| /* |
| * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu> |
| * Copyright (C) 2008-2009 PetaLogix |
| * Copyright (C) 2006 Atmark Techno, Inc. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| |
| #ifndef _ASM_MICROBLAZE_PGTABLE_H |
| #define _ASM_MICROBLAZE_PGTABLE_H |
| |
| #include <asm/setup.h> |
| |
| #ifndef __ASSEMBLY__ |
| extern int mem_init_done; |
| #endif |
| |
| #ifndef CONFIG_MMU |
| |
| #define pgd_present(pgd) (1) /* pages are always present on non MMU */ |
| #define pgd_none(pgd) (0) |
| #define pgd_bad(pgd) (0) |
| #define pgd_clear(pgdp) |
| #define kern_addr_valid(addr) (1) |
| #define pmd_offset(a, b) ((void *) 0) |
| |
| #define PAGE_NONE __pgprot(0) /* these mean nothing to non MMU */ |
| #define PAGE_SHARED __pgprot(0) /* these mean nothing to non MMU */ |
| #define PAGE_COPY __pgprot(0) /* these mean nothing to non MMU */ |
| #define PAGE_READONLY __pgprot(0) /* these mean nothing to non MMU */ |
| #define PAGE_KERNEL __pgprot(0) /* these mean nothing to non MMU */ |
| |
| #define pgprot_noncached(x) (x) |
| #define pgprot_writecombine pgprot_noncached |
| #define pgprot_device pgprot_noncached |
| |
| #define __swp_type(x) (0) |
| #define __swp_offset(x) (0) |
| #define __swp_entry(typ, off) ((swp_entry_t) { ((typ) | ((off) << 7)) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #define ZERO_PAGE(vaddr) ({ BUG(); NULL; }) |
| |
| #define swapper_pg_dir ((pgd_t *) NULL) |
| |
| #define pgtable_cache_init() do {} while (0) |
| |
| #define arch_enter_lazy_cpu_mode() do {} while (0) |
| |
| #define pgprot_noncached_wc(prot) prot |
| |
| /* |
| * All 32bit addresses are effectively valid for vmalloc... |
| * Sort of meaningless for non-VM targets. |
| */ |
| #define VMALLOC_START 0 |
| #define VMALLOC_END 0xffffffff |
| |
| #else /* CONFIG_MMU */ |
| |
| #include <asm-generic/4level-fixup.h> |
| |
| #define __PAGETABLE_PMD_FOLDED |
| |
| #ifdef __KERNEL__ |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/sched.h> |
| #include <linux/threads.h> |
| #include <asm/processor.h> /* For TASK_SIZE */ |
| #include <asm/mmu.h> |
| #include <asm/page.h> |
| |
| #define FIRST_USER_ADDRESS 0UL |
| |
| extern unsigned long va_to_phys(unsigned long address); |
| extern pte_t *va_to_pte(unsigned long address); |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| |
| static inline int pte_special(pte_t pte) { return 0; } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) { return pte; } |
| |
| /* Start and end of the vmalloc area. */ |
| /* Make sure to map the vmalloc area above the pinned kernel memory area |
| of 32Mb. */ |
| #define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE) |
| #define VMALLOC_END ioremap_bot |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * Macro to mark a page protection value as "uncacheable". |
| */ |
| |
| #define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \ |
| _PAGE_WRITETHRU) |
| |
| #define pgprot_noncached(prot) \ |
| (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ |
| _PAGE_NO_CACHE | _PAGE_GUARDED)) |
| |
| #define pgprot_noncached_wc(prot) \ |
| (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ |
| _PAGE_NO_CACHE)) |
| |
| /* |
| * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash |
| * table containing PTEs, together with a set of 16 segment registers, to |
| * define the virtual to physical address mapping. |
| * |
| * We use the hash table as an extended TLB, i.e. a cache of currently |
| * active mappings. We maintain a two-level page table tree, much |
| * like that used by the i386, for the sake of the Linux memory |
| * management code. Low-level assembler code in hashtable.S |
| * (procedure hash_page) is responsible for extracting ptes from the |
| * tree and putting them into the hash table when necessary, and |
| * updating the accessed and modified bits in the page table tree. |
| */ |
| |
| /* |
| * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The |
| * instruction and data sides share a unified, 64-entry, semi-associative |
| * TLB which is maintained totally under software control. In addition, the |
| * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative |
| * TLB which serves as a first level to the shared TLB. These two TLBs are |
| * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions). |
| */ |
| |
| /* |
| * The normal case is that PTEs are 32-bits and we have a 1-page |
| * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus |
