| #include <linux/delay.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/module.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/wait.h> | 
 |  | 
 | #include "pci.h" | 
 |  | 
 | /* | 
 |  * This interrupt-safe spinlock protects all accesses to PCI | 
 |  * configuration space. | 
 |  */ | 
 |  | 
 | DEFINE_RAW_SPINLOCK(pci_lock); | 
 |  | 
 | /* | 
 |  *  Wrappers for all PCI configuration access functions.  They just check | 
 |  *  alignment, do locking and call the low-level functions pointed to | 
 |  *  by pci_dev->ops. | 
 |  */ | 
 |  | 
 | #define PCI_byte_BAD 0 | 
 | #define PCI_word_BAD (pos & 1) | 
 | #define PCI_dword_BAD (pos & 3) | 
 |  | 
 | #ifdef CONFIG_PCI_LOCKLESS_CONFIG | 
 | # define pci_lock_config(f)	do { (void)(f); } while (0) | 
 | # define pci_unlock_config(f)	do { (void)(f); } while (0) | 
 | #else | 
 | # define pci_lock_config(f)	raw_spin_lock_irqsave(&pci_lock, f) | 
 | # define pci_unlock_config(f)	raw_spin_unlock_irqrestore(&pci_lock, f) | 
 | #endif | 
 |  | 
 | #define PCI_OP_READ(size, type, len) \ | 
 | int pci_bus_read_config_##size \ | 
 | 	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\ | 
 | {									\ | 
 | 	int res;							\ | 
 | 	unsigned long flags;						\ | 
 | 	u32 data = 0;							\ | 
 | 	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\ | 
 | 	pci_lock_config(flags);						\ | 
 | 	res = bus->ops->read(bus, devfn, pos, len, &data);		\ | 
 | 	*value = (type)data;						\ | 
 | 	pci_unlock_config(flags);					\ | 
 | 	return res;							\ | 
 | } | 
 |  | 
 | #define PCI_OP_WRITE(size, type, len) \ | 
 | int pci_bus_write_config_##size \ | 
 | 	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\ | 
 | {									\ | 
 | 	int res;							\ | 
 | 	unsigned long flags;						\ | 
 | 	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\ | 
 | 	pci_lock_config(flags);						\ | 
 | 	res = bus->ops->write(bus, devfn, pos, len, value);		\ | 
 | 	pci_unlock_config(flags);					\ | 
 | 	return res;							\ | 
 | } | 
 |  | 
 | PCI_OP_READ(byte, u8, 1) | 
 | PCI_OP_READ(word, u16, 2) | 
 | PCI_OP_READ(dword, u32, 4) | 
 | PCI_OP_WRITE(byte, u8, 1) | 
 | PCI_OP_WRITE(word, u16, 2) | 
 | PCI_OP_WRITE(dword, u32, 4) | 
 |  | 
 | EXPORT_SYMBOL(pci_bus_read_config_byte); | 
 | EXPORT_SYMBOL(pci_bus_read_config_word); | 
 | EXPORT_SYMBOL(pci_bus_read_config_dword); | 
 | EXPORT_SYMBOL(pci_bus_write_config_byte); | 
 | EXPORT_SYMBOL(pci_bus_write_config_word); | 
 | EXPORT_SYMBOL(pci_bus_write_config_dword); | 
 |  | 
 | int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn, | 
 | 			    int where, int size, u32 *val) | 
 | { | 
 | 	void __iomem *addr; | 
 |  | 
 | 	addr = bus->ops->map_bus(bus, devfn, where); | 
 | 	if (!addr) { | 
 | 		*val = ~0; | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 | 	} | 
 |  | 
 | 	if (size == 1) | 
 | 		*val = readb(addr); | 
 | 	else if (size == 2) | 
 | 		*val = readw(addr); | 
 | 	else | 
 | 		*val = readl(addr); | 
 |  | 
 | 	return PCIBIOS_SUCCESSFUL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(pci_generic_config_read); | 
 |  | 
 | int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn, | 
 | 			     int where, int size, u32 val) | 
 | { | 
 | 	void __iomem *addr; | 
 |  | 
 | 	addr = bus->ops->map_bus(bus, devfn, where); | 
 | 	if (!addr) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 |  | 
 | 	if (size == 1) | 
 | 		writeb(val, addr); | 
 | 	else if (size == 2) | 
 | 		writew(val, addr); | 
 | 	else | 
 | 		writel(val, addr); | 
 |  | 
 | 	return PCIBIOS_SUCCESSFUL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(pci_generic_config_write); | 
