| /* | 
 |  *  kernel/sched/core.c | 
 |  * | 
 |  *  Kernel scheduler and related syscalls | 
 |  * | 
 |  *  Copyright (C) 1991-2002  Linus Torvalds | 
 |  * | 
 |  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and | 
 |  *		make semaphores SMP safe | 
 |  *  1998-11-19	Implemented schedule_timeout() and related stuff | 
 |  *		by Andrea Arcangeli | 
 |  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: | 
 |  *		hybrid priority-list and round-robin design with | 
 |  *		an array-switch method of distributing timeslices | 
 |  *		and per-CPU runqueues.  Cleanups and useful suggestions | 
 |  *		by Davide Libenzi, preemptible kernel bits by Robert Love. | 
 |  *  2003-09-03	Interactivity tuning by Con Kolivas. | 
 |  *  2004-04-02	Scheduler domains code by Nick Piggin | 
 |  *  2007-04-15  Work begun on replacing all interactivity tuning with a | 
 |  *              fair scheduling design by Con Kolivas. | 
 |  *  2007-05-05  Load balancing (smp-nice) and other improvements | 
 |  *              by Peter Williams | 
 |  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith | 
 |  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri | 
 |  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins, | 
 |  *              Thomas Gleixner, Mike Kravetz | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/init.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/highmem.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/debug_locks.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/security.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/pid_namespace.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/threads.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/times.h> | 
 | #include <linux/tsacct_kern.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/delayacct.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/hrtimer.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init_task.h> | 
 | #include <linux/binfmts.h> | 
 | #include <linux/context_tracking.h> | 
 | #include <linux/compiler.h> | 
 |  | 
 | #include <asm/switch_to.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/irq_regs.h> | 
 | #include <asm/mutex.h> | 
 | #ifdef CONFIG_PARAVIRT | 
 | #include <asm/paravirt.h> | 
 | #endif | 
 |  | 
 | #include "sched.h" | 
 | #include "../workqueue_internal.h" | 
 | #include "../smpboot.h" | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/sched.h> | 
 |  | 
 | void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) | 
 | { | 
 | 	unsigned long delta; | 
 | 	ktime_t soft, hard, now; | 
 |  | 
 | 	for (;;) { | 
 | 		if (hrtimer_active(period_timer)) | 
 | 			break; | 
 |  | 
 | 		now = hrtimer_cb_get_time(period_timer); | 
 | 		hrtimer_forward(period_timer, now, period); | 
 |  | 
 | 		soft = hrtimer_get_softexpires(period_timer); | 
 | 		hard = hrtimer_get_expires(period_timer); | 
 | 		delta = ktime_to_ns(ktime_sub(hard, soft)); | 
 | 		__hrtimer_start_range_ns(period_timer, soft, delta, | 
 | 					 HRTIMER_MODE_ABS_PINNED, 0); | 
 | 	} | 
 | } | 
 |  | 
 | DEFINE_MUTEX(sched_domains_mutex); | 
 | DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 
 |  | 
 | static void update_rq_clock_task(struct rq *rq, s64 delta); | 
 |  | 
 | void update_rq_clock(struct rq *rq) | 
 | { | 
 | 	s64 delta; | 
 |  | 
 | 	if (rq->skip_clock_update > 0) | 
 | 		return; | 
 |  | 
 | 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; | 
 | 	if (delta < 0) | 
 | 		return; | 
 | 	rq->clock += delta; | 
 | 	update_rq_clock_task(rq, delta); | 
 | } | 
 |  | 
 | /* | 
 |  * Debugging: various feature bits | 
 |  */ | 
 |  | 
 | #define SCHED_FEAT(name, enabled)	\ | 
 | 	(1UL << __SCHED_FEAT_##name) * enabled | | 
 |  | 
 | const_debug unsigned int sysctl_sched_features = | 
 | #include "features.h" | 
 | 	0; | 
 |  | 
 | #undef SCHED_FEAT | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | #define SCHED_FEAT(name, enabled)	\ | 
 | 	#name , | 
 |  | 
 | static const char * const sched_feat_names[] = { | 
 | #include "features.h" | 
 | }; | 
 |  | 
 | #undef SCHED_FEAT | 
 |  | 
 | static int sched_feat_show(struct seq_file *m, void *v) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < __SCHED_FEAT_NR; i++) { | 
 | 		if (!(sysctl_sched_features & (1UL << i))) | 
 | 			seq_puts(m, "NO_"); | 
 | 		seq_printf(m, "%s ", sched_feat_names[i]); | 
 | 	} | 
 | 	seq_puts(m, "\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef HAVE_JUMP_LABEL | 
 |  | 
 | #define jump_label_key__true  STATIC_KEY_INIT_TRUE | 
 | #define jump_label_key__false STATIC_KEY_INIT_FALSE | 
 |  | 
 | #define SCHED_FEAT(name, enabled)	\ | 
 | 	jump_label_key__##enabled , | 
 |  | 
 | struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { | 
 | #include "features.h" | 
 | }; | 
 |  | 
 | #undef SCHED_FEAT | 
 |  | 
 | static void sched_feat_disable(int i) | 
 | { | 
 | 	if (static_key_enabled(&sched_feat_keys[i])) | 
 | 		static_key_slow_dec(&sched_feat_keys[i]); | 
 | } | 
 |  | 
 | static void sched_feat_enable(int i) | 
 | { | 
 | 	if (!static_key_enabled(&sched_feat_keys[i])) | 
 | 		static_key_slow_inc(&sched_feat_keys[i]); | 
 | } | 
 | #else | 
 | static void sched_feat_disable(int i) { }; | 
 | static void sched_feat_enable(int i) { }; | 
 | #endif /* HAVE_JUMP_LABEL */ | 
 |  | 
 | static int sched_feat_set(char *cmp) | 
 | { | 
 | 	int i; | 
 | 	int neg = 0; | 
 |  | 
 | 	if (strncmp(cmp, "NO_", 3) == 0) { | 
 | 		neg = 1; | 
 | 		cmp += 3; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < __SCHED_FEAT_NR; i++) { | 
 | 		if (strcmp(cmp, sched_feat_names[i]) == 0) { | 
 | 			if (neg) { | 
 | 				sysctl_sched_features &= ~(1UL << i); | 
 | 				sched_feat_disable(i); | 
 | 			} else { | 
 | 				sysctl_sched_features |= (1UL << i); | 
 | 				sched_feat_enable(i); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | static ssize_t | 
 | sched_feat_write(struct file *filp, const char __user *ubuf, | 
 | 		size_t cnt, loff_t *ppos) | 
 | { | 
 | 	char buf[64]; | 
 | 	char *cmp; | 
 | 	int i; | 
 | 	struct inode *inode; | 
 |  | 
 | 	if (cnt > 63) | 
 | 		cnt = 63; | 
 |  | 
 | 	if (copy_from_user(&buf, ubuf, cnt)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	buf[cnt] = 0; | 
 | 	cmp = strstrip(buf); | 
 |  | 
 | 	/* Ensure the static_key remains in a consistent state */ | 
 | 	inode = file_inode(filp); | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	i = sched_feat_set(cmp); | 
 | 	mutex_unlock(&inode->i_mutex); | 
 | 	if (i == __SCHED_FEAT_NR) | 
 | 		return -EINVAL; | 
 |  | 
 | 	*ppos += cnt; | 
 |  | 
 | 	return cnt; | 
 | } | 
 |  | 
 | static int sched_feat_open(struct inode *inode, struct file *filp) | 
 | { | 
 | 	return single_open(filp, sched_feat_show, NULL); | 
 | } | 
 |  | 
 | static const struct file_operations sched_feat_fops = { | 
 | 	.open		= sched_feat_open, | 
 | 	.write		= sched_feat_write, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= single_release, | 
 | }; | 
 |  | 
 | static __init int sched_init_debug(void) | 
 | { | 
 | 	debugfs_create_file("sched_features", 0644, NULL, NULL, | 
 | 			&sched_feat_fops); | 
 |  | 
 | 	return 0; | 
 | } | 
 | late_initcall(sched_init_debug); | 
 | #endif /* CONFIG_SCHED_DEBUG */ | 
 |  | 
 | /* | 
 |  * Number of tasks to iterate in a single balance run. | 
 |  * Limited because this is done with IRQs disabled. | 
 |  */ | 
 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | 
 |  | 
 | /* | 
 |  * period over which we average the RT time consumption, measured | 
 |  * in ms. | 
 |  * | 
 |  * default: 1s | 
 |  */ | 
 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | 
 |  | 
 | /* | 
 |  * period over which we measure -rt task cpu usage in us. | 
 |  * default: 1s | 
 |  */ | 
 | unsigned int sysctl_sched_rt_period = 1000000; | 
 |  | 
 | __read_mostly int scheduler_running; | 
 |  | 
 | /* | 
 |  * part of the period that we allow rt tasks to run in us. | 
 |  * default: 0.95s | 
 |  */ | 
 | int sysctl_sched_rt_runtime = 950000; | 
 |  | 
 | /* | 
 |  * __task_rq_lock - lock the rq @p resides on. | 
 |  */ | 
 | static inline struct rq *__task_rq_lock(struct task_struct *p) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	lockdep_assert_held(&p->pi_lock); | 
 |  | 
 | 	for (;;) { | 
 | 		rq = task_rq(p); | 
 | 		raw_spin_lock(&rq->lock); | 
 | 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) | 
 | 			return rq; | 
 | 		raw_spin_unlock(&rq->lock); | 
 |  | 
 | 		while (unlikely(task_on_rq_migrating(p))) | 
 | 			cpu_relax(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. | 
 |  */ | 
 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | 
 | 	__acquires(p->pi_lock) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	for (;;) { | 
 | 		raw_spin_lock_irqsave(&p->pi_lock, *flags); | 
 | 		rq = task_rq(p); | 
 | 		raw_spin_lock(&rq->lock); | 
 | 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) | 
 | 			return rq; | 
 | 		raw_spin_unlock(&rq->lock); | 
 | 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags); | 
 |  | 
 | 		while (unlikely(task_on_rq_migrating(p))) | 
 | 			cpu_relax(); | 
 | 	} | 
 | } | 
 |  | 
 | static void __task_rq_unlock(struct rq *rq) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | static inline void | 
 | task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) | 
 | 	__releases(rq->lock) | 
 | 	__releases(p->pi_lock) | 
 | { | 
 | 	raw_spin_unlock(&rq->lock); | 
 | 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags); | 
 | } | 
 |  | 
 | /* | 
 |  * this_rq_lock - lock this runqueue and disable interrupts. | 
 |  */ | 
 | static struct rq *this_rq_lock(void) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	local_irq_disable(); | 
 | 	rq = this_rq(); | 
 | 	raw_spin_lock(&rq->lock); | 
 |  | 
 | 	return rq; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | /* | 
 |  * Use HR-timers to deliver accurate preemption points. | 
 |  */ | 
 |  | 
 | static void hrtick_clear(struct rq *rq) | 
 | { | 
 | 	if (hrtimer_active(&rq->hrtick_timer)) | 
 | 		hrtimer_cancel(&rq->hrtick_timer); | 
 | } | 
 |  | 
 | /* | 
 |  * High-resolution timer tick. | 
 |  * Runs from hardirq context with interrupts disabled. | 
 |  */ | 
 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | 
 | { | 
 | 	struct rq *rq = container_of(timer, struct rq, hrtick_timer); | 
 |  | 
 | 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | 
 |  | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	update_rq_clock(rq); | 
 | 	rq->curr->sched_class->task_tick(rq, rq->curr, 1); | 
 | 	raw_spin_unlock(&rq->lock); | 
 |  | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static int __hrtick_restart(struct rq *rq) | 
 | { | 
 | 	struct hrtimer *timer = &rq->hrtick_timer; | 
 | 	ktime_t time = hrtimer_get_softexpires(timer); | 
 |  | 
 | 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * called from hardirq (IPI) context | 
 |  */ | 
 | static void __hrtick_start(void *arg) | 
 | { | 
 | 	struct rq *rq = arg; | 
 |  | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	__hrtick_restart(rq); | 
 | 	rq->hrtick_csd_pending = 0; | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Called to set the hrtick timer state. | 
 |  * | 
 |  * called with rq->lock held and irqs disabled | 
 |  */ | 
 | void hrtick_start(struct rq *rq, u64 delay) | 
 | { | 
 | 	struct hrtimer *timer = &rq->hrtick_timer; | 
 | 	ktime_t time; | 
 | 	s64 delta; | 
 |  | 
 | 	/* | 
 | 	 * Don't schedule slices shorter than 10000ns, that just | 
 | 	 * doesn't make sense and can cause timer DoS. | 
 | 	 */ | 
 | 	delta = max_t(s64, delay, 10000LL); | 
 | 	time = ktime_add_ns(timer->base->get_time(), delta); | 
 |  | 
 | 	hrtimer_set_expires(timer, time); | 
 |  | 
 | 	if (rq == this_rq()) { | 
 | 		__hrtick_restart(rq); | 
 | 	} else if (!rq->hrtick_csd_pending) { | 
 | 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); | 
 | 		rq->hrtick_csd_pending = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | 
 | { | 
 | 	int cpu = (int)(long)hcpu; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_UP_CANCELED_FROZEN: | 
 | 	case CPU_DOWN_PREPARE: | 
 | 	case CPU_DOWN_PREPARE_FROZEN: | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 		hrtick_clear(cpu_rq(cpu)); | 
 | 		return NOTIFY_OK; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static __init void init_hrtick(void) | 
 | { | 
 | 	hotcpu_notifier(hotplug_hrtick, 0); | 
 | } | 
 | #else | 
 | /* | 
 |  * Called to set the hrtick timer state. | 
 |  * | 
 |  * called with rq->lock held and irqs disabled | 
 |  */ | 
 | void hrtick_start(struct rq *rq, u64 delay) | 
 | { | 
 | 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, | 
 | 			HRTIMER_MODE_REL_PINNED, 0); | 
 | } | 
 |  | 
 | static inline void init_hrtick(void) | 
 | { | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static void init_rq_hrtick(struct rq *rq) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	rq->hrtick_csd_pending = 0; | 
 |  | 
 | 	rq->hrtick_csd.flags = 0; | 
 | 	rq->hrtick_csd.func = __hrtick_start; | 
 | 	rq->hrtick_csd.info = rq; | 
 | #endif | 
 |  | 
 | 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	rq->hrtick_timer.function = hrtick; | 
 | } | 
 | #else	/* CONFIG_SCHED_HRTICK */ | 
 | static inline void hrtick_clear(struct rq *rq) | 
 | { | 
 | } | 
 |  | 
 | static inline void init_rq_hrtick(struct rq *rq) | 
 | { | 
 | } | 
 |  | 
 | static inline void init_hrtick(void) | 
 | { | 
 | } | 
 | #endif	/* CONFIG_SCHED_HRTICK */ | 
 |  | 
 | /* | 
 |  * cmpxchg based fetch_or, macro so it works for different integer types | 
 |  */ | 
 | #define fetch_or(ptr, val)						\ | 
 | ({	typeof(*(ptr)) __old, __val = *(ptr);				\ | 
 |  	for (;;) {							\ | 
 |  		__old = cmpxchg((ptr), __val, __val | (val));		\ | 
 |  		if (__old == __val)					\ | 
 |  			break;						\ | 
 |  		__val = __old;						\ | 
 |  	}								\ | 
 |  	__old;								\ | 
 | }) | 
 |  | 
 | #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) | 
 | /* | 
 |  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, | 
 |  * this avoids any races wrt polling state changes and thereby avoids | 
 |  * spurious IPIs. | 
 |  */ | 
 | static bool set_nr_and_not_polling(struct task_struct *p) | 
 | { | 
 | 	struct thread_info *ti = task_thread_info(p); | 
 | 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); | 
 | } | 
 |  | 
 | /* | 
 |  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. | 
 |  * | 
 |  * If this returns true, then the idle task promises to call | 
 |  * sched_ttwu_pending() and reschedule soon. | 
 |  */ | 
 | static bool set_nr_if_polling(struct task_struct *p) | 
 | { | 
 | 	struct thread_info *ti = task_thread_info(p); | 
 | 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); | 
 |  | 
 | 	for (;;) { | 
 | 		if (!(val & _TIF_POLLING_NRFLAG)) | 
 | 			return false; | 
 | 		if (val & _TIF_NEED_RESCHED) | 
 | 			return true; | 
 | 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); | 
 | 		if (old == val) | 
 | 			break; | 
 | 		val = old; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | #else | 
 | static bool set_nr_and_not_polling(struct task_struct *p) | 
 | { | 
 | 	set_tsk_need_resched(p); | 
 | 	return true; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static bool set_nr_if_polling(struct task_struct *p) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif | 
 | #endif | 
 |  | 
 | /* | 
 |  * resched_curr - mark rq's current task 'to be rescheduled now'. | 
 |  * | 
 |  * On UP this means the setting of the need_resched flag, on SMP it | 
 |  * might also involve a cross-CPU call to trigger the scheduler on | 
 |  * the target CPU. | 
 |  */ | 
 | void resched_curr(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	int cpu; | 
 |  | 
 | 	lockdep_assert_held(&rq->lock); | 
 |  | 
 | 	if (test_tsk_need_resched(curr)) | 
 | 		return; | 
 |  | 
 | 	cpu = cpu_of(rq); | 
 |  | 
 | 	if (cpu == smp_processor_id()) { | 
 | 		set_tsk_need_resched(curr); | 
 | 		set_preempt_need_resched(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (set_nr_and_not_polling(curr)) | 
 | 		smp_send_reschedule(cpu); | 
 | 	else | 
 | 		trace_sched_wake_idle_without_ipi(cpu); | 
 | } | 
 |  | 
 | void resched_cpu(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!raw_spin_trylock_irqsave(&rq->lock, flags)) | 
 | 		return; | 
 | 	resched_curr(rq); | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | /* | 
 |  * In the semi idle case, use the nearest busy cpu for migrating timers | 
 |  * from an idle cpu.  This is good for power-savings. | 
 |  * | 
 |  * We don't do similar optimization for completely idle system, as | 
 |  * selecting an idle cpu will add more delays to the timers than intended | 
 |  * (as that cpu's timer base may not be uptodate wrt jiffies etc). | 
 |  */ | 
 | int get_nohz_timer_target(int pinned) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	int i; | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) | 
 | 		return cpu; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(cpu, sd) { | 
 | 		for_each_cpu(i, sched_domain_span(sd)) { | 
 | 			if (!idle_cpu(i)) { | 
 | 				cpu = i; | 
 | 				goto unlock; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | 	return cpu; | 
 | } | 
 | /* | 
 |  * When add_timer_on() enqueues a timer into the timer wheel of an | 
 |  * idle CPU then this timer might expire before the next timer event | 
 |  * which is scheduled to wake up that CPU. In case of a completely | 
 |  * idle system the next event might even be infinite time into the | 
 |  * future. wake_up_idle_cpu() ensures that the CPU is woken up and | 
 |  * leaves the inner idle loop so the newly added timer is taken into | 
 |  * account when the CPU goes back to idle and evaluates the timer | 
 |  * wheel for the next timer event. | 
 |  */ | 
 | static void wake_up_idle_cpu(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	if (cpu == smp_processor_id()) | 
 | 		return; | 
 |  | 
 | 	if (set_nr_and_not_polling(rq->idle)) | 
 | 		smp_send_reschedule(cpu); | 
 | 	else | 
 | 		trace_sched_wake_idle_without_ipi(cpu); | 
 | } | 
 |  | 
 | static bool wake_up_full_nohz_cpu(int cpu) | 
 | { | 
 | 	/* | 
 | 	 * We just need the target to call irq_exit() and re-evaluate | 
 | 	 * the next tick. The nohz full kick at least implies that. | 
 | 	 * If needed we can still optimize that later with an | 
 | 	 * empty IRQ. | 
 | 	 */ | 
 | 	if (tick_nohz_full_cpu(cpu)) { | 
 | 		if (cpu != smp_processor_id() || | 
 | 		    tick_nohz_tick_stopped()) | 
 | 			tick_nohz_full_kick_cpu(cpu); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | void wake_up_nohz_cpu(int cpu) | 
 | { | 
 | 	if (!wake_up_full_nohz_cpu(cpu)) | 
 | 		wake_up_idle_cpu(cpu); | 
 | } | 
 |  | 
 | static inline bool got_nohz_idle_kick(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) | 
 | 		return false; | 
 |  | 
 | 	if (idle_cpu(cpu) && !need_resched()) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * We can't run Idle Load Balance on this CPU for this time so we | 
 | 	 * cancel it and clear NOHZ_BALANCE_KICK | 
 | 	 */ | 
 | 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); | 
 | 	return false; | 
 | } | 
 |  | 
 | #else /* CONFIG_NO_HZ_COMMON */ | 
 |  | 
 | static inline bool got_nohz_idle_kick(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | #endif /* CONFIG_NO_HZ_COMMON */ | 
 |  | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | bool sched_can_stop_tick(void) | 
 | { | 
 | 	/* | 
 | 	 * More than one running task need preemption. | 
 | 	 * nr_running update is assumed to be visible | 
 | 	 * after IPI is sent from wakers. | 
 | 	 */ | 
 | 	if (this_rq()->nr_running > 1) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 | #endif /* CONFIG_NO_HZ_FULL */ | 
 |  | 
 | void sched_avg_update(struct rq *rq) | 
 | { | 
 | 	s64 period = sched_avg_period(); | 
 |  | 
 | 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { | 
 | 		/* | 
 | 		 * Inline assembly required to prevent the compiler | 
 | 		 * optimising this loop into a divmod call. | 
 | 		 * See __iter_div_u64_rem() for another example of this. | 
 | 		 */ | 
 | 		asm("" : "+rm" (rq->age_stamp)); | 
 | 		rq->age_stamp += period; | 
 | 		rq->rt_avg /= 2; | 
 | 	} | 
 | } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ | 
 | 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) | 
 | /* | 
 |  * Iterate task_group tree rooted at *from, calling @down when first entering a | 
 |  * node and @up when leaving it for the final time. | 
 |  * | 
 |  * Caller must hold rcu_lock or sufficient equivalent. | 
 |  */ | 
 | int walk_tg_tree_from(struct task_group *from, | 
 | 			     tg_visitor down, tg_visitor up, void *data) | 
 | { | 
 | 	struct task_group *parent, *child; | 
 | 	int ret; | 
 |  | 
 | 	parent = from; | 
 |  | 
 | down: | 
 | 	ret = (*down)(parent, data); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	list_for_each_entry_rcu(child, &parent->children, siblings) { | 
 | 		parent = child; | 
 | 		goto down; | 
 |  | 
 | up: | 
 | 		continue; | 
 | 	} | 
 | 	ret = (*up)(parent, data); | 
 | 	if (ret || parent == from) | 
 | 		goto out; | 
 |  | 
 | 	child = parent; | 
 | 	parent = parent->parent; | 
 | 	if (parent) | 
 | 		goto up; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int tg_nop(struct task_group *tg, void *data) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static void set_load_weight(struct task_struct *p) | 
 | { | 
 | 	int prio = p->static_prio - MAX_RT_PRIO; | 
 | 	struct load_weight *load = &p->se.load; | 
 |  | 
 | 	/* | 
 | 	 * SCHED_IDLE tasks get minimal weight: | 
 | 	 */ | 
 | 	if (p->policy == SCHED_IDLE) { | 
 | 		load->weight = scale_load(WEIGHT_IDLEPRIO); | 
