| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/mm/slab.c |
| * Written by Mark Hemment, 1996/97. |
| * (markhe@nextd.demon.co.uk) |
| * |
| * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli |
| * |
| * Major cleanup, different bufctl logic, per-cpu arrays |
| * (c) 2000 Manfred Spraul |
| * |
| * Cleanup, make the head arrays unconditional, preparation for NUMA |
| * (c) 2002 Manfred Spraul |
| * |
| * An implementation of the Slab Allocator as described in outline in; |
| * UNIX Internals: The New Frontiers by Uresh Vahalia |
| * Pub: Prentice Hall ISBN 0-13-101908-2 |
| * or with a little more detail in; |
| * The Slab Allocator: An Object-Caching Kernel Memory Allocator |
| * Jeff Bonwick (Sun Microsystems). |
| * Presented at: USENIX Summer 1994 Technical Conference |
| * |
| * The memory is organized in caches, one cache for each object type. |
| * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) |
| * Each cache consists out of many slabs (they are small (usually one |
| * page long) and always contiguous), and each slab contains multiple |
| * initialized objects. |
| * |
| * This means, that your constructor is used only for newly allocated |
| * slabs and you must pass objects with the same initializations to |
| * kmem_cache_free. |
| * |
| * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, |
| * normal). If you need a special memory type, then must create a new |
| * cache for that memory type. |
| * |
| * In order to reduce fragmentation, the slabs are sorted in 3 groups: |
| * full slabs with 0 free objects |
| * partial slabs |
| * empty slabs with no allocated objects |
| * |
| * If partial slabs exist, then new allocations come from these slabs, |
| * otherwise from empty slabs or new slabs are allocated. |
| * |
| * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache |
| * during kmem_cache_destroy(). The caller must prevent concurrent allocs. |
| * |
| * Each cache has a short per-cpu head array, most allocs |
| * and frees go into that array, and if that array overflows, then 1/2 |
| * of the entries in the array are given back into the global cache. |
| * The head array is strictly LIFO and should improve the cache hit rates. |
| * On SMP, it additionally reduces the spinlock operations. |
| * |
| * The c_cpuarray may not be read with enabled local interrupts - |
| * it's changed with a smp_call_function(). |
| * |
| * SMP synchronization: |
| * constructors and destructors are called without any locking. |
| * Several members in struct kmem_cache and struct slab never change, they |
| * are accessed without any locking. |
| * The per-cpu arrays are never accessed from the wrong cpu, no locking, |
| * and local interrupts are disabled so slab code is preempt-safe. |
| * The non-constant members are protected with a per-cache irq spinlock. |
| * |
| * Many thanks to Mark Hemment, who wrote another per-cpu slab patch |
| * in 2000 - many ideas in the current implementation are derived from |
| * his patch. |
| * |
| * Further notes from the original documentation: |
| * |
| * 11 April '97. Started multi-threading - markhe |
| * The global cache-chain is protected by the mutex 'slab_mutex'. |
| * The sem is only needed when accessing/extending the cache-chain, which |
| * can never happen inside an interrupt (kmem_cache_create(), |
| * kmem_cache_shrink() and kmem_cache_reap()). |
| * |
| * At present, each engine can be growing a cache. This should be blocked. |
| * |
| * 15 March 2005. NUMA slab allocator. |
| * Shai Fultheim <shai@scalex86.org>. |
| * Shobhit Dayal <shobhit@calsoftinc.com> |
| * Alok N Kataria <alokk@calsoftinc.com> |
| * Christoph Lameter <christoph@lameter.com> |
| * |
| * Modified the slab allocator to be node aware on NUMA systems. |
| * Each node has its own list of partial, free and full slabs. |
| * All object allocations for a node occur from node specific slab lists. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/poison.h> |
| #include <linux/swap.h> |
| #include <linux/cache.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/compiler.h> |
| #include <linux/cpuset.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/notifier.h> |
| #include <linux/kallsyms.h> |
| #include <linux/kfence.h> |
| #include <linux/cpu.h> |
| #include <linux/sysctl.h> |
| #include <linux/module.h> |
| #include <linux/rcupdate.h> |
| #include <linux/string.h> |
| #include <linux/uaccess.h> |
| #include <linux/nodemask.h> |
| #include <linux/kmemleak.h> |
| #include <linux/mempolicy.h> |
| #include <linux/mutex.h> |
| #include <linux/fault-inject.h> |
| #include <linux/rtmutex.h> |
| #include <linux/reciprocal_div.h> |
| #include <linux/debugobjects.h> |
| #include <linux/memory.h> |
| #include <linux/prefetch.h> |
| #include <linux/sched/task_stack.h> |
| |
| #include <net/sock.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/page.h> |
| |
| #include <trace/events/kmem.h> |
| |
| #include "internal.h" |
| |
| #include "slab.h" |
| |
| /* |
| * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
| * 0 for faster, smaller code (especially in the critical paths). |
| * |
| * STATS - 1 to collect stats for /proc/slabinfo. |
| * 0 for faster, smaller code (especially in the critical paths). |
| * |
| * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) |
| */ |
| |
| #ifdef CONFIG_DEBUG_SLAB |
| #define DEBUG 1 |
| #define STATS 1 |
| #define FORCED_DEBUG 1 |
| #else |
| #define DEBUG 0 |
| #define STATS 0 |
| #define FORCED_DEBUG 0 |
| #endif |
| |
| /* Shouldn't this be in a header file somewhere? */ |
| #define BYTES_PER_WORD sizeof(void *) |
| #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
| |
| #ifndef ARCH_KMALLOC_FLAGS |
| #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN |
| #endif |
| |
| #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ |
| <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) |
| |
| #if FREELIST_BYTE_INDEX |
| typedef unsigned char freelist_idx_t; |
| #else |
| typedef unsigned short freelist_idx_t; |
| #endif |
| |
| #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) |
| |
| /* |
| * struct array_cache |
| * |
| * Purpose: |
| * - LIFO ordering, to hand out cache-warm objects from _alloc |
| * - reduce the number of linked list operations |
| * - reduce spinlock operations |
| * |
| * The limit is stored in the per-cpu structure to reduce the data cache |
| * footprint. |
| * |
| */ |
| struct array_cache { |
| unsigned int avail; |
| unsigned int limit; |
| unsigned int batchcount; |
| unsigned int touched; |
| void *entry[]; /* |
| * Must have this definition in here for the proper |
| * alignment of array_cache. Also simplifies accessing |
| * the entries. |
| */ |
| }; |
| |
| struct alien_cache { |
| spinlock_t lock; |
| struct array_cache ac; |
| }; |
| |
| /* |
| * Need this for bootstrapping a per node allocator. |
| */ |
| #define NUM_INIT_LISTS (2 * MAX_NUMNODES) |
| static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; |
| #define CACHE_CACHE 0 |
| #define SIZE_NODE (MAX_NUMNODES) |
| |
| static int drain_freelist(struct kmem_cache *cache, |
| struct kmem_cache_node *n, int tofree); |
| static void free_block(struct kmem_cache *cachep, void **objpp, int len, |
| int node, struct list_head *list); |
| static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); |
| static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
| static void cache_reap(struct work_struct *unused); |
| |
| static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
| void **list); |
| static inline void fixup_slab_list(struct kmem_cache *cachep, |
| struct kmem_cache_node *n, struct slab *slab, |
| void **list); |
| |
| #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) |
| |
| static void kmem_cache_node_init(struct kmem_cache_node *parent) |
| { |
| INIT_LIST_HEAD(&parent->slabs_full); |
| INIT_LIST_HEAD(&parent->slabs_partial); |
| INIT_LIST_HEAD(&parent->slabs_free); |
| parent->total_slabs = 0; |
| parent->free_slabs = 0; |
| parent->shared = NULL; |
| parent->alien = NULL; |
| parent->colour_next = 0; |
| raw_spin_lock_init(&parent->list_lock); |
| parent->free_objects = 0; |
| parent->free_touched = 0; |
| } |
| |
| #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
| do { \ |
| INIT_LIST_HEAD(listp); \ |
| list_splice(&get_node(cachep, nodeid)->slab, listp); \ |
| } while (0) |
| |
| #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
| do { \ |
| MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
| MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ |
| MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ |
| } while (0) |
| |
| #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) |
| #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) |
| #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) |
| #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) |
| |
| #define BATCHREFILL_LIMIT 16 |
| /* |
| * Optimization question: fewer reaps means less probability for unnecessary |
| * cpucache drain/refill cycles. |
| * |
| * OTOH the cpuarrays can contain lots of objects, |
| * which could lock up otherwise freeable slabs. |
| */ |
| #define REAPTIMEOUT_AC (2*HZ) |
| #define REAPTIMEOUT_NODE (4*HZ) |
| |
| #if STATS |
| #define STATS_INC_ACTIVE(x) ((x)->num_active++) |
| #define STATS_DEC_ACTIVE(x) ((x)->num_active--) |
| #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) |
| #define STATS_INC_GROWN(x) ((x)->grown++) |
| #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) |
| #define STATS_SET_HIGH(x) \ |
| do { \ |
| if ((x)->num_active > (x)->high_mark) \ |
| (x)->high_mark = (x)->num_active; \ |
| } while (0) |
| #define STATS_INC_ERR(x) ((x)->errors++) |
| #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) |
| #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
| #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
| #define STATS_SET_FREEABLE(x, i) \ |
| do { \ |
| if ((x)->max_freeable < i) \ |
| (x)->max_freeable = i; \ |
| } while (0) |
| #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
| #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) |
| #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) |
| #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) |
| #else |
| #define STATS_INC_ACTIVE(x) do { } while (0) |
| #define STATS_DEC_ACTIVE(x) do { } while (0) |
| #define STATS_INC_ALLOCED(x) do { } while (0) |
| #define STATS_INC_GROWN(x) do { } while (0) |
| #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) |
| #define STATS_SET_HIGH(x) do { } while (0) |
| #define STATS_INC_ERR(x) do { } while (0) |
| #define STATS_INC_NODEALLOCS(x) do { } while (0) |
| #define STATS_INC_NODEFREES(x) do { } while (0) |
| #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
| #define STATS_SET_FREEABLE(x, i) do { } while (0) |
| #define STATS_INC_ALLOCHIT(x) do { } while (0) |
| #define STATS_INC_ALLOCMISS(x) do { } while (0) |
| #define STATS_INC_FREEHIT(x) do { } while (0) |
| #define STATS_INC_FREEMISS(x) do { } while (0) |
| #endif |
| |
| #if DEBUG |
| |
| /* |
| * memory layout of objects: |
| * 0 : objp |
| * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
| * the end of an object is aligned with the end of the real |
| * allocation. Catches writes behind the end of the allocation. |
| * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
| * redzone word. |
| * cachep->obj_offset: The real object. |
| * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
| * cachep->size - 1* BYTES_PER_WORD: last caller address |
| * [BYTES_PER_WORD long] |
| */ |
| static int obj_offset(struct kmem_cache *cachep) |
| { |
| return cachep->obj_offset; |
| } |
| |
| static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
| { |
| BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); |
| return (unsigned long long *) (objp + obj_offset(cachep) - |
| sizeof(unsigned long long)); |
| } |
| |
| static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
| { |
| BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); |
| if (cachep->flags & SLAB_STORE_USER) |
| return (unsigned long long *)(objp + cachep->size - |
| sizeof(unsigned long long) - |
| REDZONE_ALIGN); |
| return (unsigned long long *) (objp + cachep->size - |
| sizeof(unsigned long long)); |
| } |
| |
| static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
| { |
| BUG_ON(!(cachep->flags & SLAB_STORE_USER)); |
| return (void **)(objp + cachep->size - BYTES_PER_WORD); |
| } |
| |
| #else |
| |
| #define obj_offset(x) 0 |
| #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
| #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
| #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
| |
| #endif |
| |
| /* |
| * Do not go above this order unless 0 objects fit into the slab or |
| * overridden on the command line. |
| */ |
| #define SLAB_MAX_ORDER_HI 1 |
| #define SLAB_MAX_ORDER_LO 0 |
| static int slab_max_order = SLAB_MAX_ORDER_LO; |
| static bool slab_max_order_set __initdata; |
| |
| static inline void *index_to_obj(struct kmem_cache *cache, |
| const struct slab *slab, unsigned int idx) |
| { |
| return slab->s_mem + cache->size * idx; |
| } |
| |
| #define BOOT_CPUCACHE_ENTRIES 1 |
| /* internal cache of cache description objs */ |
| static struct kmem_cache kmem_cache_boot = { |
| .batchcount = 1, |
| .limit = BOOT_CPUCACHE_ENTRIES, |
| .shared = 1, |
| .size = sizeof(struct kmem_cache), |
| .name = "kmem_cache", |
| }; |
| |
| static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
| |
| static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
| { |
| return this_cpu_ptr(cachep->cpu_cache); |
| } |
| |
| /* |
| * Calculate the number of objects and left-over bytes for a given buffer size. |
| */ |
| static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, |
| slab_flags_t flags, size_t *left_over) |
| { |
| unsigned int num; |
| size_t slab_size = PAGE_SIZE << gfporder; |
| |
| /* |
| * The slab management structure can be either off the slab or |
| * on it. For the latter case, the memory allocated for a |
