
|  |  | 
|  | intel_edp_psr_flush(dev, frontbuffer_bits); | 
|  |  | 
|  | /* | 
|  | * FIXME: Unconditional fbc flushing here is a rather gross hack and | 
|  | * needs to be reworked into a proper frontbuffer tracking scheme like | 
|  | * psr employs. | 
|  | */ | 
|  | if (IS_BROADWELL(dev)) | 
|  | gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_fb_obj_flush - flush frontbuffer object | 
|  | * @obj: GEM object to flush | 
|  | * @retire: set when retiring asynchronous rendering | 
|  | * | 
|  | * This function gets called every time rendering on the given object has | 
|  | * completed and frontbuffer caching can be started again. If @retire is true | 
|  | * then any delayed flushes will be unblocked. | 
|  | */ | 
|  | void intel_fb_obj_flush(struct drm_i915_gem_object *obj, | 
|  | bool retire) | 
|  | { | 
|  | struct drm_device *dev = obj->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | unsigned frontbuffer_bits; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&dev->struct_mutex)); | 
|  |  | 
|  | if (!obj->frontbuffer_bits) | 
|  | return; | 
|  |  | 
|  | frontbuffer_bits = obj->frontbuffer_bits; | 
|  |  | 
|  | if (retire) { | 
|  | mutex_lock(&dev_priv->fb_tracking.lock); | 
|  | /* Filter out new bits since rendering started. */ | 
|  | frontbuffer_bits &= dev_priv->fb_tracking.busy_bits; | 
|  |  | 
|  | dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits; | 
|  | mutex_unlock(&dev_priv->fb_tracking.lock); | 
|  | } | 
|  |  | 
|  | intel_frontbuffer_flush(dev, frontbuffer_bits); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip | 
|  | * @dev: DRM device | 
|  | * @frontbuffer_bits: frontbuffer plane tracking bits | 
|  | * | 
|  | * This function gets called after scheduling a flip on @obj. The actual | 
|  | * frontbuffer flushing will be delayed until completion is signalled with | 
|  | * intel_frontbuffer_flip_complete. If an invalidate happens in between this | 
|  | * flush will be cancelled. | 
|  | * | 
|  | * Can be called without any locks held. | 
|  | */ | 
|  | void intel_frontbuffer_flip_prepare(struct drm_device *dev, | 
|  | unsigned frontbuffer_bits) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | mutex_lock(&dev_priv->fb_tracking.lock); | 
|  | dev_priv->fb_tracking.flip_bits | 
|  | |= frontbuffer_bits; | 
|  | mutex_unlock(&dev_priv->fb_tracking.lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush | 
|  | * @dev: DRM device | 
|  | * @frontbuffer_bits: frontbuffer plane tracking bits | 
|  | * | 
|  | * This function gets called after the flip has been latched and will complete | 
|  | * on the next vblank. It will execute the fush if it hasn't been cancalled yet. | 
|  | * | 
|  | * Can be called without any locks held. | 
|  | */ | 
|  | void intel_frontbuffer_flip_complete(struct drm_device *dev, | 
|  | unsigned frontbuffer_bits) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | mutex_lock(&dev_priv->fb_tracking.lock); | 
|  | /* Mask any cancelled flips. */ | 
|  | frontbuffer_bits &= dev_priv->fb_tracking.flip_bits; | 
|  | dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits; | 
|  | mutex_unlock(&dev_priv->fb_tracking.lock); | 
|  |  | 
|  | intel_frontbuffer_flush(dev, frontbuffer_bits); | 
|  | } | 
|  |  | 
|  | static void intel_crtc_destroy(struct drm_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_unpin_work *work; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | work = intel_crtc->unpin_work; | 
|  | intel_crtc->unpin_work = NULL; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | if (work) { | 
|  | cancel_work_sync(&work->work); | 
|  | kfree(work); | 
|  | } | 
|  |  | 
|  | drm_crtc_cleanup(crtc); | 
|  |  | 
|  | kfree(intel_crtc); | 
|  | } | 
|  |  | 
|  | static void intel_unpin_work_fn(struct work_struct *__work) | 
|  | { | 
|  | struct intel_unpin_work *work = | 
|  | container_of(__work, struct intel_unpin_work, work); | 
|  | struct drm_device *dev = work->crtc->dev; | 
|  | enum pipe pipe = to_intel_crtc(work->crtc)->pipe; | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_unpin_fb_obj(work->old_fb_obj); | 
|  | drm_gem_object_unreference(&work->pending_flip_obj->base); | 
|  | drm_gem_object_unreference(&work->old_fb_obj->base); | 
|  |  | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe)); | 
|  |  | 
|  | BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0); | 
|  | atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count); | 
|  |  | 
|  | kfree(work); | 
|  | } | 
|  |  | 
|  | static void do_intel_finish_page_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_unpin_work *work; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Ignore early vblank irqs */ | 
|  | if (intel_crtc == NULL) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | work = intel_crtc->unpin_work; | 
|  |  | 
|  | /* Ensure we don't miss a work->pending update ... */ | 
|  | smp_rmb(); | 
|  |  | 
|  | if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) { | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | page_flip_completed(intel_crtc); | 
|  |  | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | } | 
|  |  | 
|  | void intel_finish_page_flip(struct drm_device *dev, int pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; | 
|  |  | 
|  | do_intel_finish_page_flip(dev, crtc); | 
|  | } | 
|  |  | 
|  | void intel_finish_page_flip_plane(struct drm_device *dev, int plane) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane]; | 
|  |  | 
|  | do_intel_finish_page_flip(dev, crtc); | 
|  | } | 
|  |  | 
|  | /* Is 'a' after or equal to 'b'? */ | 
|  | static bool g4x_flip_count_after_eq(u32 a, u32 b) | 
|  | { | 
|  | return !((a - b) & 0x80000000); | 
|  | } | 
|  |  | 
|  | static bool page_flip_finished(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (i915_reset_in_progress(&dev_priv->gpu_error) || | 
|  | crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * The relevant registers doen't exist on pre-ctg. | 
|  | * As the flip done interrupt doesn't trigger for mmio | 
|  | * flips on gmch platforms, a flip count check isn't | 
|  | * really needed there. But since ctg has the registers, | 
|  | * include it in the check anyway. | 
|  | */ | 
|  | if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * A DSPSURFLIVE check isn't enough in case the mmio and CS flips | 
|  | * used the same base address. In that case the mmio flip might | 
|  | * have completed, but the CS hasn't even executed the flip yet. | 
|  | * | 
|  | * A flip count check isn't enough as the CS might have updated | 
|  | * the base address just after start of vblank, but before we | 
|  | * managed to process the interrupt. This means we'd complete the | 
|  | * CS flip too soon. | 
|  | * | 
|  | * Combining both checks should get us a good enough result. It may | 
|  | * still happen that the CS flip has been executed, but has not | 
|  | * yet actually completed. But in case the base address is the same | 
|  | * anyway, we don't really care. | 
|  | */ | 
|  | return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) == | 
|  | crtc->unpin_work->gtt_offset && | 
|  | g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)), | 
|  | crtc->unpin_work->flip_count); | 
|  | } | 
|  |  | 
|  | void intel_prepare_page_flip(struct drm_device *dev, int plane) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = | 
|  | to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* NB: An MMIO update of the plane base pointer will also | 
|  | * generate a page-flip completion irq, i.e. every modeset | 
|  | * is also accompanied by a spurious intel_prepare_page_flip(). | 
|  | */ | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | if (intel_crtc->unpin_work && page_flip_finished(intel_crtc)) | 
|  | atomic_inc_not_zero(&intel_crtc->unpin_work->pending); | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | } | 
|  |  | 
|  | static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | /* Ensure that the work item is consistent when activating it ... */ | 
|  | smp_wmb(); | 
|  | atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING); | 
|  | /* and that it is marked active as soon as the irq could fire. */ | 
|  | smp_wmb(); | 
|  | } | 
|  |  | 
|  | static int intel_gen2_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj, | 
|  | struct intel_engine_cs *ring, | 
|  | uint32_t flags) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | u32 flip_mask; | 
|  | int ret; | 
|  |  | 
|  | ret = intel_ring_begin(ring, 6); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Can't queue multiple flips, so wait for the previous | 
|  | * one to finish before executing the next. | 
|  | */ | 
|  | if (intel_crtc->plane) | 
|  | flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; | 
|  | else | 
|  | flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; | 
|  | intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); | 
|  | intel_ring_emit(ring, MI_NOOP); | 
|  | intel_ring_emit(ring, MI_DISPLAY_FLIP | | 
|  | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); | 
|  | intel_ring_emit(ring, fb->pitches[0]); | 
|  | intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); | 
|  | intel_ring_emit(ring, 0); /* aux display base address, unused */ | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  | __intel_ring_advance(ring); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_gen3_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj, | 
|  | struct intel_engine_cs *ring, | 
|  | uint32_t flags) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | u32 flip_mask; | 
|  | int ret; | 
|  |  | 
|  | ret = intel_ring_begin(ring, 6); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (intel_crtc->plane) | 
|  | flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; | 
|  | else | 
|  | flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; | 
|  | intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); | 
|  | intel_ring_emit(ring, MI_NOOP); | 
|  | intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | | 
|  | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); | 
|  | intel_ring_emit(ring, fb->pitches[0]); | 
|  | intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); | 
|  | intel_ring_emit(ring, MI_NOOP); | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  | __intel_ring_advance(ring); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_gen4_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj, | 
|  | struct intel_engine_cs *ring, | 
|  | uint32_t flags) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | uint32_t pf, pipesrc; | 
|  | int ret; | 
|  |  | 
|  | ret = intel_ring_begin(ring, 4); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* i965+ uses the linear or tiled offsets from the | 
|  | * Display Registers (which do not change across a page-flip) | 
|  | * so we need only reprogram the base address. | 
|  | */ | 
|  | intel_ring_emit(ring, MI_DISPLAY_FLIP | | 
|  | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); | 
|  | intel_ring_emit(ring, fb->pitches[0]); | 
|  | intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset | | 
|  | obj->tiling_mode); | 
|  |  | 
|  | /* XXX Enabling the panel-fitter across page-flip is so far | 
|  | * untested on non-native modes, so ignore it for now. | 
|  | * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; | 
|  | */ | 
|  | pf = 0; | 
|  | pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; | 
|  | intel_ring_emit(ring, pf | pipesrc); | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  | __intel_ring_advance(ring); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_gen6_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj, | 
|  | struct intel_engine_cs *ring, | 
|  | uint32_t flags) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | uint32_t pf, pipesrc; | 
|  | int ret; | 
|  |  | 
|  | ret = intel_ring_begin(ring, 4); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | intel_ring_emit(ring, MI_DISPLAY_FLIP | | 
|  | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); | 
|  | intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode); | 
|  | intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); | 
|  |  | 
|  | /* Contrary to the suggestions in the documentation, | 
|  | * "Enable Panel Fitter" does not seem to be required when page | 
|  | * flipping with a non-native mode, and worse causes a normal | 
|  | * modeset to fail. | 
|  | * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE; | 
|  | */ | 
|  | pf = 0; | 
|  | pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; | 
|  | intel_ring_emit(ring, pf | pipesrc); | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  | __intel_ring_advance(ring); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_gen7_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj, | 
|  | struct intel_engine_cs *ring, | 
|  | uint32_t flags) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | uint32_t plane_bit = 0; | 
|  | int len, ret; | 
|  |  | 
|  | switch (intel_crtc->plane) { | 
|  | case PLANE_A: | 
|  | plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A; | 
|  | break; | 
|  | case PLANE_B: | 
|  | plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B; | 
|  | break; | 
|  | case PLANE_C: | 
|  | plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C; | 
|  | break; | 
|  | default: | 
|  | WARN_ONCE(1, "unknown plane in flip command\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | len = 4; | 
|  | if (ring->id == RCS) { | 
|  | len += 6; | 
|  | /* | 
|  | * On Gen 8, SRM is now taking an extra dword to accommodate | 
|  | * 48bits addresses, and we need a NOOP for the batch size to | 
|  | * stay even. | 
|  | */ | 
|  | if (IS_GEN8(dev)) | 
|  | len += 2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * BSpec MI_DISPLAY_FLIP for IVB: | 
|  | * "The full packet must be contained within the same cache line." | 
|  | * | 
|  | * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same | 
|  | * cacheline, if we ever start emitting more commands before | 
|  | * the MI_DISPLAY_FLIP we may need to first emit everything else, | 
|  | * then do the cacheline alignment, and finally emit the | 
|  | * MI_DISPLAY_FLIP. | 
|  | */ | 
|  | ret = intel_ring_cacheline_align(ring); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = intel_ring_begin(ring, len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Unmask the flip-done completion message. Note that the bspec says that | 
|  | * we should do this for both the BCS and RCS, and that we must not unmask | 
|  | * more than one flip event at any time (or ensure that one flip message | 
|  | * can be sent by waiting for flip-done prior to queueing new flips). | 
|  | * Experimentation says that BCS works despite DERRMR masking all | 
|  | * flip-done completion events and that unmasking all planes at once | 
|  | * for the RCS also doesn't appear to drop events. Setting the DERRMR | 
|  | * to zero does lead to lockups within MI_DISPLAY_FLIP. | 
|  | */ | 
|  | if (ring->id == RCS) { | 
|  | intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); | 
|  | intel_ring_emit(ring, DERRMR); | 
|  | intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE | | 
|  | DERRMR_PIPEB_PRI_FLIP_DONE | | 
|  | DERRMR_PIPEC_PRI_FLIP_DONE)); | 
|  | if (IS_GEN8(dev)) | 
|  | intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) | | 
|  | MI_SRM_LRM_GLOBAL_GTT); | 
|  | else | 
|  | intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | | 
|  | MI_SRM_LRM_GLOBAL_GTT); | 
|  | intel_ring_emit(ring, DERRMR); | 
|  | intel_ring_emit(ring, ring->scratch.gtt_offset + 256); | 
|  | if (IS_GEN8(dev)) { | 
|  | intel_ring_emit(ring, 0); | 
|  | intel_ring_emit(ring, MI_NOOP); | 
|  | } | 
|  | } | 
|  |  | 
|  | intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit); | 
|  | intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode)); | 
|  | intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); | 
|  | intel_ring_emit(ring, (MI_NOOP)); | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  | __intel_ring_advance(ring); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool use_mmio_flip(struct intel_engine_cs *ring, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | /* | 
|  | * This is not being used for older platforms, because | 
|  | * non-availability of flip done interrupt forces us to use | 
|  | * CS flips. Older platforms derive flip done using some clever | 
|  | * tricks involving the flip_pending status bits and vblank irqs. | 
|  | * So using MMIO flips there would disrupt this mechanism. | 
|  | */ | 
|  |  | 
|  | if (ring == NULL) | 
|  | return true; | 
|  |  | 
|  | if (INTEL_INFO(ring->dev)->gen < 5) | 
|  | return false; | 
|  |  | 
|  | if (i915.use_mmio_flip < 0) | 
|  | return false; | 
|  | else if (i915.use_mmio_flip > 0) | 
|  | return true; | 
|  | else if (i915.enable_execlists) | 
|  | return true; | 
|  | else | 
|  | return ring != obj->ring; | 
|  | } | 
|  |  | 
|  | static void intel_do_mmio_flip(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_framebuffer *intel_fb = | 
|  | to_intel_framebuffer(intel_crtc->base.primary->fb); | 
|  | struct drm_i915_gem_object *obj = intel_fb->obj; | 
|  | u32 dspcntr; | 
|  | u32 reg; | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  |  | 
|  | reg = DSPCNTR(intel_crtc->plane); | 
|  | dspcntr = I915_READ(reg); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | if (obj->tiling_mode != I915_TILING_NONE) | 
|  | dspcntr |= DISPPLANE_TILED; | 
|  | else | 
|  | dspcntr &= ~DISPPLANE_TILED; | 
|  | } | 
|  | I915_WRITE(reg, dspcntr); | 
|  |  | 
|  | I915_WRITE(DSPSURF(intel_crtc->plane), | 
|  | intel_crtc->unpin_work->gtt_offset); | 
|  | POSTING_READ(DSPSURF(intel_crtc->plane)); | 
|  | } | 
|  |  | 
|  | static int intel_postpone_flip(struct drm_i915_gem_object *obj) | 
|  | { | 
|  | struct intel_engine_cs *ring; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&obj->base.dev->struct_mutex); | 
|  |  | 
|  | if (!obj->last_write_seqno) | 
|  | return 0; | 
|  |  | 
|  | ring = obj->ring; | 
|  |  | 
|  | if (i915_seqno_passed(ring->get_seqno(ring, true), | 
|  | obj->last_write_seqno)) | 
|  | return 0; | 
|  |  | 
|  | ret = i915_gem_check_olr(ring, obj->last_write_seqno); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (WARN_ON(!ring->irq_get(ring))) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void intel_notify_mmio_flip(struct intel_engine_cs *ring) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(ring->dev); | 
|  | struct intel_crtc *intel_crtc; | 
|  | unsigned long irq_flags; | 
|  | u32 seqno; | 
|  |  | 
|  | seqno = ring->get_seqno(ring, false); | 
|  |  | 
|  | spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags); | 
|  | for_each_intel_crtc(ring->dev, intel_crtc) { | 
|  | struct intel_mmio_flip *mmio_flip; | 
|  |  | 
|  | mmio_flip = &intel_crtc->mmio_flip; | 
|  | if (mmio_flip->seqno == 0) | 
|  | continue; | 
|  |  | 
|  | if (ring->id != mmio_flip->ring_id) | 
|  | continue; | 
|  |  | 