 | 		load->inv_weight = WMULT_IDLEPRIO; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	load->weight = scale_load(prio_to_weight[prio]); | 
 | 	load->inv_weight = prio_to_wmult[prio]; | 
 | } | 
 |  | 
 | static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	update_rq_clock(rq); | 
 | 	sched_info_queued(rq, p); | 
 | 	p->sched_class->enqueue_task(rq, p, flags); | 
 | } | 
 |  | 
 | static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	update_rq_clock(rq); | 
 | 	sched_info_dequeued(rq, p); | 
 | 	p->sched_class->dequeue_task(rq, p, flags); | 
 | } | 
 |  | 
 | void activate_task(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	if (task_contributes_to_load(p)) | 
 | 		rq->nr_uninterruptible--; | 
 |  | 
 | 	enqueue_task(rq, p, flags); | 
 | } | 
 |  | 
 | void deactivate_task(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	if (task_contributes_to_load(p)) | 
 | 		rq->nr_uninterruptible++; | 
 |  | 
 | 	dequeue_task(rq, p, flags); | 
 | } | 
 |  | 
 | static void update_rq_clock_task(struct rq *rq, s64 delta) | 
 | { | 
 | /* | 
 |  * In theory, the compile should just see 0 here, and optimize out the call | 
 |  * to sched_rt_avg_update. But I don't trust it... | 
 |  */ | 
 | #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) | 
 | 	s64 steal = 0, irq_delta = 0; | 
 | #endif | 
 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
 | 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; | 
 |  | 
 | 	/* | 
 | 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into | 
 | 	 * this case when a previous update_rq_clock() happened inside a | 
 | 	 * {soft,}irq region. | 
 | 	 * | 
 | 	 * When this happens, we stop ->clock_task and only update the | 
 | 	 * prev_irq_time stamp to account for the part that fit, so that a next | 
 | 	 * update will consume the rest. This ensures ->clock_task is | 
 | 	 * monotonic. | 
 | 	 * | 
 | 	 * It does however cause some slight miss-attribution of {soft,}irq | 
 | 	 * time, a more accurate solution would be to update the irq_time using | 
 | 	 * the current rq->clock timestamp, except that would require using | 
 | 	 * atomic ops. | 
 | 	 */ | 
 | 	if (irq_delta > delta) | 
 | 		irq_delta = delta; | 
 |  | 
 | 	rq->prev_irq_time += irq_delta; | 
 | 	delta -= irq_delta; | 
 | #endif | 
 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | 
 | 	if (static_key_false((¶virt_steal_rq_enabled))) { | 
 | 		steal = paravirt_steal_clock(cpu_of(rq)); | 
 | 		steal -= rq->prev_steal_time_rq; | 
 |  | 
 | 		if (unlikely(steal > delta)) | 
 | 			steal = delta; | 
 |  | 
 | 		rq->prev_steal_time_rq += steal; | 
 | 		delta -= steal; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	rq->clock_task += delta; | 
 |  | 
 | #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) | 
 | 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) | 
 | 		sched_rt_avg_update(rq, irq_delta + steal); | 
 | #endif | 
 | } | 
 |  | 
 | void sched_set_stop_task(int cpu, struct task_struct *stop) | 
 | { | 
 | 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | 
 | 	struct task_struct *old_stop = cpu_rq(cpu)->stop; | 
 |  | 
 | 	if (stop) { | 
 | 		/* | 
 | 		 * Make it appear like a SCHED_FIFO task, its something | 
 | 		 * userspace knows about and won't get confused about. | 
 | 		 * | 
 | 		 * Also, it will make PI more or less work without too | 
 | 		 * much confusion -- but then, stop work should not | 
 | 		 * rely on PI working anyway. | 
 | 		 */ | 
 | 		sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); | 
 |  | 
 | 		stop->sched_class = &stop_sched_class; | 
 | 	} | 
 |  | 
 | 	cpu_rq(cpu)->stop = stop; | 
 |  | 
 | 	if (old_stop) { | 
 | 		/* | 
 | 		 * Reset it back to a normal scheduling class so that | 
 | 		 * it can die in pieces. | 
 | 		 */ | 
 | 		old_stop->sched_class = &rt_sched_class; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * __normal_prio - return the priority that is based on the static prio | 
 |  */ | 
 | static inline int __normal_prio(struct task_struct *p) | 
 | { | 
 | 	return p->static_prio; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the expected normal priority: i.e. priority | 
 |  * without taking RT-inheritance into account. Might be | 
 |  * boosted by interactivity modifiers. Changes upon fork, | 
 |  * setprio syscalls, and whenever the interactivity | 
 |  * estimator recalculates. | 
 |  */ | 
 | static inline int normal_prio(struct task_struct *p) | 
 | { | 
 | 	int prio; | 
 |  | 
 | 	if (task_has_dl_policy(p)) | 
 | 		prio = MAX_DL_PRIO-1; | 
 | 	else if (task_has_rt_policy(p)) | 
 | 		prio = MAX_RT_PRIO-1 - p->rt_priority; | 
 | 	else | 
 | 		prio = __normal_prio(p); | 
 | 	return prio; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the current priority, i.e. the priority | 
 |  * taken into account by the scheduler. This value might | 
 |  * be boosted by RT tasks, or might be boosted by | 
 |  * interactivity modifiers. Will be RT if the task got | 
 |  * RT-boosted. If not then it returns p->normal_prio. | 
 |  */ | 
 | static int effective_prio(struct task_struct *p) | 
 | { | 
 | 	p->normal_prio = normal_prio(p); | 
 | 	/* | 
 | 	 * If we are RT tasks or we were boosted to RT priority, | 
 | 	 * keep the priority unchanged. Otherwise, update priority | 
 | 	 * to the normal priority: | 
 | 	 */ | 
 | 	if (!rt_prio(p->prio)) | 
 | 		return p->normal_prio; | 
 | 	return p->prio; | 
 | } | 
 |  | 
 | /** | 
 |  * task_curr - is this task currently executing on a CPU? | 
 |  * @p: the task in question. | 
 |  * | 
 |  * Return: 1 if the task is currently executing. 0 otherwise. | 
 |  */ | 
 | inline int task_curr(const struct task_struct *p) | 
 | { | 
 | 	return cpu_curr(task_cpu(p)) == p; | 
 | } | 
 |  | 
 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, | 
 | 				       const struct sched_class *prev_class, | 
 | 				       int oldprio) | 
 | { | 
 | 	if (prev_class != p->sched_class) { | 
 | 		if (prev_class->switched_from) | 
 | 			prev_class->switched_from(rq, p); | 
 | 		p->sched_class->switched_to(rq, p); | 
 | 	} else if (oldprio != p->prio || dl_task(p)) | 
 | 		p->sched_class->prio_changed(rq, p, oldprio); | 
 | } | 
 |  | 
 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	const struct sched_class *class; | 
 |  | 
 | 	if (p->sched_class == rq->curr->sched_class) { | 
 | 		rq->curr->sched_class->check_preempt_curr(rq, p, flags); | 
 | 	} else { | 
 | 		for_each_class(class) { | 
 | 			if (class == rq->curr->sched_class) | 
 | 				break; | 
 | 			if (class == p->sched_class) { | 
 | 				resched_curr(rq); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A queue event has occurred, and we're going to schedule.  In | 
 | 	 * this case, we can save a useless back to back clock update. | 
 | 	 */ | 
 | 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) | 
 | 		rq->skip_clock_update = 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	/* | 
 | 	 * We should never call set_task_cpu() on a blocked task, | 
 | 	 * ttwu() will sort out the placement. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && | 
 | 			!(task_preempt_count(p) & PREEMPT_ACTIVE)); | 
 |  | 
 | #ifdef CONFIG_LOCKDEP | 
 | 	/* | 
 | 	 * The caller should hold either p->pi_lock or rq->lock, when changing | 
 | 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. | 
 | 	 * | 
 | 	 * sched_move_task() holds both and thus holding either pins the cgroup, | 
 | 	 * see task_group(). | 
 | 	 * | 
 | 	 * Furthermore, all task_rq users should acquire both locks, see | 
 | 	 * task_rq_lock(). | 
 | 	 */ | 
 | 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || | 
 | 				      lockdep_is_held(&task_rq(p)->lock))); | 
 | #endif | 
 | #endif | 
 |  | 
 | 	trace_sched_migrate_task(p, new_cpu); | 
 |  | 
 | 	if (task_cpu(p) != new_cpu) { | 
 | 		if (p->sched_class->migrate_task_rq) | 
 | 			p->sched_class->migrate_task_rq(p, new_cpu); | 
 | 		p->se.nr_migrations++; | 
 | 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); | 
 | 	} | 
 |  | 
 | 	__set_task_cpu(p, new_cpu); | 
 | } | 
 |  | 
 | static void __migrate_swap_task(struct task_struct *p, int cpu) | 
 | { | 
 | 	if (task_on_rq_queued(p)) { | 
 | 		struct rq *src_rq, *dst_rq; | 
 |  | 
 | 		src_rq = task_rq(p); | 
 | 		dst_rq = cpu_rq(cpu); | 
 |  | 
 | 		deactivate_task(src_rq, p, 0); | 
 | 		set_task_cpu(p, cpu); | 
 | 		activate_task(dst_rq, p, 0); | 
 | 		check_preempt_curr(dst_rq, p, 0); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Task isn't running anymore; make it appear like we migrated | 
 | 		 * it before it went to sleep. This means on wakeup we make the | 
 | 		 * previous cpu our targer instead of where it really is. | 
 | 		 */ | 
 | 		p->wake_cpu = cpu; | 
 | 	} | 
 | } | 
 |  | 
 | struct migration_swap_arg { | 
 | 	struct task_struct *src_task, *dst_task; | 
 | 	int src_cpu, dst_cpu; | 
 | }; | 
 |  | 
 | static int migrate_swap_stop(void *data) | 
 | { | 
 | 	struct migration_swap_arg *arg = data; | 
 | 	struct rq *src_rq, *dst_rq; | 
 | 	int ret = -EAGAIN; | 
 |  | 
 | 	src_rq = cpu_rq(arg->src_cpu); | 
 | 	dst_rq = cpu_rq(arg->dst_cpu); | 
 |  | 
 | 	double_raw_lock(&arg->src_task->pi_lock, | 
 | 			&arg->dst_task->pi_lock); | 
 | 	double_rq_lock(src_rq, dst_rq); | 
 | 	if (task_cpu(arg->dst_task) != arg->dst_cpu) | 
 | 		goto unlock; | 
 |  | 
 | 	if (task_cpu(arg->src_task) != arg->src_cpu) | 
 | 		goto unlock; | 
 |  | 
 | 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) | 
 | 		goto unlock; | 
 |  | 
 | 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) | 
 | 		goto unlock; | 
 |  | 
 | 	__migrate_swap_task(arg->src_task, arg->dst_cpu); | 
 | 	__migrate_swap_task(arg->dst_task, arg->src_cpu); | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | unlock: | 
 | 	double_rq_unlock(src_rq, dst_rq); | 
 | 	raw_spin_unlock(&arg->dst_task->pi_lock); | 
 | 	raw_spin_unlock(&arg->src_task->pi_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Cross migrate two tasks | 
 |  */ | 
 | int migrate_swap(struct task_struct *cur, struct task_struct *p) | 
 | { | 
 | 	struct migration_swap_arg arg; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	arg = (struct migration_swap_arg){ | 
 | 		.src_task = cur, | 
 | 		.src_cpu = task_cpu(cur), | 
 | 		.dst_task = p, | 
 | 		.dst_cpu = task_cpu(p), | 
 | 	}; | 
 |  | 
 | 	if (arg.src_cpu == arg.dst_cpu) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * These three tests are all lockless; this is OK since all of them | 
 | 	 * will be re-checked with proper locks held further down the line. | 
 | 	 */ | 
 | 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) | 
 | 		goto out; | 
 |  | 
 | 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) | 
 | 		goto out; | 
 |  | 
 | 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) | 
 | 		goto out; | 
 |  | 
 | 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); | 
 | 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct migration_arg { | 
 | 	struct task_struct *task; | 
 | 	int dest_cpu; | 
 | }; | 
 |  | 
 | static int migration_cpu_stop(void *data); | 
 |  | 
 | /* | 
 |  * wait_task_inactive - wait for a thread to unschedule. | 
 |  * | 
 |  * If @match_state is nonzero, it's the @p->state value just checked and | 
 |  * not expected to change.  If it changes, i.e. @p might have woken up, | 
 |  * then return zero.  When we succeed in waiting for @p to be off its CPU, | 
 |  * we return a positive number (its total switch count).  If a second call | 
 |  * a short while later returns the same number, the caller can be sure that | 
 |  * @p has remained unscheduled the whole time. | 
 |  * | 
 |  * The caller must ensure that the task *will* unschedule sometime soon, | 
 |  * else this function might spin for a *long* time. This function can't | 
 |  * be called with interrupts off, or it may introduce deadlock with | 
 |  * smp_call_function() if an IPI is sent by the same process we are | 
 |  * waiting to become inactive. | 
 |  */ | 
 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int running, queued; | 
 | 	unsigned long ncsw; | 
 | 	struct rq *rq; | 
 |  | 
 | 	for (;;) { | 
 | 		/* | 
 | 		 * We do the initial early heuristics without holding | 
 | 		 * any task-queue locks at all. We'll only try to get | 
 | 		 * the runqueue lock when things look like they will | 
 | 		 * work out! | 
 | 		 */ | 
 | 		rq = task_rq(p); | 
 |  | 
 | 		/* | 
 | 		 * If the task is actively running on another CPU | 
 | 		 * still, just relax and busy-wait without holding | 
 | 		 * any locks. | 
 | 		 * | 
 | 		 * NOTE! Since we don't hold any locks, it's not | 
 | 		 * even sure that "rq" stays as the right runqueue! | 
 | 		 * But we don't care, since "task_running()" will | 
 | 		 * return false if the runqueue has changed and p | 
 | 		 * is actually now running somewhere else! | 
 | 		 */ | 
 | 		while (task_running(rq, p)) { | 
 | 			if (match_state && unlikely(p->state != match_state)) | 
 | 				return 0; | 
 | 			cpu_relax(); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Ok, time to look more closely! We need the rq | 
 | 		 * lock now, to be *sure*. If we're wrong, we'll | 
 | 		 * just go back and repeat. | 
 | 		 */ | 
 | 		rq = task_rq_lock(p, &flags); | 
 | 		trace_sched_wait_task(p); | 
 | 		running = task_running(rq, p); | 
 | 		queued = task_on_rq_queued(p); | 
 | 		ncsw = 0; | 
 | 		if (!match_state || p->state == match_state) | 
 | 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ | 
 | 		task_rq_unlock(rq, p, &flags); | 
 |  | 
 | 		/* | 
 | 		 * If it changed from the expected state, bail out now. | 
 | 		 */ | 
 | 		if (unlikely(!ncsw)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Was it really running after all now that we | 
 | 		 * checked with the proper locks actually held? | 
 | 		 * | 
 | 		 * Oops. Go back and try again.. | 
 | 		 */ | 
 | 		if (unlikely(running)) { | 
 | 			cpu_relax(); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * It's not enough that it's not actively running, | 
 | 		 * it must be off the runqueue _entirely_, and not | 
 | 		 * preempted! | 
 | 		 * | 
 | 		 * So if it was still runnable (but just not actively | 
 | 		 * running right now), it's preempted, and we should | 
 | 		 * yield - it could be a while. | 
 | 		 */ | 
 | 		if (unlikely(queued)) { | 
 | 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); | 
 |  | 
 | 			set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 			schedule_hrtimeout(&to, HRTIMER_MODE_REL); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Ahh, all good. It wasn't running, and it wasn't | 
 | 		 * runnable, which means that it will never become | 
 | 		 * running in the future either. We're all done! | 
 | 		 */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ncsw; | 
 | } | 
 |  | 
 | /*** | 
 |  * kick_process - kick a running thread to enter/exit the kernel | 
 |  * @p: the to-be-kicked thread | 
 |  * | 
 |  * Cause a process which is running on another CPU to enter | 
 |  * kernel-mode, without any delay. (to get signals handled.) | 
 |  * | 
 |  * NOTE: this function doesn't have to take the runqueue lock, | 
 |  * because all it wants to ensure is that the remote task enters | 
 |  * the kernel. If the IPI races and the task has been migrated | 
 |  * to another CPU then no harm is done and the purpose has been | 
 |  * achieved as well. | 
 |  */ | 
 | void kick_process(struct task_struct *p) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu = task_cpu(p); | 
 | 	if ((cpu != smp_processor_id()) && task_curr(p)) | 
 | 		smp_send_reschedule(cpu); | 
 | 	preempt_enable(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kick_process); | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * ->cpus_allowed is protected by both rq->lock and p->pi_lock | 
 |  */ | 
 | static int select_fallback_rq(int cpu, struct task_struct *p) | 
 | { | 
 | 	int nid = cpu_to_node(cpu); | 
 | 	const struct cpumask *nodemask = NULL; | 
 | 	enum { cpuset, possible, fail } state = cpuset; | 
 | 	int dest_cpu; | 
 |  | 
 | 	/* | 
 | 	 * If the node that the cpu is on has been offlined, cpu_to_node() | 
 | 	 * will return -1. There is no cpu on the node, and we should | 
 | 	 * select the cpu on the other node. | 
 | 	 */ | 
 | 	if (nid != -1) { | 
 | 		nodemask = cpumask_of_node(nid); | 
 |  | 
 | 		/* Look for allowed, online CPU in same node. */ | 
 | 		for_each_cpu(dest_cpu, nodemask) { | 
 | 			if (!cpu_online(dest_cpu)) | 
 | 				continue; | 
 | 			if (!cpu_active(dest_cpu)) | 
 | 				continue; | 
 | 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) | 
 | 				return dest_cpu; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (;;) { | 
 | 		/* Any allowed, online CPU? */ | 
 | 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { | 
 | 			if (!cpu_online(dest_cpu)) | 
 | 				continue; | 
 | 			if (!cpu_active(dest_cpu)) | 
 | 				continue; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		switch (state) { | 
 | 		case cpuset: | 
 | 			/* No more Mr. Nice Guy. */ | 
 | 			cpuset_cpus_allowed_fallback(p); | 
 | 			state = possible; | 
 | 			break; | 
 |  | 
 | 		case possible: | 
 | 			do_set_cpus_allowed(p, cpu_possible_mask); | 
 | 			state = fail; | 
 | 			break; | 
 |  | 
 | 		case fail: | 
 | 			BUG(); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (state != cpuset) { | 
 | 		/* | 
 | 		 * Don't tell them about moving exiting tasks or | 
 | 		 * kernel threads (both mm NULL), since they never | 
 | 		 * leave kernel. | 
 | 		 */ | 
 | 		if (p->mm && printk_ratelimit()) { | 
 | 			printk_deferred("process %d (%s) no longer affine to cpu%d\n", | 
 | 					task_pid_nr(p), p->comm, cpu); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return dest_cpu; | 
 | } | 
 |  | 
 | /* | 
 |  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. | 
 |  */ | 
 | static inline | 
 | int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) | 
 | { | 
 | 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); | 
 |  | 
 | 	/* | 
 | 	 * In order not to call set_task_cpu() on a blocking task we need | 
 | 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed | 
 | 	 * cpu. | 
 | 	 * | 
 | 	 * Since this is common to all placement strategies, this lives here. | 
 | 	 * | 
 | 	 * [ this allows ->select_task() to simply return task_cpu(p) and | 
 | 	 *   not worry about this generic constraint ] | 
 | 	 */ | 
 | 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || | 
 | 		     !cpu_online(cpu))) | 
 | 		cpu = select_fallback_rq(task_cpu(p), p); | 
 |  | 
 | 	return cpu; | 
 | } | 
 |  | 
 | static void update_avg(u64 *avg, u64 sample) | 
 | { | 
 | 	s64 diff = sample - *avg; | 
 | 	*avg += diff >> 3; | 
 | } | 
 | #endif | 
 |  | 
 | static void | 
 | ttwu_stat(struct task_struct *p, int cpu, int wake_flags) | 
 | { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	struct rq *rq = this_rq(); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	int this_cpu = smp_processor_id(); | 
 |  | 
 | 	if (cpu == this_cpu) { | 
 | 		schedstat_inc(rq, ttwu_local); | 
 | 		schedstat_inc(p, se.statistics.nr_wakeups_local); | 
 | 	} else { | 
 | 		struct sched_domain *sd; | 
 |  | 
 | 		schedstat_inc(p, se.statistics.nr_wakeups_remote); | 
 | 		rcu_read_lock(); | 
 | 		for_each_domain(this_cpu, sd) { | 
 | 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | 
 | 				schedstat_inc(sd, ttwu_wake_remote); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	if (wake_flags & WF_MIGRATED) | 
 | 		schedstat_inc(p, se.statistics.nr_wakeups_migrate); | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | 	schedstat_inc(rq, ttwu_count); | 
 | 	schedstat_inc(p, se.statistics.nr_wakeups); | 
 |  | 
 | 	if (wake_flags & WF_SYNC) | 
 | 		schedstat_inc(p, se.statistics.nr_wakeups_sync); | 
 |  | 
 | #endif /* CONFIG_SCHEDSTATS */ | 
 | } | 
 |  | 
 | static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) | 
 | { | 
 | 	activate_task(rq, p, en_flags); | 
 | 	p->on_rq = TASK_ON_RQ_QUEUED; | 
 |  | 
 | 	/* if a worker is waking up, notify workqueue */ | 
 | 	if (p->flags & PF_WQ_WORKER) | 
 | 		wq_worker_waking_up(p, cpu_of(rq)); | 
 | } | 
 |  | 
 | /* | 
 |  * Mark the task runnable and perform wakeup-preemption. | 
 |  */ | 
 | static void | 
 | ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) | 
 | { | 
 | 	check_preempt_curr(rq, p, wake_flags); | 
 | 	trace_sched_wakeup(p, true); | 
 |  | 
 | 	p->state = TASK_RUNNING; | 
 | #ifdef CONFIG_SMP | 
 | 	if (p->sched_class->task_woken) | 
 | 		p->sched_class->task_woken(rq, p); | 
 |  | 
 | 	if (rq->idle_stamp) { | 
 | 		u64 delta = rq_clock(rq) - rq->idle_stamp; | 
 | 		u64 max = 2*rq->max_idle_balance_cost; | 
 |  | 
 | 		update_avg(&rq->avg_idle, delta); | 
 |  | 
 | 		if (rq->avg_idle > max) | 
 | 			rq->avg_idle = max; | 
 |  | 
 | 		rq->idle_stamp = 0; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	if (p->sched_contributes_to_load) | 
 | 		rq->nr_uninterruptible--; | 
 | #endif | 
 |  | 
 | 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); | 
 | 	ttwu_do_wakeup(rq, p, wake_flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Called in case the task @p isn't fully descheduled from its runqueue, | 
 |  * in this case we must do a remote wakeup. Its a 'light' wakeup though, | 
 |  * since all we need to do is flip p->state to TASK_RUNNING, since | 
 |  * the task is still ->on_rq. | 
 |  */ | 
 | static int ttwu_remote(struct task_struct *p, int wake_flags) | 
 | { | 
 | 	struct rq *rq; | 
 | 	int ret = 0; | 
 |  | 
 | 	rq = __task_rq_lock(p); | 
 | 	if (task_on_rq_queued(p)) { | 
 | 		/* check_preempt_curr() may use rq clock */ | 
 | 		update_rq_clock(rq); | 
 | 		ttwu_do_wakeup(rq, p, wake_flags); | 