 |  | 
 | int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn, | 
 | 			      int where, int size, u32 *val) | 
 | { | 
 | 	void __iomem *addr; | 
 |  | 
 | 	addr = bus->ops->map_bus(bus, devfn, where & ~0x3); | 
 | 	if (!addr) { | 
 | 		*val = ~0; | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 | 	} | 
 |  | 
 | 	*val = readl(addr); | 
 |  | 
 | 	if (size <= 2) | 
 | 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); | 
 |  | 
 | 	return PCIBIOS_SUCCESSFUL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(pci_generic_config_read32); | 
 |  | 
 | int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn, | 
 | 			       int where, int size, u32 val) | 
 | { | 
 | 	void __iomem *addr; | 
 | 	u32 mask, tmp; | 
 |  | 
 | 	addr = bus->ops->map_bus(bus, devfn, where & ~0x3); | 
 | 	if (!addr) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 |  | 
 | 	if (size == 4) { | 
 | 		writel(val, addr); | 
 | 		return PCIBIOS_SUCCESSFUL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In general, hardware that supports only 32-bit writes on PCI is | 
 | 	 * not spec-compliant.  For example, software may perform a 16-bit | 
 | 	 * write.  If the hardware only supports 32-bit accesses, we must | 
 | 	 * do a 32-bit read, merge in the 16 bits we intend to write, | 
 | 	 * followed by a 32-bit write.  If the 16 bits we *don't* intend to | 
 | 	 * write happen to have any RW1C (write-one-to-clear) bits set, we | 
 | 	 * just inadvertently cleared something we shouldn't have. | 
 | 	 */ | 
 | 	dev_warn_ratelimited(&bus->dev, "%d-byte config write to %04x:%02x:%02x.%d offset %#x may corrupt adjacent RW1C bits\n", | 
 | 			     size, pci_domain_nr(bus), bus->number, | 
 | 			     PCI_SLOT(devfn), PCI_FUNC(devfn), where); | 
 |  | 
 | 	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8)); | 
 | 	tmp = readl(addr) & mask; | 
 | 	tmp |= val << ((where & 0x3) * 8); | 
 | 	writel(tmp, addr); | 
 |  | 
 | 	return PCIBIOS_SUCCESSFUL; | 
 | } | 
 | EXPORT_SYMBOL_GPL(pci_generic_config_write32); | 
 |  | 
 | /** | 
 |  * pci_bus_set_ops - Set raw operations of pci bus | 
 |  * @bus:	pci bus struct | 
 |  * @ops:	new raw operations | 
 |  * | 
 |  * Return previous raw operations | 
 |  */ | 
 | struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops) | 
 | { | 
 | 	struct pci_ops *old_ops; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&pci_lock, flags); | 
 | 	old_ops = bus->ops; | 
 | 	bus->ops = ops; | 
 | 	raw_spin_unlock_irqrestore(&pci_lock, flags); | 
 | 	return old_ops; | 
 | } | 
 | EXPORT_SYMBOL(pci_bus_set_ops); | 
 |  | 
 | /* | 
 |  * The following routines are to prevent the user from accessing PCI config | 
 |  * space when it's unsafe to do so.  Some devices require this during BIST and | 
 |  * we're required to prevent it during D-state transitions. | 
 |  * | 
 |  * We have a bit per device to indicate it's blocked and a global wait queue | 
 |  * for callers to sleep on until devices are unblocked. | 
 |  */ | 
 | static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait); | 
 |  | 
 | static noinline void pci_wait_cfg(struct pci_dev *dev) | 
 | { | 
 | 	DECLARE_WAITQUEUE(wait, current); | 
 |  | 
 | 	__add_wait_queue(&pci_cfg_wait, &wait); | 
 | 	do { | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		raw_spin_unlock_irq(&pci_lock); | 
 | 		schedule(); | 
 | 		raw_spin_lock_irq(&pci_lock); | 
 | 	} while (dev->block_cfg_access); | 
 | 	__remove_wait_queue(&pci_cfg_wait, &wait); | 
 | } | 
 |  | 