|  | if (i915_seqno_passed(seqno, mmio_flip->seqno)) { | 
|  | intel_do_mmio_flip(intel_crtc); | 
|  | mmio_flip->seqno = 0; | 
|  | ring->irq_put(ring); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags); | 
|  | } | 
|  |  | 
|  | static int intel_queue_mmio_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj, | 
|  | struct intel_engine_cs *ring, | 
|  | uint32_t flags) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | unsigned long irq_flags; | 
|  | int ret; | 
|  |  | 
|  | if (WARN_ON(intel_crtc->mmio_flip.seqno)) | 
|  | return -EBUSY; | 
|  |  | 
|  | ret = intel_postpone_flip(obj); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret == 0) { | 
|  | intel_do_mmio_flip(intel_crtc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags); | 
|  | intel_crtc->mmio_flip.seqno = obj->last_write_seqno; | 
|  | intel_crtc->mmio_flip.ring_id = obj->ring->id; | 
|  | spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags); | 
|  |  | 
|  | /* | 
|  | * Double check to catch cases where irq fired before | 
|  | * mmio flip data was ready | 
|  | */ | 
|  | intel_notify_mmio_flip(obj->ring); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_default_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj, | 
|  | struct intel_engine_cs *ring, | 
|  | uint32_t flags) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static bool __intel_pageflip_stall_check(struct drm_device *dev, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_unpin_work *work = intel_crtc->unpin_work; | 
|  | u32 addr; | 
|  |  | 
|  | if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE) | 
|  | return true; | 
|  |  | 
|  | if (!work->enable_stall_check) | 
|  | return false; | 
|  |  | 
|  | if (work->flip_ready_vblank == 0) { | 
|  | if (work->flip_queued_ring && | 
|  | !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true), | 
|  | work->flip_queued_seqno)) | 
|  | return false; | 
|  |  | 
|  | work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe); | 
|  | } | 
|  |  | 
|  | if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3) | 
|  | return false; | 
|  |  | 
|  | /* Potential stall - if we see that the flip has happened, | 
|  | * assume a missed interrupt. */ | 
|  | if (INTEL_INFO(dev)->gen >= 4) | 
|  | addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane))); | 
|  | else | 
|  | addr = I915_READ(DSPADDR(intel_crtc->plane)); | 
|  |  | 
|  | /* There is a potential issue here with a false positive after a flip | 
|  | * to the same address. We could address this by checking for a | 
|  | * non-incrementing frame counter. | 
|  | */ | 
|  | return addr == work->gtt_offset; | 
|  | } | 
|  |  | 
|  | void intel_check_page_flip(struct drm_device *dev, int pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (crtc == NULL) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) { | 
|  | WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n", | 
|  | intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe)); | 
|  | page_flip_completed(intel_crtc); | 
|  | } | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | } | 
|  |  | 
|  | static int intel_crtc_page_flip(struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_pending_vblank_event *event, | 
|  | uint32_t page_flip_flags) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_framebuffer *old_fb = crtc->primary->fb; | 
|  | struct drm_i915_gem_object *obj = intel_fb_obj(fb); | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | struct intel_unpin_work *work; | 
|  | struct intel_engine_cs *ring; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * drm_mode_page_flip_ioctl() should already catch this, but double | 
|  | * check to be safe.  In the future we may enable pageflipping from | 
|  | * a disabled primary plane. | 
|  | */ | 
|  | if (WARN_ON(intel_fb_obj(old_fb) == NULL)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Can't change pixel format via MI display flips. */ | 
|  | if (fb->pixel_format != crtc->primary->fb->pixel_format) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * TILEOFF/LINOFF registers can't be changed via MI display flips. | 
|  | * Note that pitch changes could also affect these register. | 
|  | */ | 
|  | if (INTEL_INFO(dev)->gen > 3 && | 
|  | (fb->offsets[0] != crtc->primary->fb->offsets[0] || | 
|  | fb->pitches[0] != crtc->primary->fb->pitches[0])) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (i915_terminally_wedged(&dev_priv->gpu_error)) | 
|  | goto out_hang; | 
|  |  | 
|  | work = kzalloc(sizeof(*work), GFP_KERNEL); | 
|  | if (work == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | work->event = event; | 
|  | work->crtc = crtc; | 
|  | work->old_fb_obj = intel_fb_obj(old_fb); | 
|  | INIT_WORK(&work->work, intel_unpin_work_fn); | 
|  |  | 
|  | ret = drm_crtc_vblank_get(crtc); | 
|  | if (ret) | 
|  | goto free_work; | 
|  |  | 
|  | /* We borrow the event spin lock for protecting unpin_work */ | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | if (intel_crtc->unpin_work) { | 
|  | /* Before declaring the flip queue wedged, check if | 
|  | * the hardware completed the operation behind our backs. | 
|  | */ | 
|  | if (__intel_pageflip_stall_check(dev, crtc)) { | 
|  | DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n"); | 
|  | page_flip_completed(intel_crtc); | 
|  | } else { | 
|  | DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | drm_crtc_vblank_put(crtc); | 
|  | kfree(work); | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  | intel_crtc->unpin_work = work; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | if (atomic_read(&intel_crtc->unpin_work_count) >= 2) | 
|  | flush_workqueue(dev_priv->wq); | 
|  |  | 
|  | ret = i915_mutex_lock_interruptible(dev); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | /* Reference the objects for the scheduled work. */ | 
|  | drm_gem_object_reference(&work->old_fb_obj->base); | 
|  | drm_gem_object_reference(&obj->base); | 
|  |  | 
|  | crtc->primary->fb = fb; | 
|  |  | 
|  | work->pending_flip_obj = obj; | 
|  |  | 
|  | atomic_inc(&intel_crtc->unpin_work_count); | 
|  | intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) | 
|  | work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1; | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev)) { | 
|  | ring = &dev_priv->ring[BCS]; | 
|  | if (obj->tiling_mode != work->old_fb_obj->tiling_mode) | 
|  | /* vlv: DISPLAY_FLIP fails to change tiling */ | 
|  | ring = NULL; | 
|  | } else if (IS_IVYBRIDGE(dev)) { | 
|  | ring = &dev_priv->ring[BCS]; | 
|  | } else if (INTEL_INFO(dev)->gen >= 7) { | 
|  | ring = obj->ring; | 
|  | if (ring == NULL || ring->id != RCS) | 
|  | ring = &dev_priv->ring[BCS]; | 
|  | } else { | 
|  | ring = &dev_priv->ring[RCS]; | 
|  | } | 
|  |  | 
|  | ret = intel_pin_and_fence_fb_obj(dev, obj, ring); | 
|  | if (ret) | 
|  | goto cleanup_pending; | 
|  |  | 
|  | work->gtt_offset = | 
|  | i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset; | 
|  |  | 
|  | if (use_mmio_flip(ring, obj)) { | 
|  | ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring, | 
|  | page_flip_flags); | 
|  | if (ret) | 
|  | goto cleanup_unpin; | 
|  |  | 
|  | work->flip_queued_seqno = obj->last_write_seqno; | 
|  | work->flip_queued_ring = obj->ring; | 
|  | } else { | 
|  | ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring, | 
|  | page_flip_flags); | 
|  | if (ret) | 
|  | goto cleanup_unpin; | 
|  |  | 
|  | work->flip_queued_seqno = intel_ring_get_seqno(ring); | 
|  | work->flip_queued_ring = ring; | 
|  | } | 
|  |  | 
|  | work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe); | 
|  | work->enable_stall_check = true; | 
|  |  | 
|  | i915_gem_track_fb(work->old_fb_obj, obj, | 
|  | INTEL_FRONTBUFFER_PRIMARY(pipe)); | 
|  |  | 
|  | intel_disable_fbc(dev); | 
|  | intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe)); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | trace_i915_flip_request(intel_crtc->plane, obj); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cleanup_unpin: | 
|  | intel_unpin_fb_obj(obj); | 
|  | cleanup_pending: | 
|  | atomic_dec(&intel_crtc->unpin_work_count); | 
|  | crtc->primary->fb = old_fb; | 
|  | drm_gem_object_unreference(&work->old_fb_obj->base); | 
|  | drm_gem_object_unreference(&obj->base); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | cleanup: | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | intel_crtc->unpin_work = NULL; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | drm_crtc_vblank_put(crtc); | 
|  | free_work: | 
|  | kfree(work); | 
|  |  | 
|  | if (ret == -EIO) { | 
|  | out_hang: | 
|  | intel_crtc_wait_for_pending_flips(crtc); | 
|  | ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb); | 
|  | if (ret == 0 && event) { | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | drm_send_vblank_event(dev, pipe, event); | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct drm_crtc_helper_funcs intel_helper_funcs = { | 
|  | .mode_set_base_atomic = intel_pipe_set_base_atomic, | 
|  | .load_lut = intel_crtc_load_lut, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * intel_modeset_update_staged_output_state | 
|  | * | 
|  | * Updates the staged output configuration state, e.g. after we've read out the | 
|  | * current hw state. | 
|  | */ | 
|  | static void intel_modeset_update_staged_output_state(struct drm_device *dev) | 
|  | { | 
|  | struct intel_crtc *crtc; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | connector->new_encoder = | 
|  | to_intel_encoder(connector->base.encoder); | 
|  | } | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | encoder->new_crtc = | 
|  | to_intel_crtc(encoder->base.crtc); | 
|  | } | 
|  |  | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | crtc->new_enabled = crtc->base.enabled; | 
|  |  | 
|  | if (crtc->new_enabled) | 
|  | crtc->new_config = &crtc->config; | 
|  | else | 
|  | crtc->new_config = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_modeset_commit_output_state | 
|  | * | 
|  | * This function copies the stage display pipe configuration to the real one. | 
|  | */ | 
|  | static void intel_modeset_commit_output_state(struct drm_device *dev) | 
|  | { | 
|  | struct intel_crtc *crtc; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | connector->base.encoder = &connector->new_encoder->base; | 
|  | } | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | encoder->base.crtc = &encoder->new_crtc->base; | 
|  | } | 
|  |  | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | crtc->base.enabled = crtc->new_enabled; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | connected_sink_compute_bpp(struct intel_connector *connector, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | int bpp = pipe_config->pipe_bpp; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n", | 
|  | connector->base.base.id, | 
|  | connector->base.name); | 
|  |  | 
|  | /* Don't use an invalid EDID bpc value */ | 
|  | if (connector->base.display_info.bpc && | 
|  | connector->base.display_info.bpc * 3 < bpp) { | 
|  | DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n", | 
|  | bpp, connector->base.display_info.bpc*3); | 
|  | pipe_config->pipe_bpp = connector->base.display_info.bpc*3; | 
|  | } | 
|  |  | 
|  | /* Clamp bpp to 8 on screens without EDID 1.4 */ | 
|  | if (connector->base.display_info.bpc == 0 && bpp > 24) { | 
|  | DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n", | 
|  | bpp); | 
|  | pipe_config->pipe_bpp = 24; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | compute_baseline_pipe_bpp(struct intel_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct intel_connector *connector; | 
|  | int bpp; | 
|  |  | 
|  | switch (fb->pixel_format) { | 
|  | case DRM_FORMAT_C8: | 
|  | bpp = 8*3; /* since we go through a colormap */ | 
|  | break; | 
|  | case DRM_FORMAT_XRGB1555: | 
|  | case DRM_FORMAT_ARGB1555: | 
|  | /* checked in intel_framebuffer_init already */ | 
|  | if (WARN_ON(INTEL_INFO(dev)->gen > 3)) | 
|  | return -EINVAL; | 
|  | case DRM_FORMAT_RGB565: | 
|  | bpp = 6*3; /* min is 18bpp */ | 
|  | break; | 
|  | case DRM_FORMAT_XBGR8888: | 
|  | case DRM_FORMAT_ABGR8888: | 
|  | /* checked in intel_framebuffer_init already */ | 
|  | if (WARN_ON(INTEL_INFO(dev)->gen < 4)) | 
|  | return -EINVAL; | 
|  | case DRM_FORMAT_XRGB8888: | 
|  | case DRM_FORMAT_ARGB8888: | 
|  | bpp = 8*3; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB2101010: | 
|  | case DRM_FORMAT_ARGB2101010: | 
|  | case DRM_FORMAT_XBGR2101010: | 
|  | case DRM_FORMAT_ABGR2101010: | 
|  | /* checked in intel_framebuffer_init already */ | 
|  | if (WARN_ON(INTEL_INFO(dev)->gen < 4)) | 
|  | return -EINVAL; | 
|  | bpp = 10*3; | 
|  | break; | 
|  | /* TODO: gen4+ supports 16 bpc floating point, too. */ | 
|  | default: | 
|  | DRM_DEBUG_KMS("unsupported depth\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | pipe_config->pipe_bpp = bpp; | 
|  |  | 
|  | /* Clamp display bpp to EDID value */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (!connector->new_encoder || | 
|  | connector->new_encoder->new_crtc != crtc) | 
|  | continue; | 
|  |  | 
|  | connected_sink_compute_bpp(connector, pipe_config); | 
|  | } | 
|  |  | 
|  | return bpp; | 
|  | } | 
|  |  | 
|  | static void intel_dump_crtc_timings(const struct drm_display_mode *mode) | 
|  | { | 
|  | DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " | 
|  | "type: 0x%x flags: 0x%x\n", | 
|  | mode->crtc_clock, | 
|  | mode->crtc_hdisplay, mode->crtc_hsync_start, | 
|  | mode->crtc_hsync_end, mode->crtc_htotal, | 
|  | mode->crtc_vdisplay, mode->crtc_vsync_start, | 
|  | mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags); | 
|  | } | 
|  |  | 
|  | static void intel_dump_pipe_config(struct intel_crtc *crtc, | 
|  | struct intel_crtc_config *pipe_config, | 
|  | const char *context) | 
|  | { | 
|  | DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id, | 
|  | context, pipe_name(crtc->pipe)); | 
|  |  | 
|  | DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder)); | 
|  | DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n", | 
|  | pipe_config->pipe_bpp, pipe_config->dither); | 
|  | DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", | 
|  | pipe_config->has_pch_encoder, | 
|  | pipe_config->fdi_lanes, | 
|  | pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n, | 
|  | pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n, | 
|  | pipe_config->fdi_m_n.tu); | 
|  | DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", | 
|  | pipe_config->has_dp_encoder, | 
|  | pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n, | 
|  | pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n, | 
|  | pipe_config->dp_m_n.tu); | 
|  |  | 
|  | DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n", | 
|  | pipe_config->has_dp_encoder, | 
|  | pipe_config->dp_m2_n2.gmch_m, | 
|  | pipe_config->dp_m2_n2.gmch_n, | 
|  | pipe_config->dp_m2_n2.link_m, | 
|  | pipe_config->dp_m2_n2.link_n, | 
|  | pipe_config->dp_m2_n2.tu); | 
|  |  | 
|  | DRM_DEBUG_KMS("requested mode:\n"); | 
|  | drm_mode_debug_printmodeline(&pipe_config->requested_mode); | 
|  | DRM_DEBUG_KMS("adjusted mode:\n"); | 
|  | drm_mode_debug_printmodeline(&pipe_config->adjusted_mode); | 
|  | intel_dump_crtc_timings(&pipe_config->adjusted_mode); | 
|  | DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock); | 
|  | DRM_DEBUG_KMS("pipe src size: %dx%d\n", | 
|  | pipe_config->pipe_src_w, pipe_config->pipe_src_h); | 
|  | DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", | 
|  | pipe_config->gmch_pfit.control, | 
|  | pipe_config->gmch_pfit.pgm_ratios, | 
|  | pipe_config->gmch_pfit.lvds_border_bits); | 
|  | DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n", | 
|  | pipe_config->pch_pfit.pos, | 
|  | pipe_config->pch_pfit.size, | 
|  | pipe_config->pch_pfit.enabled ? "enabled" : "disabled"); | 
|  | DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled); | 
|  | DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide); | 
|  | } | 
|  |  | 
|  | static bool encoders_cloneable(const struct intel_encoder *a, | 
|  | const struct intel_encoder *b) | 
|  | { | 
|  | /* masks could be asymmetric, so check both ways */ | 
|  | return a == b || (a->cloneable & (1 << b->type) && | 
|  | b->cloneable & (1 << a->type)); | 
|  | } | 
|  |  | 
|  | static bool check_single_encoder_cloning(struct intel_crtc *crtc, | 
|  | struct intel_encoder *encoder) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct intel_encoder *source_encoder; | 
|  |  | 
|  | for_each_intel_encoder(dev, source_encoder) { | 
|  | if (source_encoder->new_crtc != crtc) | 
|  | continue; | 
|  |  | 
|  | if (!encoders_cloneable(encoder, source_encoder)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool check_encoder_cloning(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct intel_encoder *encoder; | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | if (encoder->new_crtc != crtc) | 
|  | continue; | 
|  |  | 
|  | if (!check_single_encoder_cloning(crtc, encoder)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct intel_crtc_config * | 
|  | intel_modeset_pipe_config(struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_crtc_config *pipe_config; | 
|  | int plane_bpp, ret = -EINVAL; | 
|  | bool retry = true; | 
|  |  | 
|  | if (!check_encoder_cloning(to_intel_crtc(crtc))) { | 
|  | DRM_DEBUG_KMS("rejecting invalid cloning configuration\n"); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); | 
|  | if (!pipe_config) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | drm_mode_copy(&pipe_config->adjusted_mode, mode); | 
|  | drm_mode_copy(&pipe_config->requested_mode, mode); | 
|  |  | 
|  | pipe_config->cpu_transcoder = | 
|  | (enum transcoder) to_intel_crtc(crtc)->pipe; | 
|  | pipe_config->shared_dpll = DPLL_ID_PRIVATE; | 
|  |  | 
|  | /* | 
|  | * Sanitize sync polarity flags based on requested ones. If neither | 
|  | * positive or negative polarity is requested, treat this as meaning | 
|  | * negative polarity. | 
|  | */ | 
|  | if (!(pipe_config->adjusted_mode.flags & | 
|  | (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) | 
|  | pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; | 
|  |  | 
|  | if (!(pipe_config->adjusted_mode.flags & | 
|  | (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) | 
|  | pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; | 
|  |  | 
|  | /* Compute a starting value for pipe_config->pipe_bpp taking the source | 
|  | * plane pixel format and any sink constraints into account. Returns the | 
|  | * source plane bpp so that dithering can be selected on mismatches | 
|  | * after encoders and crtc also have had their say. */ | 
|  | plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc), | 
|  | fb, pipe_config); | 
|  | if (plane_bpp < 0) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * Determine the real pipe dimensions. Note that stereo modes can | 
|  | * increase the actual pipe size due to the frame doubling and | 