 | 		ret = 1; | 
 | 	} | 
 | 	__task_rq_unlock(rq); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | void sched_ttwu_pending(void) | 
 | { | 
 | 	struct rq *rq = this_rq(); | 
 | 	struct llist_node *llist = llist_del_all(&rq->wake_list); | 
 | 	struct task_struct *p; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!llist) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	while (llist) { | 
 | 		p = llist_entry(llist, struct task_struct, wake_entry); | 
 | 		llist = llist_next(llist); | 
 | 		ttwu_do_activate(rq, p, 0); | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | void scheduler_ipi(void) | 
 | { | 
 | 	/* | 
 | 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting | 
 | 	 * TIF_NEED_RESCHED remotely (for the first time) will also send | 
 | 	 * this IPI. | 
 | 	 */ | 
 | 	preempt_fold_need_resched(); | 
 |  | 
 | 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since | 
 | 	 * traditionally all their work was done from the interrupt return | 
 | 	 * path. Now that we actually do some work, we need to make sure | 
 | 	 * we do call them. | 
 | 	 * | 
 | 	 * Some archs already do call them, luckily irq_enter/exit nest | 
 | 	 * properly. | 
 | 	 * | 
 | 	 * Arguably we should visit all archs and update all handlers, | 
 | 	 * however a fair share of IPIs are still resched only so this would | 
 | 	 * somewhat pessimize the simple resched case. | 
 | 	 */ | 
 | 	irq_enter(); | 
 | 	sched_ttwu_pending(); | 
 |  | 
 | 	/* | 
 | 	 * Check if someone kicked us for doing the nohz idle load balance. | 
 | 	 */ | 
 | 	if (unlikely(got_nohz_idle_kick())) { | 
 | 		this_rq()->idle_balance = 1; | 
 | 		raise_softirq_irqoff(SCHED_SOFTIRQ); | 
 | 	} | 
 | 	irq_exit(); | 
 | } | 
 |  | 
 | static void ttwu_queue_remote(struct task_struct *p, int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { | 
 | 		if (!set_nr_if_polling(rq->idle)) | 
 | 			smp_send_reschedule(cpu); | 
 | 		else | 
 | 			trace_sched_wake_idle_without_ipi(cpu); | 
 | 	} | 
 | } | 
 |  | 
 | void wake_up_if_idle(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!is_idle_task(rq->curr)) | 
 | 		return; | 
 |  | 
 | 	if (set_nr_if_polling(rq->idle)) { | 
 | 		trace_sched_wake_idle_without_ipi(cpu); | 
 | 	} else { | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 		if (is_idle_task(rq->curr)) | 
 | 			smp_send_reschedule(cpu); | 
 | 		/* Else cpu is not in idle, do nothing here */ | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | 	} | 
 | } | 
 |  | 
 | bool cpus_share_cache(int this_cpu, int that_cpu) | 
 | { | 
 | 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static void ttwu_queue(struct task_struct *p, int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | #if defined(CONFIG_SMP) | 
 | 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { | 
 | 		sched_clock_cpu(cpu); /* sync clocks x-cpu */ | 
 | 		ttwu_queue_remote(p, cpu); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	ttwu_do_activate(rq, p, 0); | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | /** | 
 |  * try_to_wake_up - wake up a thread | 
 |  * @p: the thread to be awakened | 
 |  * @state: the mask of task states that can be woken | 
 |  * @wake_flags: wake modifier flags (WF_*) | 
 |  * | 
 |  * Put it on the run-queue if it's not already there. The "current" | 
 |  * thread is always on the run-queue (except when the actual | 
 |  * re-schedule is in progress), and as such you're allowed to do | 
 |  * the simpler "current->state = TASK_RUNNING" to mark yourself | 
 |  * runnable without the overhead of this. | 
 |  * | 
 |  * Return: %true if @p was woken up, %false if it was already running. | 
 |  * or @state didn't match @p's state. | 
 |  */ | 
 | static int | 
 | try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int cpu, success = 0; | 
 |  | 
 | 	/* | 
 | 	 * If we are going to wake up a thread waiting for CONDITION we | 
 | 	 * need to ensure that CONDITION=1 done by the caller can not be | 
 | 	 * reordered with p->state check below. This pairs with mb() in | 
 | 	 * set_current_state() the waiting thread does. | 
 | 	 */ | 
 | 	smp_mb__before_spinlock(); | 
 | 	raw_spin_lock_irqsave(&p->pi_lock, flags); | 
 | 	if (!(p->state & state)) | 
 | 		goto out; | 
 |  | 
 | 	success = 1; /* we're going to change ->state */ | 
 | 	cpu = task_cpu(p); | 
 |  | 
 | 	if (p->on_rq && ttwu_remote(p, wake_flags)) | 
 | 		goto stat; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * If the owning (remote) cpu is still in the middle of schedule() with | 
 | 	 * this task as prev, wait until its done referencing the task. | 
 | 	 */ | 
 | 	while (p->on_cpu) | 
 | 		cpu_relax(); | 
 | 	/* | 
 | 	 * Pairs with the smp_wmb() in finish_lock_switch(). | 
 | 	 */ | 
 | 	smp_rmb(); | 
 |  | 
 | 	p->sched_contributes_to_load = !!task_contributes_to_load(p); | 
 | 	p->state = TASK_WAKING; | 
 |  | 
 | 	if (p->sched_class->task_waking) | 
 | 		p->sched_class->task_waking(p); | 
 |  | 
 | 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); | 
 | 	if (task_cpu(p) != cpu) { | 
 | 		wake_flags |= WF_MIGRATED; | 
 | 		set_task_cpu(p, cpu); | 
 | 	} | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | 	ttwu_queue(p, cpu); | 
 | stat: | 
 | 	ttwu_stat(p, cpu, wake_flags); | 
 | out: | 
 | 	raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
 |  | 
 | 	return success; | 
 | } | 
 |  | 
 | /** | 
 |  * try_to_wake_up_local - try to wake up a local task with rq lock held | 
 |  * @p: the thread to be awakened | 
 |  * | 
 |  * Put @p on the run-queue if it's not already there. The caller must | 
 |  * ensure that this_rq() is locked, @p is bound to this_rq() and not | 
 |  * the current task. | 
 |  */ | 
 | static void try_to_wake_up_local(struct task_struct *p) | 
 | { | 
 | 	struct rq *rq = task_rq(p); | 
 |  | 
 | 	if (WARN_ON_ONCE(rq != this_rq()) || | 
 | 	    WARN_ON_ONCE(p == current)) | 
 | 		return; | 
 |  | 
 | 	lockdep_assert_held(&rq->lock); | 
 |  | 
 | 	if (!raw_spin_trylock(&p->pi_lock)) { | 
 | 		raw_spin_unlock(&rq->lock); | 
 | 		raw_spin_lock(&p->pi_lock); | 
 | 		raw_spin_lock(&rq->lock); | 
 | 	} | 
 |  | 
 | 	if (!(p->state & TASK_NORMAL)) | 
 | 		goto out; | 
 |  | 
 | 	if (!task_on_rq_queued(p)) | 
 | 		ttwu_activate(rq, p, ENQUEUE_WAKEUP); | 
 |  | 
 | 	ttwu_do_wakeup(rq, p, 0); | 
 | 	ttwu_stat(p, smp_processor_id(), 0); | 
 | out: | 
 | 	raw_spin_unlock(&p->pi_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * wake_up_process - Wake up a specific process | 
 |  * @p: The process to be woken up. | 
 |  * | 
 |  * Attempt to wake up the nominated process and move it to the set of runnable | 
 |  * processes. | 
 |  * | 
 |  * Return: 1 if the process was woken up, 0 if it was already running. | 
 |  * | 
 |  * It may be assumed that this function implies a write memory barrier before | 
 |  * changing the task state if and only if any tasks are woken up. | 
 |  */ | 
 | int wake_up_process(struct task_struct *p) | 
 | { | 
 | 	WARN_ON(task_is_stopped_or_traced(p)); | 
 | 	return try_to_wake_up(p, TASK_NORMAL, 0); | 
 | } | 
 | EXPORT_SYMBOL(wake_up_process); | 
 |  | 
 | int wake_up_state(struct task_struct *p, unsigned int state) | 
 | { | 
 | 	return try_to_wake_up(p, state, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * This function clears the sched_dl_entity static params. | 
 |  */ | 
 | void __dl_clear_params(struct task_struct *p) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = &p->dl; | 
 |  | 
 | 	dl_se->dl_runtime = 0; | 
 | 	dl_se->dl_deadline = 0; | 
 | 	dl_se->dl_period = 0; | 
 | 	dl_se->flags = 0; | 
 | 	dl_se->dl_bw = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Perform scheduler related setup for a newly forked process p. | 
 |  * p is forked by current. | 
 |  * | 
 |  * __sched_fork() is basic setup used by init_idle() too: | 
 |  */ | 
 | static void __sched_fork(unsigned long clone_flags, struct task_struct *p) | 
 | { | 
 | 	p->on_rq			= 0; | 
 |  | 
 | 	p->se.on_rq			= 0; | 
 | 	p->se.exec_start		= 0; | 
 | 	p->se.sum_exec_runtime		= 0; | 
 | 	p->se.prev_sum_exec_runtime	= 0; | 
 | 	p->se.nr_migrations		= 0; | 
 | 	p->se.vruntime			= 0; | 
 | 	INIT_LIST_HEAD(&p->se.group_node); | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	memset(&p->se.statistics, 0, sizeof(p->se.statistics)); | 
 | #endif | 
 |  | 
 | 	RB_CLEAR_NODE(&p->dl.rb_node); | 
 | 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	__dl_clear_params(p); | 
 |  | 
 | 	INIT_LIST_HEAD(&p->rt.run_list); | 
 |  | 
 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
 | 	INIT_HLIST_HEAD(&p->preempt_notifiers); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) { | 
 | 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | 
 | 		p->mm->numa_scan_seq = 0; | 
 | 	} | 
 |  | 
 | 	if (clone_flags & CLONE_VM) | 
 | 		p->numa_preferred_nid = current->numa_preferred_nid; | 
 | 	else | 
 | 		p->numa_preferred_nid = -1; | 
 |  | 
 | 	p->node_stamp = 0ULL; | 
 | 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; | 
 | 	p->numa_scan_period = sysctl_numa_balancing_scan_delay; | 
 | 	p->numa_work.next = &p->numa_work; | 
 | 	p->numa_faults_memory = NULL; | 
 | 	p->numa_faults_buffer_memory = NULL; | 
 | 	p->last_task_numa_placement = 0; | 
 | 	p->last_sum_exec_runtime = 0; | 
 |  | 
 | 	INIT_LIST_HEAD(&p->numa_entry); | 
 | 	p->numa_group = NULL; | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | void set_numabalancing_state(bool enabled) | 
 | { | 
 | 	if (enabled) | 
 | 		sched_feat_set("NUMA"); | 
 | 	else | 
 | 		sched_feat_set("NO_NUMA"); | 
 | } | 
 | #else | 
 | __read_mostly bool numabalancing_enabled; | 
 |  | 
 | void set_numabalancing_state(bool enabled) | 
 | { | 
 | 	numabalancing_enabled = enabled; | 
 | } | 
 | #endif /* CONFIG_SCHED_DEBUG */ | 
 |  | 
 | #ifdef CONFIG_PROC_SYSCTL | 
 | int sysctl_numa_balancing(struct ctl_table *table, int write, | 
 | 			 void __user *buffer, size_t *lenp, loff_t *ppos) | 
 | { | 
 | 	struct ctl_table t; | 
 | 	int err; | 
 | 	int state = numabalancing_enabled; | 
 |  | 
 | 	if (write && !capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	t = *table; | 
 | 	t.data = &state; | 
 | 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | 
 | 	if (err < 0) | 
 | 		return err; | 
 | 	if (write) | 
 | 		set_numabalancing_state(state); | 
 | 	return err; | 
 | } | 
 | #endif | 
 | #endif | 
 |  | 
 | /* | 
 |  * fork()/clone()-time setup: | 
 |  */ | 
 | int sched_fork(unsigned long clone_flags, struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	__sched_fork(clone_flags, p); | 
 | 	/* | 
 | 	 * We mark the process as running here. This guarantees that | 
 | 	 * nobody will actually run it, and a signal or other external | 
 | 	 * event cannot wake it up and insert it on the runqueue either. | 
 | 	 */ | 
 | 	p->state = TASK_RUNNING; | 
 |  | 
 | 	/* | 
 | 	 * Make sure we do not leak PI boosting priority to the child. | 
 | 	 */ | 
 | 	p->prio = current->normal_prio; | 
 |  | 
 | 	/* | 
 | 	 * Revert to default priority/policy on fork if requested. | 
 | 	 */ | 
 | 	if (unlikely(p->sched_reset_on_fork)) { | 
 | 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) { | 
 | 			p->policy = SCHED_NORMAL; | 
 | 			p->static_prio = NICE_TO_PRIO(0); | 
 | 			p->rt_priority = 0; | 
 | 		} else if (PRIO_TO_NICE(p->static_prio) < 0) | 
 | 			p->static_prio = NICE_TO_PRIO(0); | 
 |  | 
 | 		p->prio = p->normal_prio = __normal_prio(p); | 
 | 		set_load_weight(p); | 
 |  | 
 | 		/* | 
 | 		 * We don't need the reset flag anymore after the fork. It has | 
 | 		 * fulfilled its duty: | 
 | 		 */ | 
 | 		p->sched_reset_on_fork = 0; | 
 | 	} | 
 |  | 
 | 	if (dl_prio(p->prio)) { | 
 | 		put_cpu(); | 
 | 		return -EAGAIN; | 
 | 	} else if (rt_prio(p->prio)) { | 
 | 		p->sched_class = &rt_sched_class; | 
 | 	} else { | 
 | 		p->sched_class = &fair_sched_class; | 
 | 	} | 
 |  | 
 | 	if (p->sched_class->task_fork) | 
 | 		p->sched_class->task_fork(p); | 
 |  | 
 | 	/* | 
 | 	 * The child is not yet in the pid-hash so no cgroup attach races, | 
 | 	 * and the cgroup is pinned to this child due to cgroup_fork() | 
 | 	 * is ran before sched_fork(). | 
 | 	 * | 
 | 	 * Silence PROVE_RCU. | 
 | 	 */ | 
 | 	raw_spin_lock_irqsave(&p->pi_lock, flags); | 
 | 	set_task_cpu(p, cpu); | 
 | 	raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
 |  | 
 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 
 | 	if (likely(sched_info_on())) | 
 | 		memset(&p->sched_info, 0, sizeof(p->sched_info)); | 
 | #endif | 
 | #if defined(CONFIG_SMP) | 
 | 	p->on_cpu = 0; | 
 | #endif | 
 | 	init_task_preempt_count(p); | 
 | #ifdef CONFIG_SMP | 
 | 	plist_node_init(&p->pushable_tasks, MAX_PRIO); | 
 | 	RB_CLEAR_NODE(&p->pushable_dl_tasks); | 
 | #endif | 
 |  | 
 | 	put_cpu(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | unsigned long to_ratio(u64 period, u64 runtime) | 
 | { | 
 | 	if (runtime == RUNTIME_INF) | 
 | 		return 1ULL << 20; | 
 |  | 
 | 	/* | 
 | 	 * Doing this here saves a lot of checks in all | 
 | 	 * the calling paths, and returning zero seems | 
 | 	 * safe for them anyway. | 
 | 	 */ | 
 | 	if (period == 0) | 
 | 		return 0; | 
 |  | 
 | 	return div64_u64(runtime << 20, period); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | inline struct dl_bw *dl_bw_of(int i) | 
 | { | 
 | 	rcu_lockdep_assert(rcu_read_lock_sched_held(), | 
 | 			   "sched RCU must be held"); | 
 | 	return &cpu_rq(i)->rd->dl_bw; | 
 | } | 
 |  | 
 | static inline int dl_bw_cpus(int i) | 
 | { | 
 | 	struct root_domain *rd = cpu_rq(i)->rd; | 
 | 	int cpus = 0; | 
 |  | 
 | 	rcu_lockdep_assert(rcu_read_lock_sched_held(), | 
 | 			   "sched RCU must be held"); | 
 | 	for_each_cpu_and(i, rd->span, cpu_active_mask) | 
 | 		cpus++; | 
 |  | 
 | 	return cpus; | 
 | } | 
 | #else | 
 | inline struct dl_bw *dl_bw_of(int i) | 
 | { | 
 | 	return &cpu_rq(i)->dl.dl_bw; | 
 | } | 
 |  | 
 | static inline int dl_bw_cpus(int i) | 
 | { | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | static inline | 
 | void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) | 
 | { | 
 | 	dl_b->total_bw -= tsk_bw; | 
 | } | 
 |  | 
 | static inline | 
 | void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) | 
 | { | 
 | 	dl_b->total_bw += tsk_bw; | 
 | } | 
 |  | 
 | static inline | 
 | bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) | 
 | { | 
 | 	return dl_b->bw != -1 && | 
 | 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; | 
 | } | 
 |  | 
 | /* | 
 |  * We must be sure that accepting a new task (or allowing changing the | 
 |  * parameters of an existing one) is consistent with the bandwidth | 
 |  * constraints. If yes, this function also accordingly updates the currently | 
 |  * allocated bandwidth to reflect the new situation. | 
 |  * | 
 |  * This function is called while holding p's rq->lock. | 
 |  */ | 
 | static int dl_overflow(struct task_struct *p, int policy, | 
 | 		       const struct sched_attr *attr) | 
 | { | 
 |  | 
 | 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); | 
 | 	u64 period = attr->sched_period ?: attr->sched_deadline; | 
 | 	u64 runtime = attr->sched_runtime; | 
 | 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; | 
 | 	int cpus, err = -1; | 
 |  | 
 | 	if (new_bw == p->dl.dl_bw) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Either if a task, enters, leave, or stays -deadline but changes | 
 | 	 * its parameters, we may need to update accordingly the total | 
 | 	 * allocated bandwidth of the container. | 
 | 	 */ | 
 | 	raw_spin_lock(&dl_b->lock); | 
 | 	cpus = dl_bw_cpus(task_cpu(p)); | 
 | 	if (dl_policy(policy) && !task_has_dl_policy(p) && | 
 | 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) { | 
 | 		__dl_add(dl_b, new_bw); | 
 | 		err = 0; | 
 | 	} else if (dl_policy(policy) && task_has_dl_policy(p) && | 
 | 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { | 
 | 		__dl_clear(dl_b, p->dl.dl_bw); | 
 | 		__dl_add(dl_b, new_bw); | 
 | 		err = 0; | 
 | 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) { | 
 | 		__dl_clear(dl_b, p->dl.dl_bw); | 
 | 		err = 0; | 
 | 	} | 
 | 	raw_spin_unlock(&dl_b->lock); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | extern void init_dl_bw(struct dl_bw *dl_b); | 
 |  | 
 | /* | 
 |  * wake_up_new_task - wake up a newly created task for the first time. | 
 |  * | 
 |  * This function will do some initial scheduler statistics housekeeping | 
 |  * that must be done for every newly created context, then puts the task | 
 |  * on the runqueue and wakes it. | 
 |  */ | 
 | void wake_up_new_task(struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	raw_spin_lock_irqsave(&p->pi_lock, flags); | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * Fork balancing, do it here and not earlier because: | 
 | 	 *  - cpus_allowed can change in the fork path | 
 | 	 *  - any previously selected cpu might disappear through hotplug | 
 | 	 */ | 
 | 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); | 
 | #endif | 
 |  | 
 | 	/* Initialize new task's runnable average */ | 
 | 	init_task_runnable_average(p); | 
 | 	rq = __task_rq_lock(p); | 
 | 	activate_task(rq, p, 0); | 
 | 	p->on_rq = TASK_ON_RQ_QUEUED; | 
 | 	trace_sched_wakeup_new(p, true); | 
 | 	check_preempt_curr(rq, p, WF_FORK); | 
 | #ifdef CONFIG_SMP | 
 | 	if (p->sched_class->task_woken) | 
 | 		p->sched_class->task_woken(rq, p); | 
 | #endif | 
 | 	task_rq_unlock(rq, p, &flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
 |  | 
 | /** | 
 |  * preempt_notifier_register - tell me when current is being preempted & rescheduled | 
 |  * @notifier: notifier struct to register | 
 |  */ | 
 | void preempt_notifier_register(struct preempt_notifier *notifier) | 
 | { | 
 | 	hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | 
 | } | 
 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | 
 |  | 
 | /** | 
 |  * preempt_notifier_unregister - no longer interested in preemption notifications | 
 |  * @notifier: notifier struct to unregister | 
 |  * | 
 |  * This is safe to call from within a preemption notifier. | 
 |  */ | 
 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | 
 | { | 
 | 	hlist_del(¬ifier->link); | 
 | } | 
 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | 
 |  | 
 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
 | { | 
 | 	struct preempt_notifier *notifier; | 
 |  | 
 | 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) | 
 | 		notifier->ops->sched_in(notifier, raw_smp_processor_id()); | 
 | } | 
 |  | 
 | static void | 
 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
 | 				 struct task_struct *next) | 
 | { | 
 | 	struct preempt_notifier *notifier; | 
 |  | 
 | 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) | 
 | 		notifier->ops->sched_out(notifier, next); | 
 | } | 
 |  | 
 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ | 
 |  | 
 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
 | { | 
 | } | 
 |  | 
 | static void | 
 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
 | 				 struct task_struct *next) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ | 
 |  | 
 | /** | 
 |  * prepare_task_switch - prepare to switch tasks | 
 |  * @rq: the runqueue preparing to switch | 
 |  * @prev: the current task that is being switched out | 
 |  * @next: the task we are going to switch to. | 
 |  * | 
 |  * This is called with the rq lock held and interrupts off. It must | 
 |  * be paired with a subsequent finish_task_switch after the context | 
 |  * switch. | 
 |  * | 
 |  * prepare_task_switch sets up locking and calls architecture specific | 
 |  * hooks. | 
 |  */ | 
 | static inline void | 
 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | 
 | 		    struct task_struct *next) | 
 | { | 
 | 	trace_sched_switch(prev, next); | 
 | 	sched_info_switch(rq, prev, next); | 
 | 	perf_event_task_sched_out(prev, next); | 
 | 	fire_sched_out_preempt_notifiers(prev, next); | 
 | 	prepare_lock_switch(rq, next); | 
 | 	prepare_arch_switch(next); | 
 | } | 
 |  | 
 | /** | 
 |  * finish_task_switch - clean up after a task-switch | 
 |  * @rq: runqueue associated with task-switch | 
 |  * @prev: the thread we just switched away from. | 
 |  * | 
 |  * finish_task_switch must be called after the context switch, paired | 
 |  * with a prepare_task_switch call before the context switch. | 
 |  * finish_task_switch will reconcile locking set up by prepare_task_switch, | 
 |  * and do any other architecture-specific cleanup actions. | 
 |  * | 
 |  * Note that we may have delayed dropping an mm in context_switch(). If | 
 |  * so, we finish that here outside of the runqueue lock. (Doing it | 
 |  * with the lock held can cause deadlocks; see schedule() for | 
 |  * details.) | 
 |  */ | 
 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	struct mm_struct *mm = rq->prev_mm; | 
 | 	long prev_state; | 
 |  | 
 | 	rq->prev_mm = NULL; | 
 |  | 
 | 	/* | 
 | 	 * A task struct has one reference for the use as "current". | 
 | 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls | 
 | 	 * schedule one last time. The schedule call will never return, and | 
 | 	 * the scheduled task must drop that reference. | 
 | 	 * The test for TASK_DEAD must occur while the runqueue locks are | 
 | 	 * still held, otherwise prev could be scheduled on another cpu, die | 
 | 	 * there before we look at prev->state, and then the reference would | 
 | 	 * be dropped twice. | 
 | 	 *		Manfred Spraul <manfred@colorfullife.com> | 
 | 	 */ | 
 | 	prev_state = prev->state; | 
 | 	vtime_task_switch(prev); | 
 | 	finish_arch_switch(prev); | 
 | 	perf_event_task_sched_in(prev, current); | 
 | 	finish_lock_switch(rq, prev); | 