| * slab is used for: |
| * |
| * - @buffer_size bytes for each object |
| * - One freelist_idx_t for each object |
| * |
| * We don't need to consider alignment of freelist because |
| * freelist will be at the end of slab page. The objects will be |
| * at the correct alignment. |
| * |
| * If the slab management structure is off the slab, then the |
| * alignment will already be calculated into the size. Because |
| * the slabs are all pages aligned, the objects will be at the |
| * correct alignment when allocated. |
| */ |
| if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { |
| num = slab_size / buffer_size; |
| *left_over = slab_size % buffer_size; |
| } else { |
| num = slab_size / (buffer_size + sizeof(freelist_idx_t)); |
| *left_over = slab_size % |
| (buffer_size + sizeof(freelist_idx_t)); |
| } |
| |
| return num; |
| } |
| |
| #if DEBUG |
| #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
| |
| static void __slab_error(const char *function, struct kmem_cache *cachep, |
| char *msg) |
| { |
| pr_err("slab error in %s(): cache `%s': %s\n", |
| function, cachep->name, msg); |
| dump_stack(); |
| add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
| } |
| #endif |
| |
| /* |
| * By default on NUMA we use alien caches to stage the freeing of |
| * objects allocated from other nodes. This causes massive memory |
| * inefficiencies when using fake NUMA setup to split memory into a |
| * large number of small nodes, so it can be disabled on the command |
| * line |
| */ |
| |
| static int use_alien_caches __read_mostly = 1; |
| static int __init noaliencache_setup(char *s) |
| { |
| use_alien_caches = 0; |
| return 1; |
| } |
| __setup("noaliencache", noaliencache_setup); |
| |
| static int __init slab_max_order_setup(char *str) |
| { |
| get_option(&str, &slab_max_order); |
| slab_max_order = slab_max_order < 0 ? 0 : |
| min(slab_max_order, MAX_ORDER); |
| slab_max_order_set = true; |
| |
| return 1; |
| } |
| __setup("slab_max_order=", slab_max_order_setup); |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * Special reaping functions for NUMA systems called from cache_reap(). |
| * These take care of doing round robin flushing of alien caches (containing |
| * objects freed on different nodes from which they were allocated) and the |
| * flushing of remote pcps by calling drain_node_pages. |
| */ |
| static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
| |
| static void init_reap_node(int cpu) |
| { |
| per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), |
| node_online_map); |
| } |
| |
| static void next_reap_node(void) |
| { |
| int node = __this_cpu_read(slab_reap_node); |
| |
| node = next_node_in(node, node_online_map); |
| __this_cpu_write(slab_reap_node, node); |
| } |
| |
| #else |
| #define init_reap_node(cpu) do { } while (0) |
| #define next_reap_node(void) do { } while (0) |
| #endif |
| |
| /* |
| * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz |
| * via the workqueue/eventd. |
| * Add the CPU number into the expiration time to minimize the possibility of |
| * the CPUs getting into lockstep and contending for the global cache chain |
| * lock. |
| */ |
| static void start_cpu_timer(int cpu) |
| { |
| struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
| |
| if (reap_work->work.func == NULL) { |
| init_reap_node(cpu); |
| INIT_DEFERRABLE_WORK(reap_work, cache_reap); |
| schedule_delayed_work_on(cpu, reap_work, |
| __round_jiffies_relative(HZ, cpu)); |
| } |
| } |
| |
| static void init_arraycache(struct array_cache *ac, int limit, int batch) |
| { |
| if (ac) { |
| ac->avail = 0; |
| ac->limit = limit; |
| ac->batchcount = batch; |
| ac->touched = 0; |
| } |
| } |
| |
| static struct array_cache *alloc_arraycache(int node, int entries, |
| int batchcount, gfp_t gfp) |
| { |
| size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
| struct array_cache *ac = NULL; |
| |
| ac = kmalloc_node(memsize, gfp, node); |
| /* |
| * The array_cache structures contain pointers to free object. |
| * However, when such objects are allocated or transferred to another |
| * cache the pointers are not cleared and they could be counted as |
| * valid references during a kmemleak scan. Therefore, kmemleak must |
| * not scan such objects. |
| */ |
| kmemleak_no_scan(ac); |
| init_arraycache(ac, entries, batchcount); |
| return ac; |
| } |
| |
| static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, |
| struct slab *slab, void *objp) |
| { |
| struct kmem_cache_node *n; |
| int slab_node; |
| LIST_HEAD(list); |
| |
| slab_node = slab_nid(slab); |
| n = get_node(cachep, slab_node); |
| |
| raw_spin_lock(&n->list_lock); |
| free_block(cachep, &objp, 1, slab_node, &list); |
| raw_spin_unlock(&n->list_lock); |
| |
| slabs_destroy(cachep, &list); |
| } |
| |
| /* |
| * Transfer objects in one arraycache to another. |
| * Locking must be handled by the caller. |
| * |
| * Return the number of entries transferred. |
| */ |
| static int transfer_objects(struct array_cache *to, |
| struct array_cache *from, unsigned int max) |
| { |
| /* Figure out how many entries to transfer */ |
| int nr = min3(from->avail, max, to->limit - to->avail); |
| |
| if (!nr) |
| return 0; |
| |
| memcpy(to->entry + to->avail, from->entry + from->avail - nr, |
| sizeof(void *) *nr); |
| |
| from->avail -= nr; |
| to->avail += nr; |
| return nr; |
| } |
| |
| /* &alien->lock must be held by alien callers. */ |
| static __always_inline void __free_one(struct array_cache *ac, void *objp) |
| { |
| /* Avoid trivial double-free. */ |
| if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && |
| WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) |
| return; |
| ac->entry[ac->avail++] = objp; |
| } |
| |
| #ifndef CONFIG_NUMA |
| |
| #define drain_alien_cache(cachep, alien) do { } while (0) |
| #define reap_alien(cachep, n) do { } while (0) |
| |
| static inline struct alien_cache **alloc_alien_cache(int node, |
| int limit, gfp_t gfp) |
| { |
| return NULL; |
| } |
| |
| static inline void free_alien_cache(struct alien_cache **ac_ptr) |
| { |
| } |
| |
| static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) |
| { |
| return 0; |
| } |
| |
| static inline gfp_t gfp_exact_node(gfp_t flags) |
| { |
| return flags & ~__GFP_NOFAIL; |
| } |
| |
| #else /* CONFIG_NUMA */ |
| |
| static struct alien_cache *__alloc_alien_cache(int node, int entries, |
| int batch, gfp_t gfp) |
| { |
| size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); |
| struct alien_cache *alc = NULL; |
| |
| alc = kmalloc_node(memsize, gfp, node); |
| if (alc) { |
| kmemleak_no_scan(alc); |
| init_arraycache(&alc->ac, entries, batch); |
| spin_lock_init(&alc->lock); |
| } |
| return alc; |
| } |
| |
| static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
| { |
| struct alien_cache **alc_ptr; |
| int i; |
| |
| if (limit > 1) |
| limit = 12; |
| alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); |
| if (!alc_ptr) |
| return NULL; |
| |
| for_each_node(i) { |
| if (i == node || !node_online(i)) |
| continue; |
| alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); |
| if (!alc_ptr[i]) { |
| for (i--; i >= 0; i--) |
| kfree(alc_ptr[i]); |
| kfree(alc_ptr); |
| return NULL; |
| } |
| } |
| return alc_ptr; |
| } |
| |
| static void free_alien_cache(struct alien_cache **alc_ptr) |
| { |
| int i; |
| |
| if (!alc_ptr) |
| return; |
| for_each_node(i) |
| kfree(alc_ptr[i]); |
| kfree(alc_ptr); |
| } |
| |
| static void __drain_alien_cache(struct kmem_cache *cachep, |
| struct array_cache *ac, int node, |
| struct list_head *list) |
| { |
| struct kmem_cache_node *n = get_node(cachep, node); |
| |
| if (ac->avail) { |
| raw_spin_lock(&n->list_lock); |
| /* |
| * Stuff objects into the remote nodes shared array first. |
| * That way we could avoid the overhead of putting the objects |
| * into the free lists and getting them back later. |
| */ |
| if (n->shared) |
| transfer_objects(n->shared, ac, ac->limit); |
| |
| free_block(cachep, ac->entry, ac->avail, node, list); |
| ac->avail = 0; |
| raw_spin_unlock(&n->list_lock); |
| } |
| } |
| |
| /* |
| * Called from cache_reap() to regularly drain alien caches round robin. |
| */ |
| static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) |
| { |
| int node = __this_cpu_read(slab_reap_node); |
| |
| if (n->alien) { |
| struct alien_cache *alc = n->alien[node]; |
| struct array_cache *ac; |
| |
| if (alc) { |
| ac = &alc->ac; |
| if (ac->avail && spin_trylock_irq(&alc->lock)) { |
| LIST_HEAD(list); |
| |
| __drain_alien_cache(cachep, ac, node, &list); |
| spin_unlock_irq(&alc->lock); |
| slabs_destroy(cachep, &list); |
| } |
| } |
| } |
| } |
| |
| static void drain_alien_cache(struct kmem_cache *cachep, |
| struct alien_cache **alien) |
| { |
| int i = 0; |
| struct alien_cache *alc; |
| struct array_cache *ac; |
| unsigned long flags; |
| |
| for_each_online_node(i) { |
| alc = alien[i]; |
| if (alc) { |
| LIST_HEAD(list); |
| |
| ac = &alc->ac; |
| spin_lock_irqsave(&alc->lock, flags); |
| __drain_alien_cache(cachep, ac, i, &list); |
| spin_unlock_irqrestore(&alc->lock, flags); |
| slabs_destroy(cachep, &list); |
| } |
| } |
| } |
| |
| static int __cache_free_alien(struct kmem_cache *cachep, void *objp, |
| int node, int slab_node) |
| { |
| struct kmem_cache_node *n; |
| struct alien_cache *alien = NULL; |
| struct array_cache *ac; |
| LIST_HEAD(list); |
| |
| n = get_node(cachep, node); |
| STATS_INC_NODEFREES(cachep); |
| if (n->alien && n->alien[slab_node]) { |
| alien = n->alien[slab_node]; |
| ac = &alien->ac; |
| spin_lock(&alien->lock); |
| if (unlikely(ac->avail == ac->limit)) { |
| STATS_INC_ACOVERFLOW(cachep); |
| __drain_alien_cache(cachep, ac, slab_node, &list); |
| } |
| __free_one(ac, objp); |
| spin_unlock(&alien->lock); |
| slabs_destroy(cachep, &list); |
| } else { |
| n = get_node(cachep, slab_node); |
| raw_spin_lock(&n->list_lock); |
| free_block(cachep, &objp, 1, slab_node, &list); |
| raw_spin_unlock(&n->list_lock); |
| slabs_destroy(cachep, &list); |
| } |
| return 1; |
| } |
| |
| static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) |
| { |
| int slab_node = slab_nid(virt_to_slab(objp)); |
| int node = numa_mem_id(); |
| /* |
| * Make sure we are not freeing an object from another node to the array |
| * cache on this cpu. |
| */ |
| if (likely(node == slab_node)) |
| return 0; |
| |
| return __cache_free_alien(cachep, objp, node, slab_node); |
| } |
| |
| /* |
| * Construct gfp mask to allocate from a specific node but do not reclaim or |
| * warn about failures. |
| */ |
| static inline gfp_t gfp_exact_node(gfp_t flags) |
| { |
| return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
| } |
| #endif |
| |
| static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) |
| { |
| struct kmem_cache_node *n; |
| |
| /* |
| * Set up the kmem_cache_node for cpu before we can |
| * begin anything. Make sure some other cpu on this |
| * node has not already allocated this |
| */ |
| n = get_node(cachep, node); |
| if (n) { |
| raw_spin_lock_irq(&n->list_lock); |
| n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + |
| cachep->num; |
| raw_spin_unlock_irq(&n->list_lock); |
| |
| return 0; |
| } |
| |
| n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); |
| if (!n) |
| return -ENOMEM; |
| |
| kmem_cache_node_init(n); |
| n->next_reap = jiffies + REAPTIMEOUT_NODE + |
| ((unsigned long)cachep) % REAPTIMEOUT_NODE; |
| |
| n->free_limit = |
| (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; |
| |
| /* |
| * The kmem_cache_nodes don't come and go as CPUs |
| * come and go. slab_mutex provides sufficient |
| * protection here. |
| */ |
| cachep->node[node] = n; |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_NUMA) || defined(CONFIG_SMP) |
| /* |
| * Allocates and initializes node for a node on each slab cache, used for |
| * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node |
| * will be allocated off-node since memory is not yet online for the new node. |
| * When hotplugging memory or a cpu, existing nodes are not replaced if |
| * already in use. |
| * |
| * Must hold slab_mutex. |
| */ |
| static int init_cache_node_node(int node) |
| { |
| int ret; |
| struct kmem_cache *cachep; |
| |
| list_for_each_entry(cachep, &slab_caches, list) { |
| ret = init_cache_node(cachep, node, GFP_KERNEL); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static int setup_kmem_cache_node(struct kmem_cache *cachep, |
| int node, gfp_t gfp, bool force_change) |
| { |
| int ret = -ENOMEM; |
| struct kmem_cache_node *n; |
| struct array_cache *old_shared = NULL; |
| struct array_cache *new_shared = NULL; |
| struct alien_cache **new_alien = NULL; |
| LIST_HEAD(list); |
| |
| if (use_alien_caches) { |
| new_alien = alloc_alien_cache(node, cachep->limit, gfp); |
| if (!new_alien) |
| goto fail; |
| } |
| |
| if (cachep->shared) { |
| new_shared = alloc_arraycache(node, |
| cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); |
| if (!new_shared) |
| goto fail; |
| } |
| |
| ret = init_cache_node(cachep, node, gfp); |
| if (ret) |
| goto fail; |
| |
| n = get_node(cachep, node); |
| raw_spin_lock_irq(&n->list_lock); |
| if (n->shared && force_change) { |
| free_block(cachep, n->shared->entry, |
| n->shared->avail, node, &list); |
| n->shared->avail = 0; |
| } |
| |
| if (!n->shared || force_change) { |
| old_shared = n->shared; |
| n->shared = new_shared; |
| new_shared = NULL; |
| } |
| |
| if (!n->alien) { |
| n->alien = new_alien; |
| new_alien = NULL; |
| } |
| |
| raw_spin_unlock_irq(&n->list_lock); |
| slabs_destroy(cachep, &list); |
| |
| /* |
| * To protect lockless access to n->shared during irq disabled context. |
| * If n->shared isn't NULL in irq disabled context, accessing to it is |
| * guaranteed to be valid until irq is re-enabled, because it will be |
| * freed after synchronize_rcu(). |
| */ |
| if (old_shared && force_change) |
| synchronize_rcu(); |
| |
| fail: |
| kfree(old_shared); |
| kfree(new_shared); |