|  | * insertion of additional space for blanks between the frame. This | 
|  | * is stored in the crtc timings. We use the requested mode to do this | 
|  | * computation to clearly distinguish it from the adjusted mode, which | 
|  | * can be changed by the connectors in the below retry loop. | 
|  | */ | 
|  | drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE); | 
|  | pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay; | 
|  | pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay; | 
|  |  | 
|  | encoder_retry: | 
|  | /* Ensure the port clock defaults are reset when retrying. */ | 
|  | pipe_config->port_clock = 0; | 
|  | pipe_config->pixel_multiplier = 1; | 
|  |  | 
|  | /* Fill in default crtc timings, allow encoders to overwrite them. */ | 
|  | drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE); | 
|  |  | 
|  | /* Pass our mode to the connectors and the CRTC to give them a chance to | 
|  | * adjust it according to limitations or connector properties, and also | 
|  | * a chance to reject the mode entirely. | 
|  | */ | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  |  | 
|  | if (&encoder->new_crtc->base != crtc) | 
|  | continue; | 
|  |  | 
|  | if (!(encoder->compute_config(encoder, pipe_config))) { | 
|  | DRM_DEBUG_KMS("Encoder config failure\n"); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set default port clock if not overwritten by the encoder. Needs to be | 
|  | * done afterwards in case the encoder adjusts the mode. */ | 
|  | if (!pipe_config->port_clock) | 
|  | pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock | 
|  | * pipe_config->pixel_multiplier; | 
|  |  | 
|  | ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); | 
|  | if (ret < 0) { | 
|  | DRM_DEBUG_KMS("CRTC fixup failed\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (ret == RETRY) { | 
|  | if (WARN(!retry, "loop in pipe configuration computation\n")) { | 
|  | ret = -EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("CRTC bw constrained, retrying\n"); | 
|  | retry = false; | 
|  | goto encoder_retry; | 
|  | } | 
|  |  | 
|  | pipe_config->dither = pipe_config->pipe_bpp != plane_bpp; | 
|  | DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n", | 
|  | plane_bpp, pipe_config->pipe_bpp, pipe_config->dither); | 
|  |  | 
|  | return pipe_config; | 
|  | fail: | 
|  | kfree(pipe_config); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /* Computes which crtcs are affected and sets the relevant bits in the mask. For | 
|  | * simplicity we use the crtc's pipe number (because it's easier to obtain). */ | 
|  | static void | 
|  | intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes, | 
|  | unsigned *prepare_pipes, unsigned *disable_pipes) | 
|  | { | 
|  | struct intel_crtc *intel_crtc; | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  | struct drm_crtc *tmp_crtc; | 
|  |  | 
|  | *disable_pipes = *modeset_pipes = *prepare_pipes = 0; | 
|  |  | 
|  | /* Check which crtcs have changed outputs connected to them, these need | 
|  | * to be part of the prepare_pipes mask. We don't (yet) support global | 
|  | * modeset across multiple crtcs, so modeset_pipes will only have one | 
|  | * bit set at most. */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->base.encoder == &connector->new_encoder->base) | 
|  | continue; | 
|  |  | 
|  | if (connector->base.encoder) { | 
|  | tmp_crtc = connector->base.encoder->crtc; | 
|  |  | 
|  | *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe; | 
|  | } | 
|  |  | 
|  | if (connector->new_encoder) | 
|  | *prepare_pipes |= | 
|  | 1 << connector->new_encoder->new_crtc->pipe; | 
|  | } | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | if (encoder->base.crtc == &encoder->new_crtc->base) | 
|  | continue; | 
|  |  | 
|  | if (encoder->base.crtc) { | 
|  | tmp_crtc = encoder->base.crtc; | 
|  |  | 
|  | *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe; | 
|  | } | 
|  |  | 
|  | if (encoder->new_crtc) | 
|  | *prepare_pipes |= 1 << encoder->new_crtc->pipe; | 
|  | } | 
|  |  | 
|  | /* Check for pipes that will be enabled/disabled ... */ | 
|  | for_each_intel_crtc(dev, intel_crtc) { | 
|  | if (intel_crtc->base.enabled == intel_crtc->new_enabled) | 
|  | continue; | 
|  |  | 
|  | if (!intel_crtc->new_enabled) | 
|  | *disable_pipes |= 1 << intel_crtc->pipe; | 
|  | else | 
|  | *prepare_pipes |= 1 << intel_crtc->pipe; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* set_mode is also used to update properties on life display pipes. */ | 
|  | intel_crtc = to_intel_crtc(crtc); | 
|  | if (intel_crtc->new_enabled) | 
|  | *prepare_pipes |= 1 << intel_crtc->pipe; | 
|  |  | 
|  | /* | 
|  | * For simplicity do a full modeset on any pipe where the output routing | 
|  | * changed. We could be more clever, but that would require us to be | 
|  | * more careful with calling the relevant encoder->mode_set functions. | 
|  | */ | 
|  | if (*prepare_pipes) | 
|  | *modeset_pipes = *prepare_pipes; | 
|  |  | 
|  | /* ... and mask these out. */ | 
|  | *modeset_pipes &= ~(*disable_pipes); | 
|  | *prepare_pipes &= ~(*disable_pipes); | 
|  |  | 
|  | /* | 
|  | * HACK: We don't (yet) fully support global modesets. intel_set_config | 
|  | * obies this rule, but the modeset restore mode of | 
|  | * intel_modeset_setup_hw_state does not. | 
|  | */ | 
|  | *modeset_pipes &= 1 << intel_crtc->pipe; | 
|  | *prepare_pipes &= 1 << intel_crtc->pipe; | 
|  |  | 
|  | DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n", | 
|  | *modeset_pipes, *prepare_pipes, *disable_pipes); | 
|  | } | 
|  |  | 
|  | static bool intel_crtc_in_use(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_encoder *encoder; | 
|  | struct drm_device *dev = crtc->dev; | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) | 
|  | if (encoder->crtc == crtc) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes) | 
|  | { | 
|  | struct intel_encoder *intel_encoder; | 
|  | struct intel_crtc *intel_crtc; | 
|  | struct drm_connector *connector; | 
|  |  | 
|  | for_each_intel_encoder(dev, intel_encoder) { | 
|  | if (!intel_encoder->base.crtc) | 
|  | continue; | 
|  |  | 
|  | intel_crtc = to_intel_crtc(intel_encoder->base.crtc); | 
|  |  | 
|  | if (prepare_pipes & (1 << intel_crtc->pipe)) | 
|  | intel_encoder->connectors_active = false; | 
|  | } | 
|  |  | 
|  | intel_modeset_commit_output_state(dev); | 
|  |  | 
|  | /* Double check state. */ | 
|  | for_each_intel_crtc(dev, intel_crtc) { | 
|  | WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base)); | 
|  | WARN_ON(intel_crtc->new_config && | 
|  | intel_crtc->new_config != &intel_crtc->config); | 
|  | WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config); | 
|  | } | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, head) { | 
|  | if (!connector->encoder || !connector->encoder->crtc) | 
|  | continue; | 
|  |  | 
|  | intel_crtc = to_intel_crtc(connector->encoder->crtc); | 
|  |  | 
|  | if (prepare_pipes & (1 << intel_crtc->pipe)) { | 
|  | struct drm_property *dpms_property = | 
|  | dev->mode_config.dpms_property; | 
|  |  | 
|  | connector->dpms = DRM_MODE_DPMS_ON; | 
|  | drm_object_property_set_value(&connector->base, | 
|  | dpms_property, | 
|  | DRM_MODE_DPMS_ON); | 
|  |  | 
|  | intel_encoder = to_intel_encoder(connector->encoder); | 
|  | intel_encoder->connectors_active = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static bool intel_fuzzy_clock_check(int clock1, int clock2) | 
|  | { | 
|  | int diff; | 
|  |  | 
|  | if (clock1 == clock2) | 
|  | return true; | 
|  |  | 
|  | if (!clock1 || !clock2) | 
|  | return false; | 
|  |  | 
|  | diff = abs(clock1 - clock2); | 
|  |  | 
|  | if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \ | 
|  | list_for_each_entry((intel_crtc), \ | 
|  | &(dev)->mode_config.crtc_list, \ | 
|  | base.head) \ | 
|  | if (mask & (1 <<(intel_crtc)->pipe)) | 
|  |  | 
|  | static bool | 
|  | intel_pipe_config_compare(struct drm_device *dev, | 
|  | struct intel_crtc_config *current_config, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | #define PIPE_CONF_CHECK_X(name)	\ | 
|  | if (current_config->name != pipe_config->name) { \ | 
|  | DRM_ERROR("mismatch in " #name " " \ | 
|  | "(expected 0x%08x, found 0x%08x)\n", \ | 
|  | current_config->name, \ | 
|  | pipe_config->name); \ | 
|  | return false; \ | 
|  | } | 
|  |  | 
|  | #define PIPE_CONF_CHECK_I(name)	\ | 
|  | if (current_config->name != pipe_config->name) { \ | 
|  | DRM_ERROR("mismatch in " #name " " \ | 
|  | "(expected %i, found %i)\n", \ | 
|  | current_config->name, \ | 
|  | pipe_config->name); \ | 
|  | return false; \ | 
|  | } | 
|  |  | 
|  | /* This is required for BDW+ where there is only one set of registers for | 
|  | * switching between high and low RR. | 
|  | * This macro can be used whenever a comparison has to be made between one | 
|  | * hw state and multiple sw state variables. | 
|  | */ | 
|  | #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \ | 
|  | if ((current_config->name != pipe_config->name) && \ | 
|  | (current_config->alt_name != pipe_config->name)) { \ | 
|  | DRM_ERROR("mismatch in " #name " " \ | 
|  | "(expected %i or %i, found %i)\n", \ | 
|  | current_config->name, \ | 
|  | current_config->alt_name, \ | 
|  | pipe_config->name); \ | 
|  | return false; \ | 
|  | } | 
|  |  | 
|  | #define PIPE_CONF_CHECK_FLAGS(name, mask)	\ | 
|  | if ((current_config->name ^ pipe_config->name) & (mask)) { \ | 
|  | DRM_ERROR("mismatch in " #name "(" #mask ") "	   \ | 
|  | "(expected %i, found %i)\n", \ | 
|  | current_config->name & (mask), \ | 
|  | pipe_config->name & (mask)); \ | 
|  | return false; \ | 
|  | } | 
|  |  | 
|  | #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \ | 
|  | if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ | 
|  | DRM_ERROR("mismatch in " #name " " \ | 
|  | "(expected %i, found %i)\n", \ | 
|  | current_config->name, \ | 
|  | pipe_config->name); \ | 
|  | return false; \ | 
|  | } | 
|  |  | 
|  | #define PIPE_CONF_QUIRK(quirk)	\ | 
|  | ((current_config->quirks | pipe_config->quirks) & (quirk)) | 
|  |  | 
|  | PIPE_CONF_CHECK_I(cpu_transcoder); | 
|  |  | 
|  | PIPE_CONF_CHECK_I(has_pch_encoder); | 
|  | PIPE_CONF_CHECK_I(fdi_lanes); | 
|  | PIPE_CONF_CHECK_I(fdi_m_n.gmch_m); | 
|  | PIPE_CONF_CHECK_I(fdi_m_n.gmch_n); | 
|  | PIPE_CONF_CHECK_I(fdi_m_n.link_m); | 
|  | PIPE_CONF_CHECK_I(fdi_m_n.link_n); | 
|  | PIPE_CONF_CHECK_I(fdi_m_n.tu); | 
|  |  | 
|  | PIPE_CONF_CHECK_I(has_dp_encoder); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen < 8) { | 
|  | PIPE_CONF_CHECK_I(dp_m_n.gmch_m); | 
|  | PIPE_CONF_CHECK_I(dp_m_n.gmch_n); | 
|  | PIPE_CONF_CHECK_I(dp_m_n.link_m); | 
|  | PIPE_CONF_CHECK_I(dp_m_n.link_n); | 
|  | PIPE_CONF_CHECK_I(dp_m_n.tu); | 
|  |  | 
|  | if (current_config->has_drrs) { | 
|  | PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m); | 
|  | PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n); | 
|  | PIPE_CONF_CHECK_I(dp_m2_n2.link_m); | 
|  | PIPE_CONF_CHECK_I(dp_m2_n2.link_n); | 
|  | PIPE_CONF_CHECK_I(dp_m2_n2.tu); | 
|  | } | 
|  | } else { | 
|  | PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m); | 
|  | PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n); | 
|  | PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m); | 
|  | PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n); | 
|  | PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu); | 
|  | } | 
|  |  | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay); | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal); | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start); | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end); | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start); | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end); | 
|  |  | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay); | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal); | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start); | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end); | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start); | 
|  | PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end); | 
|  |  | 
|  | PIPE_CONF_CHECK_I(pixel_multiplier); | 
|  | PIPE_CONF_CHECK_I(has_hdmi_sink); | 
|  | if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) || | 
|  | IS_VALLEYVIEW(dev)) | 
|  | PIPE_CONF_CHECK_I(limited_color_range); | 
|  |  | 
|  | PIPE_CONF_CHECK_I(has_audio); | 
|  |  | 
|  | PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, | 
|  | DRM_MODE_FLAG_INTERLACE); | 
|  |  | 
|  | if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { | 
|  | PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, | 
|  | DRM_MODE_FLAG_PHSYNC); | 
|  | PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, | 
|  | DRM_MODE_FLAG_NHSYNC); | 
|  | PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, | 
|  | DRM_MODE_FLAG_PVSYNC); | 
|  | PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, | 
|  | DRM_MODE_FLAG_NVSYNC); | 
|  | } | 
|  |  | 
|  | PIPE_CONF_CHECK_I(pipe_src_w); | 
|  | PIPE_CONF_CHECK_I(pipe_src_h); | 
|  |  | 
|  | /* | 
|  | * FIXME: BIOS likes to set up a cloned config with lvds+external | 
|  | * screen. Since we don't yet re-compute the pipe config when moving | 
|  | * just the lvds port away to another pipe the sw tracking won't match. | 
|  | * | 
|  | * Proper atomic modesets with recomputed global state will fix this. | 
|  | * Until then just don't check gmch state for inherited modes. | 
|  | */ | 
|  | if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) { | 
|  | PIPE_CONF_CHECK_I(gmch_pfit.control); | 
|  | /* pfit ratios are autocomputed by the hw on gen4+ */ | 
|  | if (INTEL_INFO(dev)->gen < 4) | 
|  | PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios); | 
|  | PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits); | 
|  | } | 
|  |  | 
|  | PIPE_CONF_CHECK_I(pch_pfit.enabled); | 
|  | if (current_config->pch_pfit.enabled) { | 
|  | PIPE_CONF_CHECK_I(pch_pfit.pos); | 
|  | PIPE_CONF_CHECK_I(pch_pfit.size); | 
|  | } | 
|  |  | 
|  | /* BDW+ don't expose a synchronous way to read the state */ | 
|  | if (IS_HASWELL(dev)) | 
|  | PIPE_CONF_CHECK_I(ips_enabled); | 
|  |  | 
|  | PIPE_CONF_CHECK_I(double_wide); | 
|  |  | 
|  | PIPE_CONF_CHECK_X(ddi_pll_sel); | 
|  |  | 
|  | PIPE_CONF_CHECK_I(shared_dpll); | 
|  | PIPE_CONF_CHECK_X(dpll_hw_state.dpll); | 
|  | PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); | 
|  | PIPE_CONF_CHECK_X(dpll_hw_state.fp0); | 
|  | PIPE_CONF_CHECK_X(dpll_hw_state.fp1); | 
|  | PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); | 
|  |  | 
|  | if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) | 
|  | PIPE_CONF_CHECK_I(pipe_bpp); | 
|  |  | 
|  | PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock); | 
|  | PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); | 
|  |  | 
|  | #undef PIPE_CONF_CHECK_X | 
|  | #undef PIPE_CONF_CHECK_I | 
|  | #undef PIPE_CONF_CHECK_I_ALT | 
|  | #undef PIPE_CONF_CHECK_FLAGS | 
|  | #undef PIPE_CONF_CHECK_CLOCK_FUZZY | 
|  | #undef PIPE_CONF_QUIRK | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | check_connector_state(struct drm_device *dev) | 
|  | { | 
|  | struct intel_connector *connector; | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | /* This also checks the encoder/connector hw state with the | 
|  | * ->get_hw_state callbacks. */ | 
|  | intel_connector_check_state(connector); | 
|  |  | 
|  | WARN(&connector->new_encoder->base != connector->base.encoder, | 
|  | "connector's staged encoder doesn't match current encoder\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | check_encoder_state(struct drm_device *dev) | 
|  | { | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | bool enabled = false; | 
|  | bool active = false; | 
|  | enum pipe pipe, tracked_pipe; | 
|  |  | 
|  | DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", | 
|  | encoder->base.base.id, | 
|  | encoder->base.name); | 
|  |  | 
|  | WARN(&encoder->new_crtc->base != encoder->base.crtc, | 
|  | "encoder's stage crtc doesn't match current crtc\n"); | 
|  | WARN(encoder->connectors_active && !encoder->base.crtc, | 
|  | "encoder's active_connectors set, but no crtc\n"); | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->base.encoder != &encoder->base) | 
|  | continue; | 
|  | enabled = true; | 
|  | if (connector->base.dpms != DRM_MODE_DPMS_OFF) | 
|  | active = true; | 
|  | } | 
|  | /* | 
|  | * for MST connectors if we unplug the connector is gone | 
|  | * away but the encoder is still connected to a crtc | 
|  | * until a modeset happens in response to the hotplug. | 
|  | */ | 
|  | if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST) | 
|  | continue; | 
|  |  | 
|  | WARN(!!encoder->base.crtc != enabled, | 
|  | "encoder's enabled state mismatch " | 
|  | "(expected %i, found %i)\n", | 
|  | !!encoder->base.crtc, enabled); | 
|  | WARN(active && !encoder->base.crtc, | 
|  | "active encoder with no crtc\n"); | 
|  |  | 
|  | WARN(encoder->connectors_active != active, | 
|  | "encoder's computed active state doesn't match tracked active state " | 
|  | "(expected %i, found %i)\n", active, encoder->connectors_active); | 
|  |  | 
|  | active = encoder->get_hw_state(encoder, &pipe); | 
|  | WARN(active != encoder->connectors_active, | 
|  | "encoder's hw state doesn't match sw tracking " | 
|  | "(expected %i, found %i)\n", | 
|  | encoder->connectors_active, active); | 
|  |  | 
|  | if (!encoder->base.crtc) | 
|  | continue; | 
|  |  | 
|  | tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe; | 
|  | WARN(active && pipe != tracked_pipe, | 
|  | "active encoder's pipe doesn't match" | 
|  | "(expected %i, found %i)\n", | 
|  | tracked_pipe, pipe); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | check_crtc_state(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *crtc; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_crtc_config pipe_config; | 
|  |  | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | bool enabled = false; | 
|  | bool active = false; | 
|  |  | 
|  | memset(&pipe_config, 0, sizeof(pipe_config)); | 
|  |  | 
|  | DRM_DEBUG_KMS("[CRTC:%d]\n", | 
|  | crtc->base.base.id); | 
|  |  | 
|  | WARN(crtc->active && !crtc->base.enabled, | 
|  | "active crtc, but not enabled in sw tracking\n"); | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | if (encoder->base.crtc != &crtc->base) | 
|  | continue; | 
|  | enabled = true; | 
|  | if (encoder->connectors_active) | 
|  | active = true; | 
|  | } | 
|  |  | 
|  | WARN(active != crtc->active, | 
|  | "crtc's computed active state doesn't match tracked active state " | 
|  | "(expected %i, found %i)\n", active, crtc->active); | 
|  | WARN(enabled != crtc->base.enabled, | 
|  | "crtc's computed enabled state doesn't match tracked enabled state " | 
|  | "(expected %i, found %i)\n", enabled, crtc->base.enabled); | 
|  |  | 
