| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2004 by Ralf Baechle |
| */ |
| #include <linux/init.h> |
| #include <linux/oprofile.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp.h> |
| |
| #include "op_impl.h" |
| |
| #define RM9K_COUNTER1_EVENT(event) ((event) << 0) |
| #define RM9K_COUNTER1_SUPERVISOR (1ULL << 7) |
| #define RM9K_COUNTER1_KERNEL (1ULL << 8) |
| #define RM9K_COUNTER1_USER (1ULL << 9) |
| #define RM9K_COUNTER1_ENABLE (1ULL << 10) |
| #define RM9K_COUNTER1_OVERFLOW (1ULL << 15) |
| |
| #define RM9K_COUNTER2_EVENT(event) ((event) << 16) |
| #define RM9K_COUNTER2_SUPERVISOR (1ULL << 23) |
| #define RM9K_COUNTER2_KERNEL (1ULL << 24) |
| #define RM9K_COUNTER2_USER (1ULL << 25) |
| #define RM9K_COUNTER2_ENABLE (1ULL << 26) |
| #define RM9K_COUNTER2_OVERFLOW (1ULL << 31) |
| |
| extern unsigned int rm9000_perfcount_irq; |
| |
| static struct rm9k_register_config { |
| unsigned int control; |
| unsigned int reset_counter1; |
| unsigned int reset_counter2; |
| } reg; |
| |
| /* Compute all of the registers in preparation for enabling profiling. */ |
| |
| static void rm9000_reg_setup(struct op_counter_config *ctr) |
| { |
| unsigned int control = 0; |
| |
| /* Compute the performance counter control word. */ |
| /* For now count kernel and user mode */ |
| if (ctr[0].enabled) |
| control |= RM9K_COUNTER1_EVENT(ctr[0].event) | |
| RM9K_COUNTER1_KERNEL | |
| RM9K_COUNTER1_USER | |
| RM9K_COUNTER1_ENABLE; |
| if (ctr[1].enabled) |
| control |= RM9K_COUNTER2_EVENT(ctr[1].event) | |
| RM9K_COUNTER2_KERNEL | |
| RM9K_COUNTER2_USER | |
| RM9K_COUNTER2_ENABLE; |
| reg.control = control; |
| |
| reg.reset_counter1 = 0x80000000 - ctr[0].count; |
| reg.reset_counter2 = 0x80000000 - ctr[1].count; |
| } |
| |
| /* Program all of the registers in preparation for enabling profiling. */ |
| |
| static void rm9000_cpu_setup(void *args) |
| { |
| uint64_t perfcount; |
| |
| perfcount = ((uint64_t) reg.reset_counter2 << 32) | reg.reset_counter1; |
| write_c0_perfcount(perfcount); |
| } |
| |
| static void rm9000_cpu_start(void *args) |
| { |
| /* Start all counters on current CPU */ |
| write_c0_perfcontrol(reg.control); |
| } |
| |
| static void rm9000_cpu_stop(void *args) |
| { |
| /* Stop all counters on current CPU */ |
| write_c0_perfcontrol(0); |
| } |
| |
| static irqreturn_t rm9000_perfcount_handler(int irq, void * dev_id) |
| { |
| unsigned int control = read_c0_perfcontrol(); |
| struct pt_regs *regs = get_irq_regs(); |
| uint32_t counter1, counter2; |
| uint64_t counters; |
| |
| /* |
| * RM9000 combines two 32-bit performance counters into a single |
| * 64-bit coprocessor zero register. To avoid a race updating the |
| * registers we need to stop the counters while we're messing with |
| * them ... |
| */ |
| write_c0_perfcontrol(0); |
| |
| counters = read_c0_perfcount(); |
| counter1 = counters; |
| counter2 = counters >> 32; |
| |
| if (control & RM9K_COUNTER1_OVERFLOW) { |
| oprofile_add_sample(regs, 0); |
| counter1 = reg.reset_counter1; |
| } |
| if (control & RM9K_COUNTER2_OVERFLOW) { |
| oprofile_add_sample(regs, 1); |
| counter2 = reg.reset_counter2; |
| } |
| |
| counters = ((uint64_t)counter2 << 32) | counter1; |
| write_c0_perfcount(counters); |
| write_c0_perfcontrol(reg.control); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int __init rm9000_init(void) |
| { |
| return request_irq(rm9000_perfcount_irq, rm9000_perfcount_handler, |
| 0, "Perfcounter", NULL); |
| } |
| |
| static void rm9000_exit(void) |
| { |
| free_irq(rm9000_perfcount_irq, NULL); |
| } |
| |
| struct op_mips_model op_model_rm9000_ops = { |
| .reg_setup = rm9000_reg_setup, |
| .cpu_setup = rm9000_cpu_setup, |
| .init = rm9000_init, |
| .exit = rm9000_exit, |
| .cpu_start = rm9000_cpu_start, |
| .cpu_stop = rm9000_cpu_stop, |
| .cpu_type = "mips/rm9000", |
| .num_counters = 2 |
| }; |