| free_alien_cache(new_alien); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static void cpuup_canceled(long cpu) |
| { |
| struct kmem_cache *cachep; |
| struct kmem_cache_node *n = NULL; |
| int node = cpu_to_mem(cpu); |
| const struct cpumask *mask = cpumask_of_node(node); |
| |
| list_for_each_entry(cachep, &slab_caches, list) { |
| struct array_cache *nc; |
| struct array_cache *shared; |
| struct alien_cache **alien; |
| LIST_HEAD(list); |
| |
| n = get_node(cachep, node); |
| if (!n) |
| continue; |
| |
| raw_spin_lock_irq(&n->list_lock); |
| |
| /* Free limit for this kmem_cache_node */ |
| n->free_limit -= cachep->batchcount; |
| |
| /* cpu is dead; no one can alloc from it. */ |
| nc = per_cpu_ptr(cachep->cpu_cache, cpu); |
| free_block(cachep, nc->entry, nc->avail, node, &list); |
| nc->avail = 0; |
| |
| if (!cpumask_empty(mask)) { |
| raw_spin_unlock_irq(&n->list_lock); |
| goto free_slab; |
| } |
| |
| shared = n->shared; |
| if (shared) { |
| free_block(cachep, shared->entry, |
| shared->avail, node, &list); |
| n->shared = NULL; |
| } |
| |
| alien = n->alien; |
| n->alien = NULL; |
| |
| raw_spin_unlock_irq(&n->list_lock); |
| |
| kfree(shared); |
| if (alien) { |
| drain_alien_cache(cachep, alien); |
| free_alien_cache(alien); |
| } |
| |
| free_slab: |
| slabs_destroy(cachep, &list); |
| } |
| /* |
| * In the previous loop, all the objects were freed to |
| * the respective cache's slabs, now we can go ahead and |
| * shrink each nodelist to its limit. |
| */ |
| list_for_each_entry(cachep, &slab_caches, list) { |
| n = get_node(cachep, node); |
| if (!n) |
| continue; |
| drain_freelist(cachep, n, INT_MAX); |
| } |
| } |
| |
| static int cpuup_prepare(long cpu) |
| { |
| struct kmem_cache *cachep; |
| int node = cpu_to_mem(cpu); |
| int err; |
| |
| /* |
| * We need to do this right in the beginning since |
| * alloc_arraycache's are going to use this list. |
| * kmalloc_node allows us to add the slab to the right |
| * kmem_cache_node and not this cpu's kmem_cache_node |
| */ |
| err = init_cache_node_node(node); |
| if (err < 0) |
| goto bad; |
| |
| /* |
| * Now we can go ahead with allocating the shared arrays and |
| * array caches |
| */ |
| list_for_each_entry(cachep, &slab_caches, list) { |
| err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); |
| if (err) |
| goto bad; |
| } |
| |
| return 0; |
| bad: |
| cpuup_canceled(cpu); |
| return -ENOMEM; |
| } |
| |
| int slab_prepare_cpu(unsigned int cpu) |
| { |
| int err; |
| |
| mutex_lock(&slab_mutex); |
| err = cpuup_prepare(cpu); |
| mutex_unlock(&slab_mutex); |
| return err; |
| } |
| |
| /* |
| * This is called for a failed online attempt and for a successful |
| * offline. |
| * |
| * Even if all the cpus of a node are down, we don't free the |
| * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and |
| * a kmalloc allocation from another cpu for memory from the node of |
| * the cpu going down. The kmem_cache_node structure is usually allocated from |
| * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). |
| */ |
| int slab_dead_cpu(unsigned int cpu) |
| { |
| mutex_lock(&slab_mutex); |
| cpuup_canceled(cpu); |
| mutex_unlock(&slab_mutex); |
| return 0; |
| } |
| #endif |
| |
| static int slab_online_cpu(unsigned int cpu) |
| { |
| start_cpu_timer(cpu); |
| return 0; |
| } |
| |
| static int slab_offline_cpu(unsigned int cpu) |
| { |
| /* |
| * Shutdown cache reaper. Note that the slab_mutex is held so |
| * that if cache_reap() is invoked it cannot do anything |
| * expensive but will only modify reap_work and reschedule the |
| * timer. |
| */ |
| cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); |
| /* Now the cache_reaper is guaranteed to be not running. */ |
| per_cpu(slab_reap_work, cpu).work.func = NULL; |
| return 0; |
| } |
| |
| #if defined(CONFIG_NUMA) |
| /* |
| * Drains freelist for a node on each slab cache, used for memory hot-remove. |
| * Returns -EBUSY if all objects cannot be drained so that the node is not |
| * removed. |
| * |
| * Must hold slab_mutex. |
| */ |
| static int __meminit drain_cache_node_node(int node) |
| { |
| struct kmem_cache *cachep; |
| int ret = 0; |
| |
| list_for_each_entry(cachep, &slab_caches, list) { |
| struct kmem_cache_node *n; |
| |
| n = get_node(cachep, node); |
| if (!n) |
| continue; |
| |
| drain_freelist(cachep, n, INT_MAX); |
| |
| if (!list_empty(&n->slabs_full) || |
| !list_empty(&n->slabs_partial)) { |
| ret = -EBUSY; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| static int __meminit slab_memory_callback(struct notifier_block *self, |
| unsigned long action, void *arg) |
| { |
| struct memory_notify *mnb = arg; |
| int ret = 0; |
| int nid; |
| |
| nid = mnb->status_change_nid; |
| if (nid < 0) |
| goto out; |
| |
| switch (action) { |
| case MEM_GOING_ONLINE: |
| mutex_lock(&slab_mutex); |
| ret = init_cache_node_node(nid); |
| mutex_unlock(&slab_mutex); |
| break; |
| case MEM_GOING_OFFLINE: |
| mutex_lock(&slab_mutex); |
| ret = drain_cache_node_node(nid); |
| mutex_unlock(&slab_mutex); |
| break; |
| case MEM_ONLINE: |
| case MEM_OFFLINE: |
| case MEM_CANCEL_ONLINE: |
| case MEM_CANCEL_OFFLINE: |
| break; |
| } |
| out: |
| return notifier_from_errno(ret); |
| } |
| #endif /* CONFIG_NUMA */ |
| |
| /* |
| * swap the static kmem_cache_node with kmalloced memory |
| */ |
| static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, |
| int nodeid) |
| { |
| struct kmem_cache_node *ptr; |
| |
| ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); |
| BUG_ON(!ptr); |
| |
| memcpy(ptr, list, sizeof(struct kmem_cache_node)); |
| /* |
| * Do not assume that spinlocks can be initialized via memcpy: |
| */ |
| raw_spin_lock_init(&ptr->list_lock); |
| |
| MAKE_ALL_LISTS(cachep, ptr, nodeid); |
| cachep->node[nodeid] = ptr; |
| } |
| |
| /* |
| * For setting up all the kmem_cache_node for cache whose buffer_size is same as |
| * size of kmem_cache_node. |
| */ |
| static void __init set_up_node(struct kmem_cache *cachep, int index) |
| { |
| int node; |
| |
| for_each_online_node(node) { |
| cachep->node[node] = &init_kmem_cache_node[index + node]; |
| cachep->node[node]->next_reap = jiffies + |
| REAPTIMEOUT_NODE + |
| ((unsigned long)cachep) % REAPTIMEOUT_NODE; |
| } |
| } |
| |
| /* |
| * Initialisation. Called after the page allocator have been initialised and |
| * before smp_init(). |
| */ |
| void __init kmem_cache_init(void) |
| { |
| int i; |
| |
| kmem_cache = &kmem_cache_boot; |
| |
| if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) |
| use_alien_caches = 0; |
| |
| for (i = 0; i < NUM_INIT_LISTS; i++) |
| kmem_cache_node_init(&init_kmem_cache_node[i]); |
| |
| /* |
| * Fragmentation resistance on low memory - only use bigger |
| * page orders on machines with more than 32MB of memory if |
| * not overridden on the command line. |
| */ |
| if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) |
| slab_max_order = SLAB_MAX_ORDER_HI; |
| |
| /* Bootstrap is tricky, because several objects are allocated |
| * from caches that do not exist yet: |
| * 1) initialize the kmem_cache cache: it contains the struct |
| * kmem_cache structures of all caches, except kmem_cache itself: |
| * kmem_cache is statically allocated. |
| * Initially an __init data area is used for the head array and the |
| * kmem_cache_node structures, it's replaced with a kmalloc allocated |
| * array at the end of the bootstrap. |
| * 2) Create the first kmalloc cache. |
| * The struct kmem_cache for the new cache is allocated normally. |
| * An __init data area is used for the head array. |
| * 3) Create the remaining kmalloc caches, with minimally sized |
| * head arrays. |
| * 4) Replace the __init data head arrays for kmem_cache and the first |
| * kmalloc cache with kmalloc allocated arrays. |
| * 5) Replace the __init data for kmem_cache_node for kmem_cache and |
| * the other cache's with kmalloc allocated memory. |
| * 6) Resize the head arrays of the kmalloc caches to their final sizes. |
| */ |
| |
| /* 1) create the kmem_cache */ |
| |
| /* |
| * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
| */ |
| create_boot_cache(kmem_cache, "kmem_cache", |
| offsetof(struct kmem_cache, node) + |
| nr_node_ids * sizeof(struct kmem_cache_node *), |
| SLAB_HWCACHE_ALIGN, 0, 0); |
| list_add(&kmem_cache->list, &slab_caches); |
| slab_state = PARTIAL; |
| |
| /* |
| * Initialize the caches that provide memory for the kmem_cache_node |
| * structures first. Without this, further allocations will bug. |
| */ |
| new_kmalloc_cache(INDEX_NODE, KMALLOC_NORMAL, ARCH_KMALLOC_FLAGS); |
| slab_state = PARTIAL_NODE; |
| setup_kmalloc_cache_index_table(); |
| |
| /* 5) Replace the bootstrap kmem_cache_node */ |
| { |
| int nid; |
| |
| for_each_online_node(nid) { |
| init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); |
| |
| init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], |
| &init_kmem_cache_node[SIZE_NODE + nid], nid); |
| } |
| } |
| |
| create_kmalloc_caches(ARCH_KMALLOC_FLAGS); |
| } |
| |
| void __init kmem_cache_init_late(void) |
| { |
| struct kmem_cache *cachep; |
| |
| /* 6) resize the head arrays to their final sizes */ |
| mutex_lock(&slab_mutex); |
| list_for_each_entry(cachep, &slab_caches, list) |
| if (enable_cpucache(cachep, GFP_NOWAIT)) |
| BUG(); |
| mutex_unlock(&slab_mutex); |
| |
| /* Done! */ |
| slab_state = FULL; |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * Register a memory hotplug callback that initializes and frees |
| * node. |
| */ |
| hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
| #endif |
| |
| /* |
| * The reap timers are started later, with a module init call: That part |
| * of the kernel is not yet operational. |
| */ |
| } |
| |
| static int __init cpucache_init(void) |
| { |
| int ret; |
| |
| /* |
| * Register the timers that return unneeded pages to the page allocator |
| */ |
| ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", |
| slab_online_cpu, slab_offline_cpu); |
| WARN_ON(ret < 0); |
| |
| return 0; |
| } |
| __initcall(cpucache_init); |
| |
| static noinline void |
| slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) |
| { |
| #if DEBUG |
| struct kmem_cache_node *n; |
| unsigned long flags; |
| int node; |
| static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| |
| if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) |
| return; |
| |
| pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
| nodeid, gfpflags, &gfpflags); |
| pr_warn(" cache: %s, object size: %d, order: %d\n", |
| cachep->name, cachep->size, cachep->gfporder); |
| |
| for_each_kmem_cache_node(cachep, node, n) { |
| unsigned long total_slabs, free_slabs, free_objs; |
| |
| raw_spin_lock_irqsave(&n->list_lock, flags); |
| total_slabs = n->total_slabs; |
| free_slabs = n->free_slabs; |
| free_objs = n->free_objects; |
| raw_spin_unlock_irqrestore(&n->list_lock, flags); |
| |
| pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", |
| node, total_slabs - free_slabs, total_slabs, |
| (total_slabs * cachep->num) - free_objs, |
| total_slabs * cachep->num); |
| } |
| #endif |
| } |
| |
| /* |
| * Interface to system's page allocator. No need to hold the |
| * kmem_cache_node ->list_lock. |
| * |
| * If we requested dmaable memory, we will get it. Even if we |
| * did not request dmaable memory, we might get it, but that |
| * would be relatively rare and ignorable. |
| */ |
| static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, |
| int nodeid) |
| { |
| struct folio *folio; |
| struct slab *slab; |
| |
| flags |= cachep->allocflags; |
| |
| folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder); |
| if (!folio) { |
| slab_out_of_memory(cachep, flags, nodeid); |
| return NULL; |
| } |
| |
| slab = folio_slab(folio); |
| |
| account_slab(slab, cachep->gfporder, cachep, flags); |
| __folio_set_slab(folio); |
| /* Make the flag visible before any changes to folio->mapping */ |
| smp_wmb(); |
| /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ |
| if (sk_memalloc_socks() && folio_is_pfmemalloc(folio)) |
| slab_set_pfmemalloc(slab); |
| |
| return slab; |
| } |
| |
| /* |
| * Interface to system's page release. |
| */ |
| static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab) |
| { |
| int order = cachep->gfporder; |
| struct folio *folio = slab_folio(slab); |
| |
| BUG_ON(!folio_test_slab(folio)); |
| __slab_clear_pfmemalloc(slab); |
| page_mapcount_reset(&folio->page); |
| folio->mapping = NULL; |
| /* Make the mapping reset visible before clearing the flag */ |
| smp_wmb(); |
| __folio_clear_slab(folio); |
| |
| mm_account_reclaimed_pages(1 << order); |
| unaccount_slab(slab, order, cachep); |
| __free_pages(&folio->page, order); |
| } |
| |
| static void kmem_rcu_free(struct rcu_head *head) |
| { |
| struct kmem_cache *cachep; |
| struct slab *slab; |
| |
| slab = container_of(head, struct slab, rcu_head); |
| cachep = slab->slab_cache; |
| |
| kmem_freepages(cachep, slab); |
| } |
| |
| #if DEBUG |
| static inline bool is_debug_pagealloc_cache(struct kmem_cache *cachep) |
| { |
| return debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && |
| ((cachep->size % PAGE_SIZE) == 0); |
| } |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) |
| { |
| if (!is_debug_pagealloc_cache(cachep)) |
| return; |
| |
| __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); |
| } |
| |
| #else |
| static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, |
| int map) {} |
| |
| #endif |
| |
| static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
| { |
| int size = cachep->object_size; |
| addr = &((char *)addr)[obj_offset(cachep)]; |
| |
| memset(addr, val, size); |
| *(unsigned char *)(addr + size - 1) = POISON_END; |
| } |
| |
| static void dump_line(char *data, int offset, int limit) |
| { |
| int i; |
| unsigned char error = 0; |
| int bad_count = 0; |
| |
| pr_err("%03x: ", offset); |
| for (i = 0; i < limit; i++) { |
| if (data[offset + i] != POISON_FREE) { |
| error = data[offset + i]; |
| bad_count++; |