|  | active = dev_priv->display.get_pipe_config(crtc, | 
|  | &pipe_config); | 
|  |  | 
|  | /* hw state is inconsistent with the pipe quirk */ | 
|  | if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || | 
|  | (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) | 
|  | active = crtc->active; | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | enum pipe pipe; | 
|  | if (encoder->base.crtc != &crtc->base) | 
|  | continue; | 
|  | if (encoder->get_hw_state(encoder, &pipe)) | 
|  | encoder->get_config(encoder, &pipe_config); | 
|  | } | 
|  |  | 
|  | WARN(crtc->active != active, | 
|  | "crtc active state doesn't match with hw state " | 
|  | "(expected %i, found %i)\n", crtc->active, active); | 
|  |  | 
|  | if (active && | 
|  | !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) { | 
|  | WARN(1, "pipe state doesn't match!\n"); | 
|  | intel_dump_pipe_config(crtc, &pipe_config, | 
|  | "[hw state]"); | 
|  | intel_dump_pipe_config(crtc, &crtc->config, | 
|  | "[sw state]"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | check_shared_dpll_state(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *crtc; | 
|  | struct intel_dpll_hw_state dpll_hw_state; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < dev_priv->num_shared_dpll; i++) { | 
|  | struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; | 
|  | int enabled_crtcs = 0, active_crtcs = 0; | 
|  | bool active; | 
|  |  | 
|  | memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); | 
|  |  | 
|  | DRM_DEBUG_KMS("%s\n", pll->name); | 
|  |  | 
|  | active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state); | 
|  |  | 
|  | WARN(pll->active > pll->refcount, | 
|  | "more active pll users than references: %i vs %i\n", | 
|  | pll->active, pll->refcount); | 
|  | WARN(pll->active && !pll->on, | 
|  | "pll in active use but not on in sw tracking\n"); | 
|  | WARN(pll->on && !pll->active, | 
|  | "pll in on but not on in use in sw tracking\n"); | 
|  | WARN(pll->on != active, | 
|  | "pll on state mismatch (expected %i, found %i)\n", | 
|  | pll->on, active); | 
|  |  | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll) | 
|  | enabled_crtcs++; | 
|  | if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) | 
|  | active_crtcs++; | 
|  | } | 
|  | WARN(pll->active != active_crtcs, | 
|  | "pll active crtcs mismatch (expected %i, found %i)\n", | 
|  | pll->active, active_crtcs); | 
|  | WARN(pll->refcount != enabled_crtcs, | 
|  | "pll enabled crtcs mismatch (expected %i, found %i)\n", | 
|  | pll->refcount, enabled_crtcs); | 
|  |  | 
|  | WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state, | 
|  | sizeof(dpll_hw_state)), | 
|  | "pll hw state mismatch\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | intel_modeset_check_state(struct drm_device *dev) | 
|  | { | 
|  | check_connector_state(dev); | 
|  | check_encoder_state(dev); | 
|  | check_crtc_state(dev); | 
|  | check_shared_dpll_state(dev); | 
|  | } | 
|  |  | 
|  | void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config, | 
|  | int dotclock) | 
|  | { | 
|  | /* | 
|  | * FDI already provided one idea for the dotclock. | 
|  | * Yell if the encoder disagrees. | 
|  | */ | 
|  | WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock), | 
|  | "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", | 
|  | pipe_config->adjusted_mode.crtc_clock, dotclock); | 
|  | } | 
|  |  | 
|  | static void update_scanline_offset(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  |  | 
|  | /* | 
|  | * The scanline counter increments at the leading edge of hsync. | 
|  | * | 
|  | * On most platforms it starts counting from vtotal-1 on the | 
|  | * first active line. That means the scanline counter value is | 
|  | * always one less than what we would expect. Ie. just after | 
|  | * start of vblank, which also occurs at start of hsync (on the | 
|  | * last active line), the scanline counter will read vblank_start-1. | 
|  | * | 
|  | * On gen2 the scanline counter starts counting from 1 instead | 
|  | * of vtotal-1, so we have to subtract one (or rather add vtotal-1 | 
|  | * to keep the value positive), instead of adding one. | 
|  | * | 
|  | * On HSW+ the behaviour of the scanline counter depends on the output | 
|  | * type. For DP ports it behaves like most other platforms, but on HDMI | 
|  | * there's an extra 1 line difference. So we need to add two instead of | 
|  | * one to the value. | 
|  | */ | 
|  | if (IS_GEN2(dev)) { | 
|  | const struct drm_display_mode *mode = &crtc->config.adjusted_mode; | 
|  | int vtotal; | 
|  |  | 
|  | vtotal = mode->crtc_vtotal; | 
|  | if (mode->flags & DRM_MODE_FLAG_INTERLACE) | 
|  | vtotal /= 2; | 
|  |  | 
|  | crtc->scanline_offset = vtotal - 1; | 
|  | } else if (HAS_DDI(dev) && | 
|  | intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) { | 
|  | crtc->scanline_offset = 2; | 
|  | } else | 
|  | crtc->scanline_offset = 1; | 
|  | } | 
|  |  | 
|  | static int __intel_set_mode(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode, | 
|  | int x, int y, struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_display_mode *saved_mode; | 
|  | struct intel_crtc_config *pipe_config = NULL; | 
|  | struct intel_crtc *intel_crtc; | 
|  | unsigned disable_pipes, prepare_pipes, modeset_pipes; | 
|  | int ret = 0; | 
|  |  | 
|  | saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL); | 
|  | if (!saved_mode) | 
|  | return -ENOMEM; | 
|  |  | 
|  | intel_modeset_affected_pipes(crtc, &modeset_pipes, | 
|  | &prepare_pipes, &disable_pipes); | 
|  |  | 
|  | *saved_mode = crtc->mode; | 
|  |  | 
|  | /* Hack: Because we don't (yet) support global modeset on multiple | 
|  | * crtcs, we don't keep track of the new mode for more than one crtc. | 
|  | * Hence simply check whether any bit is set in modeset_pipes in all the | 
|  | * pieces of code that are not yet converted to deal with mutliple crtcs | 
|  | * changing their mode at the same time. */ | 
|  | if (modeset_pipes) { | 
|  | pipe_config = intel_modeset_pipe_config(crtc, fb, mode); | 
|  | if (IS_ERR(pipe_config)) { | 
|  | ret = PTR_ERR(pipe_config); | 
|  | pipe_config = NULL; | 
|  |  | 
|  | goto out; | 
|  | } | 
|  | intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config, | 
|  | "[modeset]"); | 
|  | to_intel_crtc(crtc)->new_config = pipe_config; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if the config requires any additional preparation, e.g. | 
|  | * to adjust global state with pipes off.  We need to do this | 
|  | * here so we can get the modeset_pipe updated config for the new | 
|  | * mode set on this crtc.  For other crtcs we need to use the | 
|  | * adjusted_mode bits in the crtc directly. | 
|  | */ | 
|  | if (IS_VALLEYVIEW(dev)) { | 
|  | valleyview_modeset_global_pipes(dev, &prepare_pipes); | 
|  |  | 
|  | /* may have added more to prepare_pipes than we should */ | 
|  | prepare_pipes &= ~disable_pipes; | 
|  | } | 
|  |  | 
|  | for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc) | 
|  | intel_crtc_disable(&intel_crtc->base); | 
|  |  | 
|  | for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) { | 
|  | if (intel_crtc->base.enabled) | 
|  | dev_priv->display.crtc_disable(&intel_crtc->base); | 
|  | } | 
|  |  | 
|  | /* crtc->mode is already used by the ->mode_set callbacks, hence we need | 
|  | * to set it here already despite that we pass it down the callchain. | 
|  | */ | 
|  | if (modeset_pipes) { | 
|  | crtc->mode = *mode; | 
|  | /* mode_set/enable/disable functions rely on a correct pipe | 
|  | * config. */ | 
|  | to_intel_crtc(crtc)->config = *pipe_config; | 
|  | to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config; | 
|  |  | 
|  | /* | 
|  | * Calculate and store various constants which | 
|  | * are later needed by vblank and swap-completion | 
|  | * timestamping. They are derived from true hwmode. | 
|  | */ | 
|  | drm_calc_timestamping_constants(crtc, | 
|  | &pipe_config->adjusted_mode); | 
|  | } | 
|  |  | 
|  | /* Only after disabling all output pipelines that will be changed can we | 
|  | * update the the output configuration. */ | 
|  | intel_modeset_update_state(dev, prepare_pipes); | 
|  |  | 
|  | if (dev_priv->display.modeset_global_resources) | 
|  | dev_priv->display.modeset_global_resources(dev); | 
|  |  | 
|  | /* Set up the DPLL and any encoders state that needs to adjust or depend | 
|  | * on the DPLL. | 
|  | */ | 
|  | for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) { | 
|  | struct drm_framebuffer *old_fb = crtc->primary->fb; | 
|  | struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb); | 
|  | struct drm_i915_gem_object *obj = intel_fb_obj(fb); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | ret = intel_pin_and_fence_fb_obj(dev, | 
|  | obj, | 
|  | NULL); | 
|  | if (ret != 0) { | 
|  | DRM_ERROR("pin & fence failed\n"); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | goto done; | 
|  | } | 
|  | if (old_fb) | 
|  | intel_unpin_fb_obj(old_obj); | 
|  | i915_gem_track_fb(old_obj, obj, | 
|  | INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe)); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | crtc->primary->fb = fb; | 
|  | crtc->x = x; | 
|  | crtc->y = y; | 
|  |  | 
|  | ret = dev_priv->display.crtc_mode_set(&intel_crtc->base, | 
|  | x, y, fb); | 
|  | if (ret) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Now enable the clocks, plane, pipe, and connectors that we set up. */ | 
|  | for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) { | 
|  | update_scanline_offset(intel_crtc); | 
|  |  | 
|  | dev_priv->display.crtc_enable(&intel_crtc->base); | 
|  | } | 
|  |  | 
|  | /* FIXME: add subpixel order */ | 
|  | done: | 
|  | if (ret && crtc->enabled) | 
|  | crtc->mode = *saved_mode; | 
|  |  | 
|  | out: | 
|  | kfree(pipe_config); | 
|  | kfree(saved_mode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_set_mode(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode, | 
|  | int x, int y, struct drm_framebuffer *fb) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = __intel_set_mode(crtc, mode, x, y, fb); | 
|  |  | 
|  | if (ret == 0) | 
|  | intel_modeset_check_state(crtc->dev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void intel_crtc_restore_mode(struct drm_crtc *crtc) | 
|  | { | 
|  | intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb); | 
|  | } | 
|  |  | 
|  | #undef for_each_intel_crtc_masked | 
|  |  | 
|  | static void intel_set_config_free(struct intel_set_config *config) | 
|  | { | 
|  | if (!config) | 
|  | return; | 
|  |  | 
|  | kfree(config->save_connector_encoders); | 
|  | kfree(config->save_encoder_crtcs); | 
|  | kfree(config->save_crtc_enabled); | 
|  | kfree(config); | 
|  | } | 
|  |  | 
|  | static int intel_set_config_save_state(struct drm_device *dev, | 
|  | struct intel_set_config *config) | 
|  | { | 
|  | struct drm_crtc *crtc; | 
|  | struct drm_encoder *encoder; | 
|  | struct drm_connector *connector; | 
|  | int count; | 
|  |  | 
|  | config->save_crtc_enabled = | 
|  | kcalloc(dev->mode_config.num_crtc, | 
|  | sizeof(bool), GFP_KERNEL); | 
|  | if (!config->save_crtc_enabled) | 
|  | return -ENOMEM; | 
|  |  | 
|  | config->save_encoder_crtcs = | 
|  | kcalloc(dev->mode_config.num_encoder, | 
|  | sizeof(struct drm_crtc *), GFP_KERNEL); | 
|  | if (!config->save_encoder_crtcs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | config->save_connector_encoders = | 
|  | kcalloc(dev->mode_config.num_connector, | 
|  | sizeof(struct drm_encoder *), GFP_KERNEL); | 
|  | if (!config->save_connector_encoders) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Copy data. Note that driver private data is not affected. | 
|  | * Should anything bad happen only the expected state is | 
|  | * restored, not the drivers personal bookkeeping. | 
|  | */ | 
|  | count = 0; | 
|  | for_each_crtc(dev, crtc) { | 
|  | config->save_crtc_enabled[count++] = crtc->enabled; | 
|  | } | 
|  |  | 
|  | count = 0; | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { | 
|  | config->save_encoder_crtcs[count++] = encoder->crtc; | 
|  | } | 
|  |  | 
|  | count = 0; | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, head) { | 
|  | config->save_connector_encoders[count++] = connector->encoder; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_set_config_restore_state(struct drm_device *dev, | 
|  | struct intel_set_config *config) | 
|  | { | 
|  | struct intel_crtc *crtc; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  | int count; | 
|  |  | 
|  | count = 0; | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | crtc->new_enabled = config->save_crtc_enabled[count++]; | 
|  |  | 
|  | if (crtc->new_enabled) | 
|  | crtc->new_config = &crtc->config; | 
|  | else | 
|  | crtc->new_config = NULL; | 
|  | } | 
|  |  | 
|  | count = 0; | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | encoder->new_crtc = | 
|  | to_intel_crtc(config->save_encoder_crtcs[count++]); | 
|  | } | 
|  |  | 
|  | count = 0; | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { | 
|  | connector->new_encoder = | 
|  | to_intel_encoder(config->save_connector_encoders[count++]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool | 
|  | is_crtc_connector_off(struct drm_mode_set *set) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (set->num_connectors == 0) | 
|  | return false; | 
|  |  | 
|  | if (WARN_ON(set->connectors == NULL)) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < set->num_connectors; i++) | 
|  | if (set->connectors[i]->encoder && | 
|  | set->connectors[i]->encoder->crtc == set->crtc && | 
|  | set->connectors[i]->dpms != DRM_MODE_DPMS_ON) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_set_config_compute_mode_changes(struct drm_mode_set *set, | 
|  | struct intel_set_config *config) | 
|  | { | 
|  |  | 
|  | /* We should be able to check here if the fb has the same properties | 
|  | * and then just flip_or_move it */ | 
|  | if (is_crtc_connector_off(set)) { | 
|  | config->mode_changed = true; | 
|  | } else if (set->crtc->primary->fb != set->fb) { | 
|  | /* | 
|  | * If we have no fb, we can only flip as long as the crtc is | 
|  | * active, otherwise we need a full mode set.  The crtc may | 
|  | * be active if we've only disabled the primary plane, or | 
|  | * in fastboot situations. | 
|  | */ | 
|  | if (set->crtc->primary->fb == NULL) { | 
|  | struct intel_crtc *intel_crtc = | 
|  | to_intel_crtc(set->crtc); | 
|  |  | 
|  | if (intel_crtc->active) { | 
|  | DRM_DEBUG_KMS("crtc has no fb, will flip\n"); | 
|  | config->fb_changed = true; | 
|  | } else { | 
|  | DRM_DEBUG_KMS("inactive crtc, full mode set\n"); | 
|  | config->mode_changed = true; | 
|  | } | 
|  | } else if (set->fb == NULL) { | 
|  | config->mode_changed = true; | 
|  | } else if (set->fb->pixel_format != | 
|  | set->crtc->primary->fb->pixel_format) { | 
|  | config->mode_changed = true; | 
|  | } else { | 
|  | config->fb_changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y)) | 
|  | config->fb_changed = true; | 
|  |  | 
|  | if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) { | 
|  | DRM_DEBUG_KMS("modes are different, full mode set\n"); | 
|  | drm_mode_debug_printmodeline(&set->crtc->mode); | 
|  | drm_mode_debug_printmodeline(set->mode); | 
|  | config->mode_changed = true; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n", | 
|  | set->crtc->base.id, config->mode_changed, config->fb_changed); | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_modeset_stage_output_state(struct drm_device *dev, | 
|  | struct drm_mode_set *set, | 
|  | struct intel_set_config *config) | 
|  | { | 
|  | struct intel_connector *connector; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_crtc *crtc; | 
|  | int ro; | 
|  |  | 
|  | /* The upper layers ensure that we either disable a crtc or have a list | 
|  | * of connectors. For paranoia, double-check this. */ | 
|  | WARN_ON(!set->fb && (set->num_connectors != 0)); | 
|  | WARN_ON(set->fb && (set->num_connectors == 0)); | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | /* Otherwise traverse passed in connector list and get encoders | 
|  | * for them. */ | 
|  | for (ro = 0; ro < set->num_connectors; ro++) { | 
|  | if (set->connectors[ro] == &connector->base) { | 
|  | connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we disable the crtc, disable all its connectors. Also, if | 
|  | * the connector is on the changing crtc but not on the new | 
|  | * connector list, disable it. */ | 
|  | if ((!set->fb || ro == set->num_connectors) && | 
|  | connector->base.encoder && | 
|  | connector->base.encoder->crtc == set->crtc) { | 
|  | connector->new_encoder = NULL; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n", | 
|  | connector->base.base.id, | 
|  | connector->base.name); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (&connector->new_encoder->base != connector->base.encoder) { | 
|  | DRM_DEBUG_KMS("encoder changed, full mode switch\n"); | 
|  | config->mode_changed = true; | 
|  | } | 
|  | } | 
|  | /* connector->new_encoder is now updated for all connectors. */ | 
|  |  | 
|  | /* Update crtc of enabled connectors. */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | struct drm_crtc *new_crtc; | 
|  |  | 
|  | if (!connector->new_encoder) | 
|  | continue; | 
|  |  | 
|  | new_crtc = connector->new_encoder->base.crtc; | 
|  |  | 
|  | for (ro = 0; ro < set->num_connectors; ro++) { | 
|  | if (set->connectors[ro] == &connector->base) | 
|  | new_crtc = set->crtc; | 
|  | } | 
|  |  | 
|  | /* Make sure the new CRTC will work with the encoder */ | 
|  | if (!drm_encoder_crtc_ok(&connector->new_encoder->base, | 
|  | new_crtc)) { | 
|  | return -EINVAL; | 
|  | } | 
|  | connector->new_encoder->new_crtc = to_intel_crtc(new_crtc); | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n", | 
|  | connector->base.base.id, | 
|  | connector->base.name, | 
|  | new_crtc->base.id); | 
|  | } | 
|  |  | 
|  | /* Check for any encoders that needs to be disabled. */ | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | int num_connectors = 0; | 
|  | list_for_each_entry(connector, | 
|  | &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->new_encoder == encoder) { | 
|  | WARN_ON(!connector->new_encoder->new_crtc); | 
|  | num_connectors++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (num_connectors == 0) | 
|  | encoder->new_crtc = NULL; | 
|  | else if (num_connectors > 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Only now check for crtc changes so we don't miss encoders | 
|  | * that will be disabled. */ | 
|  | if (&encoder->new_crtc->base != encoder->base.crtc) { | 
|  | DRM_DEBUG_KMS("crtc changed, full mode switch\n"); | 
|  | config->mode_changed = true; | 
|  | } | 
|  | } | 
|  | /* Now we've also updated encoder->new_crtc for all encoders. */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->new_encoder) | 
|  | if (connector->new_encoder != connector->encoder) | 
|  | connector->encoder = connector->new_encoder; | 
