|  | /* | 
|  | * net/sched/sch_tbf.c	Token Bucket Filter queue. | 
|  | * | 
|  | *		This program is free software; you can redistribute it and/or | 
|  | *		modify it under the terms of the GNU General Public License | 
|  | *		as published by the Free Software Foundation; either version | 
|  | *		2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | 
|  | *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs - | 
|  | *						 original idea by Martin Devera | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <net/netlink.h> | 
|  | #include <net/sch_generic.h> | 
|  | #include <net/pkt_sched.h> | 
|  |  | 
|  |  | 
|  | /*	Simple Token Bucket Filter. | 
|  | ======================================= | 
|  |  | 
|  | SOURCE. | 
|  | ------- | 
|  |  | 
|  | None. | 
|  |  | 
|  | Description. | 
|  | ------------ | 
|  |  | 
|  | A data flow obeys TBF with rate R and depth B, if for any | 
|  | time interval t_i...t_f the number of transmitted bits | 
|  | does not exceed B + R*(t_f-t_i). | 
|  |  | 
|  | Packetized version of this definition: | 
|  | The sequence of packets of sizes s_i served at moments t_i | 
|  | obeys TBF, if for any i<=k: | 
|  |  | 
|  | s_i+....+s_k <= B + R*(t_k - t_i) | 
|  |  | 
|  | Algorithm. | 
|  | ---------- | 
|  |  | 
|  | Let N(t_i) be B/R initially and N(t) grow continuously with time as: | 
|  |  | 
|  | N(t+delta) = min{B/R, N(t) + delta} | 
|  |  | 
|  | If the first packet in queue has length S, it may be | 
|  | transmitted only at the time t_* when S/R <= N(t_*), | 
|  | and in this case N(t) jumps: | 
|  |  | 
|  | N(t_* + 0) = N(t_* - 0) - S/R. | 
|  |  | 
|  |  | 
|  |  | 
|  | Actually, QoS requires two TBF to be applied to a data stream. | 
|  | One of them controls steady state burst size, another | 
|  | one with rate P (peak rate) and depth M (equal to link MTU) | 
|  | limits bursts at a smaller time scale. | 
|  |  | 
|  | It is easy to see that P>R, and B>M. If P is infinity, this double | 
|  | TBF is equivalent to a single one. | 
|  |  | 
|  | When TBF works in reshaping mode, latency is estimated as: | 
|  |  | 
|  | lat = max ((L-B)/R, (L-M)/P) | 
|  |  | 
|  |  | 
|  | NOTES. | 
|  | ------ | 
|  |  | 
|  | If TBF throttles, it starts a watchdog timer, which will wake it up | 
|  | when it is ready to transmit. | 
|  | Note that the minimal timer resolution is 1/HZ. | 
|  | If no new packets arrive during this period, | 
|  | or if the device is not awaken by EOI for some previous packet, | 
|  | TBF can stop its activity for 1/HZ. | 
|  |  | 
|  |  | 
|  | This means, that with depth B, the maximal rate is | 
|  |  | 
|  | R_crit = B*HZ | 
|  |  | 
|  | F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes. | 
|  |  | 
|  | Note that the peak rate TBF is much more tough: with MTU 1500 | 
|  | P_crit = 150Kbytes/sec. So, if you need greater peak | 
|  | rates, use alpha with HZ=1000 :-) | 
|  |  | 
|  | With classful TBF, limit is just kept for backwards compatibility. | 
|  | It is passed to the default bfifo qdisc - if the inner qdisc is | 
|  | changed the limit is not effective anymore. | 
|  | */ | 
|  |  | 
|  | struct tbf_sched_data { | 
|  | /* Parameters */ | 
|  | u32		limit;		/* Maximal length of backlog: bytes */ | 
|  | u32		max_size; | 
|  | s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */ | 
|  | s64		mtu; | 
|  | struct psched_ratecfg rate; | 
|  | struct psched_ratecfg peak; | 
|  |  | 
|  | /* Variables */ | 