 | 	finish_arch_post_lock_switch(); | 
 |  | 
 | 	fire_sched_in_preempt_notifiers(current); | 
 | 	if (mm) | 
 | 		mmdrop(mm); | 
 | 	if (unlikely(prev_state == TASK_DEAD)) { | 
 | 		if (prev->sched_class->task_dead) | 
 | 			prev->sched_class->task_dead(prev); | 
 |  | 
 | 		/* | 
 | 		 * Remove function-return probe instances associated with this | 
 | 		 * task and put them back on the free list. | 
 | 		 */ | 
 | 		kprobe_flush_task(prev); | 
 | 		put_task_struct(prev); | 
 | 	} | 
 |  | 
 | 	tick_nohz_task_switch(current); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* rq->lock is NOT held, but preemption is disabled */ | 
 | static inline void post_schedule(struct rq *rq) | 
 | { | 
 | 	if (rq->post_schedule) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 		if (rq->curr->sched_class->post_schedule) | 
 | 			rq->curr->sched_class->post_schedule(rq); | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 |  | 
 | 		rq->post_schedule = 0; | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void post_schedule(struct rq *rq) | 
 | { | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /** | 
 |  * schedule_tail - first thing a freshly forked thread must call. | 
 |  * @prev: the thread we just switched away from. | 
 |  */ | 
 | asmlinkage __visible void schedule_tail(struct task_struct *prev) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	struct rq *rq = this_rq(); | 
 |  | 
 | 	finish_task_switch(rq, prev); | 
 |  | 
 | 	/* | 
 | 	 * FIXME: do we need to worry about rq being invalidated by the | 
 | 	 * task_switch? | 
 | 	 */ | 
 | 	post_schedule(rq); | 
 |  | 
 | 	if (current->set_child_tid) | 
 | 		put_user(task_pid_vnr(current), current->set_child_tid); | 
 | } | 
 |  | 
 | /* | 
 |  * context_switch - switch to the new MM and the new | 
 |  * thread's register state. | 
 |  */ | 
 | static inline void | 
 | context_switch(struct rq *rq, struct task_struct *prev, | 
 | 	       struct task_struct *next) | 
 | { | 
 | 	struct mm_struct *mm, *oldmm; | 
 |  | 
 | 	prepare_task_switch(rq, prev, next); | 
 |  | 
 | 	mm = next->mm; | 
 | 	oldmm = prev->active_mm; | 
 | 	/* | 
 | 	 * For paravirt, this is coupled with an exit in switch_to to | 
 | 	 * combine the page table reload and the switch backend into | 
 | 	 * one hypercall. | 
 | 	 */ | 
 | 	arch_start_context_switch(prev); | 
 |  | 
 | 	if (!mm) { | 
 | 		next->active_mm = oldmm; | 
 | 		atomic_inc(&oldmm->mm_count); | 
 | 		enter_lazy_tlb(oldmm, next); | 
 | 	} else | 
 | 		switch_mm(oldmm, mm, next); | 
 |  | 
 | 	if (!prev->mm) { | 
 | 		prev->active_mm = NULL; | 
 | 		rq->prev_mm = oldmm; | 
 | 	} | 
 | 	/* | 
 | 	 * Since the runqueue lock will be released by the next | 
 | 	 * task (which is an invalid locking op but in the case | 
 | 	 * of the scheduler it's an obvious special-case), so we | 
 | 	 * do an early lockdep release here: | 
 | 	 */ | 
 | 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
 |  | 
 | 	context_tracking_task_switch(prev, next); | 
 | 	/* Here we just switch the register state and the stack. */ | 
 | 	switch_to(prev, next, prev); | 
 |  | 
 | 	barrier(); | 
 | 	/* | 
 | 	 * this_rq must be evaluated again because prev may have moved | 
 | 	 * CPUs since it called schedule(), thus the 'rq' on its stack | 
 | 	 * frame will be invalid. | 
 | 	 */ | 
 | 	finish_task_switch(this_rq(), prev); | 
 | } | 
 |  | 
 | /* | 
 |  * nr_running and nr_context_switches: | 
 |  * | 
 |  * externally visible scheduler statistics: current number of runnable | 
 |  * threads, total number of context switches performed since bootup. | 
 |  */ | 
 | unsigned long nr_running(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_online_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_running; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if only the current task is running on the cpu. | 
 |  */ | 
 | bool single_task_running(void) | 
 | { | 
 | 	if (cpu_rq(smp_processor_id())->nr_running == 1) | 
 | 		return true; | 
 | 	else | 
 | 		return false; | 
 | } | 
 | EXPORT_SYMBOL(single_task_running); | 
 |  | 
 | unsigned long long nr_context_switches(void) | 
 | { | 
 | 	int i; | 
 | 	unsigned long long sum = 0; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += cpu_rq(i)->nr_switches; | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long nr_iowait(void) | 
 | { | 
 | 	unsigned long i, sum = 0; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		sum += atomic_read(&cpu_rq(i)->nr_iowait); | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | unsigned long nr_iowait_cpu(int cpu) | 
 | { | 
 | 	struct rq *this = cpu_rq(cpu); | 
 | 	return atomic_read(&this->nr_iowait); | 
 | } | 
 |  | 
 | void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) | 
 | { | 
 | 	struct rq *this = this_rq(); | 
 | 	*nr_waiters = atomic_read(&this->nr_iowait); | 
 | 	*load = this->cpu_load[0]; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* | 
 |  * sched_exec - execve() is a valuable balancing opportunity, because at | 
 |  * this point the task has the smallest effective memory and cache footprint. | 
 |  */ | 
 | void sched_exec(void) | 
 | { | 
 | 	struct task_struct *p = current; | 
 | 	unsigned long flags; | 
 | 	int dest_cpu; | 
 |  | 
 | 	raw_spin_lock_irqsave(&p->pi_lock, flags); | 
 | 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); | 
 | 	if (dest_cpu == smp_processor_id()) | 
 | 		goto unlock; | 
 |  | 
 | 	if (likely(cpu_active(dest_cpu))) { | 
 | 		struct migration_arg arg = { p, dest_cpu }; | 
 |  | 
 | 		raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
 | 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); | 
 | 		return; | 
 | 	} | 
 | unlock: | 
 | 	raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
 | DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); | 
 |  | 
 | EXPORT_PER_CPU_SYMBOL(kstat); | 
 | EXPORT_PER_CPU_SYMBOL(kernel_cpustat); | 
 |  | 
 | /* | 
 |  * Return any ns on the sched_clock that have not yet been accounted in | 
 |  * @p in case that task is currently running. | 
 |  * | 
 |  * Called with task_rq_lock() held on @rq. | 
 |  */ | 
 | static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) | 
 | { | 
 | 	u64 ns = 0; | 
 |  | 
 | 	/* | 
 | 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would | 
 | 	 * project cycles that may never be accounted to this | 
 | 	 * thread, breaking clock_gettime(). | 
 | 	 */ | 
 | 	if (task_current(rq, p) && task_on_rq_queued(p)) { | 
 | 		update_rq_clock(rq); | 
 | 		ns = rq_clock_task(rq) - p->se.exec_start; | 
 | 		if ((s64)ns < 0) | 
 | 			ns = 0; | 
 | 	} | 
 |  | 
 | 	return ns; | 
 | } | 
 |  | 
 | unsigned long long task_delta_exec(struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	u64 ns = 0; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	ns = do_task_delta_exec(p, rq); | 
 | 	task_rq_unlock(rq, p, &flags); | 
 |  | 
 | 	return ns; | 
 | } | 
 |  | 
 | /* | 
 |  * Return accounted runtime for the task. | 
 |  * In case the task is currently running, return the runtime plus current's | 
 |  * pending runtime that have not been accounted yet. | 
 |  */ | 
 | unsigned long long task_sched_runtime(struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	u64 ns = 0; | 
 |  | 
 | #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) | 
 | 	/* | 
 | 	 * 64-bit doesn't need locks to atomically read a 64bit value. | 
 | 	 * So we have a optimization chance when the task's delta_exec is 0. | 
 | 	 * Reading ->on_cpu is racy, but this is ok. | 
 | 	 * | 
 | 	 * If we race with it leaving cpu, we'll take a lock. So we're correct. | 
 | 	 * If we race with it entering cpu, unaccounted time is 0. This is | 
 | 	 * indistinguishable from the read occurring a few cycles earlier. | 
 | 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has | 
 | 	 * been accounted, so we're correct here as well. | 
 | 	 */ | 
 | 	if (!p->on_cpu || !task_on_rq_queued(p)) | 
 | 		return p->se.sum_exec_runtime; | 
 | #endif | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); | 
 | 	task_rq_unlock(rq, p, &flags); | 
 |  | 
 | 	return ns; | 
 | } | 
 |  | 
 | /* | 
 |  * This function gets called by the timer code, with HZ frequency. | 
 |  * We call it with interrupts disabled. | 
 |  */ | 
 | void scheduler_tick(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	struct task_struct *curr = rq->curr; | 
 |  | 
 | 	sched_clock_tick(); | 
 |  | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	update_rq_clock(rq); | 
 | 	curr->sched_class->task_tick(rq, curr, 0); | 
 | 	update_cpu_load_active(rq); | 
 | 	raw_spin_unlock(&rq->lock); | 
 |  | 
 | 	perf_event_task_tick(); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	rq->idle_balance = idle_cpu(cpu); | 
 | 	trigger_load_balance(rq); | 
 | #endif | 
 | 	rq_last_tick_reset(rq); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | /** | 
 |  * scheduler_tick_max_deferment | 
 |  * | 
 |  * Keep at least one tick per second when a single | 
 |  * active task is running because the scheduler doesn't | 
 |  * yet completely support full dynticks environment. | 
 |  * | 
 |  * This makes sure that uptime, CFS vruntime, load | 
 |  * balancing, etc... continue to move forward, even | 
 |  * with a very low granularity. | 
 |  * | 
 |  * Return: Maximum deferment in nanoseconds. | 
 |  */ | 
 | u64 scheduler_tick_max_deferment(void) | 
 | { | 
 | 	struct rq *rq = this_rq(); | 
 | 	unsigned long next, now = ACCESS_ONCE(jiffies); | 
 |  | 
 | 	next = rq->last_sched_tick + HZ; | 
 |  | 
 | 	if (time_before_eq(next, now)) | 
 | 		return 0; | 
 |  | 
 | 	return jiffies_to_nsecs(next - now); | 
 | } | 
 | #endif | 
 |  | 
 | notrace unsigned long get_parent_ip(unsigned long addr) | 
 | { | 
 | 	if (in_lock_functions(addr)) { | 
 | 		addr = CALLER_ADDR2; | 
 | 		if (in_lock_functions(addr)) | 
 | 			addr = CALLER_ADDR3; | 
 | 	} | 
 | 	return addr; | 
 | } | 
 |  | 
 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ | 
 | 				defined(CONFIG_PREEMPT_TRACER)) | 
 |  | 
 | void preempt_count_add(int val) | 
 | { | 
 | #ifdef CONFIG_DEBUG_PREEMPT | 
 | 	/* | 
 | 	 * Underflow? | 
 | 	 */ | 
 | 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | 
 | 		return; | 
 | #endif | 
 | 	__preempt_count_add(val); | 
 | #ifdef CONFIG_DEBUG_PREEMPT | 
 | 	/* | 
 | 	 * Spinlock count overflowing soon? | 
 | 	 */ | 
 | 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= | 
 | 				PREEMPT_MASK - 10); | 
 | #endif | 
 | 	if (preempt_count() == val) { | 
 | 		unsigned long ip = get_parent_ip(CALLER_ADDR1); | 
 | #ifdef CONFIG_DEBUG_PREEMPT | 
 | 		current->preempt_disable_ip = ip; | 
 | #endif | 
 | 		trace_preempt_off(CALLER_ADDR0, ip); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(preempt_count_add); | 
 | NOKPROBE_SYMBOL(preempt_count_add); | 
 |  | 
 | void preempt_count_sub(int val) | 
 | { | 
 | #ifdef CONFIG_DEBUG_PREEMPT | 
 | 	/* | 
 | 	 * Underflow? | 
 | 	 */ | 
 | 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | 
 | 		return; | 
 | 	/* | 
 | 	 * Is the spinlock portion underflowing? | 
 | 	 */ | 
 | 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | 
 | 			!(preempt_count() & PREEMPT_MASK))) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	if (preempt_count() == val) | 
 | 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | 
 | 	__preempt_count_sub(val); | 
 | } | 
 | EXPORT_SYMBOL(preempt_count_sub); | 
 | NOKPROBE_SYMBOL(preempt_count_sub); | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Print scheduling while atomic bug: | 
 |  */ | 
 | static noinline void __schedule_bug(struct task_struct *prev) | 
 | { | 
 | 	if (oops_in_progress) | 
 | 		return; | 
 |  | 
 | 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | 
 | 		prev->comm, prev->pid, preempt_count()); | 
 |  | 
 | 	debug_show_held_locks(prev); | 
 | 	print_modules(); | 
 | 	if (irqs_disabled()) | 
 | 		print_irqtrace_events(prev); | 
 | #ifdef CONFIG_DEBUG_PREEMPT | 
 | 	if (in_atomic_preempt_off()) { | 
 | 		pr_err("Preemption disabled at:"); | 
 | 		print_ip_sym(current->preempt_disable_ip); | 
 | 		pr_cont("\n"); | 
 | 	} | 
 | #endif | 
 | 	dump_stack(); | 
 | 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK); | 
 | } | 
 |  | 
 | /* | 
 |  * Various schedule()-time debugging checks and statistics: | 
 |  */ | 
 | static inline void schedule_debug(struct task_struct *prev) | 
 | { | 
 | #ifdef CONFIG_SCHED_STACK_END_CHECK | 
 | 	BUG_ON(unlikely(task_stack_end_corrupted(prev))); | 
 | #endif | 
 | 	/* | 
 | 	 * Test if we are atomic. Since do_exit() needs to call into | 
 | 	 * schedule() atomically, we ignore that path. Otherwise whine | 
 | 	 * if we are scheduling when we should not. | 
 | 	 */ | 
 | 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) | 
 | 		__schedule_bug(prev); | 
 | 	rcu_sleep_check(); | 
 |  | 
 | 	profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 
 |  | 
 | 	schedstat_inc(this_rq(), sched_count); | 
 | } | 
 |  | 
 | /* | 
 |  * Pick up the highest-prio task: | 
 |  */ | 
 | static inline struct task_struct * | 
 | pick_next_task(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	const struct sched_class *class = &fair_sched_class; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	/* | 
 | 	 * Optimization: we know that if all tasks are in | 
 | 	 * the fair class we can call that function directly: | 
 | 	 */ | 
 | 	if (likely(prev->sched_class == class && | 
 | 		   rq->nr_running == rq->cfs.h_nr_running)) { | 
 | 		p = fair_sched_class.pick_next_task(rq, prev); | 
 | 		if (unlikely(p == RETRY_TASK)) | 
 | 			goto again; | 
 |  | 
 | 		/* assumes fair_sched_class->next == idle_sched_class */ | 
 | 		if (unlikely(!p)) | 
 | 			p = idle_sched_class.pick_next_task(rq, prev); | 
 |  | 
 | 		return p; | 
 | 	} | 
 |  | 
 | again: | 
 | 	for_each_class(class) { | 
 | 		p = class->pick_next_task(rq, prev); | 
 | 		if (p) { | 
 | 			if (unlikely(p == RETRY_TASK)) | 
 | 				goto again; | 
 | 			return p; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	BUG(); /* the idle class will always have a runnable task */ | 
 | } | 
 |  | 
 | /* | 
 |  * __schedule() is the main scheduler function. | 
 |  * | 
 |  * The main means of driving the scheduler and thus entering this function are: | 
 |  * | 
 |  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc. | 
 |  * | 
 |  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return | 
 |  *      paths. For example, see arch/x86/entry_64.S. | 
 |  * | 
 |  *      To drive preemption between tasks, the scheduler sets the flag in timer | 
 |  *      interrupt handler scheduler_tick(). | 
 |  * | 
 |  *   3. Wakeups don't really cause entry into schedule(). They add a | 
 |  *      task to the run-queue and that's it. | 
 |  * | 
 |  *      Now, if the new task added to the run-queue preempts the current | 
 |  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets | 
 |  *      called on the nearest possible occasion: | 
 |  * | 
 |  *       - If the kernel is preemptible (CONFIG_PREEMPT=y): | 
 |  * | 
 |  *         - in syscall or exception context, at the next outmost | 
 |  *           preempt_enable(). (this might be as soon as the wake_up()'s | 
 |  *           spin_unlock()!) | 
 |  * | 
 |  *         - in IRQ context, return from interrupt-handler to | 
 |  *           preemptible context | 
 |  * | 
 |  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set) | 
 |  *         then at the next: | 
 |  * | 
 |  *          - cond_resched() call | 
 |  *          - explicit schedule() call | 
 |  *          - return from syscall or exception to user-space | 
 |  *          - return from interrupt-handler to user-space | 
 |  */ | 
 | static void __sched __schedule(void) | 
 | { | 
 | 	struct task_struct *prev, *next; | 
 | 	unsigned long *switch_count; | 
 | 	struct rq *rq; | 
 | 	int cpu; | 
 |  | 
 | need_resched: | 
 | 	preempt_disable(); | 
 | 	cpu = smp_processor_id(); | 
 | 	rq = cpu_rq(cpu); | 
 | 	rcu_note_context_switch(cpu); | 
 | 	prev = rq->curr; | 
 |  | 
 | 	schedule_debug(prev); | 
 |  | 
 | 	if (sched_feat(HRTICK)) | 
 | 		hrtick_clear(rq); | 
 |  | 
 | 	/* | 
 | 	 * Make sure that signal_pending_state()->signal_pending() below | 
 | 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) | 
 | 	 * done by the caller to avoid the race with signal_wake_up(). | 
 | 	 */ | 
 | 	smp_mb__before_spinlock(); | 
 | 	raw_spin_lock_irq(&rq->lock); | 
 |  | 
 | 	switch_count = &prev->nivcsw; | 
 | 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 
 | 		if (unlikely(signal_pending_state(prev->state, prev))) { | 
 | 			prev->state = TASK_RUNNING; | 
 | 		} else { | 
 | 			deactivate_task(rq, prev, DEQUEUE_SLEEP); | 
 | 			prev->on_rq = 0; | 
 |  | 
 | 			/* | 
 | 			 * If a worker went to sleep, notify and ask workqueue | 
 | 			 * whether it wants to wake up a task to maintain | 
 | 			 * concurrency. | 
 | 			 */ | 
 | 			if (prev->flags & PF_WQ_WORKER) { | 
 | 				struct task_struct *to_wakeup; | 
 |  | 
 | 				to_wakeup = wq_worker_sleeping(prev, cpu); | 
 | 				if (to_wakeup) | 
 | 					try_to_wake_up_local(to_wakeup); | 
 | 			} | 
 | 		} | 
 | 		switch_count = &prev->nvcsw; | 
 | 	} | 
 |  | 
 | 	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0) | 
 | 		update_rq_clock(rq); | 
 |  | 
 | 	next = pick_next_task(rq, prev); | 
 | 	clear_tsk_need_resched(prev); | 
 | 	clear_preempt_need_resched(); | 
 | 	rq->skip_clock_update = 0; | 
 |  | 
 | 	if (likely(prev != next)) { | 
 | 		rq->nr_switches++; | 
 | 		rq->curr = next; | 
 | 		++*switch_count; | 
 |  | 
 | 		context_switch(rq, prev, next); /* unlocks the rq */ | 
 | 		/* | 
 | 		 * The context switch have flipped the stack from under us | 
 | 		 * and restored the local variables which were saved when | 
 | 		 * this task called schedule() in the past. prev == current | 
 | 		 * is still correct, but it can be moved to another cpu/rq. | 
 | 		 */ | 
 | 		cpu = smp_processor_id(); | 
 | 		rq = cpu_rq(cpu); | 
 | 	} else | 
 | 		raw_spin_unlock_irq(&rq->lock); | 
 |  | 
 | 	post_schedule(rq); | 
 |  | 
 | 	sched_preempt_enable_no_resched(); | 
 | 	if (need_resched()) | 
 | 		goto need_resched; | 
 | } | 
 |  | 
 | static inline void sched_submit_work(struct task_struct *tsk) | 
 | { | 
 | 	if (!tsk->state || tsk_is_pi_blocked(tsk)) | 
 | 		return; | 
 | 	/* | 
 | 	 * If we are going to sleep and we have plugged IO queued, | 
 | 	 * make sure to submit it to avoid deadlocks. | 
 | 	 */ | 
 | 	if (blk_needs_flush_plug(tsk)) | 
 | 		blk_schedule_flush_plug(tsk); | 
 | } | 
 |  | 
 | asmlinkage __visible void __sched schedule(void) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	sched_submit_work(tsk); | 
 | 	__schedule(); | 
 | } | 
 | EXPORT_SYMBOL(schedule); | 
 |  | 
 | #ifdef CONFIG_CONTEXT_TRACKING | 
 | asmlinkage __visible void __sched schedule_user(void) | 
 | { | 
 | 	/* | 
 | 	 * If we come here after a random call to set_need_resched(), | 
 | 	 * or we have been woken up remotely but the IPI has not yet arrived, | 
 | 	 * we haven't yet exited the RCU idle mode. Do it here manually until | 
 | 	 * we find a better solution. | 
 | 	 */ | 
 | 	user_exit(); | 
 | 	schedule(); | 
 | 	user_enter(); | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * schedule_preempt_disabled - called with preemption disabled | 
 |  * | 
 |  * Returns with preemption disabled. Note: preempt_count must be 1 | 
 |  */ | 
 | void __sched schedule_preempt_disabled(void) | 
 | { | 
 | 	sched_preempt_enable_no_resched(); | 
 | 	schedule(); | 
 | 	preempt_disable(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | /* | 
 |  * this is the entry point to schedule() from in-kernel preemption | 
 |  * off of preempt_enable. Kernel preemptions off return from interrupt | 
 |  * occur there and call schedule directly. | 
 |  */ | 
 | asmlinkage __visible void __sched notrace preempt_schedule(void) | 
 | { | 
 | 	/* | 
 | 	 * If there is a non-zero preempt_count or interrupts are disabled, | 
 | 	 * we do not want to preempt the current task. Just return.. | 
 | 	 */ | 
 | 	if (likely(!preemptible())) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		__preempt_count_add(PREEMPT_ACTIVE); | 
 | 		__schedule(); | 
 | 		__preempt_count_sub(PREEMPT_ACTIVE); | 
 |  | 
 | 		/* | 
 | 		 * Check again in case we missed a preemption opportunity | 
 | 		 * between schedule and now. | 
 | 		 */ | 
 | 		barrier(); | 
 | 	} while (need_resched()); | 
 | } | 
 | NOKPROBE_SYMBOL(preempt_schedule); | 
 | EXPORT_SYMBOL(preempt_schedule); | 
 |  | 
 | #ifdef CONFIG_CONTEXT_TRACKING | 
 | /** | 
 |  * preempt_schedule_context - preempt_schedule called by tracing | 
 |  * | 
 |  * The tracing infrastructure uses preempt_enable_notrace to prevent | 
 |  * recursion and tracing preempt enabling caused by the tracing | 
 |  * infrastructure itself. But as tracing can happen in areas coming | 
 |  * from userspace or just about to enter userspace, a preempt enable | 
 |  * can occur before user_exit() is called. This will cause the scheduler | 
 |  * to be called when the system is still in usermode. | 
 |  * | 
 |  * To prevent this, the preempt_enable_notrace will use this function | 
 |  * instead of preempt_schedule() to exit user context if needed before | 
 |  * calling the scheduler. | 
 |  */ | 
 | asmlinkage __visible void __sched notrace preempt_schedule_context(void) | 
 | { | 
 | 	enum ctx_state prev_ctx; | 
 |  | 
 | 	if (likely(!preemptible())) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		__preempt_count_add(PREEMPT_ACTIVE); | 
 | 		/* | 
 | 		 * Needs preempt disabled in case user_exit() is traced | 
 | 		 * and the tracer calls preempt_enable_notrace() causing | 
 | 		 * an infinite recursion. | 