|  | } | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | crtc->new_enabled = false; | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | if (encoder->new_crtc == crtc) { | 
|  | crtc->new_enabled = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (crtc->new_enabled != crtc->base.enabled) { | 
|  | DRM_DEBUG_KMS("crtc %sabled, full mode switch\n", | 
|  | crtc->new_enabled ? "en" : "dis"); | 
|  | config->mode_changed = true; | 
|  | } | 
|  |  | 
|  | if (crtc->new_enabled) | 
|  | crtc->new_config = &crtc->config; | 
|  | else | 
|  | crtc->new_config = NULL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void disable_crtc_nofb(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  |  | 
|  | DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n", | 
|  | pipe_name(crtc->pipe)); | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { | 
|  | if (connector->new_encoder && | 
|  | connector->new_encoder->new_crtc == crtc) | 
|  | connector->new_encoder = NULL; | 
|  | } | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | if (encoder->new_crtc == crtc) | 
|  | encoder->new_crtc = NULL; | 
|  | } | 
|  |  | 
|  | crtc->new_enabled = false; | 
|  | crtc->new_config = NULL; | 
|  | } | 
|  |  | 
|  | static int intel_crtc_set_config(struct drm_mode_set *set) | 
|  | { | 
|  | struct drm_device *dev; | 
|  | struct drm_mode_set save_set; | 
|  | struct intel_set_config *config; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!set); | 
|  | BUG_ON(!set->crtc); | 
|  | BUG_ON(!set->crtc->helper_private); | 
|  |  | 
|  | /* Enforce sane interface api - has been abused by the fb helper. */ | 
|  | BUG_ON(!set->mode && set->fb); | 
|  | BUG_ON(set->fb && set->num_connectors == 0); | 
|  |  | 
|  | if (set->fb) { | 
|  | DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n", | 
|  | set->crtc->base.id, set->fb->base.id, | 
|  | (int)set->num_connectors, set->x, set->y); | 
|  | } else { | 
|  | DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id); | 
|  | } | 
|  |  | 
|  | dev = set->crtc->dev; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | config = kzalloc(sizeof(*config), GFP_KERNEL); | 
|  | if (!config) | 
|  | goto out_config; | 
|  |  | 
|  | ret = intel_set_config_save_state(dev, config); | 
|  | if (ret) | 
|  | goto out_config; | 
|  |  | 
|  | save_set.crtc = set->crtc; | 
|  | save_set.mode = &set->crtc->mode; | 
|  | save_set.x = set->crtc->x; | 
|  | save_set.y = set->crtc->y; | 
|  | save_set.fb = set->crtc->primary->fb; | 
|  |  | 
|  | /* Compute whether we need a full modeset, only an fb base update or no | 
|  | * change at all. In the future we might also check whether only the | 
|  | * mode changed, e.g. for LVDS where we only change the panel fitter in | 
|  | * such cases. */ | 
|  | intel_set_config_compute_mode_changes(set, config); | 
|  |  | 
|  | ret = intel_modeset_stage_output_state(dev, set, config); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | if (config->mode_changed) { | 
|  | ret = intel_set_mode(set->crtc, set->mode, | 
|  | set->x, set->y, set->fb); | 
|  | } else if (config->fb_changed) { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc); | 
|  |  | 
|  | intel_crtc_wait_for_pending_flips(set->crtc); | 
|  |  | 
|  | ret = intel_pipe_set_base(set->crtc, | 
|  | set->x, set->y, set->fb); | 
|  |  | 
|  | /* | 
|  | * We need to make sure the primary plane is re-enabled if it | 
|  | * has previously been turned off. | 
|  | */ | 
|  | if (!intel_crtc->primary_enabled && ret == 0) { | 
|  | WARN_ON(!intel_crtc->active); | 
|  | intel_enable_primary_hw_plane(set->crtc->primary, set->crtc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the fastboot case this may be our only check of the | 
|  | * state after boot.  It would be better to only do it on | 
|  | * the first update, but we don't have a nice way of doing that | 
|  | * (and really, set_config isn't used much for high freq page | 
|  | * flipping, so increasing its cost here shouldn't be a big | 
|  | * deal). | 
|  | */ | 
|  | if (i915.fastboot && ret == 0) | 
|  | intel_modeset_check_state(set->crtc->dev); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n", | 
|  | set->crtc->base.id, ret); | 
|  | fail: | 
|  | intel_set_config_restore_state(dev, config); | 
|  |  | 
|  | /* | 
|  | * HACK: if the pipe was on, but we didn't have a framebuffer, | 
|  | * force the pipe off to avoid oopsing in the modeset code | 
|  | * due to fb==NULL. This should only happen during boot since | 
|  | * we don't yet reconstruct the FB from the hardware state. | 
|  | */ | 
|  | if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb) | 
|  | disable_crtc_nofb(to_intel_crtc(save_set.crtc)); | 
|  |  | 
|  | /* Try to restore the config */ | 
|  | if (config->mode_changed && | 
|  | intel_set_mode(save_set.crtc, save_set.mode, | 
|  | save_set.x, save_set.y, save_set.fb)) | 
|  | DRM_ERROR("failed to restore config after modeset failure\n"); | 
|  | } | 
|  |  | 
|  | out_config: | 
|  | intel_set_config_free(config); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct drm_crtc_funcs intel_crtc_funcs = { | 
|  | .gamma_set = intel_crtc_gamma_set, | 
|  | .set_config = intel_crtc_set_config, | 
|  | .destroy = intel_crtc_destroy, | 
|  | .page_flip = intel_crtc_page_flip, | 
|  | }; | 
|  |  | 
|  | static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv, | 
|  | struct intel_shared_dpll *pll, | 
|  | struct intel_dpll_hw_state *hw_state) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS)) | 
|  | return false; | 
|  |  | 
|  | val = I915_READ(PCH_DPLL(pll->id)); | 
|  | hw_state->dpll = val; | 
|  | hw_state->fp0 = I915_READ(PCH_FP0(pll->id)); | 
|  | hw_state->fp1 = I915_READ(PCH_FP1(pll->id)); | 
|  |  | 
|  | return val & DPLL_VCO_ENABLE; | 
|  | } | 
|  |  | 
|  | static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv, | 
|  | struct intel_shared_dpll *pll) | 
|  | { | 
|  | I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0); | 
|  | I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1); | 
|  | } | 
|  |  | 
|  | static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv, | 
|  | struct intel_shared_dpll *pll) | 
|  | { | 
|  | /* PCH refclock must be enabled first */ | 
|  | ibx_assert_pch_refclk_enabled(dev_priv); | 
|  |  | 
|  | I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll); | 
|  |  | 
|  | /* Wait for the clocks to stabilize. */ | 
|  | POSTING_READ(PCH_DPLL(pll->id)); | 
|  | udelay(150); | 
|  |  | 
|  | /* The pixel multiplier can only be updated once the | 
|  | * DPLL is enabled and the clocks are stable. | 
|  | * | 
|  | * So write it again. | 
|  | */ | 
|  | I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll); | 
|  | POSTING_READ(PCH_DPLL(pll->id)); | 
|  | udelay(200); | 
|  | } | 
|  |  | 
|  | static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv, | 
|  | struct intel_shared_dpll *pll) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | struct intel_crtc *crtc; | 
|  |  | 
|  | /* Make sure no transcoder isn't still depending on us. */ | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | if (intel_crtc_to_shared_dpll(crtc) == pll) | 
|  | assert_pch_transcoder_disabled(dev_priv, crtc->pipe); | 
|  | } | 
|  |  | 
|  | I915_WRITE(PCH_DPLL(pll->id), 0); | 
|  | POSTING_READ(PCH_DPLL(pll->id)); | 
|  | udelay(200); | 
|  | } | 
|  |  | 
|  | static char *ibx_pch_dpll_names[] = { | 
|  | "PCH DPLL A", | 
|  | "PCH DPLL B", | 
|  | }; | 
|  |  | 
|  | static void ibx_pch_dpll_init(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int i; | 
|  |  | 
|  | dev_priv->num_shared_dpll = 2; | 
|  |  | 
|  | for (i = 0; i < dev_priv->num_shared_dpll; i++) { | 
|  | dev_priv->shared_dplls[i].id = i; | 
|  | dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i]; | 
|  | dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set; | 
|  | dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable; | 
|  | dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable; | 
|  | dev_priv->shared_dplls[i].get_hw_state = | 
|  | ibx_pch_dpll_get_hw_state; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_shared_dpll_init(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (HAS_DDI(dev)) | 
|  | intel_ddi_pll_init(dev); | 
|  | else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) | 
|  | ibx_pch_dpll_init(dev); | 
|  | else | 
|  | dev_priv->num_shared_dpll = 0; | 
|  |  | 
|  | BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS); | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_primary_plane_disable(struct drm_plane *plane) | 
|  | { | 
|  | struct drm_device *dev = plane->dev; | 
|  | struct intel_crtc *intel_crtc; | 
|  |  | 
|  | if (!plane->fb) | 
|  | return 0; | 
|  |  | 
|  | BUG_ON(!plane->crtc); | 
|  |  | 
|  | intel_crtc = to_intel_crtc(plane->crtc); | 
|  |  | 
|  | /* | 
|  | * Even though we checked plane->fb above, it's still possible that | 
|  | * the primary plane has been implicitly disabled because the crtc | 
|  | * coordinates given weren't visible, or because we detected | 
|  | * that it was 100% covered by a sprite plane.  Or, the CRTC may be | 
|  | * off and we've set a fb, but haven't actually turned on the CRTC yet. | 
|  | * In either case, we need to unpin the FB and let the fb pointer get | 
|  | * updated, but otherwise we don't need to touch the hardware. | 
|  | */ | 
|  | if (!intel_crtc->primary_enabled) | 
|  | goto disable_unpin; | 
|  |  | 
|  | intel_crtc_wait_for_pending_flips(plane->crtc); | 
|  | intel_disable_primary_hw_plane(plane, plane->crtc); | 
|  |  | 
|  | disable_unpin: | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | i915_gem_track_fb(intel_fb_obj(plane->fb), NULL, | 
|  | INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe)); | 
|  | intel_unpin_fb_obj(intel_fb_obj(plane->fb)); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | plane->fb = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, int crtc_x, int crtc_y, | 
|  | unsigned int crtc_w, unsigned int crtc_h, | 
|  | uint32_t src_x, uint32_t src_y, | 
|  | uint32_t src_w, uint32_t src_h) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct drm_i915_gem_object *obj = intel_fb_obj(fb); | 
|  | struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb); | 
|  | struct drm_rect dest = { | 
|  | /* integer pixels */ | 
|  | .x1 = crtc_x, | 
|  | .y1 = crtc_y, | 
|  | .x2 = crtc_x + crtc_w, | 
|  | .y2 = crtc_y + crtc_h, | 
|  | }; | 
|  | struct drm_rect src = { | 
|  | /* 16.16 fixed point */ | 
|  | .x1 = src_x, | 
|  | .y1 = src_y, | 
|  | .x2 = src_x + src_w, | 
|  | .y2 = src_y + src_h, | 
|  | }; | 
|  | const struct drm_rect clip = { | 
|  | /* integer pixels */ | 
|  | .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0, | 
|  | .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0, | 
|  | }; | 
|  | const struct { | 
|  | int crtc_x, crtc_y; | 
|  | unsigned int crtc_w, crtc_h; | 
|  | uint32_t src_x, src_y, src_w, src_h; | 
|  | } orig = { | 
|  | .crtc_x = crtc_x, | 
|  | .crtc_y = crtc_y, | 
|  | .crtc_w = crtc_w, | 
|  | .crtc_h = crtc_h, | 
|  | .src_x = src_x, | 
|  | .src_y = src_y, | 
|  | .src_w = src_w, | 
|  | .src_h = src_h, | 
|  | }; | 
|  | struct intel_plane *intel_plane = to_intel_plane(plane); | 
|  | bool visible; | 
|  | int ret; | 
|  |  | 
|  | ret = drm_plane_helper_check_update(plane, crtc, fb, | 
|  | &src, &dest, &clip, | 
|  | DRM_PLANE_HELPER_NO_SCALING, | 
|  | DRM_PLANE_HELPER_NO_SCALING, | 
|  | false, true, &visible); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If the CRTC isn't enabled, we're just pinning the framebuffer, | 
|  | * updating the fb pointer, and returning without touching the | 
|  | * hardware.  This allows us to later do a drmModeSetCrtc with fb=-1 to | 
|  | * turn on the display with all planes setup as desired. | 
|  | */ | 
|  | if (!crtc->enabled) { | 
|  | mutex_lock(&dev->struct_mutex); | 
|  |  | 
|  | /* | 
|  | * If we already called setplane while the crtc was disabled, | 
|  | * we may have an fb pinned; unpin it. | 
|  | */ | 
|  | if (plane->fb) | 
|  | intel_unpin_fb_obj(old_obj); | 
|  |  | 
|  | i915_gem_track_fb(old_obj, obj, | 
|  | INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe)); | 
|  |  | 
|  | /* Pin and return without programming hardware */ | 
|  | ret = intel_pin_and_fence_fb_obj(dev, obj, NULL); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | intel_crtc_wait_for_pending_flips(crtc); | 
|  |  | 
|  | /* | 
|  | * If clipping results in a non-visible primary plane, we'll disable | 
|  | * the primary plane.  Note that this is a bit different than what | 
|  | * happens if userspace explicitly disables the plane by passing fb=0 | 
|  | * because plane->fb still gets set and pinned. | 
|  | */ | 
|  | if (!visible) { | 
|  | mutex_lock(&dev->struct_mutex); | 
|  |  | 
|  | /* | 
|  | * Try to pin the new fb first so that we can bail out if we | 
|  | * fail. | 
|  | */ | 
|  | if (plane->fb != fb) { | 
|  | ret = intel_pin_and_fence_fb_obj(dev, obj, NULL); | 
|  | if (ret) { | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | i915_gem_track_fb(old_obj, obj, | 
|  | INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe)); | 
|  |  | 
|  | if (intel_crtc->primary_enabled) | 
|  | intel_disable_primary_hw_plane(plane, crtc); | 
|  |  | 
|  |  | 
|  | if (plane->fb != fb) | 
|  | if (plane->fb) | 
|  | intel_unpin_fb_obj(old_obj); | 
|  |  | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | } else { | 
|  | if (intel_crtc && intel_crtc->active && | 
|  | intel_crtc->primary_enabled) { | 
|  | /* | 
|  | * FBC does not work on some platforms for rotated | 
|  | * planes, so disable it when rotation is not 0 and | 
|  | * update it when rotation is set back to 0. | 
|  | * | 
|  | * FIXME: This is redundant with the fbc update done in | 
|  | * the primary plane enable function except that that | 
|  | * one is done too late. We eventually need to unify | 
|  | * this. | 
|  | */ | 
|  | if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) && | 
|  | dev_priv->fbc.plane == intel_crtc->plane && | 
|  | intel_plane->rotation != BIT(DRM_ROTATE_0)) { | 
|  | intel_disable_fbc(dev); | 
|  | } | 
|  | } | 
|  | ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!intel_crtc->primary_enabled) | 
|  | intel_enable_primary_hw_plane(plane, crtc); | 
|  | } | 
|  |  | 
|  | intel_plane->crtc_x = orig.crtc_x; | 
|  | intel_plane->crtc_y = orig.crtc_y; | 
|  | intel_plane->crtc_w = orig.crtc_w; | 
|  | intel_plane->crtc_h = orig.crtc_h; | 
|  | intel_plane->src_x = orig.src_x; | 
|  | intel_plane->src_y = orig.src_y; | 
|  | intel_plane->src_w = orig.src_w; | 
|  | intel_plane->src_h = orig.src_h; | 
|  | intel_plane->obj = obj; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Common destruction function for both primary and cursor planes */ | 
|  | static void intel_plane_destroy(struct drm_plane *plane) | 
|  | { | 
|  | struct intel_plane *intel_plane = to_intel_plane(plane); | 
|  | drm_plane_cleanup(plane); | 
|  | kfree(intel_plane); | 
|  | } | 
|  |  | 
|  | static const struct drm_plane_funcs intel_primary_plane_funcs = { | 
|  | .update_plane = intel_primary_plane_setplane, | 
|  | .disable_plane = intel_primary_plane_disable, | 
|  | .destroy = intel_plane_destroy, | 
|  | .set_property = intel_plane_set_property | 
|  | }; | 
|  |  | 
|  | static struct drm_plane *intel_primary_plane_create(struct drm_device *dev, | 
|  | int pipe) | 
|  | { | 
|  | struct intel_plane *primary; | 
|  | const uint32_t *intel_primary_formats; | 
|  | int num_formats; | 
|  |  | 
|  | primary = kzalloc(sizeof(*primary), GFP_KERNEL); | 
|  | if (primary == NULL) | 
|  | return NULL; | 
|  |  | 
|  | primary->can_scale = false; | 
|  | primary->max_downscale = 1; | 
|  | primary->pipe = pipe; | 
|  | primary->plane = pipe; | 
|  | primary->rotation = BIT(DRM_ROTATE_0); | 
|  | if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) | 
|  | primary->plane = !pipe; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen <= 3) { | 
|  | intel_primary_formats = intel_primary_formats_gen2; | 
|  | num_formats = ARRAY_SIZE(intel_primary_formats_gen2); | 
|  | } else { | 
|  | intel_primary_formats = intel_primary_formats_gen4; | 
|  | num_formats = ARRAY_SIZE(intel_primary_formats_gen4); | 
|  | } | 
|  |  | 
|  | drm_universal_plane_init(dev, &primary->base, 0, | 
|  | &intel_primary_plane_funcs, | 
|  | intel_primary_formats, num_formats, | 
|  | DRM_PLANE_TYPE_PRIMARY); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | if (!dev->mode_config.rotation_property) | 
|  | dev->mode_config.rotation_property = | 
|  | drm_mode_create_rotation_property(dev, | 
|  | BIT(DRM_ROTATE_0) | | 
|  | BIT(DRM_ROTATE_180)); | 
|  | if (dev->mode_config.rotation_property) | 
|  | drm_object_attach_property(&primary->base.base, | 
|  | dev->mode_config.rotation_property, | 
|  | primary->rotation); | 
|  | } | 
|  |  | 
|  | return &primary->base; | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_cursor_plane_disable(struct drm_plane *plane) | 
|  | { | 
|  | if (!plane->fb) | 
|  | return 0; | 
|  |  | 
|  | BUG_ON(!plane->crtc); | 
|  |  | 
|  | return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0); | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, int crtc_x, int crtc_y, | 
|  | unsigned int crtc_w, unsigned int crtc_h, | 
|  | uint32_t src_x, uint32_t src_y, | 
|  | uint32_t src_w, uint32_t src_h) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); | 
|  | struct drm_i915_gem_object *obj = intel_fb->obj; | 
|  | struct drm_rect dest = { | 
|  | /* integer pixels */ | 
|  | .x1 = crtc_x, | 
|  | .y1 = crtc_y, | 
|  | .x2 = crtc_x + crtc_w, | 
|  | .y2 = crtc_y + crtc_h, | 
|  | }; | 
|  | struct drm_rect src = { | 
|  | /* 16.16 fixed point */ | 
|  | .x1 = src_x, | 
|  | .y1 = src_y, | 
|  | .x2 = src_x + src_w, | 
|  | .y2 = src_y + src_h, | 
|  | }; | 
|  | const struct drm_rect clip = { | 
|  | /* integer pixels */ | 
|  | .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0, | 
|  | .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0, | 
|  | }; | 
|  | bool visible; | 
|  | int ret; | 
|  |  | 
|  | ret = drm_plane_helper_check_update(plane, crtc, fb, | 
|  | &src, &dest, &clip, | 
|  | DRM_PLANE_HELPER_NO_SCALING, | 
|  | DRM_PLANE_HELPER_NO_SCALING, | 
|  | true, true, &visible); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | crtc->cursor_x = crtc_x; | 
|  | crtc->cursor_y = crtc_y; | 
|  | if (fb != crtc->cursor->fb) { | 
|  | return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h); | 
|  | } else { | 
|  | intel_crtc_update_cursor(crtc, visible); | 
|  |  | 
|  | intel_frontbuffer_flip(crtc->dev, | 
|  | INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | static const struct drm_plane_funcs intel_cursor_plane_funcs = { | 
|  | .update_plane = intel_cursor_plane_update, | 
|  | .disable_plane = intel_cursor_plane_disable, | 
|  | .destroy = intel_plane_destroy, | 
|  | }; | 
|  |  | 