|  | s64	tokens;			/* Current number of B tokens */ | 
|  | s64	ptokens;		/* Current number of P tokens */ | 
|  | s64	t_c;			/* Time check-point */ | 
|  | struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */ | 
|  | struct qdisc_watchdog watchdog;	/* Watchdog timer */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Time to Length, convert time in ns to length in bytes | 
|  | * to determinate how many bytes can be sent in given time. | 
|  | */ | 
|  | static u64 psched_ns_t2l(const struct psched_ratecfg *r, | 
|  | u64 time_in_ns) | 
|  | { | 
|  | /* The formula is : | 
|  | * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC | 
|  | */ | 
|  | u64 len = time_in_ns * r->rate_bytes_ps; | 
|  |  | 
|  | do_div(len, NSEC_PER_SEC); | 
|  |  | 
|  | if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) { | 
|  | do_div(len, 53); | 
|  | len = len * 48; | 
|  | } | 
|  |  | 
|  | if (len > r->overhead) | 
|  | len -= r->overhead; | 
|  | else | 
|  | len = 0; | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return length of individual segments of a gso packet, | 
|  | * including all headers (MAC, IP, TCP/UDP) | 
|  | */ | 
|  | static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb) | 
|  | { | 
|  | unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb); | 
|  | return hdr_len + skb_gso_transport_seglen(skb); | 
|  | } | 
|  |  | 
|  | /* GSO packet is too big, segment it so that tbf can transmit | 
|  | * each segment in time | 
|  | */ | 
|  | static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch, | 
|  | struct sk_buff **to_free) | 
|  | { | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  | struct sk_buff *segs, *nskb; | 
|  | netdev_features_t features = netif_skb_features(skb); | 
|  | unsigned int len = 0, prev_len = qdisc_pkt_len(skb); | 
|  | int ret, nb; | 
|  |  | 
|  | segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); | 
|  |  | 
|  | if (IS_ERR_OR_NULL(segs)) | 
|  | return qdisc_drop(skb, sch, to_free); | 
|  |  | 
|  | nb = 0; | 
|  | while (segs) { | 
|  | nskb = segs->next; | 
|  | segs->next = NULL; | 
|  | qdisc_skb_cb(segs)->pkt_len = segs->len; | 
|  | len += segs->len; | 
|  | ret = qdisc_enqueue(segs, q->qdisc, to_free); | 
|  | if (ret != NET_XMIT_SUCCESS) { | 
|  | if (net_xmit_drop_count(ret)) | 
|  | qdisc_qstats_drop(sch); | 
|  | } else { | 
|  | nb++; | 
|  | } | 
|  | segs = nskb; | 
|  | } | 
|  | sch->q.qlen += nb; | 
|  | if (nb > 1) | 
|  | qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len); | 
|  | consume_skb(skb); | 
|  | return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; | 
|  | } | 
|  |  | 
|  | static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch, | 
|  | struct sk_buff **to_free) | 
|  | { | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  | int ret; | 
|  |  | 
|  | if (qdisc_pkt_len(skb) > q->max_size) { | 
|  | if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size) | 
|  | return tbf_segment(skb, sch, to_free); | 
|  | return qdisc_drop(skb, sch, to_free); | 
|  | } | 
|  | ret = qdisc_enqueue(skb, q->qdisc, to_free); | 
|  | if (ret != NET_XMIT_SUCCESS) { | 
|  | if (net_xmit_drop_count(ret)) | 
|  | qdisc_qstats_drop(sch); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | qdisc_qstats_backlog_inc(sch, skb); | 
|  | sch->q.qlen++; | 
|  | return NET_XMIT_SUCCESS; | 
|  | } | 
|  |  | 
|  | static bool tbf_peak_present(const struct tbf_sched_data *q) | 
|  | { | 