 | 		 */ | 
 | 		prev_ctx = exception_enter(); | 
 | 		__schedule(); | 
 | 		exception_exit(prev_ctx); | 
 |  | 
 | 		__preempt_count_sub(PREEMPT_ACTIVE); | 
 | 		barrier(); | 
 | 	} while (need_resched()); | 
 | } | 
 | EXPORT_SYMBOL_GPL(preempt_schedule_context); | 
 | #endif /* CONFIG_CONTEXT_TRACKING */ | 
 |  | 
 | #endif /* CONFIG_PREEMPT */ | 
 |  | 
 | /* | 
 |  * this is the entry point to schedule() from kernel preemption | 
 |  * off of irq context. | 
 |  * Note, that this is called and return with irqs disabled. This will | 
 |  * protect us against recursive calling from irq. | 
 |  */ | 
 | asmlinkage __visible void __sched preempt_schedule_irq(void) | 
 | { | 
 | 	enum ctx_state prev_state; | 
 |  | 
 | 	/* Catch callers which need to be fixed */ | 
 | 	BUG_ON(preempt_count() || !irqs_disabled()); | 
 |  | 
 | 	prev_state = exception_enter(); | 
 |  | 
 | 	do { | 
 | 		__preempt_count_add(PREEMPT_ACTIVE); | 
 | 		local_irq_enable(); | 
 | 		__schedule(); | 
 | 		local_irq_disable(); | 
 | 		__preempt_count_sub(PREEMPT_ACTIVE); | 
 |  | 
 | 		/* | 
 | 		 * Check again in case we missed a preemption opportunity | 
 | 		 * between schedule and now. | 
 | 		 */ | 
 | 		barrier(); | 
 | 	} while (need_resched()); | 
 |  | 
 | 	exception_exit(prev_state); | 
 | } | 
 |  | 
 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, | 
 | 			  void *key) | 
 | { | 
 | 	return try_to_wake_up(curr->private, mode, wake_flags); | 
 | } | 
 | EXPORT_SYMBOL(default_wake_function); | 
 |  | 
 | #ifdef CONFIG_RT_MUTEXES | 
 |  | 
 | /* | 
 |  * rt_mutex_setprio - set the current priority of a task | 
 |  * @p: task | 
 |  * @prio: prio value (kernel-internal form) | 
 |  * | 
 |  * This function changes the 'effective' priority of a task. It does | 
 |  * not touch ->normal_prio like __setscheduler(). | 
 |  * | 
 |  * Used by the rt_mutex code to implement priority inheritance | 
 |  * logic. Call site only calls if the priority of the task changed. | 
 |  */ | 
 | void rt_mutex_setprio(struct task_struct *p, int prio) | 
 | { | 
 | 	int oldprio, queued, running, enqueue_flag = 0; | 
 | 	struct rq *rq; | 
 | 	const struct sched_class *prev_class; | 
 |  | 
 | 	BUG_ON(prio > MAX_PRIO); | 
 |  | 
 | 	rq = __task_rq_lock(p); | 
 |  | 
 | 	/* | 
 | 	 * Idle task boosting is a nono in general. There is one | 
 | 	 * exception, when PREEMPT_RT and NOHZ is active: | 
 | 	 * | 
 | 	 * The idle task calls get_next_timer_interrupt() and holds | 
 | 	 * the timer wheel base->lock on the CPU and another CPU wants | 
 | 	 * to access the timer (probably to cancel it). We can safely | 
 | 	 * ignore the boosting request, as the idle CPU runs this code | 
 | 	 * with interrupts disabled and will complete the lock | 
 | 	 * protected section without being interrupted. So there is no | 
 | 	 * real need to boost. | 
 | 	 */ | 
 | 	if (unlikely(p == rq->idle)) { | 
 | 		WARN_ON(p != rq->curr); | 
 | 		WARN_ON(p->pi_blocked_on); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	trace_sched_pi_setprio(p, prio); | 
 | 	oldprio = p->prio; | 
 | 	prev_class = p->sched_class; | 
 | 	queued = task_on_rq_queued(p); | 
 | 	running = task_current(rq, p); | 
 | 	if (queued) | 
 | 		dequeue_task(rq, p, 0); | 
 | 	if (running) | 
 | 		put_prev_task(rq, p); | 
 |  | 
 | 	/* | 
 | 	 * Boosting condition are: | 
 | 	 * 1. -rt task is running and holds mutex A | 
 | 	 *      --> -dl task blocks on mutex A | 
 | 	 * | 
 | 	 * 2. -dl task is running and holds mutex A | 
 | 	 *      --> -dl task blocks on mutex A and could preempt the | 
 | 	 *          running task | 
 | 	 */ | 
 | 	if (dl_prio(prio)) { | 
 | 		struct task_struct *pi_task = rt_mutex_get_top_task(p); | 
 | 		if (!dl_prio(p->normal_prio) || | 
 | 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { | 
 | 			p->dl.dl_boosted = 1; | 
 | 			p->dl.dl_throttled = 0; | 
 | 			enqueue_flag = ENQUEUE_REPLENISH; | 
 | 		} else | 
 | 			p->dl.dl_boosted = 0; | 
 | 		p->sched_class = &dl_sched_class; | 
 | 	} else if (rt_prio(prio)) { | 
 | 		if (dl_prio(oldprio)) | 
 | 			p->dl.dl_boosted = 0; | 
 | 		if (oldprio < prio) | 
 | 			enqueue_flag = ENQUEUE_HEAD; | 
 | 		p->sched_class = &rt_sched_class; | 
 | 	} else { | 
 | 		if (dl_prio(oldprio)) | 
 | 			p->dl.dl_boosted = 0; | 
 | 		p->sched_class = &fair_sched_class; | 
 | 	} | 
 |  | 
 | 	p->prio = prio; | 
 |  | 
 | 	if (running) | 
 | 		p->sched_class->set_curr_task(rq); | 
 | 	if (queued) | 
 | 		enqueue_task(rq, p, enqueue_flag); | 
 |  | 
 | 	check_class_changed(rq, p, prev_class, oldprio); | 
 | out_unlock: | 
 | 	__task_rq_unlock(rq); | 
 | } | 
 | #endif | 
 |  | 
 | void set_user_nice(struct task_struct *p, long nice) | 
 | { | 
 | 	int old_prio, delta, queued; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) | 
 | 		return; | 
 | 	/* | 
 | 	 * We have to be careful, if called from sys_setpriority(), | 
 | 	 * the task might be in the middle of scheduling on another CPU. | 
 | 	 */ | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	/* | 
 | 	 * The RT priorities are set via sched_setscheduler(), but we still | 
 | 	 * allow the 'normal' nice value to be set - but as expected | 
 | 	 * it wont have any effect on scheduling until the task is | 
 | 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: | 
 | 	 */ | 
 | 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) { | 
 | 		p->static_prio = NICE_TO_PRIO(nice); | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	queued = task_on_rq_queued(p); | 
 | 	if (queued) | 
 | 		dequeue_task(rq, p, 0); | 
 |  | 
 | 	p->static_prio = NICE_TO_PRIO(nice); | 
 | 	set_load_weight(p); | 
 | 	old_prio = p->prio; | 
 | 	p->prio = effective_prio(p); | 
 | 	delta = p->prio - old_prio; | 
 |  | 
 | 	if (queued) { | 
 | 		enqueue_task(rq, p, 0); | 
 | 		/* | 
 | 		 * If the task increased its priority or is running and | 
 | 		 * lowered its priority, then reschedule its CPU: | 
 | 		 */ | 
 | 		if (delta < 0 || (delta > 0 && task_running(rq, p))) | 
 | 			resched_curr(rq); | 
 | 	} | 
 | out_unlock: | 
 | 	task_rq_unlock(rq, p, &flags); | 
 | } | 
 | EXPORT_SYMBOL(set_user_nice); | 
 |  | 
 | /* | 
 |  * can_nice - check if a task can reduce its nice value | 
 |  * @p: task | 
 |  * @nice: nice value | 
 |  */ | 
 | int can_nice(const struct task_struct *p, const int nice) | 
 | { | 
 | 	/* convert nice value [19,-20] to rlimit style value [1,40] */ | 
 | 	int nice_rlim = nice_to_rlimit(nice); | 
 |  | 
 | 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || | 
 | 		capable(CAP_SYS_NICE)); | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_NICE | 
 |  | 
 | /* | 
 |  * sys_nice - change the priority of the current process. | 
 |  * @increment: priority increment | 
 |  * | 
 |  * sys_setpriority is a more generic, but much slower function that | 
 |  * does similar things. | 
 |  */ | 
 | SYSCALL_DEFINE1(nice, int, increment) | 
 | { | 
 | 	long nice, retval; | 
 |  | 
 | 	/* | 
 | 	 * Setpriority might change our priority at the same moment. | 
 | 	 * We don't have to worry. Conceptually one call occurs first | 
 | 	 * and we have a single winner. | 
 | 	 */ | 
 | 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); | 
 | 	nice = task_nice(current) + increment; | 
 |  | 
 | 	nice = clamp_val(nice, MIN_NICE, MAX_NICE); | 
 | 	if (increment < 0 && !can_nice(current, nice)) | 
 | 		return -EPERM; | 
 |  | 
 | 	retval = security_task_setnice(current, nice); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	set_user_nice(current, nice); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /** | 
 |  * task_prio - return the priority value of a given task. | 
 |  * @p: the task in question. | 
 |  * | 
 |  * Return: The priority value as seen by users in /proc. | 
 |  * RT tasks are offset by -200. Normal tasks are centered | 
 |  * around 0, value goes from -16 to +15. | 
 |  */ | 
 | int task_prio(const struct task_struct *p) | 
 | { | 
 | 	return p->prio - MAX_RT_PRIO; | 
 | } | 
 |  | 
 | /** | 
 |  * idle_cpu - is a given cpu idle currently? | 
 |  * @cpu: the processor in question. | 
 |  * | 
 |  * Return: 1 if the CPU is currently idle. 0 otherwise. | 
 |  */ | 
 | int idle_cpu(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	if (rq->curr != rq->idle) | 
 | 		return 0; | 
 |  | 
 | 	if (rq->nr_running) | 
 | 		return 0; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (!llist_empty(&rq->wake_list)) | 
 | 		return 0; | 
 | #endif | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * idle_task - return the idle task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  * | 
 |  * Return: The idle task for the cpu @cpu. | 
 |  */ | 
 | struct task_struct *idle_task(int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->idle; | 
 | } | 
 |  | 
 | /** | 
 |  * find_process_by_pid - find a process with a matching PID value. | 
 |  * @pid: the pid in question. | 
 |  * | 
 |  * The task of @pid, if found. %NULL otherwise. | 
 |  */ | 
 | static struct task_struct *find_process_by_pid(pid_t pid) | 
 | { | 
 | 	return pid ? find_task_by_vpid(pid) : current; | 
 | } | 
 |  | 
 | /* | 
 |  * This function initializes the sched_dl_entity of a newly becoming | 
 |  * SCHED_DEADLINE task. | 
 |  * | 
 |  * Only the static values are considered here, the actual runtime and the | 
 |  * absolute deadline will be properly calculated when the task is enqueued | 
 |  * for the first time with its new policy. | 
 |  */ | 
 | static void | 
 | __setparam_dl(struct task_struct *p, const struct sched_attr *attr) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = &p->dl; | 
 |  | 
 | 	init_dl_task_timer(dl_se); | 
 | 	dl_se->dl_runtime = attr->sched_runtime; | 
 | 	dl_se->dl_deadline = attr->sched_deadline; | 
 | 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; | 
 | 	dl_se->flags = attr->sched_flags; | 
 | 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); | 
 | 	dl_se->dl_throttled = 0; | 
 | 	dl_se->dl_new = 1; | 
 | 	dl_se->dl_yielded = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * sched_setparam() passes in -1 for its policy, to let the functions | 
 |  * it calls know not to change it. | 
 |  */ | 
 | #define SETPARAM_POLICY	-1 | 
 |  | 
 | static void __setscheduler_params(struct task_struct *p, | 
 | 		const struct sched_attr *attr) | 
 | { | 
 | 	int policy = attr->sched_policy; | 
 |  | 
 | 	if (policy == SETPARAM_POLICY) | 
 | 		policy = p->policy; | 
 |  | 
 | 	p->policy = policy; | 
 |  | 
 | 	if (dl_policy(policy)) | 
 | 		__setparam_dl(p, attr); | 
 | 	else if (fair_policy(policy)) | 
 | 		p->static_prio = NICE_TO_PRIO(attr->sched_nice); | 
 |  | 
 | 	/* | 
 | 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when | 
 | 	 * !rt_policy. Always setting this ensures that things like | 
 | 	 * getparam()/getattr() don't report silly values for !rt tasks. | 
 | 	 */ | 
 | 	p->rt_priority = attr->sched_priority; | 
 | 	p->normal_prio = normal_prio(p); | 
 | 	set_load_weight(p); | 
 | } | 
 |  | 
 | /* Actually do priority change: must hold pi & rq lock. */ | 
 | static void __setscheduler(struct rq *rq, struct task_struct *p, | 
 | 			   const struct sched_attr *attr) | 
 | { | 
 | 	__setscheduler_params(p, attr); | 
 |  | 
 | 	/* | 
 | 	 * If we get here, there was no pi waiters boosting the | 
 | 	 * task. It is safe to use the normal prio. | 
 | 	 */ | 
 | 	p->prio = normal_prio(p); | 
 |  | 
 | 	if (dl_prio(p->prio)) | 
 | 		p->sched_class = &dl_sched_class; | 
 | 	else if (rt_prio(p->prio)) | 
 | 		p->sched_class = &rt_sched_class; | 
 | 	else | 
 | 		p->sched_class = &fair_sched_class; | 
 | } | 
 |  | 
 | static void | 
 | __getparam_dl(struct task_struct *p, struct sched_attr *attr) | 
 | { | 
 | 	struct sched_dl_entity *dl_se = &p->dl; | 
 |  | 
 | 	attr->sched_priority = p->rt_priority; | 
 | 	attr->sched_runtime = dl_se->dl_runtime; | 
 | 	attr->sched_deadline = dl_se->dl_deadline; | 
 | 	attr->sched_period = dl_se->dl_period; | 
 | 	attr->sched_flags = dl_se->flags; | 
 | } | 
 |  | 
 | /* | 
 |  * This function validates the new parameters of a -deadline task. | 
 |  * We ask for the deadline not being zero, and greater or equal | 
 |  * than the runtime, as well as the period of being zero or | 
 |  * greater than deadline. Furthermore, we have to be sure that | 
 |  * user parameters are above the internal resolution of 1us (we | 
 |  * check sched_runtime only since it is always the smaller one) and | 
 |  * below 2^63 ns (we have to check both sched_deadline and | 
 |  * sched_period, as the latter can be zero). | 
 |  */ | 
 | static bool | 
 | __checkparam_dl(const struct sched_attr *attr) | 
 | { | 
 | 	/* deadline != 0 */ | 
 | 	if (attr->sched_deadline == 0) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Since we truncate DL_SCALE bits, make sure we're at least | 
 | 	 * that big. | 
 | 	 */ | 
 | 	if (attr->sched_runtime < (1ULL << DL_SCALE)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Since we use the MSB for wrap-around and sign issues, make | 
 | 	 * sure it's not set (mind that period can be equal to zero). | 
 | 	 */ | 
 | 	if (attr->sched_deadline & (1ULL << 63) || | 
 | 	    attr->sched_period & (1ULL << 63)) | 
 | 		return false; | 
 |  | 
 | 	/* runtime <= deadline <= period (if period != 0) */ | 
 | 	if ((attr->sched_period != 0 && | 
 | 	     attr->sched_period < attr->sched_deadline) || | 
 | 	    attr->sched_deadline < attr->sched_runtime) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * check the target process has a UID that matches the current process's | 
 |  */ | 
 | static bool check_same_owner(struct task_struct *p) | 
 | { | 
 | 	const struct cred *cred = current_cred(), *pcred; | 
 | 	bool match; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	pcred = __task_cred(p); | 
 | 	match = (uid_eq(cred->euid, pcred->euid) || | 
 | 		 uid_eq(cred->euid, pcred->uid)); | 
 | 	rcu_read_unlock(); | 
 | 	return match; | 
 | } | 
 |  | 
 | static int __sched_setscheduler(struct task_struct *p, | 
 | 				const struct sched_attr *attr, | 
 | 				bool user) | 
 | { | 
 | 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : | 
 | 		      MAX_RT_PRIO - 1 - attr->sched_priority; | 
 | 	int retval, oldprio, oldpolicy = -1, queued, running; | 
 | 	int policy = attr->sched_policy; | 
 | 	unsigned long flags; | 
 | 	const struct sched_class *prev_class; | 
 | 	struct rq *rq; | 
 | 	int reset_on_fork; | 
 |  | 
 | 	/* may grab non-irq protected spin_locks */ | 
 | 	BUG_ON(in_interrupt()); | 
 | recheck: | 
 | 	/* double check policy once rq lock held */ | 
 | 	if (policy < 0) { | 
 | 		reset_on_fork = p->sched_reset_on_fork; | 
 | 		policy = oldpolicy = p->policy; | 
 | 	} else { | 
 | 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); | 
 |  | 
 | 		if (policy != SCHED_DEADLINE && | 
 | 				policy != SCHED_FIFO && policy != SCHED_RR && | 
 | 				policy != SCHED_NORMAL && policy != SCHED_BATCH && | 
 | 				policy != SCHED_IDLE) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Valid priorities for SCHED_FIFO and SCHED_RR are | 
 | 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | 
 | 	 * SCHED_BATCH and SCHED_IDLE is 0. | 
 | 	 */ | 
 | 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || | 
 | 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) | 
 | 		return -EINVAL; | 
 | 	if ((dl_policy(policy) && !__checkparam_dl(attr)) || | 
 | 	    (rt_policy(policy) != (attr->sched_priority != 0))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Allow unprivileged RT tasks to decrease priority: | 
 | 	 */ | 
 | 	if (user && !capable(CAP_SYS_NICE)) { | 
 | 		if (fair_policy(policy)) { | 
 | 			if (attr->sched_nice < task_nice(p) && | 
 | 			    !can_nice(p, attr->sched_nice)) | 
 | 				return -EPERM; | 
 | 		} | 
 |  | 
 | 		if (rt_policy(policy)) { | 
 | 			unsigned long rlim_rtprio = | 
 | 					task_rlimit(p, RLIMIT_RTPRIO); | 
 |  | 
 | 			/* can't set/change the rt policy */ | 
 | 			if (policy != p->policy && !rlim_rtprio) | 
 | 				return -EPERM; | 
 |  | 
 | 			/* can't increase priority */ | 
 | 			if (attr->sched_priority > p->rt_priority && | 
 | 			    attr->sched_priority > rlim_rtprio) | 
 | 				return -EPERM; | 
 | 		} | 
 |  | 
 | 		 /* | 
 | 		  * Can't set/change SCHED_DEADLINE policy at all for now | 
 | 		  * (safest behavior); in the future we would like to allow | 
 | 		  * unprivileged DL tasks to increase their relative deadline | 
 | 		  * or reduce their runtime (both ways reducing utilization) | 
 | 		  */ | 
 | 		if (dl_policy(policy)) | 
 | 			return -EPERM; | 
 |  | 
 | 		/* | 
 | 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to | 
 | 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. | 
 | 		 */ | 
 | 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { | 
 | 			if (!can_nice(p, task_nice(p))) | 
 | 				return -EPERM; | 
 | 		} | 
 |  | 
 | 		/* can't change other user's priorities */ | 
 | 		if (!check_same_owner(p)) | 
 | 			return -EPERM; | 
 |  | 
 | 		/* Normal users shall not reset the sched_reset_on_fork flag */ | 
 | 		if (p->sched_reset_on_fork && !reset_on_fork) | 
 | 			return -EPERM; | 
 | 	} | 
 |  | 
 | 	if (user) { | 
 | 		retval = security_task_setscheduler(p); | 
 | 		if (retval) | 
 | 			return retval; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * make sure no PI-waiters arrive (or leave) while we are | 
 | 	 * changing the priority of the task: | 
 | 	 * | 
 | 	 * To be able to change p->policy safely, the appropriate | 
 | 	 * runqueue lock must be held. | 
 | 	 */ | 
 | 	rq = task_rq_lock(p, &flags); | 
 |  | 
 | 	/* | 
 | 	 * Changing the policy of the stop threads its a very bad idea | 
 | 	 */ | 
 | 	if (p == rq->stop) { | 
 | 		task_rq_unlock(rq, p, &flags); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If not changing anything there's no need to proceed further, | 
 | 	 * but store a possible modification of reset_on_fork. | 
 | 	 */ | 
 | 	if (unlikely(policy == p->policy)) { | 
 | 		if (fair_policy(policy) && attr->sched_nice != task_nice(p)) | 
 | 			goto change; | 
 | 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority) | 
 | 			goto change; | 
 | 		if (dl_policy(policy)) | 
 | 			goto change; | 
 |  | 
 | 		p->sched_reset_on_fork = reset_on_fork; | 
 | 		task_rq_unlock(rq, p, &flags); | 
 | 		return 0; | 
 | 	} | 
 | change: | 
 |  | 
 | 	if (user) { | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 		/* | 
 | 		 * Do not allow realtime tasks into groups that have no runtime | 
 | 		 * assigned. | 
 | 		 */ | 
 | 		if (rt_bandwidth_enabled() && rt_policy(policy) && | 
 | 				task_group(p)->rt_bandwidth.rt_runtime == 0 && | 
 | 				!task_group_is_autogroup(task_group(p))) { | 
 | 			task_rq_unlock(rq, p, &flags); | 
 | 			return -EPERM; | 
 | 		} | 
 | #endif | 
 | #ifdef CONFIG_SMP | 
 | 		if (dl_bandwidth_enabled() && dl_policy(policy)) { | 
 | 			cpumask_t *span = rq->rd->span; | 
 |  | 
 | 			/* | 
 | 			 * Don't allow tasks with an affinity mask smaller than | 
 | 			 * the entire root_domain to become SCHED_DEADLINE. We | 
 | 			 * will also fail if there's no bandwidth available. | 
 | 			 */ | 
 | 			if (!cpumask_subset(span, &p->cpus_allowed) || | 
 | 			    rq->rd->dl_bw.bw == 0) { | 
 | 				task_rq_unlock(rq, p, &flags); | 
 | 				return -EPERM; | 
 | 			} | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* recheck policy now with rq lock held */ | 
 | 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
 | 		policy = oldpolicy = -1; | 
 | 		task_rq_unlock(rq, p, &flags); | 
 | 		goto recheck; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters | 
 | 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth | 
 | 	 * is available. | 
 | 	 */ | 
 | 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { | 
 | 		task_rq_unlock(rq, p, &flags); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	p->sched_reset_on_fork = reset_on_fork; | 
 | 	oldprio = p->prio; | 
 |  | 
 | 	/* | 
 | 	 * Special case for priority boosted tasks. | 
 | 	 * | 
 | 	 * If the new priority is lower or equal (user space view) | 
 | 	 * than the current (boosted) priority, we just store the new | 
 | 	 * normal parameters and do not touch the scheduler class and | 
 | 	 * the runqueue. This will be done when the task deboost | 
 | 	 * itself. | 
 | 	 */ | 
 | 	if (rt_mutex_check_prio(p, newprio)) { | 
 | 		__setscheduler_params(p, attr); | 
 | 		task_rq_unlock(rq, p, &flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	queued = task_on_rq_queued(p); | 
 | 	running = task_current(rq, p); | 
 | 	if (queued) | 
 | 		dequeue_task(rq, p, 0); | 
 | 	if (running) | 
 | 		put_prev_task(rq, p); | 
 |  | 
 | 	prev_class = p->sched_class; | 
 | 	__setscheduler(rq, p, attr); | 
 |  | 
 | 	if (running) | 
 | 		p->sched_class->set_curr_task(rq); | 
 | 	if (queued) { | 
 | 		/* | 
 | 		 * We enqueue to tail when the priority of a task is | 
 | 		 * increased (user space view). | 
 | 		 */ | 
 | 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); | 
 | 	} | 
 |  | 
 | 	check_class_changed(rq, p, prev_class, oldprio); | 
 | 	task_rq_unlock(rq, p, &flags); | 
 |  | 
 | 	rt_mutex_adjust_pi(p); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int _sched_setscheduler(struct task_struct *p, int policy, | 
 | 			       const struct sched_param *param, bool check) | 
 | { | 
 | 	struct sched_attr attr = { | 
 | 		.sched_policy   = policy, | 
 | 		.sched_priority = param->sched_priority, | 
 | 		.sched_nice	= PRIO_TO_NICE(p->static_prio), | 
 | 	}; | 
 |  | 
 | 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */ | 
 | 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { | 
 | 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; | 
 | 		policy &= ~SCHED_RESET_ON_FORK; | 