 | /* Returns 0 on success, negative values indicate error. */ | 
 | #define PCI_USER_READ_CONFIG(size, type)					\ | 
 | int pci_user_read_config_##size						\ | 
 | 	(struct pci_dev *dev, int pos, type *val)			\ | 
 | {									\ | 
 | 	int ret = PCIBIOS_SUCCESSFUL;					\ | 
 | 	u32 data = -1;							\ | 
 | 	if (PCI_##size##_BAD)						\ | 
 | 		return -EINVAL;						\ | 
 | 	raw_spin_lock_irq(&pci_lock);				\ | 
 | 	if (unlikely(dev->block_cfg_access))				\ | 
 | 		pci_wait_cfg(dev);					\ | 
 | 	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\ | 
 | 					pos, sizeof(type), &data);	\ | 
 | 	raw_spin_unlock_irq(&pci_lock);				\ | 
 | 	*val = (type)data;						\ | 
 | 	return pcibios_err_to_errno(ret);				\ | 
 | }									\ | 
 | EXPORT_SYMBOL_GPL(pci_user_read_config_##size); | 
 |  | 
 | /* Returns 0 on success, negative values indicate error. */ | 
 | #define PCI_USER_WRITE_CONFIG(size, type)				\ | 
 | int pci_user_write_config_##size					\ | 
 | 	(struct pci_dev *dev, int pos, type val)			\ | 
 | {									\ | 
 | 	int ret = PCIBIOS_SUCCESSFUL;					\ | 
 | 	if (PCI_##size##_BAD)						\ | 
 | 		return -EINVAL;						\ | 
 | 	raw_spin_lock_irq(&pci_lock);				\ | 
 | 	if (unlikely(dev->block_cfg_access))				\ | 
 | 		pci_wait_cfg(dev);					\ | 
 | 	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\ | 
 | 					pos, sizeof(type), val);	\ | 
 | 	raw_spin_unlock_irq(&pci_lock);				\ | 
 | 	return pcibios_err_to_errno(ret);				\ | 
 | }									\ | 
 | EXPORT_SYMBOL_GPL(pci_user_write_config_##size); | 
 |  | 
 | PCI_USER_READ_CONFIG(byte, u8) | 
 | PCI_USER_READ_CONFIG(word, u16) | 
 | PCI_USER_READ_CONFIG(dword, u32) | 
 | PCI_USER_WRITE_CONFIG(byte, u8) | 
 | PCI_USER_WRITE_CONFIG(word, u16) | 
 | PCI_USER_WRITE_CONFIG(dword, u32) | 
 |  | 
 | /* VPD access through PCI 2.2+ VPD capability */ | 
 |  | 
 | /** | 
 |  * pci_read_vpd - Read one entry from Vital Product Data | 
 |  * @dev:	pci device struct | 
 |  * @pos:	offset in vpd space | 
 |  * @count:	number of bytes to read | 
 |  * @buf:	pointer to where to store result | 
 |  */ | 
 | ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf) | 
 | { | 
 | 	if (!dev->vpd || !dev->vpd->ops) | 
 | 		return -ENODEV; | 
 | 	return dev->vpd->ops->read(dev, pos, count, buf); | 
 | } | 
 | EXPORT_SYMBOL(pci_read_vpd); | 
 |  | 
 | /** | 
 |  * pci_write_vpd - Write entry to Vital Product Data | 
 |  * @dev:	pci device struct | 
 |  * @pos:	offset in vpd space | 
 |  * @count:	number of bytes to write | 
 |  * @buf:	buffer containing write data | 
 |  */ | 
 | ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf) | 
 | { | 
 | 	if (!dev->vpd || !dev->vpd->ops) | 
 | 		return -ENODEV; | 
 | 	return dev->vpd->ops->write(dev, pos, count, buf); | 
 | } | 
 | EXPORT_SYMBOL(pci_write_vpd); | 
 |  | 
 | /** | 
 |  * pci_set_vpd_size - Set size of Vital Product Data space | 
 |  * @dev:	pci device struct | 
 |  * @len:	size of vpd space | 
 |  */ | 
 | int pci_set_vpd_size(struct pci_dev *dev, size_t len) | 
 | { | 
 | 	if (!dev->vpd || !dev->vpd->ops) | 
 | 		return -ENODEV; | 
 | 	return dev->vpd->ops->set_size(dev, len); | 
 | } | 
 | EXPORT_SYMBOL(pci_set_vpd_size); | 
 |  | 
 | #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1) | 
 |  | 
 | /** | 
 |  * pci_vpd_size - determine actual size of Vital Product Data | 
 |  * @dev:	pci device struct | 
 |  * @old_size:	current assumed size, also maximum allowed size | 
 |  */ | 
 | static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size) | 
 | { | 
 | 	size_t off = 0; | 
 | 	unsigned char header[1+2];	/* 1 byte tag, 2 bytes length */ | 