| } |
| } |
| print_hex_dump(KERN_CONT, "", 0, 16, 1, |
| &data[offset], limit, 1); |
| |
| if (bad_count == 1) { |
| error ^= POISON_FREE; |
| if (!(error & (error - 1))) { |
| pr_err("Single bit error detected. Probably bad RAM.\n"); |
| #ifdef CONFIG_X86 |
| pr_err("Run memtest86+ or a similar memory test tool.\n"); |
| #else |
| pr_err("Run a memory test tool.\n"); |
| #endif |
| } |
| } |
| } |
| #endif |
| |
| #if DEBUG |
| |
| static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
| { |
| int i, size; |
| char *realobj; |
| |
| if (cachep->flags & SLAB_RED_ZONE) { |
| pr_err("Redzone: 0x%llx/0x%llx\n", |
| *dbg_redzone1(cachep, objp), |
| *dbg_redzone2(cachep, objp)); |
| } |
| |
| if (cachep->flags & SLAB_STORE_USER) |
| pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); |
| realobj = (char *)objp + obj_offset(cachep); |
| size = cachep->object_size; |
| for (i = 0; i < size && lines; i += 16, lines--) { |
| int limit; |
| limit = 16; |
| if (i + limit > size) |
| limit = size - i; |
| dump_line(realobj, i, limit); |
| } |
| } |
| |
| static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
| { |
| char *realobj; |
| int size, i; |
| int lines = 0; |
| |
| if (is_debug_pagealloc_cache(cachep)) |
| return; |
| |
| realobj = (char *)objp + obj_offset(cachep); |
| size = cachep->object_size; |
| |
| for (i = 0; i < size; i++) { |
| char exp = POISON_FREE; |
| if (i == size - 1) |
| exp = POISON_END; |
| if (realobj[i] != exp) { |
| int limit; |
| /* Mismatch ! */ |
| /* Print header */ |
| if (lines == 0) { |
| pr_err("Slab corruption (%s): %s start=%px, len=%d\n", |
| print_tainted(), cachep->name, |
| realobj, size); |
| print_objinfo(cachep, objp, 0); |
| } |
| /* Hexdump the affected line */ |
| i = (i / 16) * 16; |
| limit = 16; |
| if (i + limit > size) |
| limit = size - i; |
| dump_line(realobj, i, limit); |
| i += 16; |
| lines++; |
| /* Limit to 5 lines */ |
| if (lines > 5) |
| break; |
| } |
| } |
| if (lines != 0) { |
| /* Print some data about the neighboring objects, if they |
| * exist: |
| */ |
| struct slab *slab = virt_to_slab(objp); |
| unsigned int objnr; |
| |
| objnr = obj_to_index(cachep, slab, objp); |
| if (objnr) { |
| objp = index_to_obj(cachep, slab, objnr - 1); |
| realobj = (char *)objp + obj_offset(cachep); |
| pr_err("Prev obj: start=%px, len=%d\n", realobj, size); |
| print_objinfo(cachep, objp, 2); |
| } |
| if (objnr + 1 < cachep->num) { |
| objp = index_to_obj(cachep, slab, objnr + 1); |
| realobj = (char *)objp + obj_offset(cachep); |
| pr_err("Next obj: start=%px, len=%d\n", realobj, size); |
| print_objinfo(cachep, objp, 2); |
| } |
| } |
| } |
| #endif |
| |
| #if DEBUG |
| static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
| struct slab *slab) |
| { |
| int i; |
| |
| if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { |
| poison_obj(cachep, slab->freelist - obj_offset(cachep), |
| POISON_FREE); |
| } |
| |
| for (i = 0; i < cachep->num; i++) { |
| void *objp = index_to_obj(cachep, slab, i); |
| |
| if (cachep->flags & SLAB_POISON) { |
| check_poison_obj(cachep, objp); |
| slab_kernel_map(cachep, objp, 1); |
| } |
| if (cachep->flags & SLAB_RED_ZONE) { |
| if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
| slab_error(cachep, "start of a freed object was overwritten"); |
| if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
| slab_error(cachep, "end of a freed object was overwritten"); |
| } |
| } |
| } |
| #else |
| static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
| struct slab *slab) |
| { |
| } |
| #endif |
| |
| /** |
| * slab_destroy - destroy and release all objects in a slab |
| * @cachep: cache pointer being destroyed |
| * @slab: slab being destroyed |
| * |
| * Destroy all the objs in a slab, and release the mem back to the system. |
| * Before calling the slab must have been unlinked from the cache. The |
| * kmem_cache_node ->list_lock is not held/needed. |
| */ |
| static void slab_destroy(struct kmem_cache *cachep, struct slab *slab) |
| { |
| void *freelist; |
| |
| freelist = slab->freelist; |
| slab_destroy_debugcheck(cachep, slab); |
| if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) |
| call_rcu(&slab->rcu_head, kmem_rcu_free); |
| else |
| kmem_freepages(cachep, slab); |
| |
| /* |
| * From now on, we don't use freelist |
| * although actual page can be freed in rcu context |
| */ |
| if (OFF_SLAB(cachep)) |
| kfree(freelist); |
| } |
| |
| /* |
| * Update the size of the caches before calling slabs_destroy as it may |
| * recursively call kfree. |
| */ |
| static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) |
| { |
| struct slab *slab, *n; |
| |
| list_for_each_entry_safe(slab, n, list, slab_list) { |
| list_del(&slab->slab_list); |
| slab_destroy(cachep, slab); |
| } |
| } |
| |
| /** |
| * calculate_slab_order - calculate size (page order) of slabs |
| * @cachep: pointer to the cache that is being created |
| * @size: size of objects to be created in this cache. |
| * @flags: slab allocation flags |
| * |
| * Also calculates the number of objects per slab. |
| * |
| * This could be made much more intelligent. For now, try to avoid using |
| * high order pages for slabs. When the gfp() functions are more friendly |
| * towards high-order requests, this should be changed. |
| * |
| * Return: number of left-over bytes in a slab |
| */ |
| static size_t calculate_slab_order(struct kmem_cache *cachep, |
| size_t size, slab_flags_t flags) |
| { |
| size_t left_over = 0; |
| int gfporder; |
| |
| for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
| unsigned int num; |
| size_t remainder; |
| |
| num = cache_estimate(gfporder, size, flags, &remainder); |
| if (!num) |
| continue; |
| |
| /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ |
| if (num > SLAB_OBJ_MAX_NUM) |
| break; |
| |
| if (flags & CFLGS_OFF_SLAB) { |
| struct kmem_cache *freelist_cache; |
| size_t freelist_size; |
| size_t freelist_cache_size; |
| |
| freelist_size = num * sizeof(freelist_idx_t); |
| if (freelist_size > KMALLOC_MAX_CACHE_SIZE) { |
| freelist_cache_size = PAGE_SIZE << get_order(freelist_size); |
| } else { |
| freelist_cache = kmalloc_slab(freelist_size, 0u, _RET_IP_); |
| if (!freelist_cache) |
| continue; |
| freelist_cache_size = freelist_cache->size; |
| |
| /* |
| * Needed to avoid possible looping condition |
| * in cache_grow_begin() |
| */ |
| if (OFF_SLAB(freelist_cache)) |
| continue; |
| } |
| |
| /* check if off slab has enough benefit */ |
| if (freelist_cache_size > cachep->size / 2) |
| continue; |
| } |
| |
| /* Found something acceptable - save it away */ |
| cachep->num = num; |
| cachep->gfporder = gfporder; |
| left_over = remainder; |
| |
| /* |
| * A VFS-reclaimable slab tends to have most allocations |
| * as GFP_NOFS and we really don't want to have to be allocating |
| * higher-order pages when we are unable to shrink dcache. |
| */ |
| if (flags & SLAB_RECLAIM_ACCOUNT) |
| break; |
| |
| /* |
| * Large number of objects is good, but very large slabs are |
| * currently bad for the gfp()s. |
| */ |
| if (gfporder >= slab_max_order) |
| break; |
| |
| /* |
| * Acceptable internal fragmentation? |
| */ |
| if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
| break; |
| } |
| return left_over; |
| } |
| |
| static struct array_cache __percpu *alloc_kmem_cache_cpus( |
| struct kmem_cache *cachep, int entries, int batchcount) |
| { |
| int cpu; |
| size_t size; |
| struct array_cache __percpu *cpu_cache; |
| |
| size = sizeof(void *) * entries + sizeof(struct array_cache); |
| cpu_cache = __alloc_percpu(size, sizeof(void *)); |
| |
| if (!cpu_cache) |
| return NULL; |
| |
| for_each_possible_cpu(cpu) { |
| init_arraycache(per_cpu_ptr(cpu_cache, cpu), |
| entries, batchcount); |
| } |
| |
| return cpu_cache; |
| } |
| |
| static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
| { |
| if (slab_state >= FULL) |
| return enable_cpucache(cachep, gfp); |
| |
| cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); |
| if (!cachep->cpu_cache) |
| return 1; |
| |
| if (slab_state == DOWN) { |
| /* Creation of first cache (kmem_cache). */ |
| set_up_node(kmem_cache, CACHE_CACHE); |
| } else if (slab_state == PARTIAL) { |
| /* For kmem_cache_node */ |
| set_up_node(cachep, SIZE_NODE); |
| } else { |
| int node; |
| |
| for_each_online_node(node) { |
| cachep->node[node] = kmalloc_node( |
| sizeof(struct kmem_cache_node), gfp, node); |
| BUG_ON(!cachep->node[node]); |
| kmem_cache_node_init(cachep->node[node]); |
| } |
| } |
| |
| cachep->node[numa_mem_id()]->next_reap = |
| jiffies + REAPTIMEOUT_NODE + |
| ((unsigned long)cachep) % REAPTIMEOUT_NODE; |
| |
| cpu_cache_get(cachep)->avail = 0; |
| cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; |
| cpu_cache_get(cachep)->batchcount = 1; |
| cpu_cache_get(cachep)->touched = 0; |
| cachep->batchcount = 1; |
| cachep->limit = BOOT_CPUCACHE_ENTRIES; |
| return 0; |
| } |
| |
| slab_flags_t kmem_cache_flags(unsigned int object_size, |
| slab_flags_t flags, const char *name) |
| { |
| return flags; |
| } |
| |
| struct kmem_cache * |
| __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
| slab_flags_t flags, void (*ctor)(void *)) |
| { |
| struct kmem_cache *cachep; |
| |
| cachep = find_mergeable(size, align, flags, name, ctor); |
| if (cachep) { |
| cachep->refcount++; |
| |
| /* |
| * Adjust the object sizes so that we clear |
| * the complete object on kzalloc. |
| */ |
| cachep->object_size = max_t(int, cachep->object_size, size); |
| } |
| return cachep; |
| } |
| |
| static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, |
| size_t size, slab_flags_t flags) |
| { |
| size_t left; |
| |
| cachep->num = 0; |
| |
| /* |
| * If slab auto-initialization on free is enabled, store the freelist |
| * off-slab, so that its contents don't end up in one of the allocated |
| * objects. |
| */ |
| if (unlikely(slab_want_init_on_free(cachep))) |
| return false; |
| |
| if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) |
| return false; |
| |
| left = calculate_slab_order(cachep, size, |
| flags | CFLGS_OBJFREELIST_SLAB); |
| if (!cachep->num) |
| return false; |
| |
| if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) |
| return false; |
| |
| cachep->colour = left / cachep->colour_off; |
| |
| return true; |
| } |
| |
| static bool set_off_slab_cache(struct kmem_cache *cachep, |
| size_t size, slab_flags_t flags) |
| { |
| size_t left; |
| |
| cachep->num = 0; |
| |
| /* |
| * Always use on-slab management when SLAB_NOLEAKTRACE |
| * to avoid recursive calls into kmemleak. |
| */ |
| if (flags & SLAB_NOLEAKTRACE) |
| return false; |
| |
| /* |
| * Size is large, assume best to place the slab management obj |
| * off-slab (should allow better packing of objs). |
| */ |
| left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); |
| if (!cachep->num) |
| return false; |
| |
| /* |
| * If the slab has been placed off-slab, and we have enough space then |
| * move it on-slab. This is at the expense of any extra colouring. |
| */ |
| if (left >= cachep->num * sizeof(freelist_idx_t)) |
| return false; |
| |
| cachep->colour = left / cachep->colour_off; |
| |
| return true; |
| } |
| |
| static bool set_on_slab_cache(struct kmem_cache *cachep, |
| size_t size, slab_flags_t flags) |
| { |
| size_t left; |
| |
| cachep->num = 0; |
| |
| left = calculate_slab_order(cachep, size, flags); |
| if (!cachep->num) |
| return false; |
| |
| cachep->colour = left / cachep->colour_off; |
| |
| return true; |
| } |
| |
| /* |
| * __kmem_cache_create - Create a cache. |
| * @cachep: cache management descriptor |
| * @flags: SLAB flags |
| * |
| * Returns zero on success, nonzero on failure. |
| * |
| * The flags are |
| * |
| * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) |
| * to catch references to uninitialised memory. |
| * |
| * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check |
| * for buffer overruns. |
| * |
| * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
| * cacheline. This can be beneficial if you're counting cycles as closely |
| * as davem. |
| */ |
| int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) |
| { |
| size_t ralign = BYTES_PER_WORD; |
| gfp_t gfp; |
| int err; |
| unsigned int size = cachep->size; |
| |
| #if DEBUG |
| #if FORCED_DEBUG |
| /* |
| * Enable redzoning and last user accounting, except for caches with |
| * large objects, if the increased size would increase the object size |
| * above the next power of two: caches with object sizes just above a |
| * power of two have a significant amount of internal fragmentation. |
| */ |
| if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
| 2 * sizeof(unsigned long long))) |
| flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
| if (!(flags & SLAB_TYPESAFE_BY_RCU)) |
| flags |= SLAB_POISON; |
| #endif |
| #endif |
| |
| /* |
| * Check that size is in terms of words. This is needed to avoid |
| * unaligned accesses for some archs when redzoning is used, and makes |
| * sure any on-slab bufctl's are also correctly aligned. |
| */ |
| size = ALIGN(size, BYTES_PER_WORD); |
| |
| if (flags & SLAB_RED_ZONE) { |
| ralign = REDZONE_ALIGN; |
| /* If redzoning, ensure that the second redzone is suitably |
| * aligned, by adjusting the object size accordingly. */ |
| size = ALIGN(size, REDZONE_ALIGN); |
| } |
| |
| /* 3) caller mandated alignment */ |
| if (ralign < cachep->align) { |
| ralign = cachep->align; |
| } |
| /* disable debug if necessary */ |
| if (ralign > __alignof__(unsigned long long)) |
| flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
| /* |
| * 4) Store it. |
| */ |
| cachep->align = ralign; |
| cachep->colour_off = cache_line_size(); |
| /* Offset must be a multiple of the alignment. */ |
| if (cachep->colour_off < cachep->align) |
| cachep->colour_off = cachep->align; |
| |
| if (slab_is_available()) |
| gfp = GFP_KERNEL; |
| else |
| gfp = GFP_NOWAIT; |
| |
| #if DEBUG |
| |
| /* |
| * Both debugging options require word-alignment which is calculated |