 | 		attr.sched_policy = policy; | 
 | 	} | 
 |  | 
 | 	return __sched_setscheduler(p, &attr, check); | 
 | } | 
 | /** | 
 |  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | 
 |  * @p: the task in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  * | 
 |  * NOTE that the task may be already dead. | 
 |  */ | 
 | int sched_setscheduler(struct task_struct *p, int policy, | 
 | 		       const struct sched_param *param) | 
 | { | 
 | 	return _sched_setscheduler(p, policy, param, true); | 
 | } | 
 | EXPORT_SYMBOL_GPL(sched_setscheduler); | 
 |  | 
 | int sched_setattr(struct task_struct *p, const struct sched_attr *attr) | 
 | { | 
 | 	return __sched_setscheduler(p, attr, true); | 
 | } | 
 | EXPORT_SYMBOL_GPL(sched_setattr); | 
 |  | 
 | /** | 
 |  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | 
 |  * @p: the task in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * Just like sched_setscheduler, only don't bother checking if the | 
 |  * current context has permission.  For example, this is needed in | 
 |  * stop_machine(): we create temporary high priority worker threads, | 
 |  * but our caller might not have that capability. | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  */ | 
 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | 
 | 			       const struct sched_param *param) | 
 | { | 
 | 	return _sched_setscheduler(p, policy, param, false); | 
 | } | 
 |  | 
 | static int | 
 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
 | { | 
 | 	struct sched_param lparam; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (!param || pid < 0) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	retval = -ESRCH; | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (p != NULL) | 
 | 		retval = sched_setscheduler(p, policy, &lparam); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Mimics kernel/events/core.c perf_copy_attr(). | 
 |  */ | 
 | static int sched_copy_attr(struct sched_attr __user *uattr, | 
 | 			   struct sched_attr *attr) | 
 | { | 
 | 	u32 size; | 
 | 	int ret; | 
 |  | 
 | 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * zero the full structure, so that a short copy will be nice. | 
 | 	 */ | 
 | 	memset(attr, 0, sizeof(*attr)); | 
 |  | 
 | 	ret = get_user(size, &uattr->size); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (size > PAGE_SIZE)	/* silly large */ | 
 | 		goto err_size; | 
 |  | 
 | 	if (!size)		/* abi compat */ | 
 | 		size = SCHED_ATTR_SIZE_VER0; | 
 |  | 
 | 	if (size < SCHED_ATTR_SIZE_VER0) | 
 | 		goto err_size; | 
 |  | 
 | 	/* | 
 | 	 * If we're handed a bigger struct than we know of, | 
 | 	 * ensure all the unknown bits are 0 - i.e. new | 
 | 	 * user-space does not rely on any kernel feature | 
 | 	 * extensions we dont know about yet. | 
 | 	 */ | 
 | 	if (size > sizeof(*attr)) { | 
 | 		unsigned char __user *addr; | 
 | 		unsigned char __user *end; | 
 | 		unsigned char val; | 
 |  | 
 | 		addr = (void __user *)uattr + sizeof(*attr); | 
 | 		end  = (void __user *)uattr + size; | 
 |  | 
 | 		for (; addr < end; addr++) { | 
 | 			ret = get_user(val, addr); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			if (val) | 
 | 				goto err_size; | 
 | 		} | 
 | 		size = sizeof(*attr); | 
 | 	} | 
 |  | 
 | 	ret = copy_from_user(attr, uattr, size); | 
 | 	if (ret) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * XXX: do we want to be lenient like existing syscalls; or do we want | 
 | 	 * to be strict and return an error on out-of-bounds values? | 
 | 	 */ | 
 | 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_size: | 
 | 	put_user(sizeof(*attr), &uattr->size); | 
 | 	return -E2BIG; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
 |  * @pid: the pid in question. | 
 |  * @policy: new policy. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, | 
 | 		struct sched_param __user *, param) | 
 | { | 
 | 	/* negative values for policy are not valid */ | 
 | 	if (policy < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return do_sched_setscheduler(pid, policy, param); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setparam - set/change the RT priority of a thread | 
 |  * @pid: the pid in question. | 
 |  * @param: structure containing the new RT priority. | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  */ | 
 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) | 
 | { | 
 | 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param); | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setattr - same as above, but with extended sched_attr | 
 |  * @pid: the pid in question. | 
 |  * @uattr: structure containing the extended parameters. | 
 |  * @flags: for future extension. | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, | 
 | 			       unsigned int, flags) | 
 | { | 
 | 	struct sched_attr attr; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (!uattr || pid < 0 || flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	retval = sched_copy_attr(uattr, &attr); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	if ((int)attr.sched_policy < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	retval = -ESRCH; | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (p != NULL) | 
 | 		retval = sched_setattr(p, &attr); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
 |  * @pid: the pid in question. | 
 |  * | 
 |  * Return: On success, the policy of the thread. Otherwise, a negative error | 
 |  * code. | 
 |  */ | 
 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (pid < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	rcu_read_lock(); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (p) { | 
 | 		retval = security_task_getscheduler(p); | 
 | 		if (!retval) | 
 | 			retval = p->policy | 
 | 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getparam - get the RT priority of a thread | 
 |  * @pid: the pid in question. | 
 |  * @param: structure containing the RT priority. | 
 |  * | 
 |  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error | 
 |  * code. | 
 |  */ | 
 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | 
 | { | 
 | 	struct sched_param lp = { .sched_priority = 0 }; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (!param || pid < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	p = find_process_by_pid(pid); | 
 | 	retval = -ESRCH; | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (task_has_rt_policy(p)) | 
 | 		lp.sched_priority = p->rt_priority; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * This one might sleep, we cannot do it with a spinlock held ... | 
 | 	 */ | 
 | 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
 |  | 
 | 	return retval; | 
 |  | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int sched_read_attr(struct sched_attr __user *uattr, | 
 | 			   struct sched_attr *attr, | 
 | 			   unsigned int usize) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!access_ok(VERIFY_WRITE, uattr, usize)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * If we're handed a smaller struct than we know of, | 
 | 	 * ensure all the unknown bits are 0 - i.e. old | 
 | 	 * user-space does not get uncomplete information. | 
 | 	 */ | 
 | 	if (usize < sizeof(*attr)) { | 
 | 		unsigned char *addr; | 
 | 		unsigned char *end; | 
 |  | 
 | 		addr = (void *)attr + usize; | 
 | 		end  = (void *)attr + sizeof(*attr); | 
 |  | 
 | 		for (; addr < end; addr++) { | 
 | 			if (*addr) | 
 | 				return -EFBIG; | 
 | 		} | 
 |  | 
 | 		attr->size = usize; | 
 | 	} | 
 |  | 
 | 	ret = copy_to_user(uattr, attr, attr->size); | 
 | 	if (ret) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getattr - similar to sched_getparam, but with sched_attr | 
 |  * @pid: the pid in question. | 
 |  * @uattr: structure containing the extended parameters. | 
 |  * @size: sizeof(attr) for fwd/bwd comp. | 
 |  * @flags: for future extension. | 
 |  */ | 
 | SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, | 
 | 		unsigned int, size, unsigned int, flags) | 
 | { | 
 | 	struct sched_attr attr = { | 
 | 		.size = sizeof(struct sched_attr), | 
 | 	}; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	if (!uattr || pid < 0 || size > PAGE_SIZE || | 
 | 	    size < SCHED_ATTR_SIZE_VER0 || flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	p = find_process_by_pid(pid); | 
 | 	retval = -ESRCH; | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	attr.sched_policy = p->policy; | 
 | 	if (p->sched_reset_on_fork) | 
 | 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; | 
 | 	if (task_has_dl_policy(p)) | 
 | 		__getparam_dl(p, &attr); | 
 | 	else if (task_has_rt_policy(p)) | 
 | 		attr.sched_priority = p->rt_priority; | 
 | 	else | 
 | 		attr.sched_nice = task_nice(p); | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	retval = sched_read_attr(uattr, &attr, size); | 
 | 	return retval; | 
 |  | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | 
 | { | 
 | 	cpumask_var_t cpus_allowed, new_mask; | 
 | 	struct task_struct *p; | 
 | 	int retval; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) { | 
 | 		rcu_read_unlock(); | 
 | 		return -ESRCH; | 
 | 	} | 
 |  | 
 | 	/* Prevent p going away */ | 
 | 	get_task_struct(p); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (p->flags & PF_NO_SETAFFINITY) { | 
 | 		retval = -EINVAL; | 
 | 		goto out_put_task; | 
 | 	} | 
 | 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { | 
 | 		retval = -ENOMEM; | 
 | 		goto out_put_task; | 
 | 	} | 
 | 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | 
 | 		retval = -ENOMEM; | 
 | 		goto out_free_cpus_allowed; | 
 | 	} | 
 | 	retval = -EPERM; | 
 | 	if (!check_same_owner(p)) { | 
 | 		rcu_read_lock(); | 
 | 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { | 
 | 			rcu_read_unlock(); | 
 | 			goto out_free_new_mask; | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	retval = security_task_setscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_free_new_mask; | 
 |  | 
 |  | 
 | 	cpuset_cpus_allowed(p, cpus_allowed); | 
 | 	cpumask_and(new_mask, in_mask, cpus_allowed); | 
 |  | 
 | 	/* | 
 | 	 * Since bandwidth control happens on root_domain basis, | 
 | 	 * if admission test is enabled, we only admit -deadline | 
 | 	 * tasks allowed to run on all the CPUs in the task's | 
 | 	 * root_domain. | 
 | 	 */ | 
 | #ifdef CONFIG_SMP | 
 | 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { | 
 | 		rcu_read_lock(); | 
 | 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { | 
 | 			retval = -EBUSY; | 
 | 			rcu_read_unlock(); | 
 | 			goto out_free_new_mask; | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | #endif | 
 | again: | 
 | 	retval = set_cpus_allowed_ptr(p, new_mask); | 
 |  | 
 | 	if (!retval) { | 
 | 		cpuset_cpus_allowed(p, cpus_allowed); | 
 | 		if (!cpumask_subset(new_mask, cpus_allowed)) { | 
 | 			/* | 
 | 			 * We must have raced with a concurrent cpuset | 
 | 			 * update. Just reset the cpus_allowed to the | 
 | 			 * cpuset's cpus_allowed | 
 | 			 */ | 
 | 			cpumask_copy(new_mask, cpus_allowed); | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 | out_free_new_mask: | 
 | 	free_cpumask_var(new_mask); | 
 | out_free_cpus_allowed: | 
 | 	free_cpumask_var(cpus_allowed); | 
 | out_put_task: | 
 | 	put_task_struct(p); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
 | 			     struct cpumask *new_mask) | 
 | { | 
 | 	if (len < cpumask_size()) | 
 | 		cpumask_clear(new_mask); | 
 | 	else if (len > cpumask_size()) | 
 | 		len = cpumask_size(); | 
 |  | 
 | 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_setaffinity - set the cpu affinity of a process | 
 |  * @pid: pid of the process | 
 |  * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
 |  * @user_mask_ptr: user-space pointer to the new cpu mask | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | 
 | 		unsigned long __user *, user_mask_ptr) | 
 | { | 
 | 	cpumask_var_t new_mask; | 
 | 	int retval; | 
 |  | 
 | 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); | 
 | 	if (retval == 0) | 
 | 		retval = sched_setaffinity(pid, new_mask); | 
 | 	free_cpumask_var(new_mask); | 
 | 	return retval; | 
 | } | 
 |  | 
 | long sched_getaffinity(pid_t pid, struct cpumask *mask) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	unsigned long flags; | 
 | 	int retval; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	raw_spin_lock_irqsave(&p->pi_lock, flags); | 
 | 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); | 
 | 	raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 
 |  | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_getaffinity - get the cpu affinity of a process | 
 |  * @pid: pid of the process | 
 |  * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
 |  * @user_mask_ptr: user-space pointer to hold the current cpu mask | 
 |  * | 
 |  * Return: 0 on success. An error code otherwise. | 
 |  */ | 
 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, | 
 | 		unsigned long __user *, user_mask_ptr) | 
 | { | 
 | 	int ret; | 
 | 	cpumask_var_t mask; | 
 |  | 
 | 	if ((len * BITS_PER_BYTE) < nr_cpu_ids) | 
 | 		return -EINVAL; | 
 | 	if (len & (sizeof(unsigned long)-1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = sched_getaffinity(pid, mask); | 
 | 	if (ret == 0) { | 
 | 		size_t retlen = min_t(size_t, len, cpumask_size()); | 
 |  | 
 | 		if (copy_to_user(user_mask_ptr, mask, retlen)) | 
 | 			ret = -EFAULT; | 
 | 		else | 
 | 			ret = retlen; | 
 | 	} | 
 | 	free_cpumask_var(mask); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_yield - yield the current processor to other threads. | 
 |  * | 
 |  * This function yields the current CPU to other tasks. If there are no | 
 |  * other threads running on this CPU then this function will return. | 
 |  * | 
 |  * Return: 0. | 
 |  */ | 
 | SYSCALL_DEFINE0(sched_yield) | 
 | { | 
 | 	struct rq *rq = this_rq_lock(); | 
 |  | 
 | 	schedstat_inc(rq, yld_count); | 
 | 	current->sched_class->yield_task(rq); | 
 |  | 
 | 	/* | 
 | 	 * Since we are going to call schedule() anyway, there's | 
 | 	 * no need to preempt or enable interrupts: | 
 | 	 */ | 
 | 	__release(rq->lock); | 
 | 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
 | 	do_raw_spin_unlock(&rq->lock); | 
 | 	sched_preempt_enable_no_resched(); | 
 |  | 
 | 	schedule(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __cond_resched(void) | 
 | { | 
 | 	__preempt_count_add(PREEMPT_ACTIVE); | 
 | 	__schedule(); | 
 | 	__preempt_count_sub(PREEMPT_ACTIVE); | 
 | } | 
 |  | 
 | int __sched _cond_resched(void) | 
 | { | 
 | 	if (should_resched()) { | 
 | 		__cond_resched(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(_cond_resched); | 
 |  | 
 | /* | 
 |  * __cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
 |  * call schedule, and on return reacquire the lock. | 
 |  * | 
 |  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | 
 |  * operations here to prevent schedule() from being called twice (once via | 
 |  * spin_unlock(), once by hand). | 
 |  */ | 
 | int __cond_resched_lock(spinlock_t *lock) | 
 | { | 
 | 	int resched = should_resched(); | 
 | 	int ret = 0; | 
 |  | 
 | 	lockdep_assert_held(lock); | 
 |  | 
 | 	if (spin_needbreak(lock) || resched) { | 
 | 		spin_unlock(lock); | 
 | 		if (resched) | 
 | 			__cond_resched(); | 
 | 		else | 
 | 			cpu_relax(); | 
 | 		ret = 1; | 
 | 		spin_lock(lock); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__cond_resched_lock); | 
 |  | 
 | int __sched __cond_resched_softirq(void) | 
 | { | 
 | 	BUG_ON(!in_softirq()); | 
 |  | 
 | 	if (should_resched()) { | 
 | 		local_bh_enable(); | 
 | 		__cond_resched(); | 
 | 		local_bh_disable(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(__cond_resched_softirq); | 
 |  | 
 | /** | 
 |  * yield - yield the current processor to other threads. | 
 |  * | 
 |  * Do not ever use this function, there's a 99% chance you're doing it wrong. | 
 |  * | 
 |  * The scheduler is at all times free to pick the calling task as the most | 
 |  * eligible task to run, if removing the yield() call from your code breaks | 
 |  * it, its already broken. | 
 |  * | 
 |  * Typical broken usage is: | 
 |  * | 
 |  * while (!event) | 
 |  * 	yield(); | 
 |  * | 
 |  * where one assumes that yield() will let 'the other' process run that will | 
 |  * make event true. If the current task is a SCHED_FIFO task that will never | 
 |  * happen. Never use yield() as a progress guarantee!! | 
 |  * | 
 |  * If you want to use yield() to wait for something, use wait_event(). | 
 |  * If you want to use yield() to be 'nice' for others, use cond_resched(). | 
 |  * If you still want to use yield(), do not! | 
 |  */ | 
 | void __sched yield(void) | 
 | { | 
 | 	set_current_state(TASK_RUNNING); | 
 | 	sys_sched_yield(); | 
 | } | 
 | EXPORT_SYMBOL(yield); | 
 |  | 
 | /** | 
 |  * yield_to - yield the current processor to another thread in | 
 |  * your thread group, or accelerate that thread toward the | 
 |  * processor it's on. | 
 |  * @p: target task | 
 |  * @preempt: whether task preemption is allowed or not | 
 |  * | 
 |  * It's the caller's job to ensure that the target task struct | 
 |  * can't go away on us before we can do any checks. | 
 |  * | 
 |  * Return: | 
 |  *	true (>0) if we indeed boosted the target task. | 
 |  *	false (0) if we failed to boost the target. | 
 |  *	-ESRCH if there's no task to yield to. | 
 |  */ | 
 | int __sched yield_to(struct task_struct *p, bool preempt) | 
 | { | 
 | 	struct task_struct *curr = current; | 
 | 	struct rq *rq, *p_rq; | 
 | 	unsigned long flags; | 
 | 	int yielded = 0; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	rq = this_rq(); | 
 |  | 
 | again: | 
 | 	p_rq = task_rq(p); | 
 | 	/* | 
 | 	 * If we're the only runnable task on the rq and target rq also | 
 | 	 * has only one task, there's absolutely no point in yielding. | 
 | 	 */ | 
 | 	if (rq->nr_running == 1 && p_rq->nr_running == 1) { | 
 | 		yielded = -ESRCH; | 
 | 		goto out_irq; | 
 | 	} | 
 |  | 
 | 	double_rq_lock(rq, p_rq); | 
 | 	if (task_rq(p) != p_rq) { | 
 | 		double_rq_unlock(rq, p_rq); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	if (!curr->sched_class->yield_to_task) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (curr->sched_class != p->sched_class) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (task_running(p_rq, p) || p->state) | 
 | 		goto out_unlock; | 
 |  | 
 | 	yielded = curr->sched_class->yield_to_task(rq, p, preempt); | 
 | 	if (yielded) { | 
 | 		schedstat_inc(rq, yld_count); | 
 | 		/* | 
 | 		 * Make p's CPU reschedule; pick_next_entity takes care of | 
 | 		 * fairness. | 
 | 		 */ | 
 | 		if (preempt && rq != p_rq) | 
 | 			resched_curr(p_rq); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	double_rq_unlock(rq, p_rq); | 
 | out_irq: | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	if (yielded > 0) | 
 | 		schedule(); | 
 |  | 
 | 	return yielded; | 
 | } | 
 | EXPORT_SYMBOL_GPL(yield_to); | 
 |  | 
 | /* | 
 |  * This task is about to go to sleep on IO. Increment rq->nr_iowait so | 
 |  * that process accounting knows that this is a task in IO wait state. | 
 |  */ | 
 | void __sched io_schedule(void) | 
 | { | 
 | 	struct rq *rq = raw_rq(); | 
 |  | 
 | 	delayacct_blkio_start(); | 
 | 	atomic_inc(&rq->nr_iowait); | 
 | 	blk_flush_plug(current); | 
 | 	current->in_iowait = 1; | 
 | 	schedule(); | 
 | 	current->in_iowait = 0; | 
 | 	atomic_dec(&rq->nr_iowait); | 
 | 	delayacct_blkio_end(); | 
 | } | 
 | EXPORT_SYMBOL(io_schedule); | 
 |  | 
 | long __sched io_schedule_timeout(long timeout) | 
 | { | 
 | 	struct rq *rq = raw_rq(); | 
 | 	long ret; | 
 |  | 
 | 	delayacct_blkio_start(); | 
 | 	atomic_inc(&rq->nr_iowait); | 
 | 	blk_flush_plug(current); | 
 | 	current->in_iowait = 1; | 
 | 	ret = schedule_timeout(timeout); | 
 | 	current->in_iowait = 0; | 
 | 	atomic_dec(&rq->nr_iowait); | 
 | 	delayacct_blkio_end(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_get_priority_max - return maximum RT priority. | 
 |  * @policy: scheduling class. | 
 |  * | 
 |  * Return: On success, this syscall returns the maximum | 
 |  * rt_priority that can be used by a given scheduling class. | 
 |  * On failure, a negative error code is returned. | 
 |  */ | 
 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	switch (policy) { | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		ret = MAX_USER_RT_PRIO-1; | 
 | 		break; | 
 | 	case SCHED_DEADLINE: | 
 | 	case SCHED_NORMAL: | 
 | 	case SCHED_BATCH: | 
 | 	case SCHED_IDLE: | 
 | 		ret = 0; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_get_priority_min - return minimum RT priority. | 
 |  * @policy: scheduling class. | 
 |  * | 
 |  * Return: On success, this syscall returns the minimum | 
 |  * rt_priority that can be used by a given scheduling class. | 
 |  * On failure, a negative error code is returned. | 
 |  */ | 
 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	switch (policy) { | 
 | 	case SCHED_FIFO: | 
 | 	case SCHED_RR: | 
 | 		ret = 1; | 
 | 		break; | 
 | 	case SCHED_DEADLINE: | 
 | 	case SCHED_NORMAL: | 
 | 	case SCHED_BATCH: | 
 | 	case SCHED_IDLE: | 
 | 		ret = 0; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_sched_rr_get_interval - return the default timeslice of a process. | 
 |  * @pid: pid of the process. | 
 |  * @interval: userspace pointer to the timeslice value. | 
 |  * | 
 |  * this syscall writes the default timeslice value of a given process | 
 |  * into the user-space timespec buffer. A value of '0' means infinity. | 
 |  * | 
 |  * Return: On success, 0 and the timeslice is in @interval. Otherwise, | 
 |  * an error code. | 
 |  */ | 
 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | 