 |  | 
 | 	while (off < old_size && | 
 | 	       pci_read_vpd(dev, off, 1, header) == 1) { | 
 | 		unsigned char tag; | 
 |  | 
 | 		if (header[0] & PCI_VPD_LRDT) { | 
 | 			/* Large Resource Data Type Tag */ | 
 | 			tag = pci_vpd_lrdt_tag(header); | 
 | 			/* Only read length from known tag items */ | 
 | 			if ((tag == PCI_VPD_LTIN_ID_STRING) || | 
 | 			    (tag == PCI_VPD_LTIN_RO_DATA) || | 
 | 			    (tag == PCI_VPD_LTIN_RW_DATA)) { | 
 | 				if (pci_read_vpd(dev, off+1, 2, | 
 | 						 &header[1]) != 2) { | 
 | 					dev_warn(&dev->dev, | 
 | 						 "invalid large VPD tag %02x size at offset %zu", | 
 | 						 tag, off + 1); | 
 | 					return 0; | 
 | 				} | 
 | 				off += PCI_VPD_LRDT_TAG_SIZE + | 
 | 					pci_vpd_lrdt_size(header); | 
 | 			} | 
 | 		} else { | 
 | 			/* Short Resource Data Type Tag */ | 
 | 			off += PCI_VPD_SRDT_TAG_SIZE + | 
 | 				pci_vpd_srdt_size(header); | 
 | 			tag = pci_vpd_srdt_tag(header); | 
 | 		} | 
 |  | 
 | 		if (tag == PCI_VPD_STIN_END)	/* End tag descriptor */ | 
 | 			return off; | 
 |  | 
 | 		if ((tag != PCI_VPD_LTIN_ID_STRING) && | 
 | 		    (tag != PCI_VPD_LTIN_RO_DATA) && | 
 | 		    (tag != PCI_VPD_LTIN_RW_DATA)) { | 
 | 			dev_warn(&dev->dev, | 
 | 				 "invalid %s VPD tag %02x at offset %zu", | 
 | 				 (header[0] & PCI_VPD_LRDT) ? "large" : "short", | 
 | 				 tag, off); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wait for last operation to complete. | 
 |  * This code has to spin since there is no other notification from the PCI | 
 |  * hardware. Since the VPD is often implemented by serial attachment to an | 
 |  * EEPROM, it may take many milliseconds to complete. | 
 |  * | 
 |  * Returns 0 on success, negative values indicate error. | 
 |  */ | 
 | static int pci_vpd_wait(struct pci_dev *dev) | 
 | { | 
 | 	struct pci_vpd *vpd = dev->vpd; | 
 | 	unsigned long timeout = jiffies + msecs_to_jiffies(125); | 
 | 	unsigned long max_sleep = 16; | 
 | 	u16 status; | 
 | 	int ret; | 
 |  | 
 | 	if (!vpd->busy) | 
 | 		return 0; | 
 |  | 
 | 	while (time_before(jiffies, timeout)) { | 
 | 		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR, | 
 | 						&status); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 |  | 
 | 		if ((status & PCI_VPD_ADDR_F) == vpd->flag) { | 
 | 			vpd->busy = 0; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (fatal_signal_pending(current)) | 
 | 			return -EINTR; | 
 |  | 
 | 		usleep_range(10, max_sleep); | 
 | 		if (max_sleep < 1024) | 
 | 			max_sleep *= 2; | 
 | 	} | 
 |  | 
 | 	dev_warn(&dev->dev, "VPD access failed.  This is likely a firmware bug on this device.  Contact the card vendor for a firmware update\n"); | 
 | 	return -ETIMEDOUT; | 
 | } | 
 |  | 
 | static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count, | 
 | 			    void *arg) | 
 | { | 
 | 	struct pci_vpd *vpd = dev->vpd; | 
 | 	int ret; | 
 | 	loff_t end = pos + count; | 
 | 	u8 *buf = arg; | 
 |  | 
 | 	if (pos < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!vpd->valid) { | 
 | 		vpd->valid = 1; | 
 | 		vpd->len = pci_vpd_size(dev, vpd->len); | 
 | 	} | 
 |  | 
 | 	if (vpd->len == 0) | 
 | 		return -EIO; | 
 |  | 
 | 	if (pos > vpd->len) | 
 | 		return 0; | 
 |  | 
 | 	if (end > vpd->len) { | 
 | 		end = vpd->len; | 
 | 		count = end - pos; | 
 | 	} | 
 |  | 
 | 	if (mutex_lock_killable(&vpd->lock)) | 
 | 		return -EINTR; | 
 |  | 
 | 	ret = pci_vpd_wait(dev); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (pos < end) { | 
 | 		u32 val; | 
 | 		unsigned int i, skip; | 
 |  | 
 | 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, | 