| * into align above. |
| */ |
| if (flags & SLAB_RED_ZONE) { |
| /* add space for red zone words */ |
| cachep->obj_offset += sizeof(unsigned long long); |
| size += 2 * sizeof(unsigned long long); |
| } |
| if (flags & SLAB_STORE_USER) { |
| /* user store requires one word storage behind the end of |
| * the real object. But if the second red zone needs to be |
| * aligned to 64 bits, we must allow that much space. |
| */ |
| if (flags & SLAB_RED_ZONE) |
| size += REDZONE_ALIGN; |
| else |
| size += BYTES_PER_WORD; |
| } |
| #endif |
| |
| kasan_cache_create(cachep, &size, &flags); |
| |
| size = ALIGN(size, cachep->align); |
| /* |
| * We should restrict the number of objects in a slab to implement |
| * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. |
| */ |
| if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) |
| size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); |
| |
| #if DEBUG |
| /* |
| * To activate debug pagealloc, off-slab management is necessary |
| * requirement. In early phase of initialization, small sized slab |
| * doesn't get initialized so it would not be possible. So, we need |
| * to check size >= 256. It guarantees that all necessary small |
| * sized slab is initialized in current slab initialization sequence. |
| */ |
| if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && |
| size >= 256 && cachep->object_size > cache_line_size()) { |
| if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { |
| size_t tmp_size = ALIGN(size, PAGE_SIZE); |
| |
| if (set_off_slab_cache(cachep, tmp_size, flags)) { |
| flags |= CFLGS_OFF_SLAB; |
| cachep->obj_offset += tmp_size - size; |
| size = tmp_size; |
| goto done; |
| } |
| } |
| } |
| #endif |
| |
| if (set_objfreelist_slab_cache(cachep, size, flags)) { |
| flags |= CFLGS_OBJFREELIST_SLAB; |
| goto done; |
| } |
| |
| if (set_off_slab_cache(cachep, size, flags)) { |
| flags |= CFLGS_OFF_SLAB; |
| goto done; |
| } |
| |
| if (set_on_slab_cache(cachep, size, flags)) |
| goto done; |
| |
| return -E2BIG; |
| |
| done: |
| cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); |
| cachep->flags = flags; |
| cachep->allocflags = __GFP_COMP; |
| if (flags & SLAB_CACHE_DMA) |
| cachep->allocflags |= GFP_DMA; |
| if (flags & SLAB_CACHE_DMA32) |
| cachep->allocflags |= GFP_DMA32; |
| if (flags & SLAB_RECLAIM_ACCOUNT) |
| cachep->allocflags |= __GFP_RECLAIMABLE; |
| cachep->size = size; |
| cachep->reciprocal_buffer_size = reciprocal_value(size); |
| |
| #if DEBUG |
| /* |
| * If we're going to use the generic kernel_map_pages() |
| * poisoning, then it's going to smash the contents of |
| * the redzone and userword anyhow, so switch them off. |
| */ |
| if (IS_ENABLED(CONFIG_PAGE_POISONING) && |
| (cachep->flags & SLAB_POISON) && |
| is_debug_pagealloc_cache(cachep)) |
| cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
| #endif |
| |
| err = setup_cpu_cache(cachep, gfp); |
| if (err) { |
| __kmem_cache_release(cachep); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| #if DEBUG |
| static void check_irq_off(void) |
| { |
| BUG_ON(!irqs_disabled()); |
| } |
| |
| static void check_irq_on(void) |
| { |
| BUG_ON(irqs_disabled()); |
| } |
| |
| static void check_mutex_acquired(void) |
| { |
| BUG_ON(!mutex_is_locked(&slab_mutex)); |
| } |
| |
| static void check_spinlock_acquired(struct kmem_cache *cachep) |
| { |
| #ifdef CONFIG_SMP |
| check_irq_off(); |
| assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); |
| #endif |
| } |
| |
| static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
| { |
| #ifdef CONFIG_SMP |
| check_irq_off(); |
| assert_raw_spin_locked(&get_node(cachep, node)->list_lock); |
| #endif |
| } |
| |
| #else |
| #define check_irq_off() do { } while(0) |
| #define check_irq_on() do { } while(0) |
| #define check_mutex_acquired() do { } while(0) |
| #define check_spinlock_acquired(x) do { } while(0) |
| #define check_spinlock_acquired_node(x, y) do { } while(0) |
| #endif |
| |
| static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, |
| int node, bool free_all, struct list_head *list) |
| { |
| int tofree; |
| |
| if (!ac || !ac->avail) |
| return; |
| |
| tofree = free_all ? ac->avail : (ac->limit + 4) / 5; |
| if (tofree > ac->avail) |
| tofree = (ac->avail + 1) / 2; |
| |
| free_block(cachep, ac->entry, tofree, node, list); |
| ac->avail -= tofree; |
| memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); |
| } |
| |
| static void do_drain(void *arg) |
| { |
| struct kmem_cache *cachep = arg; |
| struct array_cache *ac; |
| int node = numa_mem_id(); |
| struct kmem_cache_node *n; |
| LIST_HEAD(list); |
| |
| check_irq_off(); |
| ac = cpu_cache_get(cachep); |
| n = get_node(cachep, node); |
| raw_spin_lock(&n->list_lock); |
| free_block(cachep, ac->entry, ac->avail, node, &list); |
| raw_spin_unlock(&n->list_lock); |
| ac->avail = 0; |
| slabs_destroy(cachep, &list); |
| } |
| |
| static void drain_cpu_caches(struct kmem_cache *cachep) |
| { |
| struct kmem_cache_node *n; |
| int node; |
| LIST_HEAD(list); |
| |
| on_each_cpu(do_drain, cachep, 1); |
| check_irq_on(); |
| for_each_kmem_cache_node(cachep, node, n) |
| if (n->alien) |
| drain_alien_cache(cachep, n->alien); |
| |
| for_each_kmem_cache_node(cachep, node, n) { |
| raw_spin_lock_irq(&n->list_lock); |
| drain_array_locked(cachep, n->shared, node, true, &list); |
| raw_spin_unlock_irq(&n->list_lock); |
| |
| slabs_destroy(cachep, &list); |
| } |
| } |
| |
| /* |
| * Remove slabs from the list of free slabs. |
| * Specify the number of slabs to drain in tofree. |
| * |
| * Returns the actual number of slabs released. |
| */ |
| static int drain_freelist(struct kmem_cache *cache, |
| struct kmem_cache_node *n, int tofree) |
| { |
| struct list_head *p; |
| int nr_freed; |
| struct slab *slab; |
| |
| nr_freed = 0; |
| while (nr_freed < tofree && !list_empty(&n->slabs_free)) { |
| |
| raw_spin_lock_irq(&n->list_lock); |
| p = n->slabs_free.prev; |
| if (p == &n->slabs_free) { |
| raw_spin_unlock_irq(&n->list_lock); |
| goto out; |
| } |
| |
| slab = list_entry(p, struct slab, slab_list); |
| list_del(&slab->slab_list); |
| n->free_slabs--; |
| n->total_slabs--; |
| /* |
| * Safe to drop the lock. The slab is no longer linked |
| * to the cache. |
| */ |
| n->free_objects -= cache->num; |
| raw_spin_unlock_irq(&n->list_lock); |
| slab_destroy(cache, slab); |
| nr_freed++; |
| |
| cond_resched(); |
| } |
| out: |
| return nr_freed; |
| } |
| |
| bool __kmem_cache_empty(struct kmem_cache *s) |
| { |
| int node; |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) |
| if (!list_empty(&n->slabs_full) || |
| !list_empty(&n->slabs_partial)) |
| return false; |
| return true; |
| } |
| |
| int __kmem_cache_shrink(struct kmem_cache *cachep) |
| { |
| int ret = 0; |
| int node; |
| struct kmem_cache_node *n; |
| |
| drain_cpu_caches(cachep); |
| |
| check_irq_on(); |
| for_each_kmem_cache_node(cachep, node, n) { |
| drain_freelist(cachep, n, INT_MAX); |
| |
| ret += !list_empty(&n->slabs_full) || |
| !list_empty(&n->slabs_partial); |
| } |
| return (ret ? 1 : 0); |
| } |
| |
| int __kmem_cache_shutdown(struct kmem_cache *cachep) |
| { |
| return __kmem_cache_shrink(cachep); |
| } |
| |
| void __kmem_cache_release(struct kmem_cache *cachep) |
| { |
| int i; |
| struct kmem_cache_node *n; |
| |
| cache_random_seq_destroy(cachep); |
| |
| free_percpu(cachep->cpu_cache); |
| |
| /* NUMA: free the node structures */ |
| for_each_kmem_cache_node(cachep, i, n) { |
| kfree(n->shared); |
| free_alien_cache(n->alien); |
| kfree(n); |
| cachep->node[i] = NULL; |
| } |
| } |
| |
| /* |
| * Get the memory for a slab management obj. |
| * |
| * For a slab cache when the slab descriptor is off-slab, the |
| * slab descriptor can't come from the same cache which is being created, |
| * Because if it is the case, that means we defer the creation of |
| * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. |
| * And we eventually call down to __kmem_cache_create(), which |
| * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. |
| * This is a "chicken-and-egg" problem. |
| * |
| * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, |
| * which are all initialized during kmem_cache_init(). |
| */ |
| static void *alloc_slabmgmt(struct kmem_cache *cachep, |
| struct slab *slab, int colour_off, |
| gfp_t local_flags, int nodeid) |
| { |
| void *freelist; |
| void *addr = slab_address(slab); |
| |
| slab->s_mem = addr + colour_off; |
| slab->active = 0; |
| |
| if (OBJFREELIST_SLAB(cachep)) |
| freelist = NULL; |
| else if (OFF_SLAB(cachep)) { |
| /* Slab management obj is off-slab. */ |
| freelist = kmalloc_node(cachep->freelist_size, |
| local_flags, nodeid); |
| } else { |
| /* We will use last bytes at the slab for freelist */ |
| freelist = addr + (PAGE_SIZE << cachep->gfporder) - |
| cachep->freelist_size; |
| } |
| |
| return freelist; |
| } |
| |
| static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx) |
| { |
| return ((freelist_idx_t *) slab->freelist)[idx]; |
| } |
| |
| static inline void set_free_obj(struct slab *slab, |
| unsigned int idx, freelist_idx_t val) |
| { |
| ((freelist_idx_t *)(slab->freelist))[idx] = val; |
| } |
| |
| static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab) |
| { |
| #if DEBUG |
| int i; |
| |
| for (i = 0; i < cachep->num; i++) { |
| void *objp = index_to_obj(cachep, slab, i); |
| |
| if (cachep->flags & SLAB_STORE_USER) |
| *dbg_userword(cachep, objp) = NULL; |
| |
| if (cachep->flags & SLAB_RED_ZONE) { |
| *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
| *dbg_redzone2(cachep, objp) = RED_INACTIVE; |
| } |
| /* |
| * Constructors are not allowed to allocate memory from the same |
| * cache which they are a constructor for. Otherwise, deadlock. |
| * They must also be threaded. |
| */ |
| if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { |
| kasan_unpoison_object_data(cachep, |
| objp + obj_offset(cachep)); |
| cachep->ctor(objp + obj_offset(cachep)); |
| kasan_poison_object_data( |
| cachep, objp + obj_offset(cachep)); |
| } |
| |
| if (cachep->flags & SLAB_RED_ZONE) { |
| if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
| slab_error(cachep, "constructor overwrote the end of an object"); |
| if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
| slab_error(cachep, "constructor overwrote the start of an object"); |
| } |
| /* need to poison the objs? */ |
| if (cachep->flags & SLAB_POISON) { |
| poison_obj(cachep, objp, POISON_FREE); |
| slab_kernel_map(cachep, objp, 0); |
| } |
| } |
| #endif |
| } |
| |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM |
| /* Hold information during a freelist initialization */ |
| struct freelist_init_state { |
| unsigned int pos; |
| unsigned int *list; |
| unsigned int count; |
| }; |
| |
| /* |
| * Initialize the state based on the randomization method available. |
| * return true if the pre-computed list is available, false otherwise. |
| */ |
| static bool freelist_state_initialize(struct freelist_init_state *state, |
| struct kmem_cache *cachep, |
| unsigned int count) |
| { |
| bool ret; |
| if (!cachep->random_seq) { |
| ret = false; |
| } else { |
| state->list = cachep->random_seq; |
| state->count = count; |
| state->pos = get_random_u32_below(count); |
| ret = true; |
| } |
| return ret; |
| } |
| |
| /* Get the next entry on the list and randomize it using a random shift */ |
| static freelist_idx_t next_random_slot(struct freelist_init_state *state) |
| { |
| if (state->pos >= state->count) |
| state->pos = 0; |
| return state->list[state->pos++]; |
| } |
| |
| /* Swap two freelist entries */ |
| static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b) |
| { |
| swap(((freelist_idx_t *) slab->freelist)[a], |
| ((freelist_idx_t *) slab->freelist)[b]); |
| } |
| |
| /* |
| * Shuffle the freelist initialization state based on pre-computed lists. |
| * return true if the list was successfully shuffled, false otherwise. |
| */ |
| static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab) |
| { |
| unsigned int objfreelist = 0, i, rand, count = cachep->num; |
| struct freelist_init_state state; |
| bool precomputed; |
| |
| if (count < 2) |
| return false; |
| |
| precomputed = freelist_state_initialize(&state, cachep, count); |
| |
| /* Take a random entry as the objfreelist */ |
| if (OBJFREELIST_SLAB(cachep)) { |
| if (!precomputed) |
| objfreelist = count - 1; |
| else |
| objfreelist = next_random_slot(&state); |
| slab->freelist = index_to_obj(cachep, slab, objfreelist) + |
| obj_offset(cachep); |
| count--; |
| } |
| |
| /* |
| * On early boot, generate the list dynamically. |
| * Later use a pre-computed list for speed. |
| */ |
| if (!precomputed) { |
| for (i = 0; i < count; i++) |
| set_free_obj(slab, i, i); |
| |
| /* Fisher-Yates shuffle */ |
| for (i = count - 1; i > 0; i--) { |
| rand = get_random_u32_below(i + 1); |
| swap_free_obj(slab, i, rand); |
| } |
| } else { |
| for (i = 0; i < count; i++) |
| set_free_obj(slab, i, next_random_slot(&state)); |
| } |
| |
| if (OBJFREELIST_SLAB(cachep)) |
| set_free_obj(slab, cachep->num - 1, objfreelist); |
| |
| return true; |
| } |
| #else |
| static inline bool shuffle_freelist(struct kmem_cache *cachep, |
| struct slab *slab) |
| { |
| return false; |
| } |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */ |
| |
| static void cache_init_objs(struct kmem_cache *cachep, |
| struct slab *slab) |
| { |
| int i; |
| void *objp; |
| bool shuffled; |
| |
| cache_init_objs_debug(cachep, slab); |
| |
| /* Try to randomize the freelist if enabled */ |
| shuffled = shuffle_freelist(cachep, slab); |
| |
| if (!shuffled && OBJFREELIST_SLAB(cachep)) { |
| slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) + |
| obj_offset(cachep); |
| } |
| |
| for (i = 0; i < cachep->num; i++) { |
| objp = index_to_obj(cachep, slab, i); |
| objp = kasan_init_slab_obj(cachep, objp); |
| |
| /* constructor could break poison info */ |
| if (DEBUG == 0 && cachep->ctor) { |