|  | return q->peak.rate_bytes_ps; | 
|  | } | 
|  |  | 
|  | static struct sk_buff *tbf_dequeue(struct Qdisc *sch) | 
|  | { | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = q->qdisc->ops->peek(q->qdisc); | 
|  |  | 
|  | if (skb) { | 
|  | s64 now; | 
|  | s64 toks; | 
|  | s64 ptoks = 0; | 
|  | unsigned int len = qdisc_pkt_len(skb); | 
|  |  | 
|  | now = ktime_get_ns(); | 
|  | toks = min_t(s64, now - q->t_c, q->buffer); | 
|  |  | 
|  | if (tbf_peak_present(q)) { | 
|  | ptoks = toks + q->ptokens; | 
|  | if (ptoks > q->mtu) | 
|  | ptoks = q->mtu; | 
|  | ptoks -= (s64) psched_l2t_ns(&q->peak, len); | 
|  | } | 
|  | toks += q->tokens; | 
|  | if (toks > q->buffer) | 
|  | toks = q->buffer; | 
|  | toks -= (s64) psched_l2t_ns(&q->rate, len); | 
|  |  | 
|  | if ((toks|ptoks) >= 0) { | 
|  | skb = qdisc_dequeue_peeked(q->qdisc); | 
|  | if (unlikely(!skb)) | 
|  | return NULL; | 
|  |  | 
|  | q->t_c = now; | 
|  | q->tokens = toks; | 
|  | q->ptokens = ptoks; | 
|  | qdisc_qstats_backlog_dec(sch, skb); | 
|  | sch->q.qlen--; | 
|  | qdisc_bstats_update(sch, skb); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | qdisc_watchdog_schedule_ns(&q->watchdog, | 
|  | now + max_t(long, -toks, -ptoks)); | 
|  |  | 
|  | /* Maybe we have a shorter packet in the queue, | 
|  | which can be sent now. It sounds cool, | 
|  | but, however, this is wrong in principle. | 
|  | We MUST NOT reorder packets under these circumstances. | 
|  |  | 
|  | Really, if we split the flow into independent | 
|  | subflows, it would be a very good solution. | 
|  | This is the main idea of all FQ algorithms | 
|  | (cf. CSZ, HPFQ, HFSC) | 
|  | */ | 
|  |  | 
|  | qdisc_qstats_overlimit(sch); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void tbf_reset(struct Qdisc *sch) | 
|  | { | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | qdisc_reset(q->qdisc); | 
|  | sch->qstats.backlog = 0; | 
|  | sch->q.qlen = 0; | 
|  | q->t_c = ktime_get_ns(); | 
|  | q->tokens = q->buffer; | 
|  | q->ptokens = q->mtu; | 
|  | qdisc_watchdog_cancel(&q->watchdog); | 
|  | } | 
|  |  | 
|  | static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = { | 
|  | [TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) }, | 
|  | [TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, | 
|  | [TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, | 
|  | [TCA_TBF_RATE64]	= { .type = NLA_U64 }, | 
|  | [TCA_TBF_PRATE64]	= { .type = NLA_U64 }, | 
|  | [TCA_TBF_BURST] = { .type = NLA_U32 }, | 
|  | [TCA_TBF_PBURST] = { .type = NLA_U32 }, | 
|  | }; | 
|  |  | 
|  | static int tbf_change(struct Qdisc *sch, struct nlattr *opt) | 
|  | { | 
|  | int err; | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  | struct nlattr *tb[TCA_TBF_MAX + 1]; | 
|  | struct tc_tbf_qopt *qopt; | 
|  | struct Qdisc *child = NULL; | 
|  | struct psched_ratecfg rate; | 
|  | struct psched_ratecfg peak; | 
|  | u64 max_size; | 
|  | s64 buffer, mtu; | 
|  | u64 rate64 = 0, prate64 = 0; | 
|  |  | 
|  | err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (tb[TCA_TBF_PARMS] == NULL) | 
|  | goto done; | 
|  |  | 
|  | qopt = nla_data(tb[TCA_TBF_PARMS]); | 
|  | if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE) | 
|  | qdisc_put_rtab(qdisc_get_rtab(&qopt->rate, | 
|  | tb[TCA_TBF_RTAB])); | 
|  |  | 
|  | if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE) | 
|  | qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate, | 
|  | tb[TCA_TBF_PTAB])); | 