 | 						 pos & ~3); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		vpd->busy = 1; | 
 | 		vpd->flag = PCI_VPD_ADDR_F; | 
 | 		ret = pci_vpd_wait(dev); | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val); | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		skip = pos & 3; | 
 | 		for (i = 0;  i < sizeof(u32); i++) { | 
 | 			if (i >= skip) { | 
 | 				*buf++ = val; | 
 | 				if (++pos == end) | 
 | 					break; | 
 | 			} | 
 | 			val >>= 8; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&vpd->lock); | 
 | 	return ret ? ret : count; | 
 | } | 
 |  | 
 | static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count, | 
 | 			     const void *arg) | 
 | { | 
 | 	struct pci_vpd *vpd = dev->vpd; | 
 | 	const u8 *buf = arg; | 
 | 	loff_t end = pos + count; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (pos < 0 || (pos & 3) || (count & 3)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!vpd->valid) { | 
 | 		vpd->valid = 1; | 
 | 		vpd->len = pci_vpd_size(dev, vpd->len); | 
 | 	} | 
 |  | 
 | 	if (vpd->len == 0) | 
 | 		return -EIO; | 
 |  | 
 | 	if (end > vpd->len) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (mutex_lock_killable(&vpd->lock)) | 
 | 		return -EINTR; | 
 |  | 
 | 	ret = pci_vpd_wait(dev); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (pos < end) { | 
 | 		u32 val; | 
 |  | 
 | 		val = *buf++; | 
 | 		val |= *buf++ << 8; | 
 | 		val |= *buf++ << 16; | 
 | 		val |= *buf++ << 24; | 
 |  | 
 | 		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, | 
 | 						 pos | PCI_VPD_ADDR_F); | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		vpd->busy = 1; | 
 | 		vpd->flag = 0; | 
 | 		ret = pci_vpd_wait(dev); | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		pos += sizeof(u32); | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&vpd->lock); | 
 | 	return ret ? ret : count; | 
 | } | 
 |  | 
 | static int pci_vpd_set_size(struct pci_dev *dev, size_t len) | 
 | { | 
 | 	struct pci_vpd *vpd = dev->vpd; | 
 |  | 
 | 	if (len == 0 || len > PCI_VPD_MAX_SIZE) | 
 | 		return -EIO; | 
 |  | 
 | 	vpd->valid = 1; | 
 | 	vpd->len = len; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct pci_vpd_ops pci_vpd_ops = { | 
 | 	.read = pci_vpd_read, | 
 | 	.write = pci_vpd_write, | 
 | 	.set_size = pci_vpd_set_size, | 
 | }; | 
 |  | 
 | static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count, | 
 | 			       void *arg) | 
 | { | 
 | 	struct pci_dev *tdev = pci_get_slot(dev->bus, | 
 | 					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); | 
 | 	ssize_t ret; | 
 |  | 
 | 	if (!tdev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = pci_read_vpd(tdev, pos, count, arg); | 
 | 	pci_dev_put(tdev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count, | 
 | 				const void *arg) | 
 | { | 
 | 	struct pci_dev *tdev = pci_get_slot(dev->bus, | 
 | 					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); | 
 | 	ssize_t ret; | 
 |  | 
 | 	if (!tdev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = pci_write_vpd(tdev, pos, count, arg); | 
 | 	pci_dev_put(tdev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len) | 
 | { | 
 | 	struct pci_dev *tdev = pci_get_slot(dev->bus, | 
 | 					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); | 
 | 	int ret; | 
 |  | 
 | 	if (!tdev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = pci_set_vpd_size(tdev, len); | 
 | 	pci_dev_put(tdev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct pci_vpd_ops pci_vpd_f0_ops = { | 
 | 	.read = pci_vpd_f0_read, | 
 | 	.write = pci_vpd_f0_write, | 