| * |
| */ |
| |
| /* PMD_SHIFT determines the size of the area mapped by the PTE pages */ |
| #define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| |
| /* PGDIR_SHIFT determines what a top-level page table entry can map */ |
| #define PGDIR_SHIFT PMD_SHIFT |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * entries per page directory level: our page-table tree is two-level, so |
| * we don't really have any PMD directory. |
| */ |
| #define PTRS_PER_PTE (1 << PTE_SHIFT) |
| #define PTRS_PER_PMD 1 |
| #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) |
| |
| #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| #define FIRST_USER_PGD_NR 0 |
| |
| #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) |
| #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) |
| |
| #define pte_ERROR(e) \ |
| printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \ |
| __FILE__, __LINE__, pte_val(e)) |
| #define pmd_ERROR(e) \ |
| printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \ |
| __FILE__, __LINE__, pmd_val(e)) |
| #define pgd_ERROR(e) \ |
| printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ |
| __FILE__, __LINE__, pgd_val(e)) |
| |
| /* |
| * Bits in a linux-style PTE. These match the bits in the |
| * (hardware-defined) PTE as closely as possible. |
| */ |
| |
| /* There are several potential gotchas here. The hardware TLBLO |
| * field looks like this: |
| * |
| * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
| * RPN..................... 0 0 EX WR ZSEL....... W I M G |
| * |
| * Where possible we make the Linux PTE bits match up with this |
| * |
| * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can |
| * support down to 1k pages), this is done in the TLBMiss exception |
| * handler. |
| * - We use only zones 0 (for kernel pages) and 1 (for user pages) |
| * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB |
| * miss handler. Bit 27 is PAGE_USER, thus selecting the correct |
| * zone. |
| * - PRESENT *must* be in the bottom two bits because swap cache |
| * entries use the top 30 bits. Because 4xx doesn't support SMP |
| * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 |
| * is cleared in the TLB miss handler before the TLB entry is loaded. |
| * - All other bits of the PTE are loaded into TLBLO without |
| * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for |
| * software PTE bits. We actually use use bits 21, 24, 25, and |
| * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and |
| * PRESENT. |
| */ |
| |
| /* Definitions for MicroBlaze. */ |
| #define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ |
| #define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ |
| #define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ |
| #define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ |
| #define _PAGE_USER 0x010 /* matches one of the zone permission bits */ |
| #define _PAGE_RW 0x040 /* software: Writes permitted */ |
| #define _PAGE_DIRTY 0x080 /* software: dirty page */ |
| #define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ |
| #define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ |
| #define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ |
| #define _PMD_PRESENT PAGE_MASK |
| |
| /* |
| * Some bits are unused... |
| */ |
| #ifndef _PAGE_HASHPTE |
| #define _PAGE_HASHPTE 0 |
| #endif |
| #ifndef _PTE_NONE_MASK |
| #define _PTE_NONE_MASK 0 |
| #endif |
| #ifndef _PAGE_SHARED |
| #define _PAGE_SHARED 0 |
| #endif |
| #ifndef _PAGE_EXEC |
| #define _PAGE_EXEC 0 |
| #endif |
| |
| #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| |
| /* |
| * Note: the _PAGE_COHERENT bit automatically gets set in the hardware |
| * PTE if CONFIG_SMP is defined (hash_page does this); there is no need |
| * to have it in the Linux PTE, and in fact the bit could be reused for |
| * another purpose. -- paulus. |
| */ |
| #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) |
| #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) |
| |
| #define _PAGE_KERNEL \ |
| (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC) |
| |
| #define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) |
| |
| #define PAGE_NONE __pgprot(_PAGE_BASE) |
| #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) |
| #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) |
| #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) |
| #define PAGE_SHARED_X \ |