|  | static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev, | 
|  | int pipe) | 
|  | { | 
|  | struct intel_plane *cursor; | 
|  |  | 
|  | cursor = kzalloc(sizeof(*cursor), GFP_KERNEL); | 
|  | if (cursor == NULL) | 
|  | return NULL; | 
|  |  | 
|  | cursor->can_scale = false; | 
|  | cursor->max_downscale = 1; | 
|  | cursor->pipe = pipe; | 
|  | cursor->plane = pipe; | 
|  |  | 
|  | drm_universal_plane_init(dev, &cursor->base, 0, | 
|  | &intel_cursor_plane_funcs, | 
|  | intel_cursor_formats, | 
|  | ARRAY_SIZE(intel_cursor_formats), | 
|  | DRM_PLANE_TYPE_CURSOR); | 
|  | return &cursor->base; | 
|  | } | 
|  |  | 
|  | static void intel_crtc_init(struct drm_device *dev, int pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc; | 
|  | struct drm_plane *primary = NULL; | 
|  | struct drm_plane *cursor = NULL; | 
|  | int i, ret; | 
|  |  | 
|  | intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL); | 
|  | if (intel_crtc == NULL) | 
|  | return; | 
|  |  | 
|  | primary = intel_primary_plane_create(dev, pipe); | 
|  | if (!primary) | 
|  | goto fail; | 
|  |  | 
|  | cursor = intel_cursor_plane_create(dev, pipe); | 
|  | if (!cursor) | 
|  | goto fail; | 
|  |  | 
|  | ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary, | 
|  | cursor, &intel_crtc_funcs); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256); | 
|  | for (i = 0; i < 256; i++) { | 
|  | intel_crtc->lut_r[i] = i; | 
|  | intel_crtc->lut_g[i] = i; | 
|  | intel_crtc->lut_b[i] = i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port | 
|  | * is hooked to pipe B. Hence we want plane A feeding pipe B. | 
|  | */ | 
|  | intel_crtc->pipe = pipe; | 
|  | intel_crtc->plane = pipe; | 
|  | if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) { | 
|  | DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); | 
|  | intel_crtc->plane = !pipe; | 
|  | } | 
|  |  | 
|  | intel_crtc->cursor_base = ~0; | 
|  | intel_crtc->cursor_cntl = ~0; | 
|  | intel_crtc->cursor_size = ~0; | 
|  |  | 
|  | BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || | 
|  | dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); | 
|  | dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; | 
|  | dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; | 
|  |  | 
|  | drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); | 
|  |  | 
|  | WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); | 
|  | return; | 
|  |  | 
|  | fail: | 
|  | if (primary) | 
|  | drm_plane_cleanup(primary); | 
|  | if (cursor) | 
|  | drm_plane_cleanup(cursor); | 
|  | kfree(intel_crtc); | 
|  | } | 
|  |  | 
|  | enum pipe intel_get_pipe_from_connector(struct intel_connector *connector) | 
|  | { | 
|  | struct drm_encoder *encoder = connector->base.encoder; | 
|  | struct drm_device *dev = connector->base.dev; | 
|  |  | 
|  | WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); | 
|  |  | 
|  | if (!encoder) | 
|  | return INVALID_PIPE; | 
|  |  | 
|  | return to_intel_crtc(encoder->crtc)->pipe; | 
|  | } | 
|  |  | 
|  | int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, | 
|  | struct drm_file *file) | 
|  | { | 
|  | struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; | 
|  | struct drm_crtc *drmmode_crtc; | 
|  | struct intel_crtc *crtc; | 
|  |  | 
|  | if (!drm_core_check_feature(dev, DRIVER_MODESET)) | 
|  | return -ENODEV; | 
|  |  | 
|  | drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id); | 
|  |  | 
|  | if (!drmmode_crtc) { | 
|  | DRM_ERROR("no such CRTC id\n"); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | crtc = to_intel_crtc(drmmode_crtc); | 
|  | pipe_from_crtc_id->pipe = crtc->pipe; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_encoder_clones(struct intel_encoder *encoder) | 
|  | { | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct intel_encoder *source_encoder; | 
|  | int index_mask = 0; | 
|  | int entry = 0; | 
|  |  | 
|  | for_each_intel_encoder(dev, source_encoder) { | 
|  | if (encoders_cloneable(encoder, source_encoder)) | 
|  | index_mask |= (1 << entry); | 
|  |  | 
|  | entry++; | 
|  | } | 
|  |  | 
|  | return index_mask; | 
|  | } | 
|  |  | 
|  | static bool has_edp_a(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (!IS_MOBILE(dev)) | 
|  | return false; | 
|  |  | 
|  | if ((I915_READ(DP_A) & DP_DETECTED) == 0) | 
|  | return false; | 
|  |  | 
|  | if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const char *intel_output_name(int output) | 
|  | { | 
|  | static const char *names[] = { | 
|  | [INTEL_OUTPUT_UNUSED] = "Unused", | 
|  | [INTEL_OUTPUT_ANALOG] = "Analog", | 
|  | [INTEL_OUTPUT_DVO] = "DVO", | 
|  | [INTEL_OUTPUT_SDVO] = "SDVO", | 
|  | [INTEL_OUTPUT_LVDS] = "LVDS", | 
|  | [INTEL_OUTPUT_TVOUT] = "TV", | 
|  | [INTEL_OUTPUT_HDMI] = "HDMI", | 
|  | [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort", | 
|  | [INTEL_OUTPUT_EDP] = "eDP", | 
|  | [INTEL_OUTPUT_DSI] = "DSI", | 
|  | [INTEL_OUTPUT_UNKNOWN] = "Unknown", | 
|  | }; | 
|  |  | 
|  | if (output < 0 || output >= ARRAY_SIZE(names) || !names[output]) | 
|  | return "Invalid"; | 
|  |  | 
|  | return names[output]; | 
|  | } | 
|  |  | 
|  | static bool intel_crt_present(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (IS_ULT(dev)) | 
|  | return false; | 
|  |  | 
|  | if (IS_CHERRYVIEW(dev)) | 
|  | return false; | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void intel_setup_outputs(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *encoder; | 
|  | bool dpd_is_edp = false; | 
|  |  | 
|  | intel_lvds_init(dev); | 
|  |  | 
|  | if (intel_crt_present(dev)) | 
|  | intel_crt_init(dev); | 
|  |  | 
|  | if (HAS_DDI(dev)) { | 
|  | int found; | 
|  |  | 
|  | /* Haswell uses DDI functions to detect digital outputs */ | 
|  | found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED; | 
|  | /* DDI A only supports eDP */ | 
|  | if (found) | 
|  | intel_ddi_init(dev, PORT_A); | 
|  |  | 
|  | /* DDI B, C and D detection is indicated by the SFUSE_STRAP | 
|  | * register */ | 
|  | found = I915_READ(SFUSE_STRAP); | 
|  |  | 
|  | if (found & SFUSE_STRAP_DDIB_DETECTED) | 
|  | intel_ddi_init(dev, PORT_B); | 
|  | if (found & SFUSE_STRAP_DDIC_DETECTED) | 
|  | intel_ddi_init(dev, PORT_C); | 
|  | if (found & SFUSE_STRAP_DDID_DETECTED) | 
|  | intel_ddi_init(dev, PORT_D); | 
|  | } else if (HAS_PCH_SPLIT(dev)) { | 
|  | int found; | 
|  | dpd_is_edp = intel_dp_is_edp(dev, PORT_D); | 
|  |  | 
|  | if (has_edp_a(dev)) | 
|  | intel_dp_init(dev, DP_A, PORT_A); | 
|  |  | 
|  | if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) { | 
|  | /* PCH SDVOB multiplex with HDMIB */ | 
|  | found = intel_sdvo_init(dev, PCH_SDVOB, true); | 
|  | if (!found) | 
|  | intel_hdmi_init(dev, PCH_HDMIB, PORT_B); | 
|  | if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) | 
|  | intel_dp_init(dev, PCH_DP_B, PORT_B); | 
|  | } | 
|  |  | 
|  | if (I915_READ(PCH_HDMIC) & SDVO_DETECTED) | 
|  | intel_hdmi_init(dev, PCH_HDMIC, PORT_C); | 
|  |  | 
|  | if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED) | 
|  | intel_hdmi_init(dev, PCH_HDMID, PORT_D); | 
|  |  | 
|  | if (I915_READ(PCH_DP_C) & DP_DETECTED) | 
|  | intel_dp_init(dev, PCH_DP_C, PORT_C); | 
|  |  | 
|  | if (I915_READ(PCH_DP_D) & DP_DETECTED) | 
|  | intel_dp_init(dev, PCH_DP_D, PORT_D); | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | /* | 
|  | * The DP_DETECTED bit is the latched state of the DDC | 
|  | * SDA pin at boot. However since eDP doesn't require DDC | 
|  | * (no way to plug in a DP->HDMI dongle) the DDC pins for | 
|  | * eDP ports may have been muxed to an alternate function. | 
|  | * Thus we can't rely on the DP_DETECTED bit alone to detect | 
|  | * eDP ports. Consult the VBT as well as DP_DETECTED to | 
|  | * detect eDP ports. | 
|  | */ | 
|  | if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) | 
|  | intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB, | 
|  | PORT_B); | 
|  | if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED || | 
|  | intel_dp_is_edp(dev, PORT_B)) | 
|  | intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B); | 
|  |  | 
|  | if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) | 
|  | intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC, | 
|  | PORT_C); | 
|  | if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED || | 
|  | intel_dp_is_edp(dev, PORT_C)) | 
|  | intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C); | 
|  |  | 
|  | if (IS_CHERRYVIEW(dev)) { | 
|  | if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) | 
|  | intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID, | 
|  | PORT_D); | 
|  | /* eDP not supported on port D, so don't check VBT */ | 
|  | if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED) | 
|  | intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D); | 
|  | } | 
|  |  | 
|  | intel_dsi_init(dev); | 
|  | } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) { | 
|  | bool found = false; | 
|  |  | 
|  | if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { | 
|  | DRM_DEBUG_KMS("probing SDVOB\n"); | 
|  | found = intel_sdvo_init(dev, GEN3_SDVOB, true); | 
|  | if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) { | 
|  | DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); | 
|  | intel_hdmi_init(dev, GEN4_HDMIB, PORT_B); | 
|  | } | 
|  |  | 
|  | if (!found && SUPPORTS_INTEGRATED_DP(dev)) | 
|  | intel_dp_init(dev, DP_B, PORT_B); | 
|  | } | 
|  |  | 
|  | /* Before G4X SDVOC doesn't have its own detect register */ | 
|  |  | 
|  | if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { | 
|  | DRM_DEBUG_KMS("probing SDVOC\n"); | 
|  | found = intel_sdvo_init(dev, GEN3_SDVOC, false); | 
|  | } | 
|  |  | 
|  | if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) { | 
|  |  | 
|  | if (SUPPORTS_INTEGRATED_HDMI(dev)) { | 
|  | DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); | 
|  | intel_hdmi_init(dev, GEN4_HDMIC, PORT_C); | 
|  | } | 
|  | if (SUPPORTS_INTEGRATED_DP(dev)) | 
|  | intel_dp_init(dev, DP_C, PORT_C); | 
|  | } | 
|  |  | 
|  | if (SUPPORTS_INTEGRATED_DP(dev) && | 
|  | (I915_READ(DP_D) & DP_DETECTED)) | 
|  | intel_dp_init(dev, DP_D, PORT_D); | 
|  | } else if (IS_GEN2(dev)) | 
|  | intel_dvo_init(dev); | 
|  |  | 
|  | if (SUPPORTS_TV(dev)) | 
|  | intel_tv_init(dev); | 
|  |  | 
|  | intel_edp_psr_init(dev); | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | encoder->base.possible_crtcs = encoder->crtc_mask; | 
|  | encoder->base.possible_clones = | 
|  | intel_encoder_clones(encoder); | 
|  | } | 
|  |  | 
|  | intel_init_pch_refclk(dev); | 
|  |  | 
|  | drm_helper_move_panel_connectors_to_head(dev); | 
|  | } | 
|  |  | 
|  | static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = fb->dev; | 
|  | struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); | 
|  |  | 
|  | drm_framebuffer_cleanup(fb); | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | WARN_ON(!intel_fb->obj->framebuffer_references--); | 
|  | drm_gem_object_unreference(&intel_fb->obj->base); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | kfree(intel_fb); | 
|  | } | 
|  |  | 
|  | static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, | 
|  | struct drm_file *file, | 
|  | unsigned int *handle) | 
|  | { | 
|  | struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); | 
|  | struct drm_i915_gem_object *obj = intel_fb->obj; | 
|  |  | 
|  | return drm_gem_handle_create(file, &obj->base, handle); | 
|  | } | 
|  |  | 
|  | static const struct drm_framebuffer_funcs intel_fb_funcs = { | 
|  | .destroy = intel_user_framebuffer_destroy, | 
|  | .create_handle = intel_user_framebuffer_create_handle, | 
|  | }; | 
|  |  | 
|  | static int intel_framebuffer_init(struct drm_device *dev, | 
|  | struct intel_framebuffer *intel_fb, | 
|  | struct drm_mode_fb_cmd2 *mode_cmd, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | int aligned_height; | 
|  | int pitch_limit; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&dev->struct_mutex)); | 
|  |  | 
|  | if (obj->tiling_mode == I915_TILING_Y) { | 
|  | DRM_DEBUG("hardware does not support tiling Y\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (mode_cmd->pitches[0] & 63) { | 
|  | DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n", | 
|  | mode_cmd->pitches[0]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) { | 
|  | pitch_limit = 32*1024; | 
|  | } else if (INTEL_INFO(dev)->gen >= 4) { | 
|  | if (obj->tiling_mode) | 
|  | pitch_limit = 16*1024; | 
|  | else | 
|  | pitch_limit = 32*1024; | 
|  | } else if (INTEL_INFO(dev)->gen >= 3) { | 
|  | if (obj->tiling_mode) | 
|  | pitch_limit = 8*1024; | 
|  | else | 
|  | pitch_limit = 16*1024; | 
|  | } else | 
|  | /* XXX DSPC is limited to 4k tiled */ | 
|  | pitch_limit = 8*1024; | 
|  |  | 
|  | if (mode_cmd->pitches[0] > pitch_limit) { | 
|  | DRM_DEBUG("%s pitch (%d) must be at less than %d\n", | 
|  | obj->tiling_mode ? "tiled" : "linear", | 
|  | mode_cmd->pitches[0], pitch_limit); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (obj->tiling_mode != I915_TILING_NONE && | 
|  | mode_cmd->pitches[0] != obj->stride) { | 
|  | DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n", | 
|  | mode_cmd->pitches[0], obj->stride); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Reject formats not supported by any plane early. */ | 
|  | switch (mode_cmd->pixel_format) { | 
|  | case DRM_FORMAT_C8: | 
|  | case DRM_FORMAT_RGB565: | 
|  | case DRM_FORMAT_XRGB8888: | 
|  | case DRM_FORMAT_ARGB8888: | 
|  | break; | 
|  | case DRM_FORMAT_XRGB1555: | 
|  | case DRM_FORMAT_ARGB1555: | 
|  | if (INTEL_INFO(dev)->gen > 3) { | 
|  | DRM_DEBUG("unsupported pixel format: %s\n", | 
|  | drm_get_format_name(mode_cmd->pixel_format)); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case DRM_FORMAT_XBGR8888: | 
|  | case DRM_FORMAT_ABGR8888: | 
|  | case DRM_FORMAT_XRGB2101010: | 
|  | case DRM_FORMAT_ARGB2101010: | 
|  | case DRM_FORMAT_XBGR2101010: | 
|  | case DRM_FORMAT_ABGR2101010: | 
|  | if (INTEL_INFO(dev)->gen < 4) { | 
|  | DRM_DEBUG("unsupported pixel format: %s\n", | 
|  | drm_get_format_name(mode_cmd->pixel_format)); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case DRM_FORMAT_YUYV: | 
|  | case DRM_FORMAT_UYVY: | 
|  | case DRM_FORMAT_YVYU: | 
|  | case DRM_FORMAT_VYUY: | 
|  | if (INTEL_INFO(dev)->gen < 5) { | 
|  | DRM_DEBUG("unsupported pixel format: %s\n", | 
|  | drm_get_format_name(mode_cmd->pixel_format)); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | DRM_DEBUG("unsupported pixel format: %s\n", | 
|  | drm_get_format_name(mode_cmd->pixel_format)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ | 
|  | if (mode_cmd->offsets[0] != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | aligned_height = intel_align_height(dev, mode_cmd->height, | 
|  | obj->tiling_mode); | 
|  | /* FIXME drm helper for size checks (especially planar formats)? */ | 
|  | if (obj->base.size < aligned_height * mode_cmd->pitches[0]) | 
|  | return -EINVAL; | 
|  |  | 
|  | drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); | 
|  | intel_fb->obj = obj; | 
|  | intel_fb->obj->framebuffer_references++; | 
|  |  | 
|  | ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); | 
|  | if (ret) { | 
|  | DRM_ERROR("framebuffer init failed %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct drm_framebuffer * | 
|  | intel_user_framebuffer_create(struct drm_device *dev, | 
|  | struct drm_file *filp, | 
|  | struct drm_mode_fb_cmd2 *mode_cmd) | 
|  | { | 
|  | struct drm_i915_gem_object *obj; | 
|  |  | 
|  | obj = to_intel_bo(drm_gem_object_lookup(dev, filp, | 
|  | mode_cmd->handles[0])); | 
|  | if (&obj->base == NULL) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | return intel_framebuffer_create(dev, mode_cmd, obj); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_DRM_I915_FBDEV | 
|  | static inline void intel_fbdev_output_poll_changed(struct drm_device *dev) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct drm_mode_config_funcs intel_mode_funcs = { | 
|  | .fb_create = intel_user_framebuffer_create, | 
|  | .output_poll_changed = intel_fbdev_output_poll_changed, | 
|  | }; | 
|  |  | 
|  | /* Set up chip specific display functions */ | 
|  | static void intel_init_display(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev) || IS_G4X(dev)) | 
|  | dev_priv->display.find_dpll = g4x_find_best_dpll; | 
|  | else if (IS_CHERRYVIEW(dev)) | 
|  | dev_priv->display.find_dpll = chv_find_best_dpll; | 
|  | else if (IS_VALLEYVIEW(dev)) | 
|  | dev_priv->display.find_dpll = vlv_find_best_dpll; | 
|  | else if (IS_PINEVIEW(dev)) | 
|  | dev_priv->display.find_dpll = pnv_find_best_dpll; | 
|  | else | 
|  | dev_priv->display.find_dpll = i9xx_find_best_dpll; | 
|  |  | 
|  | if (HAS_DDI(dev)) { | 
|  | dev_priv->display.get_pipe_config = haswell_get_pipe_config; | 
|  | dev_priv->display.get_plane_config = ironlake_get_plane_config; | 
|  | dev_priv->display.crtc_mode_set = haswell_crtc_mode_set; | 
|  | dev_priv->display.crtc_enable = haswell_crtc_enable; | 
|  | dev_priv->display.crtc_disable = haswell_crtc_disable; | 
|  | dev_priv->display.off = ironlake_crtc_off; | 
|  | dev_priv->display.update_primary_plane = | 
|  | ironlake_update_primary_plane; | 
|  | } else if (HAS_PCH_SPLIT(dev)) { | 
|  | dev_priv->display.get_pipe_config = ironlake_get_pipe_config; | 
|  | dev_priv->display.get_plane_config = ironlake_get_plane_config; | 
|  | dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set; | 
|  | dev_priv->display.crtc_enable = ironlake_crtc_enable; | 
|  | dev_priv->display.crtc_disable = ironlake_crtc_disable; | 
|  | dev_priv->display.off = ironlake_crtc_off; | 
|  | dev_priv->display.update_primary_plane = | 
|  | ironlake_update_primary_plane; | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | dev_priv->display.get_pipe_config = i9xx_get_pipe_config; | 
|  | dev_priv->display.get_plane_config = i9xx_get_plane_config; | 
|  | dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set; | 
|  | dev_priv->display.crtc_enable = valleyview_crtc_enable; | 
|  | dev_priv->display.crtc_disable = i9xx_crtc_disable; | 
|  | dev_priv->display.off = i9xx_crtc_off; | 
|  | dev_priv->display.update_primary_plane = | 
|  | i9xx_update_primary_plane; | 
|  | } else { | 
|  | dev_priv->display.get_pipe_config = i9xx_get_pipe_config; | 
|  | dev_priv->display.get_plane_config = i9xx_get_plane_config; | 
|  | dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set; | 
|  | dev_priv->display.crtc_enable = i9xx_crtc_enable; | 
|  | dev_priv->display.crtc_disable = i9xx_crtc_disable; | 
|  | dev_priv->display.off = i9xx_crtc_off; | 
|  | dev_priv->display.update_primary_plane = | 
|  | i9xx_update_primary_plane; | 
|  | } | 
|  |  | 
|  | /* Returns the core display clock speed */ | 
|  | if (IS_VALLEYVIEW(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | valleyview_get_display_clock_speed; | 
|  | else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev))) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i945_get_display_clock_speed; | 