 | 	.set_size = pci_vpd_f0_set_size, | 
 | }; | 
 |  | 
 | int pci_vpd_init(struct pci_dev *dev) | 
 | { | 
 | 	struct pci_vpd *vpd; | 
 | 	u8 cap; | 
 |  | 
 | 	cap = pci_find_capability(dev, PCI_CAP_ID_VPD); | 
 | 	if (!cap) | 
 | 		return -ENODEV; | 
 |  | 
 | 	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC); | 
 | 	if (!vpd) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	vpd->len = PCI_VPD_MAX_SIZE; | 
 | 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) | 
 | 		vpd->ops = &pci_vpd_f0_ops; | 
 | 	else | 
 | 		vpd->ops = &pci_vpd_ops; | 
 | 	mutex_init(&vpd->lock); | 
 | 	vpd->cap = cap; | 
 | 	vpd->busy = 0; | 
 | 	vpd->valid = 0; | 
 | 	dev->vpd = vpd; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void pci_vpd_release(struct pci_dev *dev) | 
 | { | 
 | 	kfree(dev->vpd); | 
 | } | 
 |  | 
 | /** | 
 |  * pci_cfg_access_lock - Lock PCI config reads/writes | 
 |  * @dev:	pci device struct | 
 |  * | 
 |  * When access is locked, any userspace reads or writes to config | 
 |  * space and concurrent lock requests will sleep until access is | 
 |  * allowed via pci_cfg_access_unlock() again. | 
 |  */ | 
 | void pci_cfg_access_lock(struct pci_dev *dev) | 
 | { | 
 | 	might_sleep(); | 
 |  | 
 | 	raw_spin_lock_irq(&pci_lock); | 
 | 	if (dev->block_cfg_access) | 
 | 		pci_wait_cfg(dev); | 
 | 	dev->block_cfg_access = 1; | 
 | 	raw_spin_unlock_irq(&pci_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(pci_cfg_access_lock); | 
 |  | 
 | /** | 
 |  * pci_cfg_access_trylock - try to lock PCI config reads/writes | 
 |  * @dev:	pci device struct | 
 |  * | 
 |  * Same as pci_cfg_access_lock, but will return 0 if access is | 
 |  * already locked, 1 otherwise. This function can be used from | 
 |  * atomic contexts. | 
 |  */ | 
 | bool pci_cfg_access_trylock(struct pci_dev *dev) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool locked = true; | 
 |  | 
 | 	raw_spin_lock_irqsave(&pci_lock, flags); | 
 | 	if (dev->block_cfg_access) | 
 | 		locked = false; | 
 | 	else | 
 | 		dev->block_cfg_access = 1; | 
 | 	raw_spin_unlock_irqrestore(&pci_lock, flags); | 
 |  | 
 | 	return locked; | 
 | } | 
 | EXPORT_SYMBOL_GPL(pci_cfg_access_trylock); | 
 |  | 
 | /** | 
 |  * pci_cfg_access_unlock - Unlock PCI config reads/writes | 
 |  * @dev:	pci device struct | 
 |  * | 
 |  * This function allows PCI config accesses to resume. | 
 |  */ | 
 | void pci_cfg_access_unlock(struct pci_dev *dev) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&pci_lock, flags); | 
 |  | 
 | 	/* This indicates a problem in the caller, but we don't need | 
 | 	 * to kill them, unlike a double-block above. */ | 
 | 	WARN_ON(!dev->block_cfg_access); | 
 |  | 
 | 	dev->block_cfg_access = 0; | 
 | 	raw_spin_unlock_irqrestore(&pci_lock, flags); | 
 |  | 
 | 	wake_up_all(&pci_cfg_wait); | 
 | } | 
 | EXPORT_SYMBOL_GPL(pci_cfg_access_unlock); | 
 |  | 
 | static inline int pcie_cap_version(const struct pci_dev *dev) | 
 | { | 
 | 	return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS; | 
 | } | 
 |  | 
 | static bool pcie_downstream_port(const struct pci_dev *dev) | 
 | { | 
 | 	int type = pci_pcie_type(dev); | 
 |  | 
 | 	return type == PCI_EXP_TYPE_ROOT_PORT || | 
 | 	       type == PCI_EXP_TYPE_DOWNSTREAM || | 
 | 	       type == PCI_EXP_TYPE_PCIE_BRIDGE; | 
 | } | 
 |  | 
 | bool pcie_cap_has_lnkctl(const struct pci_dev *dev) | 
 | { | 
 | 	int type = pci_pcie_type(dev); | 
 |  | 
 | 	return type == PCI_EXP_TYPE_ENDPOINT || | 
 | 	       type == PCI_EXP_TYPE_LEG_END || | 
 | 	       type == PCI_EXP_TYPE_ROOT_PORT || | 