 | 		struct timespec __user *, interval) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	unsigned int time_slice; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	int retval; | 
 | 	struct timespec t; | 
 |  | 
 | 	if (pid < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	rcu_read_lock(); | 
 | 	p = find_process_by_pid(pid); | 
 | 	if (!p) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = security_task_getscheduler(p); | 
 | 	if (retval) | 
 | 		goto out_unlock; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	time_slice = 0; | 
 | 	if (p->sched_class->get_rr_interval) | 
 | 		time_slice = p->sched_class->get_rr_interval(rq, p); | 
 | 	task_rq_unlock(rq, p, &flags); | 
 |  | 
 | 	rcu_read_unlock(); | 
 | 	jiffies_to_timespec(time_slice, &t); | 
 | 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 
 | 	return retval; | 
 |  | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; | 
 |  | 
 | void sched_show_task(struct task_struct *p) | 
 | { | 
 | 	unsigned long free = 0; | 
 | 	int ppid; | 
 | 	unsigned state; | 
 |  | 
 | 	state = p->state ? __ffs(p->state) + 1 : 0; | 
 | 	printk(KERN_INFO "%-15.15s %c", p->comm, | 
 | 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | 
 | #if BITS_PER_LONG == 32 | 
 | 	if (state == TASK_RUNNING) | 
 | 		printk(KERN_CONT " running  "); | 
 | 	else | 
 | 		printk(KERN_CONT " %08lx ", thread_saved_pc(p)); | 
 | #else | 
 | 	if (state == TASK_RUNNING) | 
 | 		printk(KERN_CONT "  running task    "); | 
 | 	else | 
 | 		printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | 
 | #endif | 
 | #ifdef CONFIG_DEBUG_STACK_USAGE | 
 | 	free = stack_not_used(p); | 
 | #endif | 
 | 	rcu_read_lock(); | 
 | 	ppid = task_pid_nr(rcu_dereference(p->real_parent)); | 
 | 	rcu_read_unlock(); | 
 | 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, | 
 | 		task_pid_nr(p), ppid, | 
 | 		(unsigned long)task_thread_info(p)->flags); | 
 |  | 
 | 	print_worker_info(KERN_INFO, p); | 
 | 	show_stack(p, NULL); | 
 | } | 
 |  | 
 | void show_state_filter(unsigned long state_filter) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 |  | 
 | #if BITS_PER_LONG == 32 | 
 | 	printk(KERN_INFO | 
 | 		"  task                PC stack   pid father\n"); | 
 | #else | 
 | 	printk(KERN_INFO | 
 | 		"  task                        PC stack   pid father\n"); | 
 | #endif | 
 | 	rcu_read_lock(); | 
 | 	for_each_process_thread(g, p) { | 
 | 		/* | 
 | 		 * reset the NMI-timeout, listing all files on a slow | 
 | 		 * console might take a lot of time: | 
 | 		 */ | 
 | 		touch_nmi_watchdog(); | 
 | 		if (!state_filter || (p->state & state_filter)) | 
 | 			sched_show_task(p); | 
 | 	} | 
 |  | 
 | 	touch_all_softlockup_watchdogs(); | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	sysrq_sched_debug_show(); | 
 | #endif | 
 | 	rcu_read_unlock(); | 
 | 	/* | 
 | 	 * Only show locks if all tasks are dumped: | 
 | 	 */ | 
 | 	if (!state_filter) | 
 | 		debug_show_all_locks(); | 
 | } | 
 |  | 
 | void init_idle_bootup_task(struct task_struct *idle) | 
 | { | 
 | 	idle->sched_class = &idle_sched_class; | 
 | } | 
 |  | 
 | /** | 
 |  * init_idle - set up an idle thread for a given CPU | 
 |  * @idle: task in question | 
 |  * @cpu: cpu the idle task belongs to | 
 |  * | 
 |  * NOTE: this function does not set the idle thread's NEED_RESCHED | 
 |  * flag, to make booting more robust. | 
 |  */ | 
 | void init_idle(struct task_struct *idle, int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	__sched_fork(0, idle); | 
 | 	idle->state = TASK_RUNNING; | 
 | 	idle->se.exec_start = sched_clock(); | 
 |  | 
 | 	do_set_cpus_allowed(idle, cpumask_of(cpu)); | 
 | 	/* | 
 | 	 * We're having a chicken and egg problem, even though we are | 
 | 	 * holding rq->lock, the cpu isn't yet set to this cpu so the | 
 | 	 * lockdep check in task_group() will fail. | 
 | 	 * | 
 | 	 * Similar case to sched_fork(). / Alternatively we could | 
 | 	 * use task_rq_lock() here and obtain the other rq->lock. | 
 | 	 * | 
 | 	 * Silence PROVE_RCU | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	__set_task_cpu(idle, cpu); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	rq->curr = rq->idle = idle; | 
 | 	idle->on_rq = TASK_ON_RQ_QUEUED; | 
 | #if defined(CONFIG_SMP) | 
 | 	idle->on_cpu = 1; | 
 | #endif | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 |  | 
 | 	/* Set the preempt count _outside_ the spinlocks! */ | 
 | 	init_idle_preempt_count(idle, cpu); | 
 |  | 
 | 	/* | 
 | 	 * The idle tasks have their own, simple scheduling class: | 
 | 	 */ | 
 | 	idle->sched_class = &idle_sched_class; | 
 | 	ftrace_graph_init_idle_task(idle, cpu); | 
 | 	vtime_init_idle(idle, cpu); | 
 | #if defined(CONFIG_SMP) | 
 | 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * move_queued_task - move a queued task to new rq. | 
 |  * | 
 |  * Returns (locked) new rq. Old rq's lock is released. | 
 |  */ | 
 | static struct rq *move_queued_task(struct task_struct *p, int new_cpu) | 
 | { | 
 | 	struct rq *rq = task_rq(p); | 
 |  | 
 | 	lockdep_assert_held(&rq->lock); | 
 |  | 
 | 	dequeue_task(rq, p, 0); | 
 | 	p->on_rq = TASK_ON_RQ_MIGRATING; | 
 | 	set_task_cpu(p, new_cpu); | 
 | 	raw_spin_unlock(&rq->lock); | 
 |  | 
 | 	rq = cpu_rq(new_cpu); | 
 |  | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	BUG_ON(task_cpu(p) != new_cpu); | 
 | 	p->on_rq = TASK_ON_RQ_QUEUED; | 
 | 	enqueue_task(rq, p, 0); | 
 | 	check_preempt_curr(rq, p, 0); | 
 |  | 
 | 	return rq; | 
 | } | 
 |  | 
 | void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) | 
 | { | 
 | 	if (p->sched_class && p->sched_class->set_cpus_allowed) | 
 | 		p->sched_class->set_cpus_allowed(p, new_mask); | 
 |  | 
 | 	cpumask_copy(&p->cpus_allowed, new_mask); | 
 | 	p->nr_cpus_allowed = cpumask_weight(new_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * This is how migration works: | 
 |  * | 
 |  * 1) we invoke migration_cpu_stop() on the target CPU using | 
 |  *    stop_one_cpu(). | 
 |  * 2) stopper starts to run (implicitly forcing the migrated thread | 
 |  *    off the CPU) | 
 |  * 3) it checks whether the migrated task is still in the wrong runqueue. | 
 |  * 4) if it's in the wrong runqueue then the migration thread removes | 
 |  *    it and puts it into the right queue. | 
 |  * 5) stopper completes and stop_one_cpu() returns and the migration | 
 |  *    is done. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Change a given task's CPU affinity. Migrate the thread to a | 
 |  * proper CPU and schedule it away if the CPU it's executing on | 
 |  * is removed from the allowed bitmask. | 
 |  * | 
 |  * NOTE: the caller must have a valid reference to the task, the | 
 |  * task must not exit() & deallocate itself prematurely. The | 
 |  * call is not atomic; no spinlocks may be held. | 
 |  */ | 
 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	unsigned int dest_cpu; | 
 | 	int ret = 0; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 |  | 
 | 	if (cpumask_equal(&p->cpus_allowed, new_mask)) | 
 | 		goto out; | 
 |  | 
 | 	if (!cpumask_intersects(new_mask, cpu_active_mask)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	do_set_cpus_allowed(p, new_mask); | 
 |  | 
 | 	/* Can the task run on the task's current CPU? If so, we're done */ | 
 | 	if (cpumask_test_cpu(task_cpu(p), new_mask)) | 
 | 		goto out; | 
 |  | 
 | 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); | 
 | 	if (task_running(rq, p) || p->state == TASK_WAKING) { | 
 | 		struct migration_arg arg = { p, dest_cpu }; | 
 | 		/* Need help from migration thread: drop lock and wait. */ | 
 | 		task_rq_unlock(rq, p, &flags); | 
 | 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); | 
 | 		tlb_migrate_finish(p->mm); | 
 | 		return 0; | 
 | 	} else if (task_on_rq_queued(p)) | 
 | 		rq = move_queued_task(p, dest_cpu); | 
 | out: | 
 | 	task_rq_unlock(rq, p, &flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | 
 |  | 
 | /* | 
 |  * Move (not current) task off this cpu, onto dest cpu. We're doing | 
 |  * this because either it can't run here any more (set_cpus_allowed() | 
 |  * away from this CPU, or CPU going down), or because we're | 
 |  * attempting to rebalance this task on exec (sched_exec). | 
 |  * | 
 |  * So we race with normal scheduler movements, but that's OK, as long | 
 |  * as the task is no longer on this CPU. | 
 |  * | 
 |  * Returns non-zero if task was successfully migrated. | 
 |  */ | 
 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 
 | { | 
 | 	struct rq *rq; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (unlikely(!cpu_active(dest_cpu))) | 
 | 		return ret; | 
 |  | 
 | 	rq = cpu_rq(src_cpu); | 
 |  | 
 | 	raw_spin_lock(&p->pi_lock); | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	/* Already moved. */ | 
 | 	if (task_cpu(p) != src_cpu) | 
 | 		goto done; | 
 |  | 
 | 	/* Affinity changed (again). */ | 
 | 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) | 
 | 		goto fail; | 
 |  | 
 | 	/* | 
 | 	 * If we're not on a rq, the next wake-up will ensure we're | 
 | 	 * placed properly. | 
 | 	 */ | 
 | 	if (task_on_rq_queued(p)) | 
 | 		rq = move_queued_task(p, dest_cpu); | 
 | done: | 
 | 	ret = 1; | 
 | fail: | 
 | 	raw_spin_unlock(&rq->lock); | 
 | 	raw_spin_unlock(&p->pi_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | /* Migrate current task p to target_cpu */ | 
 | int migrate_task_to(struct task_struct *p, int target_cpu) | 
 | { | 
 | 	struct migration_arg arg = { p, target_cpu }; | 
 | 	int curr_cpu = task_cpu(p); | 
 |  | 
 | 	if (curr_cpu == target_cpu) | 
 | 		return 0; | 
 |  | 
 | 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* TODO: This is not properly updating schedstats */ | 
 |  | 
 | 	trace_sched_move_numa(p, curr_cpu, target_cpu); | 
 | 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); | 
 | } | 
 |  | 
 | /* | 
 |  * Requeue a task on a given node and accurately track the number of NUMA | 
 |  * tasks on the runqueues | 
 |  */ | 
 | void sched_setnuma(struct task_struct *p, int nid) | 
 | { | 
 | 	struct rq *rq; | 
 | 	unsigned long flags; | 
 | 	bool queued, running; | 
 |  | 
 | 	rq = task_rq_lock(p, &flags); | 
 | 	queued = task_on_rq_queued(p); | 
 | 	running = task_current(rq, p); | 
 |  | 
 | 	if (queued) | 
 | 		dequeue_task(rq, p, 0); | 
 | 	if (running) | 
 | 		put_prev_task(rq, p); | 
 |  | 
 | 	p->numa_preferred_nid = nid; | 
 |  | 
 | 	if (running) | 
 | 		p->sched_class->set_curr_task(rq); | 
 | 	if (queued) | 
 | 		enqueue_task(rq, p, 0); | 
 | 	task_rq_unlock(rq, p, &flags); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * migration_cpu_stop - this will be executed by a highprio stopper thread | 
 |  * and performs thread migration by bumping thread off CPU then | 
 |  * 'pushing' onto another runqueue. | 
 |  */ | 
 | static int migration_cpu_stop(void *data) | 
 | { | 
 | 	struct migration_arg *arg = data; | 
 |  | 
 | 	/* | 
 | 	 * The original target cpu might have gone down and we might | 
 | 	 * be on another cpu but it doesn't matter. | 
 | 	 */ | 
 | 	local_irq_disable(); | 
 | 	/* | 
 | 	 * We need to explicitly wake pending tasks before running | 
 | 	 * __migrate_task() such that we will not miss enforcing cpus_allowed | 
 | 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. | 
 | 	 */ | 
 | 	sched_ttwu_pending(); | 
 | 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); | 
 | 	local_irq_enable(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 |  | 
 | /* | 
 |  * Ensures that the idle task is using init_mm right before its cpu goes | 
 |  * offline. | 
 |  */ | 
 | void idle_task_exit(void) | 
 | { | 
 | 	struct mm_struct *mm = current->active_mm; | 
 |  | 
 | 	BUG_ON(cpu_online(smp_processor_id())); | 
 |  | 
 | 	if (mm != &init_mm) { | 
 | 		switch_mm(mm, &init_mm, current); | 
 | 		finish_arch_post_lock_switch(); | 
 | 	} | 
 | 	mmdrop(mm); | 
 | } | 
 |  | 
 | /* | 
 |  * Since this CPU is going 'away' for a while, fold any nr_active delta | 
 |  * we might have. Assumes we're called after migrate_tasks() so that the | 
 |  * nr_active count is stable. | 
 |  * | 
 |  * Also see the comment "Global load-average calculations". | 
 |  */ | 
 | static void calc_load_migrate(struct rq *rq) | 
 | { | 
 | 	long delta = calc_load_fold_active(rq); | 
 | 	if (delta) | 
 | 		atomic_long_add(delta, &calc_load_tasks); | 
 | } | 
 |  | 
 | static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | } | 
 |  | 
 | static const struct sched_class fake_sched_class = { | 
 | 	.put_prev_task = put_prev_task_fake, | 
 | }; | 
 |  | 
 | static struct task_struct fake_task = { | 
 | 	/* | 
 | 	 * Avoid pull_{rt,dl}_task() | 
 | 	 */ | 
 | 	.prio = MAX_PRIO + 1, | 
 | 	.sched_class = &fake_sched_class, | 
 | }; | 
 |  | 
 | /* | 
 |  * Migrate all tasks from the rq, sleeping tasks will be migrated by | 
 |  * try_to_wake_up()->select_task_rq(). | 
 |  * | 
 |  * Called with rq->lock held even though we'er in stop_machine() and | 
 |  * there's no concurrency possible, we hold the required locks anyway | 
 |  * because of lock validation efforts. | 
 |  */ | 
 | static void migrate_tasks(unsigned int dead_cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(dead_cpu); | 
 | 	struct task_struct *next, *stop = rq->stop; | 
 | 	int dest_cpu; | 
 |  | 
 | 	/* | 
 | 	 * Fudge the rq selection such that the below task selection loop | 
 | 	 * doesn't get stuck on the currently eligible stop task. | 
 | 	 * | 
 | 	 * We're currently inside stop_machine() and the rq is either stuck | 
 | 	 * in the stop_machine_cpu_stop() loop, or we're executing this code, | 
 | 	 * either way we should never end up calling schedule() until we're | 
 | 	 * done here. | 
 | 	 */ | 
 | 	rq->stop = NULL; | 
 |  | 
 | 	/* | 
 | 	 * put_prev_task() and pick_next_task() sched | 
 | 	 * class method both need to have an up-to-date | 
 | 	 * value of rq->clock[_task] | 
 | 	 */ | 
 | 	update_rq_clock(rq); | 
 |  | 
 | 	for ( ; ; ) { | 
 | 		/* | 
 | 		 * There's this thread running, bail when that's the only | 
 | 		 * remaining thread. | 
 | 		 */ | 
 | 		if (rq->nr_running == 1) | 
 | 			break; | 
 |  | 
 | 		next = pick_next_task(rq, &fake_task); | 
 | 		BUG_ON(!next); | 
 | 		next->sched_class->put_prev_task(rq, next); | 
 |  | 
 | 		/* Find suitable destination for @next, with force if needed. */ | 
 | 		dest_cpu = select_fallback_rq(dead_cpu, next); | 
 | 		raw_spin_unlock(&rq->lock); | 
 |  | 
 | 		__migrate_task(next, dead_cpu, dest_cpu); | 
 |  | 
 | 		raw_spin_lock(&rq->lock); | 
 | 	} | 
 |  | 
 | 	rq->stop = stop; | 
 | } | 
 |  | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) | 
 |  | 
 | static struct ctl_table sd_ctl_dir[] = { | 
 | 	{ | 
 | 		.procname	= "sched_domain", | 
 | 		.mode		= 0555, | 
 | 	}, | 
 | 	{} | 
 | }; | 
 |  | 
 | static struct ctl_table sd_ctl_root[] = { | 
 | 	{ | 
 | 		.procname	= "kernel", | 
 | 		.mode		= 0555, | 
 | 		.child		= sd_ctl_dir, | 
 | 	}, | 
 | 	{} | 
 | }; | 
 |  | 
 | static struct ctl_table *sd_alloc_ctl_entry(int n) | 
 | { | 
 | 	struct ctl_table *entry = | 
 | 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); | 
 |  | 
 | 	return entry; | 
 | } | 
 |  | 
 | static void sd_free_ctl_entry(struct ctl_table **tablep) | 
 | { | 
 | 	struct ctl_table *entry; | 
 |  | 
 | 	/* | 
 | 	 * In the intermediate directories, both the child directory and | 
 | 	 * procname are dynamically allocated and could fail but the mode | 
 | 	 * will always be set. In the lowest directory the names are | 
 | 	 * static strings and all have proc handlers. | 
 | 	 */ | 
 | 	for (entry = *tablep; entry->mode; entry++) { | 
 | 		if (entry->child) | 
 | 			sd_free_ctl_entry(&entry->child); | 
 | 		if (entry->proc_handler == NULL) | 
 | 			kfree(entry->procname); | 
 | 	} | 
 |  | 
 | 	kfree(*tablep); | 
 | 	*tablep = NULL; | 
 | } | 
 |  | 
 | static int min_load_idx = 0; | 
 | static int max_load_idx = CPU_LOAD_IDX_MAX-1; | 
 |  | 
 | static void | 
 | set_table_entry(struct ctl_table *entry, | 
 | 		const char *procname, void *data, int maxlen, | 
 | 		umode_t mode, proc_handler *proc_handler, | 
 | 		bool load_idx) | 
 | { | 
 | 	entry->procname = procname; | 
 | 	entry->data = data; | 
 | 	entry->maxlen = maxlen; | 
 | 	entry->mode = mode; | 
 | 	entry->proc_handler = proc_handler; | 
 |  | 
 | 	if (load_idx) { | 
 | 		entry->extra1 = &min_load_idx; | 
 | 		entry->extra2 = &max_load_idx; | 
 | 	} | 
 | } | 
 |  | 
 | static struct ctl_table * | 
 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | 
 | { | 
 | 	struct ctl_table *table = sd_alloc_ctl_entry(14); | 
 |  | 
 | 	if (table == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	set_table_entry(&table[0], "min_interval", &sd->min_interval, | 
 | 		sizeof(long), 0644, proc_doulongvec_minmax, false); | 
 | 	set_table_entry(&table[1], "max_interval", &sd->max_interval, | 
 | 		sizeof(long), 0644, proc_doulongvec_minmax, false); | 
 | 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax, true); | 
 | 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax, true); | 
 | 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax, true); | 
 | 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax, true); | 
 | 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax, true); | 
 | 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax, false); | 
 | 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax, false); | 
 | 	set_table_entry(&table[9], "cache_nice_tries", | 
 | 		&sd->cache_nice_tries, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax, false); | 
 | 	set_table_entry(&table[10], "flags", &sd->flags, | 
 | 		sizeof(int), 0644, proc_dointvec_minmax, false); | 
 | 	set_table_entry(&table[11], "max_newidle_lb_cost", | 
 | 		&sd->max_newidle_lb_cost, | 
 | 		sizeof(long), 0644, proc_doulongvec_minmax, false); | 
 | 	set_table_entry(&table[12], "name", sd->name, | 
 | 		CORENAME_MAX_SIZE, 0444, proc_dostring, false); | 
 | 	/* &table[13] is terminator */ | 
 |  | 
 | 	return table; | 
 | } | 
 |  | 
 | static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) | 
 | { | 
 | 	struct ctl_table *entry, *table; | 
 | 	struct sched_domain *sd; | 
 | 	int domain_num = 0, i; | 
 | 	char buf[32]; | 
 |  | 
 | 	for_each_domain(cpu, sd) | 
 | 		domain_num++; | 
 | 	entry = table = sd_alloc_ctl_entry(domain_num + 1); | 
 | 	if (table == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	i = 0; | 
 | 	for_each_domain(cpu, sd) { | 
 | 		snprintf(buf, 32, "domain%d", i); | 
 | 		entry->procname = kstrdup(buf, GFP_KERNEL); | 
 | 		entry->mode = 0555; | 
 | 		entry->child = sd_alloc_ctl_domain_table(sd); | 
 | 		entry++; | 
 | 		i++; | 
 | 	} | 
 | 	return table; | 
 | } | 
 |  | 
 | static struct ctl_table_header *sd_sysctl_header; | 
 | static void register_sched_domain_sysctl(void) | 
 | { | 
 | 	int i, cpu_num = num_possible_cpus(); | 
 | 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | 
 | 	char buf[32]; | 
 |  | 
 | 	WARN_ON(sd_ctl_dir[0].child); | 
 | 	sd_ctl_dir[0].child = entry; | 
 |  | 
 | 	if (entry == NULL) | 
 | 		return; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		snprintf(buf, 32, "cpu%d", i); | 
 | 		entry->procname = kstrdup(buf, GFP_KERNEL); | 
 | 		entry->mode = 0555; | 
 | 		entry->child = sd_alloc_ctl_cpu_table(i); | 
 | 		entry++; | 
 | 	} | 
 |  | 
 | 	WARN_ON(sd_sysctl_header); | 
 | 	sd_sysctl_header = register_sysctl_table(sd_ctl_root); | 
 | } | 
 |  | 
 | /* may be called multiple times per register */ | 
 | static void unregister_sched_domain_sysctl(void) | 
 | { | 
 | 	if (sd_sysctl_header) | 
 | 		unregister_sysctl_table(sd_sysctl_header); | 
 | 	sd_sysctl_header = NULL; | 
 | 	if (sd_ctl_dir[0].child) | 
 | 		sd_free_ctl_entry(&sd_ctl_dir[0].child); | 
 | } | 
 | #else | 
 | static void register_sched_domain_sysctl(void) | 
 | { | 
 | } | 
 | static void unregister_sched_domain_sysctl(void) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static void set_rq_online(struct rq *rq) | 
 | { | 
 | 	if (!rq->online) { | 
 | 		const struct sched_class *class; | 
 |  | 
 | 		cpumask_set_cpu(rq->cpu, rq->rd->online); | 
 | 		rq->online = 1; | 
 |  | 
 | 		for_each_class(class) { | 
 | 			if (class->rq_online) | 
 | 				class->rq_online(rq); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void set_rq_offline(struct rq *rq) | 
 | { | 
 | 	if (rq->online) { | 
 | 		const struct sched_class *class; | 
 |  | 
 | 		for_each_class(class) { | 
 | 			if (class->rq_offline) | 
 | 				class->rq_offline(rq); | 
 | 		} | 
 |  | 
 | 		cpumask_clear_cpu(rq->cpu, rq->rd->online); | 
 | 		rq->online = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * migration_call - callback that gets triggered when a CPU is added. | 
 |  * Here we can start up the necessary migration thread for the new CPU. | 
 |  */ | 
 | static int | 
 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | 
 | { | 
 | 	int cpu = (long)hcpu; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	switch (action & ~CPU_TASKS_FROZEN) { | 
 |  | 
 | 	case CPU_UP_PREPARE: | 
 | 		rq->calc_load_update = calc_load_update; | 
 | 		break; | 
 |  | 
 | 	case CPU_ONLINE: | 
 | 		/* Update our root-domain */ | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 		if (rq->rd) { | 
 | 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 
 |  | 
 | 			set_rq_online(rq); | 
 | 		} | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | 		break; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	case CPU_DYING: | 
 | 		sched_ttwu_pending(); | 
 | 		/* Update our root-domain */ | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 		if (rq->rd) { | 
 | 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 
 | 			set_rq_offline(rq); | 