|  | else if (IS_I915G(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i915_get_display_clock_speed; | 
|  | else if (IS_I945GM(dev) || IS_845G(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i9xx_misc_get_display_clock_speed; | 
|  | else if (IS_PINEVIEW(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | pnv_get_display_clock_speed; | 
|  | else if (IS_I915GM(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i915gm_get_display_clock_speed; | 
|  | else if (IS_I865G(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i865_get_display_clock_speed; | 
|  | else if (IS_I85X(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i855_get_display_clock_speed; | 
|  | else /* 852, 830 */ | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i830_get_display_clock_speed; | 
|  |  | 
|  | if (IS_G4X(dev)) { | 
|  | dev_priv->display.write_eld = g4x_write_eld; | 
|  | } else if (IS_GEN5(dev)) { | 
|  | dev_priv->display.fdi_link_train = ironlake_fdi_link_train; | 
|  | dev_priv->display.write_eld = ironlake_write_eld; | 
|  | } else if (IS_GEN6(dev)) { | 
|  | dev_priv->display.fdi_link_train = gen6_fdi_link_train; | 
|  | dev_priv->display.write_eld = ironlake_write_eld; | 
|  | dev_priv->display.modeset_global_resources = | 
|  | snb_modeset_global_resources; | 
|  | } else if (IS_IVYBRIDGE(dev)) { | 
|  | /* FIXME: detect B0+ stepping and use auto training */ | 
|  | dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; | 
|  | dev_priv->display.write_eld = ironlake_write_eld; | 
|  | dev_priv->display.modeset_global_resources = | 
|  | ivb_modeset_global_resources; | 
|  | } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { | 
|  | dev_priv->display.fdi_link_train = hsw_fdi_link_train; | 
|  | dev_priv->display.write_eld = haswell_write_eld; | 
|  | dev_priv->display.modeset_global_resources = | 
|  | haswell_modeset_global_resources; | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | dev_priv->display.modeset_global_resources = | 
|  | valleyview_modeset_global_resources; | 
|  | dev_priv->display.write_eld = ironlake_write_eld; | 
|  | } | 
|  |  | 
|  | /* Default just returns -ENODEV to indicate unsupported */ | 
|  | dev_priv->display.queue_flip = intel_default_queue_flip; | 
|  |  | 
|  | switch (INTEL_INFO(dev)->gen) { | 
|  | case 2: | 
|  | dev_priv->display.queue_flip = intel_gen2_queue_flip; | 
|  | break; | 
|  |  | 
|  | case 3: | 
|  | dev_priv->display.queue_flip = intel_gen3_queue_flip; | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | case 5: | 
|  | dev_priv->display.queue_flip = intel_gen4_queue_flip; | 
|  | break; | 
|  |  | 
|  | case 6: | 
|  | dev_priv->display.queue_flip = intel_gen6_queue_flip; | 
|  | break; | 
|  | case 7: | 
|  | case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */ | 
|  | dev_priv->display.queue_flip = intel_gen7_queue_flip; | 
|  | break; | 
|  | } | 
|  |  | 
|  | intel_panel_init_backlight_funcs(dev); | 
|  |  | 
|  | mutex_init(&dev_priv->pps_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, | 
|  | * resume, or other times.  This quirk makes sure that's the case for | 
|  | * affected systems. | 
|  | */ | 
|  | static void quirk_pipea_force(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | dev_priv->quirks |= QUIRK_PIPEA_FORCE; | 
|  | DRM_INFO("applying pipe a force quirk\n"); | 
|  | } | 
|  |  | 
|  | static void quirk_pipeb_force(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | dev_priv->quirks |= QUIRK_PIPEB_FORCE; | 
|  | DRM_INFO("applying pipe b force quirk\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason | 
|  | */ | 
|  | static void quirk_ssc_force_disable(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE; | 
|  | DRM_INFO("applying lvds SSC disable quirk\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight | 
|  | * brightness value | 
|  | */ | 
|  | static void quirk_invert_brightness(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS; | 
|  | DRM_INFO("applying inverted panel brightness quirk\n"); | 
|  | } | 
|  |  | 
|  | /* Some VBT's incorrectly indicate no backlight is present */ | 
|  | static void quirk_backlight_present(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT; | 
|  | DRM_INFO("applying backlight present quirk\n"); | 
|  | } | 
|  |  | 
|  | struct intel_quirk { | 
|  | int device; | 
|  | int subsystem_vendor; | 
|  | int subsystem_device; | 
|  | void (*hook)(struct drm_device *dev); | 
|  | }; | 
|  |  | 
|  | /* For systems that don't have a meaningful PCI subdevice/subvendor ID */ | 
|  | struct intel_dmi_quirk { | 
|  | void (*hook)(struct drm_device *dev); | 
|  | const struct dmi_system_id (*dmi_id_list)[]; | 
|  | }; | 
|  |  | 
|  | static int intel_dmi_reverse_brightness(const struct dmi_system_id *id) | 
|  | { | 
|  | DRM_INFO("Backlight polarity reversed on %s\n", id->ident); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const struct intel_dmi_quirk intel_dmi_quirks[] = { | 
|  | { | 
|  | .dmi_id_list = &(const struct dmi_system_id[]) { | 
|  | { | 
|  | .callback = intel_dmi_reverse_brightness, | 
|  | .ident = "NCR Corporation", | 
|  | .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"), | 
|  | DMI_MATCH(DMI_PRODUCT_NAME, ""), | 
|  | }, | 
|  | }, | 
|  | { }  /* terminating entry */ | 
|  | }, | 
|  | .hook = quirk_invert_brightness, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct intel_quirk intel_quirks[] = { | 
|  | /* HP Mini needs pipe A force quirk (LP: #322104) */ | 
|  | { 0x27ae, 0x103c, 0x361a, quirk_pipea_force }, | 
|  |  | 
|  | /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ | 
|  | { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, | 
|  |  | 
|  | /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ | 
|  | { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, | 
|  |  | 
|  | /* 830 needs to leave pipe A & dpll A up */ | 
|  | { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, | 
|  |  | 
|  | /* 830 needs to leave pipe B & dpll B up */ | 
|  | { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force }, | 
|  |  | 
|  | /* Lenovo U160 cannot use SSC on LVDS */ | 
|  | { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable }, | 
|  |  | 
|  | /* Sony Vaio Y cannot use SSC on LVDS */ | 
|  | { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable }, | 
|  |  | 
|  | /* Acer Aspire 5734Z must invert backlight brightness */ | 
|  | { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness }, | 
|  |  | 
|  | /* Acer/eMachines G725 */ | 
|  | { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness }, | 
|  |  | 
|  | /* Acer/eMachines e725 */ | 
|  | { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness }, | 
|  |  | 
|  | /* Acer/Packard Bell NCL20 */ | 
|  | { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness }, | 
|  |  | 
|  | /* Acer Aspire 4736Z */ | 
|  | { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness }, | 
|  |  | 
|  | /* Acer Aspire 5336 */ | 
|  | { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness }, | 
|  |  | 
|  | /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */ | 
|  | { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present }, | 
|  |  | 
|  | /* Acer C720 Chromebook (Core i3 4005U) */ | 
|  | { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present }, | 
|  |  | 
|  | /* Apple Macbook 2,1 (Core 2 T7400) */ | 
|  | { 0x27a2, 0x8086, 0x7270, quirk_backlight_present }, | 
|  |  | 
|  | /* Toshiba CB35 Chromebook (Celeron 2955U) */ | 
|  | { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present }, | 
|  |  | 
|  | /* HP Chromebook 14 (Celeron 2955U) */ | 
|  | { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present }, | 
|  | }; | 
|  |  | 
|  | static void intel_init_quirks(struct drm_device *dev) | 
|  | { | 
|  | struct pci_dev *d = dev->pdev; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { | 
|  | struct intel_quirk *q = &intel_quirks[i]; | 
|  |  | 
|  | if (d->device == q->device && | 
|  | (d->subsystem_vendor == q->subsystem_vendor || | 
|  | q->subsystem_vendor == PCI_ANY_ID) && | 
|  | (d->subsystem_device == q->subsystem_device || | 
|  | q->subsystem_device == PCI_ANY_ID)) | 
|  | q->hook(dev); | 
|  | } | 
|  | for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) { | 
|  | if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0) | 
|  | intel_dmi_quirks[i].hook(dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Disable the VGA plane that we never use */ | 
|  | static void i915_disable_vga(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u8 sr1; | 
|  | u32 vga_reg = i915_vgacntrl_reg(dev); | 
|  |  | 
|  | /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */ | 
|  | vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); | 
|  | outb(SR01, VGA_SR_INDEX); | 
|  | sr1 = inb(VGA_SR_DATA); | 
|  | outb(sr1 | 1<<5, VGA_SR_DATA); | 
|  | vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); | 
|  | udelay(300); | 
|  |  | 
|  | /* | 
|  | * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming | 
|  | * from S3 without preserving (some of?) the other bits. | 
|  | */ | 
|  | I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE); | 
|  | POSTING_READ(vga_reg); | 
|  | } | 
|  |  | 
|  | void intel_modeset_init_hw(struct drm_device *dev) | 
|  | { | 
|  | intel_prepare_ddi(dev); | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev)) | 
|  | vlv_update_cdclk(dev); | 
|  |  | 
|  | intel_init_clock_gating(dev); | 
|  |  | 
|  | intel_enable_gt_powersave(dev); | 
|  | } | 
|  |  | 
|  | void intel_modeset_suspend_hw(struct drm_device *dev) | 
|  | { | 
|  | intel_suspend_hw(dev); | 
|  | } | 
|  |  | 
|  | void intel_modeset_init(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int sprite, ret; | 
|  | enum pipe pipe; | 
|  | struct intel_crtc *crtc; | 
|  |  | 
|  | drm_mode_config_init(dev); | 
|  |  | 
|  | dev->mode_config.min_width = 0; | 
|  | dev->mode_config.min_height = 0; | 
|  |  | 
|  | dev->mode_config.preferred_depth = 24; | 
|  | dev->mode_config.prefer_shadow = 1; | 
|  |  | 
|  | dev->mode_config.funcs = &intel_mode_funcs; | 
|  |  | 
|  | intel_init_quirks(dev); | 
|  |  | 
|  | intel_init_pm(dev); | 
|  |  | 
|  | if (INTEL_INFO(dev)->num_pipes == 0) | 
|  | return; | 
|  |  | 
|  | intel_init_display(dev); | 
|  |  | 
|  | if (IS_GEN2(dev)) { | 
|  | dev->mode_config.max_width = 2048; | 
|  | dev->mode_config.max_height = 2048; | 
|  | } else if (IS_GEN3(dev)) { | 
|  | dev->mode_config.max_width = 4096; | 
|  | dev->mode_config.max_height = 4096; | 
|  | } else { | 
|  | dev->mode_config.max_width = 8192; | 
|  | dev->mode_config.max_height = 8192; | 
|  | } | 
|  |  | 
|  | if (IS_845G(dev) || IS_I865G(dev)) { | 
|  | dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512; | 
|  | dev->mode_config.cursor_height = 1023; | 
|  | } else if (IS_GEN2(dev)) { | 
|  | dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH; | 
|  | dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT; | 
|  | } else { | 
|  | dev->mode_config.cursor_width = MAX_CURSOR_WIDTH; | 
|  | dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT; | 
|  | } | 
|  |  | 
|  | dev->mode_config.fb_base = dev_priv->gtt.mappable_base; | 
|  |  | 
|  | DRM_DEBUG_KMS("%d display pipe%s available.\n", | 
|  | INTEL_INFO(dev)->num_pipes, | 
|  | INTEL_INFO(dev)->num_pipes > 1 ? "s" : ""); | 
|  |  | 
|  | for_each_pipe(dev_priv, pipe) { | 
|  | intel_crtc_init(dev, pipe); | 
|  | for_each_sprite(pipe, sprite) { | 
|  | ret = intel_plane_init(dev, pipe, sprite); | 
|  | if (ret) | 
|  | DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n", | 
|  | pipe_name(pipe), sprite_name(pipe, sprite), ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | intel_init_dpio(dev); | 
|  |  | 
|  | intel_shared_dpll_init(dev); | 
|  |  | 
|  | /* save the BIOS value before clobbering it */ | 
|  | dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev)); | 
|  | /* Just disable it once at startup */ | 
|  | i915_disable_vga(dev); | 
|  | intel_setup_outputs(dev); | 
|  |  | 
|  | /* Just in case the BIOS is doing something questionable. */ | 
|  | intel_disable_fbc(dev); | 
|  |  | 
|  | drm_modeset_lock_all(dev); | 
|  | intel_modeset_setup_hw_state(dev, false); | 
|  | drm_modeset_unlock_all(dev); | 
|  |  | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | if (!crtc->active) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Note that reserving the BIOS fb up front prevents us | 
|  | * from stuffing other stolen allocations like the ring | 
|  | * on top.  This prevents some ugliness at boot time, and | 
|  | * can even allow for smooth boot transitions if the BIOS | 
|  | * fb is large enough for the active pipe configuration. | 
|  | */ | 
|  | if (dev_priv->display.get_plane_config) { | 
|  | dev_priv->display.get_plane_config(crtc, | 
|  | &crtc->plane_config); | 
|  | /* | 
|  | * If the fb is shared between multiple heads, we'll | 
|  | * just get the first one. | 
|  | */ | 
|  | intel_find_plane_obj(crtc, &crtc->plane_config); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_enable_pipe_a(struct drm_device *dev) | 
|  | { | 
|  | struct intel_connector *connector; | 
|  | struct drm_connector *crt = NULL; | 
|  | struct intel_load_detect_pipe load_detect_temp; | 
|  | struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx; | 
|  |  | 
|  | /* We can't just switch on the pipe A, we need to set things up with a | 
|  | * proper mode and output configuration. As a gross hack, enable pipe A | 
|  | * by enabling the load detect pipe once. */ | 
|  | list_for_each_entry(connector, | 
|  | &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->encoder->type == INTEL_OUTPUT_ANALOG) { | 
|  | crt = &connector->base; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!crt) | 
|  | return; | 
|  |  | 
|  | if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx)) | 
|  | intel_release_load_detect_pipe(crt, &load_detect_temp); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_check_plane_mapping(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 reg, val; | 
|  |  | 
|  | if (INTEL_INFO(dev)->num_pipes == 1) | 
|  | return true; | 
|  |  | 
|  | reg = DSPCNTR(!crtc->plane); | 
|  | val = I915_READ(reg); | 
|  |  | 
|  | if ((val & DISPLAY_PLANE_ENABLE) && | 
|  | (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void intel_sanitize_crtc(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 reg; | 
|  |  | 
|  | /* Clear any frame start delays used for debugging left by the BIOS */ | 
|  | reg = PIPECONF(crtc->config.cpu_transcoder); | 
|  | I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); | 
|  |  | 
|  | /* restore vblank interrupts to correct state */ | 
|  | if (crtc->active) { | 
|  | update_scanline_offset(crtc); | 
|  | drm_vblank_on(dev, crtc->pipe); | 
|  | } else | 
|  | drm_vblank_off(dev, crtc->pipe); | 
|  |  | 
|  | /* We need to sanitize the plane -> pipe mapping first because this will | 
|  | * disable the crtc (and hence change the state) if it is wrong. Note | 
|  | * that gen4+ has a fixed plane -> pipe mapping.  */ | 
|  | if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) { | 
|  | struct intel_connector *connector; | 
|  | bool plane; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n", | 
|  | crtc->base.base.id); | 
|  |  | 
|  | /* Pipe has the wrong plane attached and the plane is active. | 
|  | * Temporarily change the plane mapping and disable everything | 
|  | * ...  */ | 
|  | plane = crtc->plane; | 
|  | crtc->plane = !plane; | 
|  | crtc->primary_enabled = true; | 
|  | dev_priv->display.crtc_disable(&crtc->base); | 
|  | crtc->plane = plane; | 
|  |  | 
|  | /* ... and break all links. */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->encoder->base.crtc != &crtc->base) | 
|  | continue; | 
|  |  | 
|  | connector->base.dpms = DRM_MODE_DPMS_OFF; | 
|  | connector->base.encoder = NULL; | 
|  | } | 
|  | /* multiple connectors may have the same encoder: | 
|  | *  handle them and break crtc link separately */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) | 
|  | if (connector->encoder->base.crtc == &crtc->base) { | 
|  | connector->encoder->base.crtc = NULL; | 
|  | connector->encoder->connectors_active = false; | 
|  | } | 
|  |  | 
|  | WARN_ON(crtc->active); | 
|  | crtc->base.enabled = false; | 
|  | } | 
|  |  | 
|  | if (dev_priv->quirks & QUIRK_PIPEA_FORCE && | 
|  | crtc->pipe == PIPE_A && !crtc->active) { | 
|  | /* BIOS forgot to enable pipe A, this mostly happens after | 
|  | * resume. Force-enable the pipe to fix this, the update_dpms | 
|  | * call below we restore the pipe to the right state, but leave | 
|  | * the required bits on. */ | 
|  | intel_enable_pipe_a(dev); | 
|  | } | 
|  |  | 
|  | /* Adjust the state of the output pipe according to whether we | 
|  | * have active connectors/encoders. */ | 
|  | intel_crtc_update_dpms(&crtc->base); | 
|  |  | 
|  | if (crtc->active != crtc->base.enabled) { | 
|  | struct intel_encoder *encoder; | 
|  |  | 
|  | /* This can happen either due to bugs in the get_hw_state | 
|  | * functions or because the pipe is force-enabled due to the | 
|  | * pipe A quirk. */ | 
|  | DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n", | 
|  | crtc->base.base.id, | 
|  | crtc->base.enabled ? "enabled" : "disabled", | 
|  | crtc->active ? "enabled" : "disabled"); | 
|  |  | 
|  | crtc->base.enabled = crtc->active; | 
|  |  | 
|  | /* Because we only establish the connector -> encoder -> | 
|  | * crtc links if something is active, this means the | 
|  | * crtc is now deactivated. Break the links. connector | 
|  | * -> encoder links are only establish when things are | 
|  | *  actually up, hence no need to break them. */ | 
|  | WARN_ON(crtc->active); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, &crtc->base, encoder) { | 
|  | WARN_ON(encoder->connectors_active); | 
|  | encoder->base.crtc = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (crtc->active || HAS_GMCH_DISPLAY(dev)) { | 
|  | /* | 
|  | * We start out with underrun reporting disabled to avoid races. | 
|  | * For correct bookkeeping mark this on active crtcs. | 
|  | * | 
|  | * Also on gmch platforms we dont have any hardware bits to | 
|  | * disable the underrun reporting. Which means we need to start | 
|  | * out with underrun reporting disabled also on inactive pipes, | 
|  | * since otherwise we'll complain about the garbage we read when | 
|  | * e.g. coming up after runtime pm. | 
|  | * | 
|  | * No protection against concurrent access is required - at | 
|  | * worst a fifo underrun happens which also sets this to false. | 
|  | */ | 
|  | crtc->cpu_fifo_underrun_disabled = true; | 
|  | crtc->pch_fifo_underrun_disabled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_sanitize_encoder(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_connector *connector; | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  |  | 
|  | /* We need to check both for a crtc link (meaning that the | 