 | 	       type == PCI_EXP_TYPE_UPSTREAM || | 
 | 	       type == PCI_EXP_TYPE_DOWNSTREAM || | 
 | 	       type == PCI_EXP_TYPE_PCI_BRIDGE || | 
 | 	       type == PCI_EXP_TYPE_PCIE_BRIDGE; | 
 | } | 
 |  | 
 | static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev) | 
 | { | 
 | 	return pcie_downstream_port(dev) && | 
 | 	       pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT; | 
 | } | 
 |  | 
 | static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev) | 
 | { | 
 | 	int type = pci_pcie_type(dev); | 
 |  | 
 | 	return type == PCI_EXP_TYPE_ROOT_PORT || | 
 | 	       type == PCI_EXP_TYPE_RC_EC; | 
 | } | 
 |  | 
 | static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos) | 
 | { | 
 | 	if (!pci_is_pcie(dev)) | 
 | 		return false; | 
 |  | 
 | 	switch (pos) { | 
 | 	case PCI_EXP_FLAGS: | 
 | 		return true; | 
 | 	case PCI_EXP_DEVCAP: | 
 | 	case PCI_EXP_DEVCTL: | 
 | 	case PCI_EXP_DEVSTA: | 
 | 		return true; | 
 | 	case PCI_EXP_LNKCAP: | 
 | 	case PCI_EXP_LNKCTL: | 
 | 	case PCI_EXP_LNKSTA: | 
 | 		return pcie_cap_has_lnkctl(dev); | 
 | 	case PCI_EXP_SLTCAP: | 
 | 	case PCI_EXP_SLTCTL: | 
 | 	case PCI_EXP_SLTSTA: | 
 | 		return pcie_cap_has_sltctl(dev); | 
 | 	case PCI_EXP_RTCTL: | 
 | 	case PCI_EXP_RTCAP: | 
 | 	case PCI_EXP_RTSTA: | 
 | 		return pcie_cap_has_rtctl(dev); | 
 | 	case PCI_EXP_DEVCAP2: | 
 | 	case PCI_EXP_DEVCTL2: | 
 | 	case PCI_EXP_LNKCAP2: | 
 | 	case PCI_EXP_LNKCTL2: | 
 | 	case PCI_EXP_LNKSTA2: | 
 | 		return pcie_cap_version(dev) > 1; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Note that these accessor functions are only for the "PCI Express | 
 |  * Capability" (see PCIe spec r3.0, sec 7.8).  They do not apply to the | 
 |  * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.) | 
 |  */ | 
 | int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	*val = 0; | 
 | 	if (pos & 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (pcie_capability_reg_implemented(dev, pos)) { | 
 | 		ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val); | 
 | 		/* | 
 | 		 * Reset *val to 0 if pci_read_config_word() fails, it may | 
 | 		 * have been written as 0xFFFF if hardware error happens | 
 | 		 * during pci_read_config_word(). | 
 | 		 */ | 
 | 		if (ret) | 
 | 			*val = 0; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For Functions that do not implement the Slot Capabilities, | 
 | 	 * Slot Status, and Slot Control registers, these spaces must | 
 | 	 * be hardwired to 0b, with the exception of the Presence Detect | 
 | 	 * State bit in the Slot Status register of Downstream Ports, | 
 | 	 * which must be hardwired to 1b.  (PCIe Base Spec 3.0, sec 7.8) | 
 | 	 */ | 
 | 	if (pci_is_pcie(dev) && pcie_downstream_port(dev) && | 
 | 	    pos == PCI_EXP_SLTSTA) | 
 | 		*val = PCI_EXP_SLTSTA_PDS; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(pcie_capability_read_word); | 
 |  | 
 | int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	*val = 0; | 
 | 	if (pos & 3) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (pcie_capability_reg_implemented(dev, pos)) { | 
 | 		ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val); | 
 | 		/* | 
 | 		 * Reset *val to 0 if pci_read_config_dword() fails, it may | 
 | 		 * have been written as 0xFFFFFFFF if hardware error happens | 
 | 		 * during pci_read_config_dword(). | 
 | 		 */ | 
 | 		if (ret) | 
 | 			*val = 0; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (pci_is_pcie(dev) && pcie_downstream_port(dev) && | 
 | 	    pos == PCI_EXP_SLTSTA) | 