|  |  | 
|  | buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U); | 
|  | mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U); | 
|  |  | 
|  | if (tb[TCA_TBF_RATE64]) | 
|  | rate64 = nla_get_u64(tb[TCA_TBF_RATE64]); | 
|  | psched_ratecfg_precompute(&rate, &qopt->rate, rate64); | 
|  |  | 
|  | if (tb[TCA_TBF_BURST]) { | 
|  | max_size = nla_get_u32(tb[TCA_TBF_BURST]); | 
|  | buffer = psched_l2t_ns(&rate, max_size); | 
|  | } else { | 
|  | max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U); | 
|  | } | 
|  |  | 
|  | if (qopt->peakrate.rate) { | 
|  | if (tb[TCA_TBF_PRATE64]) | 
|  | prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]); | 
|  | psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64); | 
|  | if (peak.rate_bytes_ps <= rate.rate_bytes_ps) { | 
|  | pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n", | 
|  | peak.rate_bytes_ps, rate.rate_bytes_ps); | 
|  | err = -EINVAL; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (tb[TCA_TBF_PBURST]) { | 
|  | u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]); | 
|  | max_size = min_t(u32, max_size, pburst); | 
|  | mtu = psched_l2t_ns(&peak, pburst); | 
|  | } else { | 
|  | max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu)); | 
|  | } | 
|  | } else { | 
|  | memset(&peak, 0, sizeof(peak)); | 
|  | } | 
|  |  | 
|  | if (max_size < psched_mtu(qdisc_dev(sch))) | 
|  | pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n", | 
|  | max_size, qdisc_dev(sch)->name, | 
|  | psched_mtu(qdisc_dev(sch))); | 
|  |  | 
|  | if (!max_size) { | 
|  | err = -EINVAL; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (q->qdisc != &noop_qdisc) { | 
|  | err = fifo_set_limit(q->qdisc, qopt->limit); | 
|  | if (err) | 
|  | goto done; | 
|  | } else if (qopt->limit > 0) { | 
|  | child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit); | 
|  | if (IS_ERR(child)) { | 
|  | err = PTR_ERR(child); | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | sch_tree_lock(sch); | 
|  | if (child) { | 
|  | qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen, | 
|  | q->qdisc->qstats.backlog); | 
|  | qdisc_destroy(q->qdisc); | 
|  | q->qdisc = child; | 
|  | } | 
|  | q->limit = qopt->limit; | 
|  | if (tb[TCA_TBF_PBURST]) | 
|  | q->mtu = mtu; | 
|  | else | 
|  | q->mtu = PSCHED_TICKS2NS(qopt->mtu); | 
|  | q->max_size = max_size; | 
|  | if (tb[TCA_TBF_BURST]) | 
|  | q->buffer = buffer; | 
|  | else | 
|  | q->buffer = PSCHED_TICKS2NS(qopt->buffer); | 
|  | q->tokens = q->buffer; | 
|  | q->ptokens = q->mtu; | 
|  |  | 
|  | memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg)); | 
|  | memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg)); | 
|  |  | 
|  | sch_tree_unlock(sch); | 
|  | err = 0; | 
|  | done: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int tbf_init(struct Qdisc *sch, struct nlattr *opt) | 
|  | { | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | if (opt == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | q->t_c = ktime_get_ns(); | 
|  | qdisc_watchdog_init(&q->watchdog, sch); | 
|  | q->qdisc = &noop_qdisc; | 
|  |  | 
|  | return tbf_change(sch, opt); | 
|  | } | 
|  |  | 
|  | static void tbf_destroy(struct Qdisc *sch) | 
|  | { | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | qdisc_watchdog_cancel(&q->watchdog); | 
|  | qdisc_destroy(q->qdisc); | 
|  | } | 
|  |  | 
|  | static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb) | 