| kasan_unpoison_object_data(cachep, objp); |
| cachep->ctor(objp); |
| kasan_poison_object_data(cachep, objp); |
| } |
| |
| if (!shuffled) |
| set_free_obj(slab, i, i); |
| } |
| } |
| |
| static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab) |
| { |
| void *objp; |
| |
| objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active)); |
| slab->active++; |
| |
| return objp; |
| } |
| |
| static void slab_put_obj(struct kmem_cache *cachep, |
| struct slab *slab, void *objp) |
| { |
| unsigned int objnr = obj_to_index(cachep, slab, objp); |
| #if DEBUG |
| unsigned int i; |
| |
| /* Verify double free bug */ |
| for (i = slab->active; i < cachep->num; i++) { |
| if (get_free_obj(slab, i) == objnr) { |
| pr_err("slab: double free detected in cache '%s', objp %px\n", |
| cachep->name, objp); |
| BUG(); |
| } |
| } |
| #endif |
| slab->active--; |
| if (!slab->freelist) |
| slab->freelist = objp + obj_offset(cachep); |
| |
| set_free_obj(slab, slab->active, objnr); |
| } |
| |
| /* |
| * Grow (by 1) the number of slabs within a cache. This is called by |
| * kmem_cache_alloc() when there are no active objs left in a cache. |
| */ |
| static struct slab *cache_grow_begin(struct kmem_cache *cachep, |
| gfp_t flags, int nodeid) |
| { |
| void *freelist; |
| size_t offset; |
| gfp_t local_flags; |
| int slab_node; |
| struct kmem_cache_node *n; |
| struct slab *slab; |
| |
| /* |
| * Be lazy and only check for valid flags here, keeping it out of the |
| * critical path in kmem_cache_alloc(). |
| */ |
| if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
| flags = kmalloc_fix_flags(flags); |
| |
| WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); |
| local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
| |
| check_irq_off(); |
| if (gfpflags_allow_blocking(local_flags)) |
| local_irq_enable(); |
| |
| /* |
| * Get mem for the objs. Attempt to allocate a physical page from |
| * 'nodeid'. |
| */ |
| slab = kmem_getpages(cachep, local_flags, nodeid); |
| if (!slab) |
| goto failed; |
| |
| slab_node = slab_nid(slab); |
| n = get_node(cachep, slab_node); |
| |
| /* Get colour for the slab, and cal the next value. */ |
| n->colour_next++; |
| if (n->colour_next >= cachep->colour) |
| n->colour_next = 0; |
| |
| offset = n->colour_next; |
| if (offset >= cachep->colour) |
| offset = 0; |
| |
| offset *= cachep->colour_off; |
| |
| /* |
| * Call kasan_poison_slab() before calling alloc_slabmgmt(), so |
| * page_address() in the latter returns a non-tagged pointer, |
| * as it should be for slab pages. |
| */ |
| kasan_poison_slab(slab); |
| |
| /* Get slab management. */ |
| freelist = alloc_slabmgmt(cachep, slab, offset, |
| local_flags & ~GFP_CONSTRAINT_MASK, slab_node); |
| if (OFF_SLAB(cachep) && !freelist) |
| goto opps1; |
| |
| slab->slab_cache = cachep; |
| slab->freelist = freelist; |
| |
| cache_init_objs(cachep, slab); |
| |
| if (gfpflags_allow_blocking(local_flags)) |
| local_irq_disable(); |
| |
| return slab; |
| |
| opps1: |
| kmem_freepages(cachep, slab); |
| failed: |
| if (gfpflags_allow_blocking(local_flags)) |
| local_irq_disable(); |
| return NULL; |
| } |
| |
| static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab) |
| { |
| struct kmem_cache_node *n; |
| void *list = NULL; |
| |
| check_irq_off(); |
| |
| if (!slab) |
| return; |
| |
| INIT_LIST_HEAD(&slab->slab_list); |
| n = get_node(cachep, slab_nid(slab)); |
| |
| raw_spin_lock(&n->list_lock); |
| n->total_slabs++; |
| if (!slab->active) { |
| list_add_tail(&slab->slab_list, &n->slabs_free); |
| n->free_slabs++; |
| } else |
| fixup_slab_list(cachep, n, slab, &list); |
| |
| STATS_INC_GROWN(cachep); |
| n->free_objects += cachep->num - slab->active; |
| raw_spin_unlock(&n->list_lock); |
| |
| fixup_objfreelist_debug(cachep, &list); |
| } |
| |
| #if DEBUG |
| |
| /* |
| * Perform extra freeing checks: |
| * - detect bad pointers. |
| * - POISON/RED_ZONE checking |
| */ |
| static void kfree_debugcheck(const void *objp) |
| { |
| if (!virt_addr_valid(objp)) { |
| pr_err("kfree_debugcheck: out of range ptr %lxh\n", |
| (unsigned long)objp); |
| BUG(); |
| } |
| } |
| |
| static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
| { |
| unsigned long long redzone1, redzone2; |
| |
| redzone1 = *dbg_redzone1(cache, obj); |
| redzone2 = *dbg_redzone2(cache, obj); |
| |
| /* |
| * Redzone is ok. |
| */ |
| if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) |
| return; |
| |
| if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) |
| slab_error(cache, "double free detected"); |
| else |
| slab_error(cache, "memory outside object was overwritten"); |
| |
| pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", |
| obj, redzone1, redzone2); |
| } |
| |
| static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
| unsigned long caller) |
| { |
| unsigned int objnr; |
| struct slab *slab; |
| |
| BUG_ON(virt_to_cache(objp) != cachep); |
| |
| objp -= obj_offset(cachep); |
| kfree_debugcheck(objp); |
| slab = virt_to_slab(objp); |
| |
| if (cachep->flags & SLAB_RED_ZONE) { |
| verify_redzone_free(cachep, objp); |
| *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
| *dbg_redzone2(cachep, objp) = RED_INACTIVE; |
| } |
| if (cachep->flags & SLAB_STORE_USER) |
| *dbg_userword(cachep, objp) = (void *)caller; |
| |
| objnr = obj_to_index(cachep, slab, objp); |
| |
| BUG_ON(objnr >= cachep->num); |
| BUG_ON(objp != index_to_obj(cachep, slab, objnr)); |
| |
| if (cachep->flags & SLAB_POISON) { |
| poison_obj(cachep, objp, POISON_FREE); |
| slab_kernel_map(cachep, objp, 0); |
| } |
| return objp; |
| } |
| |
| #else |
| #define kfree_debugcheck(x) do { } while(0) |
| #define cache_free_debugcheck(x, objp, z) (objp) |
| #endif |
| |
| static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
| void **list) |
| { |
| #if DEBUG |
| void *next = *list; |
| void *objp; |
| |
| while (next) { |
| objp = next - obj_offset(cachep); |
| next = *(void **)next; |
| poison_obj(cachep, objp, POISON_FREE); |
| } |
| #endif |
| } |
| |
| static inline void fixup_slab_list(struct kmem_cache *cachep, |
| struct kmem_cache_node *n, struct slab *slab, |
| void **list) |
| { |
| /* move slabp to correct slabp list: */ |
| list_del(&slab->slab_list); |
| if (slab->active == cachep->num) { |
| list_add(&slab->slab_list, &n->slabs_full); |
| if (OBJFREELIST_SLAB(cachep)) { |
| #if DEBUG |
| /* Poisoning will be done without holding the lock */ |
| if (cachep->flags & SLAB_POISON) { |
| void **objp = slab->freelist; |
| |
| *objp = *list; |
| *list = objp; |
| } |
| #endif |
| slab->freelist = NULL; |
| } |
| } else |
| list_add(&slab->slab_list, &n->slabs_partial); |
| } |
| |
| /* Try to find non-pfmemalloc slab if needed */ |
| static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n, |
| struct slab *slab, bool pfmemalloc) |
| { |
| if (!slab) |
| return NULL; |
| |
| if (pfmemalloc) |
| return slab; |
| |
| if (!slab_test_pfmemalloc(slab)) |
| return slab; |
| |
| /* No need to keep pfmemalloc slab if we have enough free objects */ |
| if (n->free_objects > n->free_limit) { |
| slab_clear_pfmemalloc(slab); |
| return slab; |
| } |
| |
| /* Move pfmemalloc slab to the end of list to speed up next search */ |
| list_del(&slab->slab_list); |
| if (!slab->active) { |
| list_add_tail(&slab->slab_list, &n->slabs_free); |
| n->free_slabs++; |
| } else |
| list_add_tail(&slab->slab_list, &n->slabs_partial); |
| |
| list_for_each_entry(slab, &n->slabs_partial, slab_list) { |
| if (!slab_test_pfmemalloc(slab)) |
| return slab; |
| } |
| |
| n->free_touched = 1; |
| list_for_each_entry(slab, &n->slabs_free, slab_list) { |
| if (!slab_test_pfmemalloc(slab)) { |
| n->free_slabs--; |
| return slab; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) |
| { |
| struct slab *slab; |
| |
| assert_raw_spin_locked(&n->list_lock); |
| slab = list_first_entry_or_null(&n->slabs_partial, struct slab, |
| slab_list); |
| if (!slab) { |
| n->free_touched = 1; |
| slab = list_first_entry_or_null(&n->slabs_free, struct slab, |
| slab_list); |
| if (slab) |
| n->free_slabs--; |
| } |
| |
| if (sk_memalloc_socks()) |
| slab = get_valid_first_slab(n, slab, pfmemalloc); |
| |
| return slab; |
| } |
| |
| static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, |
| struct kmem_cache_node *n, gfp_t flags) |
| { |
| struct slab *slab; |
| void *obj; |
| void *list = NULL; |
| |
| if (!gfp_pfmemalloc_allowed(flags)) |
| return NULL; |
| |
| raw_spin_lock(&n->list_lock); |
| slab = get_first_slab(n, true); |
| if (!slab) { |
| raw_spin_unlock(&n->list_lock); |
| return NULL; |
| } |
| |
| obj = slab_get_obj(cachep, slab); |
| n->free_objects--; |
| |
| fixup_slab_list(cachep, n, slab, &list); |
| |
| raw_spin_unlock(&n->list_lock); |
| fixup_objfreelist_debug(cachep, &list); |
| |
| return obj; |
| } |
| |
| /* |
| * Slab list should be fixed up by fixup_slab_list() for existing slab |
| * or cache_grow_end() for new slab |
| */ |
| static __always_inline int alloc_block(struct kmem_cache *cachep, |
| struct array_cache *ac, struct slab *slab, int batchcount) |
| { |
| /* |
| * There must be at least one object available for |
| * allocation. |
| */ |
| BUG_ON(slab->active >= cachep->num); |
| |
| while (slab->active < cachep->num && batchcount--) { |
| STATS_INC_ALLOCED(cachep); |
| STATS_INC_ACTIVE(cachep); |
| STATS_SET_HIGH(cachep); |
| |
| ac->entry[ac->avail++] = slab_get_obj(cachep, slab); |
| } |
| |
| return batchcount; |
| } |
| |
| static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
| { |
| int batchcount; |
| struct kmem_cache_node *n; |
| struct array_cache *ac, *shared; |
| int node; |
| void *list = NULL; |
| struct slab *slab; |
| |
| check_irq_off(); |
| node = numa_mem_id(); |
| |
| ac = cpu_cache_get(cachep); |
| batchcount = ac->batchcount; |
| if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { |
| /* |
| * If there was little recent activity on this cache, then |
| * perform only a partial refill. Otherwise we could generate |
| * refill bouncing. |
| */ |
| batchcount = BATCHREFILL_LIMIT; |
| } |
| n = get_node(cachep, node); |
| |
| BUG_ON(ac->avail > 0 || !n); |
| shared = READ_ONCE(n->shared); |
| if (!n->free_objects && (!shared || !shared->avail)) |
| goto direct_grow; |
| |
| raw_spin_lock(&n->list_lock); |
| shared = READ_ONCE(n->shared); |
| |
| /* See if we can refill from the shared array */ |
| if (shared && transfer_objects(ac, shared, batchcount)) { |
| shared->touched = 1; |
| goto alloc_done; |
| } |
| |
| while (batchcount > 0) { |
| /* Get slab alloc is to come from. */ |
| slab = get_first_slab(n, false); |
| if (!slab) |
| goto must_grow; |
| |
| check_spinlock_acquired(cachep); |
| |
| batchcount = alloc_block(cachep, ac, slab, batchcount); |
| fixup_slab_list(cachep, n, slab, &list); |
| } |
| |
| must_grow: |
| n->free_objects -= ac->avail; |
| alloc_done: |
| raw_spin_unlock(&n->list_lock); |
| fixup_objfreelist_debug(cachep, &list); |
| |
| direct_grow: |
| if (unlikely(!ac->avail)) { |
| /* Check if we can use obj in pfmemalloc slab */ |
| if (sk_memalloc_socks()) { |
| void *obj = cache_alloc_pfmemalloc(cachep, n, flags); |
| |
| if (obj) |
| return obj; |
| } |
| |
| slab = cache_grow_begin(cachep, gfp_exact_node(flags), node); |
| |
| /* |
| * cache_grow_begin() can reenable interrupts, |
| * then ac could change. |
| */ |
| ac = cpu_cache_get(cachep); |
| if (!ac->avail && slab) |
| alloc_block(cachep, ac, slab, batchcount); |
| cache_grow_end(cachep, slab); |
| |
| if (!ac->avail) |
| return NULL; |
| } |
| ac->touched = 1; |
| |
| return ac->entry[--ac->avail]; |
| } |
| |
| #if DEBUG |
| static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
| gfp_t flags, void *objp, unsigned long caller) |
| { |
| WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); |
| if (!objp || is_kfence_address(objp)) |
| return objp; |
| if (cachep->flags & SLAB_POISON) { |
| check_poison_obj(cachep, objp); |
| slab_kernel_map(cachep, objp, 1); |
| poison_obj(cachep, objp, POISON_INUSE); |
| } |
| if (cachep->flags & SLAB_STORE_USER) |
| *dbg_userword(cachep, objp) = (void *)caller; |
| |
| if (cachep->flags & SLAB_RED_ZONE) { |
| if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
| *dbg_redzone2(cachep, objp) != RED_INACTIVE) { |
| slab_error(cachep, "double free, or memory outside object was overwritten"); |
| pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", |
| objp, *dbg_redzone1(cachep, objp), |
| *dbg_redzone2(cachep, objp)); |
| } |
| *dbg_redzone1(cachep, objp) = RED_ACTIVE; |
| *dbg_redzone2(cachep, objp) = RED_ACTIVE; |
| } |
| |
| objp += obj_offset(cachep); |
| if (cachep->ctor && cachep->flags & SLAB_POISON) |
| cachep->ctor(objp); |
| if ((unsigned long)objp & (arch_slab_minalign() - 1)) { |
| pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp, |
| arch_slab_minalign()); |
| } |
| return objp; |
| } |
| #else |
| #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) |
| #endif |
| |
| static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
| { |
| void *objp; |
| struct array_cache *ac; |
| |
| check_irq_off(); |
| |
| ac = cpu_cache_get(cachep); |
| if (likely(ac->avail)) { |
| ac->touched = 1; |
| objp = ac->entry[--ac->avail]; |
| |
| STATS_INC_ALLOCHIT(cachep); |
| goto out; |
| } |
| |
| STATS_INC_ALLOCMISS(cachep); |
| objp = cache_alloc_refill(cachep, flags); |
| /* |
| * the 'ac' may be updated by cache_alloc_refill(), |
| * and kmemleak_erase() requires its correct value. |
| */ |
| ac = cpu_cache_get(cachep); |
| |
| out: |
| /* |
| * To avoid a false negative, if an object that is in one of the |
| * per-CPU caches is leaked, we need to make sure kmemleak doesn't |
| * treat the array pointers as a reference to the object. |
| */ |
| if (objp) |
| kmemleak_erase(&ac->entry[ac->avail]); |
| return objp; |
| } |
| |
| #ifdef CONFIG_NUMA |
| static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
| |
| /* |
| * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. |
| * |
| * If we are in_interrupt, then process context, including cpusets and |