 | 		*val = PCI_EXP_SLTSTA_PDS; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(pcie_capability_read_dword); | 
 |  | 
 | int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val) | 
 | { | 
 | 	if (pos & 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!pcie_capability_reg_implemented(dev, pos)) | 
 | 		return 0; | 
 |  | 
 | 	return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val); | 
 | } | 
 | EXPORT_SYMBOL(pcie_capability_write_word); | 
 |  | 
 | int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val) | 
 | { | 
 | 	if (pos & 3) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!pcie_capability_reg_implemented(dev, pos)) | 
 | 		return 0; | 
 |  | 
 | 	return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val); | 
 | } | 
 | EXPORT_SYMBOL(pcie_capability_write_dword); | 
 |  | 
 | int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos, | 
 | 				       u16 clear, u16 set) | 
 | { | 
 | 	int ret; | 
 | 	u16 val; | 
 |  | 
 | 	ret = pcie_capability_read_word(dev, pos, &val); | 
 | 	if (!ret) { | 
 | 		val &= ~clear; | 
 | 		val |= set; | 
 | 		ret = pcie_capability_write_word(dev, pos, val); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(pcie_capability_clear_and_set_word); | 
 |  | 
 | int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos, | 
 | 					u32 clear, u32 set) | 
 | { | 
 | 	int ret; | 
 | 	u32 val; | 
 |  | 
 | 	ret = pcie_capability_read_dword(dev, pos, &val); | 
 | 	if (!ret) { | 
 | 		val &= ~clear; | 
 | 		val |= set; | 
 | 		ret = pcie_capability_write_dword(dev, pos, val); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(pcie_capability_clear_and_set_dword); | 
 |  | 
 | int pci_read_config_byte(const struct pci_dev *dev, int where, u8 *val) | 
 | { | 
 | 	if (pci_dev_is_disconnected(dev)) { | 
 | 		*val = ~0; | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 | 	} | 
 | 	return pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); | 
 | } | 
 | EXPORT_SYMBOL(pci_read_config_byte); | 
 |  | 
 | int pci_read_config_word(const struct pci_dev *dev, int where, u16 *val) | 
 | { | 
 | 	if (pci_dev_is_disconnected(dev)) { | 
 | 		*val = ~0; | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 | 	} | 
 | 	return pci_bus_read_config_word(dev->bus, dev->devfn, where, val); | 
 | } | 
 | EXPORT_SYMBOL(pci_read_config_word); | 
 |  | 
 | int pci_read_config_dword(const struct pci_dev *dev, int where, | 
 | 					u32 *val) | 
 | { | 
 | 	if (pci_dev_is_disconnected(dev)) { | 
 | 		*val = ~0; | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 | 	} | 
 | 	return pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); | 
 | } | 
 | EXPORT_SYMBOL(pci_read_config_dword); | 
 |  | 
 | int pci_write_config_byte(const struct pci_dev *dev, int where, u8 val) | 
 | { | 
 | 	if (pci_dev_is_disconnected(dev)) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 | 	return pci_bus_write_config_byte(dev->bus, dev->devfn, where, val); | 
 | } | 
 | EXPORT_SYMBOL(pci_write_config_byte); | 
 |  | 
 | int pci_write_config_word(const struct pci_dev *dev, int where, u16 val) | 
 | { | 
 | 	if (pci_dev_is_disconnected(dev)) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 | 	return pci_bus_write_config_word(dev->bus, dev->devfn, where, val); | 
 | } | 
 | EXPORT_SYMBOL(pci_write_config_word); | 
 |  | 
 | int pci_write_config_dword(const struct pci_dev *dev, int where, | 
 | 					 u32 val) | 
 | { | 
 | 	if (pci_dev_is_disconnected(dev)) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 | 	return pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); | 
 | } | 
 | EXPORT_SYMBOL(pci_write_config_dword); |