|  | { | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  | struct nlattr *nest; | 
|  | struct tc_tbf_qopt opt; | 
|  |  | 
|  | sch->qstats.backlog = q->qdisc->qstats.backlog; | 
|  | nest = nla_nest_start(skb, TCA_OPTIONS); | 
|  | if (nest == NULL) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | opt.limit = q->limit; | 
|  | psched_ratecfg_getrate(&opt.rate, &q->rate); | 
|  | if (tbf_peak_present(q)) | 
|  | psched_ratecfg_getrate(&opt.peakrate, &q->peak); | 
|  | else | 
|  | memset(&opt.peakrate, 0, sizeof(opt.peakrate)); | 
|  | opt.mtu = PSCHED_NS2TICKS(q->mtu); | 
|  | opt.buffer = PSCHED_NS2TICKS(q->buffer); | 
|  | if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt)) | 
|  | goto nla_put_failure; | 
|  | if (q->rate.rate_bytes_ps >= (1ULL << 32) && | 
|  | nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps, | 
|  | TCA_TBF_PAD)) | 
|  | goto nla_put_failure; | 
|  | if (tbf_peak_present(q) && | 
|  | q->peak.rate_bytes_ps >= (1ULL << 32) && | 
|  | nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps, | 
|  | TCA_TBF_PAD)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | return nla_nest_end(skb, nest); | 
|  |  | 
|  | nla_put_failure: | 
|  | nla_nest_cancel(skb, nest); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int tbf_dump_class(struct Qdisc *sch, unsigned long cl, | 
|  | struct sk_buff *skb, struct tcmsg *tcm) | 
|  | { | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | tcm->tcm_handle |= TC_H_MIN(1); | 
|  | tcm->tcm_info = q->qdisc->handle; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, | 
|  | struct Qdisc **old) | 
|  | { | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | if (new == NULL) | 
|  | new = &noop_qdisc; | 
|  |  | 
|  | *old = qdisc_replace(sch, new, &q->qdisc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg) | 
|  | { | 
|  | struct tbf_sched_data *q = qdisc_priv(sch); | 
|  | return q->qdisc; | 
|  | } | 
|  |  | 
|  | static unsigned long tbf_get(struct Qdisc *sch, u32 classid) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void tbf_put(struct Qdisc *sch, unsigned long arg) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker) | 
|  | { | 
|  | if (!walker->stop) { | 
|  | if (walker->count >= walker->skip) | 
|  | if (walker->fn(sch, 1, walker) < 0) { | 
|  | walker->stop = 1; | 
|  | return; | 
|  | } | 
|  | walker->count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct Qdisc_class_ops tbf_class_ops = { | 
|  | .graft		=	tbf_graft, | 
|  | .leaf		=	tbf_leaf, | 
|  | .get		=	tbf_get, | 
|  | .put		=	tbf_put, | 
|  | .walk		=	tbf_walk, | 
|  | .dump		=	tbf_dump_class, | 
|  | }; | 
|  |  | 
|  | static struct Qdisc_ops tbf_qdisc_ops __read_mostly = { | 
|  | .next		=	NULL, | 
|  | .cl_ops		=	&tbf_class_ops, | 
|  | .id		=	"tbf", | 
|  | .priv_size	=	sizeof(struct tbf_sched_data), | 
|  | .enqueue	=	tbf_enqueue, | 
|  | .dequeue	=	tbf_dequeue, | 
|  | .peek		=	qdisc_peek_dequeued, | 
|  | .init		=	tbf_init, | 
|  | .reset		=	tbf_reset, | 
|  | .destroy	=	tbf_destroy, | 
|  | .change		=	tbf_change, | 
|  | .dump		=	tbf_dump, | 
|  | .owner		=	THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init tbf_module_init(void) | 
|  | { | 
|  | return register_qdisc(&tbf_qdisc_ops); | 
|  | } | 
|  |  | 
|  | static void __exit tbf_module_exit(void) | 
|  | { | 
|  | unregister_qdisc(&tbf_qdisc_ops); | 
|  | } | 
|  | module_init(tbf_module_init) | 
|  | module_exit(tbf_module_exit) | 
|  | MODULE_LICENSE("GPL"); |