|  | * encoder is active and trying to read from a pipe) and the | 
|  | * pipe itself being active. */ | 
|  | bool has_active_crtc = encoder->base.crtc && | 
|  | to_intel_crtc(encoder->base.crtc)->active; | 
|  |  | 
|  | if (encoder->connectors_active && !has_active_crtc) { | 
|  | DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", | 
|  | encoder->base.base.id, | 
|  | encoder->base.name); | 
|  |  | 
|  | /* Connector is active, but has no active pipe. This is | 
|  | * fallout from our resume register restoring. Disable | 
|  | * the encoder manually again. */ | 
|  | if (encoder->base.crtc) { | 
|  | DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", | 
|  | encoder->base.base.id, | 
|  | encoder->base.name); | 
|  | encoder->disable(encoder); | 
|  | if (encoder->post_disable) | 
|  | encoder->post_disable(encoder); | 
|  | } | 
|  | encoder->base.crtc = NULL; | 
|  | encoder->connectors_active = false; | 
|  |  | 
|  | /* Inconsistent output/port/pipe state happens presumably due to | 
|  | * a bug in one of the get_hw_state functions. Or someplace else | 
|  | * in our code, like the register restore mess on resume. Clamp | 
|  | * things to off as a safer default. */ | 
|  | list_for_each_entry(connector, | 
|  | &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->encoder != encoder) | 
|  | continue; | 
|  | connector->base.dpms = DRM_MODE_DPMS_OFF; | 
|  | connector->base.encoder = NULL; | 
|  | } | 
|  | } | 
|  | /* Enabled encoders without active connectors will be fixed in | 
|  | * the crtc fixup. */ | 
|  | } | 
|  |  | 
|  | void i915_redisable_vga_power_on(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 vga_reg = i915_vgacntrl_reg(dev); | 
|  |  | 
|  | if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) { | 
|  | DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n"); | 
|  | i915_disable_vga(dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | void i915_redisable_vga(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | /* This function can be called both from intel_modeset_setup_hw_state or | 
|  | * at a very early point in our resume sequence, where the power well | 
|  | * structures are not yet restored. Since this function is at a very | 
|  | * paranoid "someone might have enabled VGA while we were not looking" | 
|  | * level, just check if the power well is enabled instead of trying to | 
|  | * follow the "don't touch the power well if we don't need it" policy | 
|  | * the rest of the driver uses. */ | 
|  | if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA)) | 
|  | return; | 
|  |  | 
|  | i915_redisable_vga_power_on(dev); | 
|  | } | 
|  |  | 
|  | static bool primary_get_hw_state(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; | 
|  |  | 
|  | if (!crtc->active) | 
|  | return false; | 
|  |  | 
|  | return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE; | 
|  | } | 
|  |  | 
|  | static void intel_modeset_readout_hw_state(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum pipe pipe; | 
|  | struct intel_crtc *crtc; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  | int i; | 
|  |  | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | memset(&crtc->config, 0, sizeof(crtc->config)); | 
|  |  | 
|  | crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE; | 
|  |  | 
|  | crtc->active = dev_priv->display.get_pipe_config(crtc, | 
|  | &crtc->config); | 
|  |  | 
|  | crtc->base.enabled = crtc->active; | 
|  | crtc->primary_enabled = primary_get_hw_state(crtc); | 
|  |  | 
|  | DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n", | 
|  | crtc->base.base.id, | 
|  | crtc->active ? "enabled" : "disabled"); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < dev_priv->num_shared_dpll; i++) { | 
|  | struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; | 
|  |  | 
|  | pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state); | 
|  | pll->active = 0; | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) | 
|  | pll->active++; | 
|  | } | 
|  | pll->refcount = pll->active; | 
|  |  | 
|  | DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n", | 
|  | pll->name, pll->refcount, pll->on); | 
|  |  | 
|  | if (pll->refcount) | 
|  | intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS); | 
|  | } | 
|  |  | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | pipe = 0; | 
|  |  | 
|  | if (encoder->get_hw_state(encoder, &pipe)) { | 
|  | crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); | 
|  | encoder->base.crtc = &crtc->base; | 
|  | encoder->get_config(encoder, &crtc->config); | 
|  | } else { | 
|  | encoder->base.crtc = NULL; | 
|  | } | 
|  |  | 
|  | encoder->connectors_active = false; | 
|  | DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", | 
|  | encoder->base.base.id, | 
|  | encoder->base.name, | 
|  | encoder->base.crtc ? "enabled" : "disabled", | 
|  | pipe_name(pipe)); | 
|  | } | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->get_hw_state(connector)) { | 
|  | connector->base.dpms = DRM_MODE_DPMS_ON; | 
|  | connector->encoder->connectors_active = true; | 
|  | connector->base.encoder = &connector->encoder->base; | 
|  | } else { | 
|  | connector->base.dpms = DRM_MODE_DPMS_OFF; | 
|  | connector->base.encoder = NULL; | 
|  | } | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", | 
|  | connector->base.base.id, | 
|  | connector->base.name, | 
|  | connector->base.encoder ? "enabled" : "disabled"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Scan out the current hw modeset state, sanitizes it and maps it into the drm | 
|  | * and i915 state tracking structures. */ | 
|  | void intel_modeset_setup_hw_state(struct drm_device *dev, | 
|  | bool force_restore) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum pipe pipe; | 
|  | struct intel_crtc *crtc; | 
|  | struct intel_encoder *encoder; | 
|  | int i; | 
|  |  | 
|  | intel_modeset_readout_hw_state(dev); | 
|  |  | 
|  | /* | 
|  | * Now that we have the config, copy it to each CRTC struct | 
|  | * Note that this could go away if we move to using crtc_config | 
|  | * checking everywhere. | 
|  | */ | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | if (crtc->active && i915.fastboot) { | 
|  | intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config); | 
|  | DRM_DEBUG_KMS("[CRTC:%d] found active mode: ", | 
|  | crtc->base.base.id); | 
|  | drm_mode_debug_printmodeline(&crtc->base.mode); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* HW state is read out, now we need to sanitize this mess. */ | 
|  | for_each_intel_encoder(dev, encoder) { | 
|  | intel_sanitize_encoder(encoder); | 
|  | } | 
|  |  | 
|  | for_each_pipe(dev_priv, pipe) { | 
|  | crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); | 
|  | intel_sanitize_crtc(crtc); | 
|  | intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]"); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < dev_priv->num_shared_dpll; i++) { | 
|  | struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; | 
|  |  | 
|  | if (!pll->on || pll->active) | 
|  | continue; | 
|  |  | 
|  | DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name); | 
|  |  | 
|  | pll->disable(dev_priv, pll); | 
|  | pll->on = false; | 
|  | } | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) | 
|  | ilk_wm_get_hw_state(dev); | 
|  |  | 
|  | if (force_restore) { | 
|  | i915_redisable_vga(dev); | 
|  |  | 
|  | /* | 
|  | * We need to use raw interfaces for restoring state to avoid | 
|  | * checking (bogus) intermediate states. | 
|  | */ | 
|  | for_each_pipe(dev_priv, pipe) { | 
|  | struct drm_crtc *crtc = | 
|  | dev_priv->pipe_to_crtc_mapping[pipe]; | 
|  |  | 
|  | __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, | 
|  | crtc->primary->fb); | 
|  | } | 
|  | } else { | 
|  | intel_modeset_update_staged_output_state(dev); | 
|  | } | 
|  |  | 
|  | intel_modeset_check_state(dev); | 
|  | } | 
|  |  | 
|  | void intel_modeset_gem_init(struct drm_device *dev) | 
|  | { | 
|  | struct drm_crtc *c; | 
|  | struct drm_i915_gem_object *obj; | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_init_gt_powersave(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | intel_modeset_init_hw(dev); | 
|  |  | 
|  | intel_setup_overlay(dev); | 
|  |  | 
|  | /* | 
|  | * Make sure any fbs we allocated at startup are properly | 
|  | * pinned & fenced.  When we do the allocation it's too early | 
|  | * for this. | 
|  | */ | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | for_each_crtc(dev, c) { | 
|  | obj = intel_fb_obj(c->primary->fb); | 
|  | if (obj == NULL) | 
|  | continue; | 
|  |  | 
|  | if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) { | 
|  | DRM_ERROR("failed to pin boot fb on pipe %d\n", | 
|  | to_intel_crtc(c)->pipe); | 
|  | drm_framebuffer_unreference(c->primary->fb); | 
|  | c->primary->fb = NULL; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | void intel_connector_unregister(struct intel_connector *intel_connector) | 
|  | { | 
|  | struct drm_connector *connector = &intel_connector->base; | 
|  |  | 
|  | intel_panel_destroy_backlight(connector); | 
|  | drm_connector_unregister(connector); | 
|  | } | 
|  |  | 
|  | void intel_modeset_cleanup(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_connector *connector; | 
|  |  | 
|  | /* | 
|  | * Interrupts and polling as the first thing to avoid creating havoc. | 
|  | * Too much stuff here (turning of rps, connectors, ...) would | 
|  | * experience fancy races otherwise. | 
|  | */ | 
|  | drm_irq_uninstall(dev); | 
|  | intel_hpd_cancel_work(dev_priv); | 
|  | dev_priv->pm._irqs_disabled = true; | 
|  |  | 
|  | /* | 
|  | * Due to the hpd irq storm handling the hotplug work can re-arm the | 
|  | * poll handlers. Hence disable polling after hpd handling is shut down. | 
|  | */ | 
|  | drm_kms_helper_poll_fini(dev); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  |  | 
|  | intel_unregister_dsm_handler(); | 
|  |  | 
|  | intel_disable_fbc(dev); | 
|  |  | 
|  | intel_disable_gt_powersave(dev); | 
|  |  | 
|  | ironlake_teardown_rc6(dev); | 
|  |  | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | /* flush any delayed tasks or pending work */ | 
|  | flush_scheduled_work(); | 
|  |  | 
|  | /* destroy the backlight and sysfs files before encoders/connectors */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, head) { | 
|  | struct intel_connector *intel_connector; | 
|  |  | 
|  | intel_connector = to_intel_connector(connector); | 
|  | intel_connector->unregister(intel_connector); | 
|  | } | 
|  |  | 
|  | drm_mode_config_cleanup(dev); | 
|  |  | 
|  | intel_cleanup_overlay(dev); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_cleanup_gt_powersave(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return which encoder is currently attached for connector. | 
|  | */ | 
|  | struct drm_encoder *intel_best_encoder(struct drm_connector *connector) | 
|  | { | 
|  | return &intel_attached_encoder(connector)->base; | 
|  | } | 
|  |  | 
|  | void intel_connector_attach_encoder(struct intel_connector *connector, | 
|  | struct intel_encoder *encoder) | 
|  | { | 
|  | connector->encoder = encoder; | 
|  | drm_mode_connector_attach_encoder(&connector->base, | 
|  | &encoder->base); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set vga decode state - true == enable VGA decode | 
|  | */ | 
|  | int intel_modeset_vga_set_state(struct drm_device *dev, bool state) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL; | 
|  | u16 gmch_ctrl; | 
|  |  | 
|  | if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) { | 
|  | DRM_ERROR("failed to read control word\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state) | 
|  | return 0; | 
|  |  | 
|  | if (state) | 
|  | gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; | 
|  | else | 
|  | gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; | 
|  |  | 
|  | if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) { | 
|  | DRM_ERROR("failed to write control word\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct intel_display_error_state { | 
|  |  | 
|  | u32 power_well_driver; | 
|  |  | 
|  | int num_transcoders; | 
|  |  | 
|  | struct intel_cursor_error_state { | 
|  | u32 control; | 
|  | u32 position; | 
|  | u32 base; | 
|  | u32 size; | 
|  | } cursor[I915_MAX_PIPES]; | 
|  |  | 
|  | struct intel_pipe_error_state { | 
|  | bool power_domain_on; | 
|  | u32 source; | 
|  | u32 stat; | 
|  | } pipe[I915_MAX_PIPES]; | 
|  |  | 
|  | struct intel_plane_error_state { | 
|  | u32 control; | 
|  | u32 stride; | 
|  | u32 size; | 
|  | u32 pos; | 
|  | u32 addr; | 
|  | u32 surface; | 
|  | u32 tile_offset; | 
|  | } plane[I915_MAX_PIPES]; | 
|  |  | 
|  | struct intel_transcoder_error_state { | 
|  | bool power_domain_on; | 
|  | enum transcoder cpu_transcoder; | 
|  |  | 
|  | u32 conf; | 
|  |  | 
|  | u32 htotal; | 
|  | u32 hblank; | 
|  | u32 hsync; | 
|  | u32 vtotal; | 
|  | u32 vblank; | 
|  | u32 vsync; | 
|  | } transcoder[4]; | 
|  | }; | 
|  |  | 
|  | struct intel_display_error_state * | 
|  | intel_display_capture_error_state(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_display_error_state *error; | 
|  | int transcoders[] = { | 
|  | TRANSCODER_A, | 
|  | TRANSCODER_B, | 
|  | TRANSCODER_C, | 
|  | TRANSCODER_EDP, | 
|  | }; | 
|  | int i; | 
|  |  | 
|  | if (INTEL_INFO(dev)->num_pipes == 0) | 
|  | return NULL; | 
|  |  | 
|  | error = kzalloc(sizeof(*error), GFP_ATOMIC); | 
|  | if (error == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) | 
|  | error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER); | 
|  |  | 
|  | for_each_pipe(dev_priv, i) { | 
|  | error->pipe[i].power_domain_on = | 
|  | intel_display_power_enabled_unlocked(dev_priv, | 
|  | POWER_DOMAIN_PIPE(i)); | 
|  | if (!error->pipe[i].power_domain_on) | 
|  | continue; | 
|  |  | 
|  | error->cursor[i].control = I915_READ(CURCNTR(i)); | 
|  | error->cursor[i].position = I915_READ(CURPOS(i)); | 
|  | error->cursor[i].base = I915_READ(CURBASE(i)); | 
|  |  | 
|  | error->plane[i].control = I915_READ(DSPCNTR(i)); | 
|  | error->plane[i].stride = I915_READ(DSPSTRIDE(i)); | 
|  | if (INTEL_INFO(dev)->gen <= 3) { | 
|  | error->plane[i].size = I915_READ(DSPSIZE(i)); | 
|  | error->plane[i].pos = I915_READ(DSPPOS(i)); | 
|  | } | 
|  | if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) | 
|  | error->plane[i].addr = I915_READ(DSPADDR(i)); | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | error->plane[i].surface = I915_READ(DSPSURF(i)); | 
|  | error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); | 
|  | } | 
|  |  | 
|  | error->pipe[i].source = I915_READ(PIPESRC(i)); | 
|  |  | 
|  | if (HAS_GMCH_DISPLAY(dev)) | 
|  | error->pipe[i].stat = I915_READ(PIPESTAT(i)); | 
|  | } | 
|  |  | 
|  | error->num_transcoders = INTEL_INFO(dev)->num_pipes; | 
|  | if (HAS_DDI(dev_priv->dev)) | 
|  | error->num_transcoders++; /* Account for eDP. */ | 
|  |  | 
|  | for (i = 0; i < error->num_transcoders; i++) { | 
|  | enum transcoder cpu_transcoder = transcoders[i]; | 
|  |  | 
|  | error->transcoder[i].power_domain_on = | 
|  | intel_display_power_enabled_unlocked(dev_priv, | 
|  | POWER_DOMAIN_TRANSCODER(cpu_transcoder)); | 
|  | if (!error->transcoder[i].power_domain_on) | 
|  | continue; | 
|  |  | 
|  | error->transcoder[i].cpu_transcoder = cpu_transcoder; | 
|  |  | 
|  | error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder)); | 
|  | error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); | 
|  | error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder)); | 
|  | error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder)); | 
|  | error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); | 
|  | error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder)); | 
|  | error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder)); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) | 
|  |  | 
|  | void | 
|  | intel_display_print_error_state(struct drm_i915_error_state_buf *m, | 
|  | struct drm_device *dev, | 
|  | struct intel_display_error_state *error) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int i; | 
|  |  | 
|  | if (!error) | 
|  | return; | 
|  |  | 
|  | err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes); | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) | 
|  | err_printf(m, "PWR_WELL_CTL2: %08x\n", | 
|  | error->power_well_driver); | 
|  | for_each_pipe(dev_priv, i) { | 
|  | err_printf(m, "Pipe [%d]:\n", i); | 
|  | err_printf(m, "  Power: %s\n", | 
|  | error->pipe[i].power_domain_on ? "on" : "off"); | 
|  | err_printf(m, "  SRC: %08x\n", error->pipe[i].source); | 
|  | err_printf(m, "  STAT: %08x\n", error->pipe[i].stat); | 
|  |  | 
|  | err_printf(m, "Plane [%d]:\n", i); | 
|  | err_printf(m, "  CNTR: %08x\n", error->plane[i].control); | 
|  | err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride); | 
|  | if (INTEL_INFO(dev)->gen <= 3) { | 
|  | err_printf(m, "  SIZE: %08x\n", error->plane[i].size); | 
|  | err_printf(m, "  POS: %08x\n", error->plane[i].pos); | 
|  | } | 
|  | if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) | 
|  | err_printf(m, "  ADDR: %08x\n", error->plane[i].addr); | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | err_printf(m, "  SURF: %08x\n", error->plane[i].surface); | 
|  | err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset); | 
|  | } | 
|  |  | 
|  | err_printf(m, "Cursor [%d]:\n", i); | 
|  | err_printf(m, "  CNTR: %08x\n", error->cursor[i].control); | 
|  | err_printf(m, "  POS: %08x\n", error->cursor[i].position); | 
|  | err_printf(m, "  BASE: %08x\n", error->cursor[i].base); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < error->num_transcoders; i++) { | 
|  | err_printf(m, "CPU transcoder: %c\n", | 
|  | transcoder_name(error->transcoder[i].cpu_transcoder)); | 
|  | err_printf(m, "  Power: %s\n", | 
|  | error->transcoder[i].power_domain_on ? "on" : "off"); | 
|  | err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf); | 
|  | err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal); | 
|  | err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank); | 
|  | err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync); | 
|  | err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal); | 
|  | err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank); | 
|  | err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync); | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file) | 
|  | { | 
|  | struct intel_crtc *crtc; | 
|  |  | 
|  | for_each_intel_crtc(dev, crtc) { | 
|  | struct intel_unpin_work *work; | 
|  | unsigned long irqflags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, irqflags); | 
|  |  | 
|  | work = crtc->unpin_work; | 
|  |  | 
|  | if (work && work->event && | 
|  | work->event->base.file_priv == file) { | 
|  | kfree(work->event); | 
|  | work->event = NULL; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&dev->event_lock, irqflags); | 
|  | } | 
|  | } |