| * mempolicy, may not apply and should not be used for allocation policy. |
| */ |
| static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) |
| { |
| int nid_alloc, nid_here; |
| |
| if (in_interrupt() || (flags & __GFP_THISNODE)) |
| return NULL; |
| nid_alloc = nid_here = numa_mem_id(); |
| if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
| nid_alloc = cpuset_slab_spread_node(); |
| else if (current->mempolicy) |
| nid_alloc = mempolicy_slab_node(); |
| if (nid_alloc != nid_here) |
| return ____cache_alloc_node(cachep, flags, nid_alloc); |
| return NULL; |
| } |
| |
| /* |
| * Fallback function if there was no memory available and no objects on a |
| * certain node and fall back is permitted. First we scan all the |
| * available node for available objects. If that fails then we |
| * perform an allocation without specifying a node. This allows the page |
| * allocator to do its reclaim / fallback magic. We then insert the |
| * slab into the proper nodelist and then allocate from it. |
| */ |
| static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
| { |
| struct zonelist *zonelist; |
| struct zoneref *z; |
| struct zone *zone; |
| enum zone_type highest_zoneidx = gfp_zone(flags); |
| void *obj = NULL; |
| struct slab *slab; |
| int nid; |
| unsigned int cpuset_mems_cookie; |
| |
| if (flags & __GFP_THISNODE) |
| return NULL; |
| |
| retry_cpuset: |
| cpuset_mems_cookie = read_mems_allowed_begin(); |
| zonelist = node_zonelist(mempolicy_slab_node(), flags); |
| |
| retry: |
| /* |
| * Look through allowed nodes for objects available |
| * from existing per node queues. |
| */ |
| for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
| nid = zone_to_nid(zone); |
| |
| if (cpuset_zone_allowed(zone, flags) && |
| get_node(cache, nid) && |
| get_node(cache, nid)->free_objects) { |
| obj = ____cache_alloc_node(cache, |
| gfp_exact_node(flags), nid); |
| if (obj) |
| break; |
| } |
| } |
| |
| if (!obj) { |
| /* |
| * This allocation will be performed within the constraints |
| * of the current cpuset / memory policy requirements. |
| * We may trigger various forms of reclaim on the allowed |
| * set and go into memory reserves if necessary. |
| */ |
| slab = cache_grow_begin(cache, flags, numa_mem_id()); |
| cache_grow_end(cache, slab); |
| if (slab) { |
| nid = slab_nid(slab); |
| obj = ____cache_alloc_node(cache, |
| gfp_exact_node(flags), nid); |
| |
| /* |
| * Another processor may allocate the objects in |
| * the slab since we are not holding any locks. |
| */ |
| if (!obj) |
| goto retry; |
| } |
| } |
| |
| if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) |
| goto retry_cpuset; |
| return obj; |
| } |
| |
| /* |
| * An interface to enable slab creation on nodeid |
| */ |
| static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
| int nodeid) |
| { |
| struct slab *slab; |
| struct kmem_cache_node *n; |
| void *obj = NULL; |
| void *list = NULL; |
| |
| VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); |
| n = get_node(cachep, nodeid); |
| BUG_ON(!n); |
| |
| check_irq_off(); |
| raw_spin_lock(&n->list_lock); |
| slab = get_first_slab(n, false); |
| if (!slab) |
| goto must_grow; |
| |
| check_spinlock_acquired_node(cachep, nodeid); |
| |
| STATS_INC_NODEALLOCS(cachep); |
| STATS_INC_ACTIVE(cachep); |
| STATS_SET_HIGH(cachep); |
| |
| BUG_ON(slab->active == cachep->num); |
| |
| obj = slab_get_obj(cachep, slab); |
| n->free_objects--; |
| |
| fixup_slab_list(cachep, n, slab, &list); |
| |
| raw_spin_unlock(&n->list_lock); |
| fixup_objfreelist_debug(cachep, &list); |
| return obj; |
| |
| must_grow: |
| raw_spin_unlock(&n->list_lock); |
| slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); |
| if (slab) { |
| /* This slab isn't counted yet so don't update free_objects */ |
| obj = slab_get_obj(cachep, slab); |
| } |
| cache_grow_end(cachep, slab); |
| |
| return obj ? obj : fallback_alloc(cachep, flags); |
| } |
| |
| static __always_inline void * |
| __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
| { |
| void *objp = NULL; |
| int slab_node = numa_mem_id(); |
| |
| if (nodeid == NUMA_NO_NODE) { |
| if (current->mempolicy || cpuset_do_slab_mem_spread()) { |
| objp = alternate_node_alloc(cachep, flags); |
| if (objp) |
| goto out; |
| } |
| /* |
| * Use the locally cached objects if possible. |
| * However ____cache_alloc does not allow fallback |
| * to other nodes. It may fail while we still have |
| * objects on other nodes available. |
| */ |
| objp = ____cache_alloc(cachep, flags); |
| nodeid = slab_node; |
| } else if (nodeid == slab_node) { |
| objp = ____cache_alloc(cachep, flags); |
| } else if (!get_node(cachep, nodeid)) { |
| /* Node not bootstrapped yet */ |
| objp = fallback_alloc(cachep, flags); |
| goto out; |
| } |
| |
| /* |
| * We may just have run out of memory on the local node. |
| * ____cache_alloc_node() knows how to locate memory on other nodes |
| */ |
| if (!objp) |
| objp = ____cache_alloc_node(cachep, flags, nodeid); |
| out: |
| return objp; |
| } |
| #else |
| |
| static __always_inline void * |
| __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused) |
| { |
| return ____cache_alloc(cachep, flags); |
| } |
| |
| #endif /* CONFIG_NUMA */ |
| |
| static __always_inline void * |
| slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, |
| int nodeid, size_t orig_size, unsigned long caller) |
| { |
| unsigned long save_flags; |
| void *objp; |
| struct obj_cgroup *objcg = NULL; |
| bool init = false; |
| |
| flags &= gfp_allowed_mask; |
| cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags); |
| if (unlikely(!cachep)) |
| return NULL; |
| |
| objp = kfence_alloc(cachep, orig_size, flags); |
| if (unlikely(objp)) |
| goto out; |
| |
| local_irq_save(save_flags); |
| objp = __do_cache_alloc(cachep, flags, nodeid); |
| local_irq_restore(save_flags); |
| objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); |
| prefetchw(objp); |
| init = slab_want_init_on_alloc(flags, cachep); |
| |
| out: |
| slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init, |
| cachep->object_size); |
| return objp; |
| } |
| |
| static __always_inline void * |
| slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags, |
| size_t orig_size, unsigned long caller) |
| { |
| return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size, |
| caller); |
| } |
| |
| /* |
| * Caller needs to acquire correct kmem_cache_node's list_lock |
| * @list: List of detached free slabs should be freed by caller |
| */ |
| static void free_block(struct kmem_cache *cachep, void **objpp, |
| int nr_objects, int node, struct list_head *list) |
| { |
| int i; |
| struct kmem_cache_node *n = get_node(cachep, node); |
| struct slab *slab; |
| |
| n->free_objects += nr_objects; |
| |
| for (i = 0; i < nr_objects; i++) { |
| void *objp; |
| struct slab *slab; |
| |
| objp = objpp[i]; |
| |
| slab = virt_to_slab(objp); |
| list_del(&slab->slab_list); |
| check_spinlock_acquired_node(cachep, node); |
| slab_put_obj(cachep, slab, objp); |
| STATS_DEC_ACTIVE(cachep); |
| |
| /* fixup slab chains */ |
| if (slab->active == 0) { |
| list_add(&slab->slab_list, &n->slabs_free); |
| n->free_slabs++; |
| } else { |
| /* Unconditionally move a slab to the end of the |
| * partial list on free - maximum time for the |
| * other objects to be freed, too. |
| */ |
| list_add_tail(&slab->slab_list, &n->slabs_partial); |
| } |
| } |
| |
| while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { |
| n->free_objects -= cachep->num; |
| |
| slab = list_last_entry(&n->slabs_free, struct slab, slab_list); |
| list_move(&slab->slab_list, list); |
| n->free_slabs--; |
| n->total_slabs--; |
| } |
| } |
| |
| static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
| { |
| int batchcount; |
| struct kmem_cache_node *n; |
| int node = numa_mem_id(); |
| LIST_HEAD(list); |
| |
| batchcount = ac->batchcount; |
| |
| check_irq_off(); |
| n = get_node(cachep, node); |
| raw_spin_lock(&n->list_lock); |
| if (n->shared) { |
| struct array_cache *shared_array = n->shared; |
| int max = shared_array->limit - shared_array->avail; |
| if (max) { |
| if (batchcount > max) |
| batchcount = max; |
| memcpy(&(shared_array->entry[shared_array->avail]), |
| ac->entry, sizeof(void *) * batchcount); |
| shared_array->avail += batchcount; |
| goto free_done; |
| } |
| } |
| |
| free_block(cachep, ac->entry, batchcount, node, &list); |
| free_done: |
| #if STATS |
| { |
| int i = 0; |
| struct slab *slab; |
| |
| list_for_each_entry(slab, &n->slabs_free, slab_list) { |
| BUG_ON(slab->active); |
| |
| i++; |
| } |
| STATS_SET_FREEABLE(cachep, i); |
| } |
| #endif |
| raw_spin_unlock(&n->list_lock); |
| ac->avail -= batchcount; |
| memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
| slabs_destroy(cachep, &list); |
| } |
| |
| /* |
| * Release an obj back to its cache. If the obj has a constructed state, it must |
| * be in this state _before_ it is released. Called with disabled ints. |
| */ |
| static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, |
| unsigned long caller) |
| { |
| bool init; |
| |
| memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1); |
| |
| if (is_kfence_address(objp)) { |
| kmemleak_free_recursive(objp, cachep->flags); |
| __kfence_free(objp); |
| return; |
| } |
| |
| /* |
| * As memory initialization might be integrated into KASAN, |
| * kasan_slab_free and initialization memset must be |
| * kept together to avoid discrepancies in behavior. |
| */ |
| init = slab_want_init_on_free(cachep); |
| if (init && !kasan_has_integrated_init()) |
| memset(objp, 0, cachep->object_size); |
| /* KASAN might put objp into memory quarantine, delaying its reuse. */ |
| if (kasan_slab_free(cachep, objp, init)) |
| return; |
| |
| /* Use KCSAN to help debug racy use-after-free. */ |
| if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) |
| __kcsan_check_access(objp, cachep->object_size, |
| KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); |
| |
| ___cache_free(cachep, objp, caller); |
| } |
| |
| void ___cache_free(struct kmem_cache *cachep, void *objp, |
| unsigned long caller) |
| { |
| struct array_cache *ac = cpu_cache_get(cachep); |
| |
| check_irq_off(); |
| kmemleak_free_recursive(objp, cachep->flags); |
| objp = cache_free_debugcheck(cachep, objp, caller); |
| |
| /* |
| * Skip calling cache_free_alien() when the platform is not numa. |
| * This will avoid cache misses that happen while accessing slabp (which |
| * is per page memory reference) to get nodeid. Instead use a global |
| * variable to skip the call, which is mostly likely to be present in |
| * the cache. |
| */ |
| if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
| return; |
| |
| if (ac->avail < ac->limit) { |
| STATS_INC_FREEHIT(cachep); |
| } else { |
| STATS_INC_FREEMISS(cachep); |
| cache_flusharray(cachep, ac); |
| } |
| |
| if (sk_memalloc_socks()) { |
| struct slab *slab = virt_to_slab(objp); |
| |
| if (unlikely(slab_test_pfmemalloc(slab))) { |
| cache_free_pfmemalloc(cachep, slab, objp); |
| return; |
| } |
| } |
| |
| __free_one(ac, objp); |
| } |
| |
| static __always_inline |
| void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, |
| gfp_t flags) |
| { |
| void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_); |
| |
| trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE); |
| |
| return ret; |
| } |
| |
| void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
| { |
| return __kmem_cache_alloc_lru(cachep, NULL, flags); |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc); |
| |
| void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru, |
| gfp_t flags) |
| { |
| return __kmem_cache_alloc_lru(cachep, lru, flags); |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_lru); |
| |
| static __always_inline void |
| cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, |
| size_t size, void **p, unsigned long caller) |
| { |
| size_t i; |
| |
| for (i = 0; i < size; i++) |
| p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); |
| } |
| |
| int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
| void **p) |
| { |
| struct obj_cgroup *objcg = NULL; |
| unsigned long irqflags; |
| size_t i; |
| |
| s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); |
| if (!s) |
| return 0; |
| |
| local_irq_save(irqflags); |
| for (i = 0; i < size; i++) { |
| void *objp = kfence_alloc(s, s->object_size, flags) ?: |
| __do_cache_alloc(s, flags, NUMA_NO_NODE); |
| |
| if (unlikely(!objp)) |
| goto error; |
| p[i] = objp; |
| } |
| local_irq_restore(irqflags); |
| |
| cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); |
| |
| /* |
| * memcg and kmem_cache debug support and memory initialization. |
| * Done outside of the IRQ disabled section. |
| */ |
| slab_post_alloc_hook(s, objcg, flags, size, p, |
| slab_want_init_on_alloc(flags, s), s->object_size); |
| /* FIXME: Trace call missing. Christoph would like a bulk variant */ |
| return size; |
| error: |
| local_irq_restore(irqflags); |
| cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); |
| slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); |
| kmem_cache_free_bulk(s, i, p); |
| return 0; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_bulk); |
| |
| /** |
| * kmem_cache_alloc_node - Allocate an object on the specified node |
| * @cachep: The cache to allocate from. |
| * @flags: See kmalloc(). |
| * @nodeid: node number of the target node. |
| * |
| * Identical to kmem_cache_alloc but it will allocate memory on the given |
| * node, which can improve the performance for cpu bound structures. |
| * |
| * Fallback to other node is possible if __GFP_THISNODE is not set. |
| * |
| * Return: pointer to the new object or %NULL in case of error |
| */ |
| void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
| { |
| void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_); |
| |
| trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_node); |
| |
| void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