| __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) |
| #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) |
| #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) |
| |
| #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) |
| #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED) |
| #define PAGE_KERNEL_CI __pgprot(_PAGE_IO) |
| |
| /* |
| * We consider execute permission the same as read. |
| * Also, write permissions imply read permissions. |
| */ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READONLY_X |
| #define __P010 PAGE_COPY |
| #define __P011 PAGE_COPY_X |
| #define __P100 PAGE_READONLY |
| #define __P101 PAGE_READONLY_X |
| #define __P110 PAGE_COPY |
| #define __P111 PAGE_COPY_X |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READONLY_X |
| #define __S010 PAGE_SHARED |
| #define __S011 PAGE_SHARED_X |
| #define __S100 PAGE_READONLY |
| #define __S101 PAGE_READONLY_X |
| #define __S110 PAGE_SHARED |
| #define __S111 PAGE_SHARED_X |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern unsigned long empty_zero_page[1024]; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) |
| #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) |
| #define pte_clear(mm, addr, ptep) \ |
| do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0) |
| #define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0) |
| #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) |
| |
| #define pte_page(x) (mem_map + (unsigned long) \ |
| ((pte_val(x) - memory_start) >> PAGE_SHIFT)) |
| #define PFN_SHIFT_OFFSET (PAGE_SHIFT) |
| |
| #define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) |
| |
| #define pfn_pte(pfn, prot) \ |
| __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot)) |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * The "pgd_xxx()" functions here are trivial for a folded two-level |
| * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| * into the pgd entry) |
| */ |
| static inline int pgd_none(pgd_t pgd) { return 0; } |
| static inline int pgd_bad(pgd_t pgd) { return 0; } |
| static inline int pgd_present(pgd_t pgd) { return 1; } |
| #define pgd_clear(xp) do { } while (0) |
| #define pgd_page(pgd) \ |
| ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } |
| static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } |
| static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| |
| static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } |
| static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } |
| |
| static inline pte_t pte_rdprotect(pte_t pte) \ |
| { pte_val(pte) &= ~_PAGE_USER; return pte; } |
| static inline pte_t pte_wrprotect(pte_t pte) \ |
| { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } |
| static inline pte_t pte_exprotect(pte_t pte) \ |
| { pte_val(pte) &= ~_PAGE_EXEC; return pte; } |
| static inline pte_t pte_mkclean(pte_t pte) \ |
| { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } |
| static inline pte_t pte_mkold(pte_t pte) \ |
| { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } |
| |
| static inline pte_t pte_mkread(pte_t pte) \ |
| { pte_val(pte) |= _PAGE_USER; return pte; } |
| static inline pte_t pte_mkexec(pte_t pte) \ |
| { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } |
| static inline pte_t pte_mkwrite(pte_t pte) \ |
| { pte_val(pte) |= _PAGE_RW; return pte; } |
| static inline pte_t pte_mkdirty(pte_t pte) \ |
| { pte_val(pte) |= _PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkyoung(pte_t pte) \ |
| { pte_val(pte) |= _PAGE_ACCESSED; return pte; } |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| |
| static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot) |
| { |
| pte_t pte; |
| pte_val(pte) = physpage | pgprot_val(pgprot); |
| return pte; |
| } |
| |
| #define mk_pte(page, pgprot) \ |
| ({ \ |
| pte_t pte; \ |
| pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \ |
| pgprot_val(pgprot); \ |
| pte; \ |
| }) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); |
| return pte; |
| } |
| |
| /* |
| * Atomic PTE updates. |
| * |
| * pte_update clears and sets bit atomically, and returns |
| * the old pte value. |
| * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant |
| * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits. |
| */ |
| static inline unsigned long pte_update(pte_t *p, unsigned long clr, |
| unsigned long set) |
| { |
| unsigned long flags, old, tmp; |
| |
| raw_local_irq_save(flags); |
| |
| __asm__ __volatile__( "lw %0, %2, r0 \n" |
| "andn %1, %0, %3 \n" |
| "or %1, %1, %4 \n" |
| "sw %1, %2, r0 \n" |
| : "=&r" (old), "=&r" (tmp) |
| : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set) |
| : "cc"); |
| |
| raw_local_irq_restore(flags); |
| |
| return old; |
| } |
| |
| /* |
| * set_pte stores a linux PTE into the linux page table. |
| */ |
| static inline void set_pte(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| *ptep = pte; |
| } |
| |
| static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| *ptep = pte; |
| } |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0; |
| } |
| |
| static inline int ptep_test_and_clear_dirty(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| return (pte_update(ptep, \ |
| (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; |
| } |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); |
| } |
| |
| /*static inline void ptep_set_wrprotect(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); |
| }*/ |
| |
| static inline void ptep_mkdirty(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| pte_update(ptep, 0, _PAGE_DIRTY); |
| } |
| |
| /*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/ |
| |
| /* Convert pmd entry to page */ |
| /* our pmd entry is an effective address of pte table*/ |
| /* returns effective address of the pmd entry*/ |
| #define pmd_page_kernel(pmd) ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) |
| |
| /* returns struct *page of the pmd entry*/ |
| #define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT)) |
| |
| /* to find an entry in a kernel page-table-directory */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* to find an entry in a page-table-directory */ |
| #define pgd_index(address) ((address) >> PGDIR_SHIFT) |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| |
| /* Find an entry in the second-level page table.. */ |
| static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address) |
| { |
| return (pmd_t *) dir; |
| } |
| |
| /* Find an entry in the third-level page table.. */ |
| #define pte_index(address) \ |
| (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| #define pte_offset_kernel(dir, addr) \ |
| ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) |
| #define pte_offset_map(dir, addr) \ |
| ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr)) |
| |
| #define pte_unmap(pte) kunmap_atomic(pte) |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| |
| /* |
| * Encode and decode a swap entry. |
| * Note that the bits we use in a PTE for representing a swap entry |
| * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit |
| * (if used). -- paulus |
| */ |
| #define __swp_type(entry) ((entry).val & 0x3f) |
| #define __swp_offset(entry) ((entry).val >> 6) |
| #define __swp_entry(type, offset) \ |
| ((swp_entry_t) { (type) | ((offset) << 6) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 }) |
| |
| extern unsigned long iopa(unsigned long addr); |
| |
| /* Values for nocacheflag and cmode */ |
| /* These are not used by the APUS kernel_map, but prevents |
| * compilation errors. |
| */ |
| #define IOMAP_FULL_CACHING 0 |
| #define IOMAP_NOCACHE_SER 1 |
| #define IOMAP_NOCACHE_NONSER 2 |
| #define IOMAP_NO_COPYBACK 3 |
| |
| /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ |
| #define kern_addr_valid(addr) (1) |
| |
| /* |
| * No page table caches to initialise |
| */ |
| #define pgtable_cache_init() do { } while (0) |
| |
| void do_page_fault(struct pt_regs *regs, unsigned long address, |
| unsigned long error_code); |
| |
| void mapin_ram(void); |
| int map_page(unsigned long va, phys_addr_t pa, int flags); |
| |
| extern int mem_init_done; |
| |
| asmlinkage void __init mmu_init(void); |
| |
| void __init *early_get_page(void); |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif /* __KERNEL__ */ |
| |
| #endif /* CONFIG_MMU */ |
| |
| #ifndef __ASSEMBLY__ |
| #include <asm-generic/pgtable.h> |
| |
| extern unsigned long ioremap_bot, ioremap_base; |
| |
| void *consistent_alloc(gfp_t gfp, size_t size, dma_addr_t *dma_handle); |
| void consistent_free(size_t size, void *vaddr); |
| void consistent_sync(void *vaddr, size_t size, int direction); |
| void consistent_sync_page(struct page *page, unsigned long offset, |
| size_t size, int direction); |
| unsigned long consistent_virt_to_pfn(void *vaddr); |
| |
| void setup_memory(void); |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* _ASM_MICROBLAZE_PGTABLE_H */ |