| int nodeid, size_t orig_size, |
| unsigned long caller) |
| { |
| return slab_alloc_node(cachep, NULL, flags, nodeid, |
| orig_size, caller); |
| } |
| |
| #ifdef CONFIG_PRINTK |
| void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
| { |
| struct kmem_cache *cachep; |
| unsigned int objnr; |
| void *objp; |
| |
| kpp->kp_ptr = object; |
| kpp->kp_slab = slab; |
| cachep = slab->slab_cache; |
| kpp->kp_slab_cache = cachep; |
| objp = object - obj_offset(cachep); |
| kpp->kp_data_offset = obj_offset(cachep); |
| slab = virt_to_slab(objp); |
| objnr = obj_to_index(cachep, slab, objp); |
| objp = index_to_obj(cachep, slab, objnr); |
| kpp->kp_objp = objp; |
| if (DEBUG && cachep->flags & SLAB_STORE_USER) |
| kpp->kp_ret = *dbg_userword(cachep, objp); |
| } |
| #endif |
| |
| static __always_inline |
| void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp, |
| unsigned long caller) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| debug_check_no_locks_freed(objp, cachep->object_size); |
| if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
| debug_check_no_obj_freed(objp, cachep->object_size); |
| __cache_free(cachep, objp, caller); |
| local_irq_restore(flags); |
| } |
| |
| void __kmem_cache_free(struct kmem_cache *cachep, void *objp, |
| unsigned long caller) |
| { |
| __do_kmem_cache_free(cachep, objp, caller); |
| } |
| |
| /** |
| * kmem_cache_free - Deallocate an object |
| * @cachep: The cache the allocation was from. |
| * @objp: The previously allocated object. |
| * |
| * Free an object which was previously allocated from this |
| * cache. |
| */ |
| void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
| { |
| cachep = cache_from_obj(cachep, objp); |
| if (!cachep) |
| return; |
| |
| trace_kmem_cache_free(_RET_IP_, objp, cachep); |
| __do_kmem_cache_free(cachep, objp, _RET_IP_); |
| } |
| EXPORT_SYMBOL(kmem_cache_free); |
| |
| void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| for (int i = 0; i < size; i++) { |
| void *objp = p[i]; |
| struct kmem_cache *s; |
| |
| if (!orig_s) { |
| struct folio *folio = virt_to_folio(objp); |
| |
| /* called via kfree_bulk */ |
| if (!folio_test_slab(folio)) { |
| local_irq_restore(flags); |
| free_large_kmalloc(folio, objp); |
| local_irq_save(flags); |
| continue; |
| } |
| s = folio_slab(folio)->slab_cache; |
| } else { |
| s = cache_from_obj(orig_s, objp); |
| } |
| |
| if (!s) |
| continue; |
| |
| debug_check_no_locks_freed(objp, s->object_size); |
| if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
| debug_check_no_obj_freed(objp, s->object_size); |
| |
| __cache_free(s, objp, _RET_IP_); |
| } |
| local_irq_restore(flags); |
| |
| /* FIXME: add tracing */ |
| } |
| EXPORT_SYMBOL(kmem_cache_free_bulk); |
| |
| /* |
| * This initializes kmem_cache_node or resizes various caches for all nodes. |
| */ |
| static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) |
| { |
| int ret; |
| int node; |
| struct kmem_cache_node *n; |
| |
| for_each_online_node(node) { |
| ret = setup_kmem_cache_node(cachep, node, gfp, true); |
| if (ret) |
| goto fail; |
| |
| } |
| |
| return 0; |
| |
| fail: |
| if (!cachep->list.next) { |
| /* Cache is not active yet. Roll back what we did */ |
| node--; |
| while (node >= 0) { |
| n = get_node(cachep, node); |
| if (n) { |
| kfree(n->shared); |
| free_alien_cache(n->alien); |
| kfree(n); |
| cachep->node[node] = NULL; |
| } |
| node--; |
| } |
| } |
| return -ENOMEM; |
| } |
| |
| /* Always called with the slab_mutex held */ |
| static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
| int batchcount, int shared, gfp_t gfp) |
| { |
| struct array_cache __percpu *cpu_cache, *prev; |
| int cpu; |
| |
| cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); |
| if (!cpu_cache) |
| return -ENOMEM; |
| |
| prev = cachep->cpu_cache; |
| cachep->cpu_cache = cpu_cache; |
| /* |
| * Without a previous cpu_cache there's no need to synchronize remote |
| * cpus, so skip the IPIs. |
| */ |
| if (prev) |
| kick_all_cpus_sync(); |
| |
| check_irq_on(); |
| cachep->batchcount = batchcount; |
| cachep->limit = limit; |
| cachep->shared = shared; |
| |
| if (!prev) |
| goto setup_node; |
| |
| for_each_online_cpu(cpu) { |
| LIST_HEAD(list); |
| int node; |
| struct kmem_cache_node *n; |
| struct array_cache *ac = per_cpu_ptr(prev, cpu); |
| |
| node = cpu_to_mem(cpu); |
| n = get_node(cachep, node); |
| raw_spin_lock_irq(&n->list_lock); |
| free_block(cachep, ac->entry, ac->avail, node, &list); |
| raw_spin_unlock_irq(&n->list_lock); |
| slabs_destroy(cachep, &list); |
| } |
| free_percpu(prev); |
| |
| setup_node: |
| return setup_kmem_cache_nodes(cachep, gfp); |
| } |
| |
| /* Called with slab_mutex held always */ |
| static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
| { |
| int err; |
| int limit = 0; |
| int shared = 0; |
| int batchcount = 0; |
| |
| err = cache_random_seq_create(cachep, cachep->num, gfp); |
| if (err) |
| goto end; |
| |
| /* |
| * The head array serves three purposes: |
| * - create a LIFO ordering, i.e. return objects that are cache-warm |
| * - reduce the number of spinlock operations. |
| * - reduce the number of linked list operations on the slab and |
| * bufctl chains: array operations are cheaper. |
| * The numbers are guessed, we should auto-tune as described by |
| * Bonwick. |
| */ |
| if (cachep->size > 131072) |
| limit = 1; |
| else if (cachep->size > PAGE_SIZE) |
| limit = 8; |
| else if (cachep->size > 1024) |
| limit = 24; |
| else if (cachep->size > 256) |
| limit = 54; |
| else |
| limit = 120; |
| |
| /* |
| * CPU bound tasks (e.g. network routing) can exhibit cpu bound |
| * allocation behaviour: Most allocs on one cpu, most free operations |
| * on another cpu. For these cases, an efficient object passing between |
| * cpus is necessary. This is provided by a shared array. The array |
| * replaces Bonwick's magazine layer. |
| * On uniprocessor, it's functionally equivalent (but less efficient) |
| * to a larger limit. Thus disabled by default. |
| */ |
| shared = 0; |
| if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) |
| shared = 8; |
| |
| #if DEBUG |
| /* |
| * With debugging enabled, large batchcount lead to excessively long |
| * periods with disabled local interrupts. Limit the batchcount |
| */ |
| if (limit > 32) |
| limit = 32; |
| #endif |
| batchcount = (limit + 1) / 2; |
| err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); |
| end: |
| if (err) |
| pr_err("enable_cpucache failed for %s, error %d\n", |
| cachep->name, -err); |
| return err; |
| } |
| |
| /* |
| * Drain an array if it contains any elements taking the node lock only if |
| * necessary. Note that the node listlock also protects the array_cache |
| * if drain_array() is used on the shared array. |
| */ |
| static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
| struct array_cache *ac, int node) |
| { |
| LIST_HEAD(list); |
| |
| /* ac from n->shared can be freed if we don't hold the slab_mutex. */ |
| check_mutex_acquired(); |
| |
| if (!ac || !ac->avail) |
| return; |
| |
| if (ac->touched) { |
| ac->touched = 0; |
| return; |
| } |
| |
| raw_spin_lock_irq(&n->list_lock); |
| drain_array_locked(cachep, ac, node, false, &list); |
| raw_spin_unlock_irq(&n->list_lock); |
| |
| slabs_destroy(cachep, &list); |
| } |
| |
| /** |
| * cache_reap - Reclaim memory from caches. |
| * @w: work descriptor |
| * |
| * Called from workqueue/eventd every few seconds. |
| * Purpose: |
| * - clear the per-cpu caches for this CPU. |
| * - return freeable pages to the main free memory pool. |
| * |
| * If we cannot acquire the cache chain mutex then just give up - we'll try |
| * again on the next iteration. |
| */ |
| static void cache_reap(struct work_struct *w) |
| { |
| struct kmem_cache *searchp; |
| struct kmem_cache_node *n; |
| int node = numa_mem_id(); |
| struct delayed_work *work = to_delayed_work(w); |
| |
| if (!mutex_trylock(&slab_mutex)) |
| /* Give up. Setup the next iteration. */ |
| goto out; |
| |
| list_for_each_entry(searchp, &slab_caches, list) { |
| check_irq_on(); |
| |
| /* |
| * We only take the node lock if absolutely necessary and we |
| * have established with reasonable certainty that |
| * we can do some work if the lock was obtained. |
| */ |
| n = get_node(searchp, node); |
| |
| reap_alien(searchp, n); |
| |
| drain_array(searchp, n, cpu_cache_get(searchp), node); |
| |
| /* |
| * These are racy checks but it does not matter |
| * if we skip one check or scan twice. |
| */ |
| if (time_after(n->next_reap, jiffies)) |
| goto next; |
| |
| n->next_reap = jiffies + REAPTIMEOUT_NODE; |
| |
| drain_array(searchp, n, n->shared, node); |
| |
| if (n->free_touched) |
| n->free_touched = 0; |
| else { |
| int freed; |
| |
| freed = drain_freelist(searchp, n, (n->free_limit + |
| 5 * searchp->num - 1) / (5 * searchp->num)); |
| STATS_ADD_REAPED(searchp, freed); |
| } |
| next: |
| cond_resched(); |
| } |
| check_irq_on(); |
| mutex_unlock(&slab_mutex); |
| next_reap_node(); |
| out: |
| /* Set up the next iteration */ |
| schedule_delayed_work_on(smp_processor_id(), work, |
| round_jiffies_relative(REAPTIMEOUT_AC)); |
| } |
| |
| void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) |
| { |
| unsigned long active_objs, num_objs, active_slabs; |
| unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; |
| unsigned long free_slabs = 0; |
| int node; |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(cachep, node, n) { |
| check_irq_on(); |
| raw_spin_lock_irq(&n->list_lock); |
| |
| total_slabs += n->total_slabs; |
| free_slabs += n->free_slabs; |
| free_objs += n->free_objects; |
| |
| if (n->shared) |
| shared_avail += n->shared->avail; |
| |
| raw_spin_unlock_irq(&n->list_lock); |
| } |
| num_objs = total_slabs * cachep->num; |
| active_slabs = total_slabs - free_slabs; |
| active_objs = num_objs - free_objs; |
| |
| sinfo->active_objs = active_objs; |
| sinfo->num_objs = num_objs; |
| sinfo->active_slabs = active_slabs; |
| sinfo->num_slabs = total_slabs; |
| sinfo->shared_avail = shared_avail; |
| sinfo->limit = cachep->limit; |
| sinfo->batchcount = cachep->batchcount; |
| sinfo->shared = cachep->shared; |
| sinfo->objects_per_slab = cachep->num; |
| sinfo->cache_order = cachep->gfporder; |
| } |
| |
| void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) |
| { |
| #if STATS |
| { /* node stats */ |
| unsigned long high = cachep->high_mark; |
| unsigned long allocs = cachep->num_allocations; |
| unsigned long grown = cachep->grown; |
| unsigned long reaped = cachep->reaped; |
| unsigned long errors = cachep->errors; |
| unsigned long max_freeable = cachep->max_freeable; |
| unsigned long node_allocs = cachep->node_allocs; |
| unsigned long node_frees = cachep->node_frees; |
| unsigned long overflows = cachep->node_overflow; |
| |
| seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", |
| allocs, high, grown, |
| reaped, errors, max_freeable, node_allocs, |
| node_frees, overflows); |
| } |
| /* cpu stats */ |
| { |
| unsigned long allochit = atomic_read(&cachep->allochit); |
| unsigned long allocmiss = atomic_read(&cachep->allocmiss); |
| unsigned long freehit = atomic_read(&cachep->freehit); |
| unsigned long freemiss = atomic_read(&cachep->freemiss); |
| |
| seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", |
| allochit, allocmiss, freehit, freemiss); |
| } |
| #endif |
| } |
| |
| #define MAX_SLABINFO_WRITE 128 |
| /** |
| * slabinfo_write - Tuning for the slab allocator |
| * @file: unused |
| * @buffer: user buffer |
| * @count: data length |
| * @ppos: unused |
| * |
| * Return: %0 on success, negative error code otherwise. |
| */ |
| ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
| size_t count, loff_t *ppos) |
| { |
| char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
| int limit, batchcount, shared, res; |
| struct kmem_cache *cachep; |
| |
| if (count > MAX_SLABINFO_WRITE) |
| return -EINVAL; |
| if (copy_from_user(&kbuf, buffer, count)) |
| return -EFAULT; |
| kbuf[MAX_SLABINFO_WRITE] = '\0'; |
| |
| tmp = strchr(kbuf, ' '); |
| if (!tmp) |
| return -EINVAL; |
| *tmp = '\0'; |
| tmp++; |
| if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) |
| return -EINVAL; |
| |
| /* Find the cache in the chain of caches. */ |
| mutex_lock(&slab_mutex); |
| res = -EINVAL; |
| list_for_each_entry(cachep, &slab_caches, list) { |
| if (!strcmp(cachep->name, kbuf)) { |
| if (limit < 1 || batchcount < 1 || |
| batchcount > limit || shared < 0) { |
| res = 0; |
| } else { |
| res = do_tune_cpucache(cachep, limit, |
| batchcount, shared, |
| GFP_KERNEL); |
| } |
| break; |
| } |
| } |
| mutex_unlock(&slab_mutex); |
| if (res >= 0) |
| res = count; |
| return res; |
| } |
| |
| #ifdef CONFIG_HARDENED_USERCOPY |
| /* |
| * Rejects incorrectly sized objects and objects that are to be copied |
| * to/from userspace but do not fall entirely within the containing slab |
| * cache's usercopy region. |
| * |
| * Returns NULL if check passes, otherwise const char * to name of cache |
| * to indicate an error. |
| */ |
| void __check_heap_object(const void *ptr, unsigned long n, |
| const struct slab *slab, bool to_user) |
| { |
| struct kmem_cache *cachep; |
| unsigned int objnr; |
| unsigned long offset; |
| |
| ptr = kasan_reset_tag(ptr); |
| |
| /* Find and validate object. */ |
| cachep = slab->slab_cache; |
| objnr = obj_to_index(cachep, slab, (void *)ptr); |
| BUG_ON(objnr >= cachep->num); |
| |
| /* Find offset within object. */ |
| if (is_kfence_address(ptr)) |
| offset = ptr - kfence_object_start(ptr); |
| else |
| offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep); |
| |
| /* Allow address range falling entirely within usercopy region. */ |
| if (offset >= cachep->useroffset && |
| offset - cachep->useroffset <= cachep->usersize && |
| n <= cachep->useroffset - offset + cachep->usersize) |
| return; |
| |
| usercopy_abort("SLAB object", cachep->name, to_user, offset, n); |
| } |
| #endif /* CONFIG_HARDENED_USERCOPY */ |