 | 		} | 
 | 		migrate_tasks(cpu); | 
 | 		BUG_ON(rq->nr_running != 1); /* the migration thread */ | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | 		break; | 
 |  | 
 | 	case CPU_DEAD: | 
 | 		calc_load_migrate(rq); | 
 | 		break; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	update_max_interval(); | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | /* | 
 |  * Register at high priority so that task migration (migrate_all_tasks) | 
 |  * happens before everything else.  This has to be lower priority than | 
 |  * the notifier in the perf_event subsystem, though. | 
 |  */ | 
 | static struct notifier_block migration_notifier = { | 
 | 	.notifier_call = migration_call, | 
 | 	.priority = CPU_PRI_MIGRATION, | 
 | }; | 
 |  | 
 | static void __cpuinit set_cpu_rq_start_time(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	rq->age_stamp = sched_clock_cpu(cpu); | 
 | } | 
 |  | 
 | static int sched_cpu_active(struct notifier_block *nfb, | 
 | 				      unsigned long action, void *hcpu) | 
 | { | 
 | 	switch (action & ~CPU_TASKS_FROZEN) { | 
 | 	case CPU_STARTING: | 
 | 		set_cpu_rq_start_time(); | 
 | 		return NOTIFY_OK; | 
 | 	case CPU_DOWN_FAILED: | 
 | 		set_cpu_active((long)hcpu, true); | 
 | 		return NOTIFY_OK; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 | } | 
 |  | 
 | static int sched_cpu_inactive(struct notifier_block *nfb, | 
 | 					unsigned long action, void *hcpu) | 
 | { | 
 | 	unsigned long flags; | 
 | 	long cpu = (long)hcpu; | 
 | 	struct dl_bw *dl_b; | 
 |  | 
 | 	switch (action & ~CPU_TASKS_FROZEN) { | 
 | 	case CPU_DOWN_PREPARE: | 
 | 		set_cpu_active(cpu, false); | 
 |  | 
 | 		/* explicitly allow suspend */ | 
 | 		if (!(action & CPU_TASKS_FROZEN)) { | 
 | 			bool overflow; | 
 | 			int cpus; | 
 |  | 
 | 			rcu_read_lock_sched(); | 
 | 			dl_b = dl_bw_of(cpu); | 
 |  | 
 | 			raw_spin_lock_irqsave(&dl_b->lock, flags); | 
 | 			cpus = dl_bw_cpus(cpu); | 
 | 			overflow = __dl_overflow(dl_b, cpus, 0, 0); | 
 | 			raw_spin_unlock_irqrestore(&dl_b->lock, flags); | 
 |  | 
 | 			rcu_read_unlock_sched(); | 
 |  | 
 | 			if (overflow) | 
 | 				return notifier_from_errno(-EBUSY); | 
 | 		} | 
 | 		return NOTIFY_OK; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static int __init migration_init(void) | 
 | { | 
 | 	void *cpu = (void *)(long)smp_processor_id(); | 
 | 	int err; | 
 |  | 
 | 	/* Initialize migration for the boot CPU */ | 
 | 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 
 | 	BUG_ON(err == NOTIFY_BAD); | 
 | 	migration_call(&migration_notifier, CPU_ONLINE, cpu); | 
 | 	register_cpu_notifier(&migration_notifier); | 
 |  | 
 | 	/* Register cpu active notifiers */ | 
 | 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); | 
 | 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_initcall(migration_init); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 |  | 
 | static __read_mostly int sched_debug_enabled; | 
 |  | 
 | static int __init sched_debug_setup(char *str) | 
 | { | 
 | 	sched_debug_enabled = 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("sched_debug", sched_debug_setup); | 
 |  | 
 | static inline bool sched_debug(void) | 
 | { | 
 | 	return sched_debug_enabled; | 
 | } | 
 |  | 
 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | 
 | 				  struct cpumask *groupmask) | 
 | { | 
 | 	struct sched_group *group = sd->groups; | 
 | 	char str[256]; | 
 |  | 
 | 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); | 
 | 	cpumask_clear(groupmask); | 
 |  | 
 | 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | 
 |  | 
 | 	if (!(sd->flags & SD_LOAD_BALANCE)) { | 
 | 		printk("does not load-balance\n"); | 
 | 		if (sd->parent) | 
 | 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | 
 | 					" has parent"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	printk(KERN_CONT "span %s level %s\n", str, sd->name); | 
 |  | 
 | 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { | 
 | 		printk(KERN_ERR "ERROR: domain->span does not contain " | 
 | 				"CPU%d\n", cpu); | 
 | 	} | 
 | 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { | 
 | 		printk(KERN_ERR "ERROR: domain->groups does not contain" | 
 | 				" CPU%d\n", cpu); | 
 | 	} | 
 |  | 
 | 	printk(KERN_DEBUG "%*s groups:", level + 1, ""); | 
 | 	do { | 
 | 		if (!group) { | 
 | 			printk("\n"); | 
 | 			printk(KERN_ERR "ERROR: group is NULL\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Even though we initialize ->capacity to something semi-sane, | 
 | 		 * we leave capacity_orig unset. This allows us to detect if | 
 | 		 * domain iteration is still funny without causing /0 traps. | 
 | 		 */ | 
 | 		if (!group->sgc->capacity_orig) { | 
 | 			printk(KERN_CONT "\n"); | 
 | 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!cpumask_weight(sched_group_cpus(group))) { | 
 | 			printk(KERN_CONT "\n"); | 
 | 			printk(KERN_ERR "ERROR: empty group\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!(sd->flags & SD_OVERLAP) && | 
 | 		    cpumask_intersects(groupmask, sched_group_cpus(group))) { | 
 | 			printk(KERN_CONT "\n"); | 
 | 			printk(KERN_ERR "ERROR: repeated CPUs\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		cpumask_or(groupmask, groupmask, sched_group_cpus(group)); | 
 |  | 
 | 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); | 
 |  | 
 | 		printk(KERN_CONT " %s", str); | 
 | 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { | 
 | 			printk(KERN_CONT " (cpu_capacity = %d)", | 
 | 				group->sgc->capacity); | 
 | 		} | 
 |  | 
 | 		group = group->next; | 
 | 	} while (group != sd->groups); | 
 | 	printk(KERN_CONT "\n"); | 
 |  | 
 | 	if (!cpumask_equal(sched_domain_span(sd), groupmask)) | 
 | 		printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | 
 |  | 
 | 	if (sd->parent && | 
 | 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent))) | 
 | 		printk(KERN_ERR "ERROR: parent span is not a superset " | 
 | 			"of domain->span\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	int level = 0; | 
 |  | 
 | 	if (!sched_debug_enabled) | 
 | 		return; | 
 |  | 
 | 	if (!sd) { | 
 | 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 
 |  | 
 | 	for (;;) { | 
 | 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) | 
 | 			break; | 
 | 		level++; | 
 | 		sd = sd->parent; | 
 | 		if (!sd) | 
 | 			break; | 
 | 	} | 
 | } | 
 | #else /* !CONFIG_SCHED_DEBUG */ | 
 | # define sched_domain_debug(sd, cpu) do { } while (0) | 
 | static inline bool sched_debug(void) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_SCHED_DEBUG */ | 
 |  | 
 | static int sd_degenerate(struct sched_domain *sd) | 
 | { | 
 | 	if (cpumask_weight(sched_domain_span(sd)) == 1) | 
 | 		return 1; | 
 |  | 
 | 	/* Following flags need at least 2 groups */ | 
 | 	if (sd->flags & (SD_LOAD_BALANCE | | 
 | 			 SD_BALANCE_NEWIDLE | | 
 | 			 SD_BALANCE_FORK | | 
 | 			 SD_BALANCE_EXEC | | 
 | 			 SD_SHARE_CPUCAPACITY | | 
 | 			 SD_SHARE_PKG_RESOURCES | | 
 | 			 SD_SHARE_POWERDOMAIN)) { | 
 | 		if (sd->groups != sd->groups->next) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* Following flags don't use groups */ | 
 | 	if (sd->flags & (SD_WAKE_AFFINE)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int | 
 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | 
 | { | 
 | 	unsigned long cflags = sd->flags, pflags = parent->flags; | 
 |  | 
 | 	if (sd_degenerate(parent)) | 
 | 		return 1; | 
 |  | 
 | 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) | 
 | 		return 0; | 
 |  | 
 | 	/* Flags needing groups don't count if only 1 group in parent */ | 
 | 	if (parent->groups == parent->groups->next) { | 
 | 		pflags &= ~(SD_LOAD_BALANCE | | 
 | 				SD_BALANCE_NEWIDLE | | 
 | 				SD_BALANCE_FORK | | 
 | 				SD_BALANCE_EXEC | | 
 | 				SD_SHARE_CPUCAPACITY | | 
 | 				SD_SHARE_PKG_RESOURCES | | 
 | 				SD_PREFER_SIBLING | | 
 | 				SD_SHARE_POWERDOMAIN); | 
 | 		if (nr_node_ids == 1) | 
 | 			pflags &= ~SD_SERIALIZE; | 
 | 	} | 
 | 	if (~cflags & pflags) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void free_rootdomain(struct rcu_head *rcu) | 
 | { | 
 | 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu); | 
 |  | 
 | 	cpupri_cleanup(&rd->cpupri); | 
 | 	cpudl_cleanup(&rd->cpudl); | 
 | 	free_cpumask_var(rd->dlo_mask); | 
 | 	free_cpumask_var(rd->rto_mask); | 
 | 	free_cpumask_var(rd->online); | 
 | 	free_cpumask_var(rd->span); | 
 | 	kfree(rd); | 
 | } | 
 |  | 
 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) | 
 | { | 
 | 	struct root_domain *old_rd = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 	if (rq->rd) { | 
 | 		old_rd = rq->rd; | 
 |  | 
 | 		if (cpumask_test_cpu(rq->cpu, old_rd->online)) | 
 | 			set_rq_offline(rq); | 
 |  | 
 | 		cpumask_clear_cpu(rq->cpu, old_rd->span); | 
 |  | 
 | 		/* | 
 | 		 * If we dont want to free the old_rd yet then | 
 | 		 * set old_rd to NULL to skip the freeing later | 
 | 		 * in this function: | 
 | 		 */ | 
 | 		if (!atomic_dec_and_test(&old_rd->refcount)) | 
 | 			old_rd = NULL; | 
 | 	} | 
 |  | 
 | 	atomic_inc(&rd->refcount); | 
 | 	rq->rd = rd; | 
 |  | 
 | 	cpumask_set_cpu(rq->cpu, rd->span); | 
 | 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) | 
 | 		set_rq_online(rq); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 |  | 
 | 	if (old_rd) | 
 | 		call_rcu_sched(&old_rd->rcu, free_rootdomain); | 
 | } | 
 |  | 
 | static int init_rootdomain(struct root_domain *rd) | 
 | { | 
 | 	memset(rd, 0, sizeof(*rd)); | 
 |  | 
 | 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) | 
 | 		goto out; | 
 | 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) | 
 | 		goto free_span; | 
 | 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) | 
 | 		goto free_online; | 
 | 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) | 
 | 		goto free_dlo_mask; | 
 |  | 
 | 	init_dl_bw(&rd->dl_bw); | 
 | 	if (cpudl_init(&rd->cpudl) != 0) | 
 | 		goto free_dlo_mask; | 
 |  | 
 | 	if (cpupri_init(&rd->cpupri) != 0) | 
 | 		goto free_rto_mask; | 
 | 	return 0; | 
 |  | 
 | free_rto_mask: | 
 | 	free_cpumask_var(rd->rto_mask); | 
 | free_dlo_mask: | 
 | 	free_cpumask_var(rd->dlo_mask); | 
 | free_online: | 
 | 	free_cpumask_var(rd->online); | 
 | free_span: | 
 | 	free_cpumask_var(rd->span); | 
 | out: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * By default the system creates a single root-domain with all cpus as | 
 |  * members (mimicking the global state we have today). | 
 |  */ | 
 | struct root_domain def_root_domain; | 
 |  | 
 | static void init_defrootdomain(void) | 
 | { | 
 | 	init_rootdomain(&def_root_domain); | 
 |  | 
 | 	atomic_set(&def_root_domain.refcount, 1); | 
 | } | 
 |  | 
 | static struct root_domain *alloc_rootdomain(void) | 
 | { | 
 | 	struct root_domain *rd; | 
 |  | 
 | 	rd = kmalloc(sizeof(*rd), GFP_KERNEL); | 
 | 	if (!rd) | 
 | 		return NULL; | 
 |  | 
 | 	if (init_rootdomain(rd) != 0) { | 
 | 		kfree(rd); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return rd; | 
 | } | 
 |  | 
 | static void free_sched_groups(struct sched_group *sg, int free_sgc) | 
 | { | 
 | 	struct sched_group *tmp, *first; | 
 |  | 
 | 	if (!sg) | 
 | 		return; | 
 |  | 
 | 	first = sg; | 
 | 	do { | 
 | 		tmp = sg->next; | 
 |  | 
 | 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) | 
 | 			kfree(sg->sgc); | 
 |  | 
 | 		kfree(sg); | 
 | 		sg = tmp; | 
 | 	} while (sg != first); | 
 | } | 
 |  | 
 | static void free_sched_domain(struct rcu_head *rcu) | 
 | { | 
 | 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); | 
 |  | 
 | 	/* | 
 | 	 * If its an overlapping domain it has private groups, iterate and | 
 | 	 * nuke them all. | 
 | 	 */ | 
 | 	if (sd->flags & SD_OVERLAP) { | 
 | 		free_sched_groups(sd->groups, 1); | 
 | 	} else if (atomic_dec_and_test(&sd->groups->ref)) { | 
 | 		kfree(sd->groups->sgc); | 
 | 		kfree(sd->groups); | 
 | 	} | 
 | 	kfree(sd); | 
 | } | 
 |  | 
 | static void destroy_sched_domain(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	call_rcu(&sd->rcu, free_sched_domain); | 
 | } | 
 |  | 
 | static void destroy_sched_domains(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	for (; sd; sd = sd->parent) | 
 | 		destroy_sched_domain(sd, cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Keep a special pointer to the highest sched_domain that has | 
 |  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this | 
 |  * allows us to avoid some pointer chasing select_idle_sibling(). | 
 |  * | 
 |  * Also keep a unique ID per domain (we use the first cpu number in | 
 |  * the cpumask of the domain), this allows us to quickly tell if | 
 |  * two cpus are in the same cache domain, see cpus_share_cache(). | 
 |  */ | 
 | DEFINE_PER_CPU(struct sched_domain *, sd_llc); | 
 | DEFINE_PER_CPU(int, sd_llc_size); | 
 | DEFINE_PER_CPU(int, sd_llc_id); | 
 | DEFINE_PER_CPU(struct sched_domain *, sd_numa); | 
 | DEFINE_PER_CPU(struct sched_domain *, sd_busy); | 
 | DEFINE_PER_CPU(struct sched_domain *, sd_asym); | 
 |  | 
 | static void update_top_cache_domain(int cpu) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	struct sched_domain *busy_sd = NULL; | 
 | 	int id = cpu; | 
 | 	int size = 1; | 
 |  | 
 | 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); | 
 | 	if (sd) { | 
 | 		id = cpumask_first(sched_domain_span(sd)); | 
 | 		size = cpumask_weight(sched_domain_span(sd)); | 
 | 		busy_sd = sd->parent; /* sd_busy */ | 
 | 	} | 
 | 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); | 
 |  | 
 | 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); | 
 | 	per_cpu(sd_llc_size, cpu) = size; | 
 | 	per_cpu(sd_llc_id, cpu) = id; | 
 |  | 
 | 	sd = lowest_flag_domain(cpu, SD_NUMA); | 
 | 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); | 
 |  | 
 | 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING); | 
 | 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); | 
 | } | 
 |  | 
 | /* | 
 |  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | 
 |  * hold the hotplug lock. | 
 |  */ | 
 | static void | 
 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	struct sched_domain *tmp; | 
 |  | 
 | 	/* Remove the sched domains which do not contribute to scheduling. */ | 
 | 	for (tmp = sd; tmp; ) { | 
 | 		struct sched_domain *parent = tmp->parent; | 
 | 		if (!parent) | 
 | 			break; | 
 |  | 
 | 		if (sd_parent_degenerate(tmp, parent)) { | 
 | 			tmp->parent = parent->parent; | 
 | 			if (parent->parent) | 
 | 				parent->parent->child = tmp; | 
 | 			/* | 
 | 			 * Transfer SD_PREFER_SIBLING down in case of a | 
 | 			 * degenerate parent; the spans match for this | 
 | 			 * so the property transfers. | 
 | 			 */ | 
 | 			if (parent->flags & SD_PREFER_SIBLING) | 
 | 				tmp->flags |= SD_PREFER_SIBLING; | 
 | 			destroy_sched_domain(parent, cpu); | 
 | 		} else | 
 | 			tmp = tmp->parent; | 
 | 	} | 
 |  | 
 | 	if (sd && sd_degenerate(sd)) { | 
 | 		tmp = sd; | 
 | 		sd = sd->parent; | 
 | 		destroy_sched_domain(tmp, cpu); | 
 | 		if (sd) | 
 | 			sd->child = NULL; | 
 | 	} | 
 |  | 
 | 	sched_domain_debug(sd, cpu); | 
 |  | 
 | 	rq_attach_root(rq, rd); | 
 | 	tmp = rq->sd; | 
 | 	rcu_assign_pointer(rq->sd, sd); | 
 | 	destroy_sched_domains(tmp, cpu); | 
 |  | 
 | 	update_top_cache_domain(cpu); | 
 | } | 
 |  | 
 | /* cpus with isolated domains */ | 
 | static cpumask_var_t cpu_isolated_map; | 
 |  | 
 | /* Setup the mask of cpus configured for isolated domains */ | 
 | static int __init isolated_cpu_setup(char *str) | 
 | { | 
 | 	alloc_bootmem_cpumask_var(&cpu_isolated_map); | 
 | 	cpulist_parse(str, cpu_isolated_map); | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("isolcpus=", isolated_cpu_setup); | 
 |  | 
 | struct s_data { | 
 | 	struct sched_domain ** __percpu sd; | 
 | 	struct root_domain	*rd; | 
 | }; | 
 |  | 
 | enum s_alloc { | 
 | 	sa_rootdomain, | 
 | 	sa_sd, | 
 | 	sa_sd_storage, | 
 | 	sa_none, | 
 | }; | 
 |  | 
 | /* | 
 |  * Build an iteration mask that can exclude certain CPUs from the upwards | 
 |  * domain traversal. | 
 |  * | 
 |  * Asymmetric node setups can result in situations where the domain tree is of | 
 |  * unequal depth, make sure to skip domains that already cover the entire | 
 |  * range. | 
 |  * | 
 |  * In that case build_sched_domains() will have terminated the iteration early | 
 |  * and our sibling sd spans will be empty. Domains should always include the | 
 |  * cpu they're built on, so check that. | 
 |  * | 
 |  */ | 
 | static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) | 
 | { | 
 | 	const struct cpumask *span = sched_domain_span(sd); | 
 | 	struct sd_data *sdd = sd->private; | 
 | 	struct sched_domain *sibling; | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu(i, span) { | 
 | 		sibling = *per_cpu_ptr(sdd->sd, i); | 
 | 		if (!cpumask_test_cpu(i, sched_domain_span(sibling))) | 
 | 			continue; | 
 |  | 
 | 		cpumask_set_cpu(i, sched_group_mask(sg)); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Return the canonical balance cpu for this group, this is the first cpu | 
 |  * of this group that's also in the iteration mask. | 
 |  */ | 
 | int group_balance_cpu(struct sched_group *sg) | 
 | { | 
 | 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); | 
 | } | 
 |  | 
 | static int | 
 | build_overlap_sched_groups(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; | 
 | 	const struct cpumask *span = sched_domain_span(sd); | 
 | 	struct cpumask *covered = sched_domains_tmpmask; | 
 | 	struct sd_data *sdd = sd->private; | 
 | 	struct sched_domain *sibling; | 
 | 	int i; | 
 |  | 
 | 	cpumask_clear(covered); | 
 |  | 
 | 	for_each_cpu(i, span) { | 
 | 		struct cpumask *sg_span; | 
 |  | 
 | 		if (cpumask_test_cpu(i, covered)) | 
 | 			continue; | 
 |  | 
 | 		sibling = *per_cpu_ptr(sdd->sd, i); | 
 |  | 
 | 		/* See the comment near build_group_mask(). */ | 
 | 		if (!cpumask_test_cpu(i, sched_domain_span(sibling))) | 
 | 			continue; | 
 |  | 
 | 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), | 
 | 				GFP_KERNEL, cpu_to_node(cpu)); | 
 |  | 
 | 		if (!sg) | 
 | 			goto fail; | 
 |  | 
 | 		sg_span = sched_group_cpus(sg); | 
 | 		if (sibling->child) | 
 | 			cpumask_copy(sg_span, sched_domain_span(sibling->child)); | 
 | 		else | 
 | 			cpumask_set_cpu(i, sg_span); | 
 |  | 
 | 		cpumask_or(covered, covered, sg_span); | 
 |  | 
 | 		sg->sgc = *per_cpu_ptr(sdd->sgc, i); | 
 | 		if (atomic_inc_return(&sg->sgc->ref) == 1) | 
 | 			build_group_mask(sd, sg); | 
 |  | 
 | 		/* | 
 | 		 * Initialize sgc->capacity such that even if we mess up the | 
 | 		 * domains and no possible iteration will get us here, we won't | 
 | 		 * die on a /0 trap. | 
 | 		 */ | 
 | 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); | 
 | 		sg->sgc->capacity_orig = sg->sgc->capacity; | 
 |  | 
 | 		/* | 
 | 		 * Make sure the first group of this domain contains the | 
 | 		 * canonical balance cpu. Otherwise the sched_domain iteration | 
 | 		 * breaks. See update_sg_lb_stats(). | 
 | 		 */ | 
 | 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) || | 
 | 		    group_balance_cpu(sg) == cpu) | 
 | 			groups = sg; | 
 |  | 
 | 		if (!first) | 
 | 			first = sg; | 
 | 		if (last) | 
 | 			last->next = sg; | 
 | 		last = sg; | 
 | 		last->next = first; | 
 | 	} | 
 | 	sd->groups = groups; | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	free_sched_groups(first, 0); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) | 
 | { | 
 | 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); | 
 | 	struct sched_domain *child = sd->child; | 
 |  | 
 | 	if (child) | 
 | 		cpu = cpumask_first(sched_domain_span(child)); | 
 |  | 
 | 	if (sg) { | 
 | 		*sg = *per_cpu_ptr(sdd->sg, cpu); | 
 | 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); | 
 | 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ | 
 | 	} | 
 |  | 
 | 	return cpu; | 
 | } | 
 |  | 
 | /* | 
 |  * build_sched_groups will build a circular linked list of the groups | 
 |  * covered by the given span, and will set each group's ->cpumask correctly, | 
 |  * and ->cpu_capacity to 0. | 
 |  * | 
 |  * Assumes the sched_domain tree is fully constructed | 
 |  */ | 
 | static int | 
 | build_sched_groups(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	struct sched_group *first = NULL, *last = NULL; | 
 | 	struct sd_data *sdd = sd->private; | 
 | 	const struct cpumask *span = sched_domain_span(sd); | 
 | 	struct cpumask *covered; | 
 | 	int i; | 
 |  | 
 | 	get_group(cpu, sdd, &sd->groups); | 
 | 	atomic_inc(&sd->groups->ref); | 
 |  | 
 | 	if (cpu != cpumask_first(span)) | 
 | 		return 0; | 
 |  | 
 | 	lockdep_assert_held(&sched_domains_mutex); | 
 | 	covered = sched_domains_tmpmask; | 
 |  | 
 | 	cpumask_clear(covered); | 
 |  | 
 | 	for_each_cpu(i, span) { | 
 | 		struct sched_group *sg; | 
 | 		int group, j; | 
 |  | 
 | 		if (cpumask_test_cpu(i, covered)) | 
 | 			continue; | 
 |  | 
 | 		group = get_group(i, sdd, &sg); | 
 | 		cpumask_setall(sched_group_mask(sg)); | 
 |  | 
 | 		for_each_cpu(j, span) { | 
 | 			if (get_group(j, sdd, NULL) != group) | 
 | 				continue; | 
 |  | 
 | 			cpumask_set_cpu(j, covered); | 
 | 			cpumask_set_cpu(j, sched_group_cpus(sg)); | 
 | 		} | 
 |  | 
 | 		if (!first) | 
 | 			first = sg; | 
 | 		if (last) | 
 | 			last->next = sg; | 
 | 		last = sg; | 
 | 	} | 
 | 	last->next = first; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize sched groups cpu_capacity. | 
 |  * | 
 |  * cpu_capacity indicates the capacity of sched group, which is used while | 
 |  * distributing the load between different sched groups in a sched domain. | 
 |  * Typically cpu_capacity for all the groups in a sched domain will be same | 
 |  * unless there are asymmetries in the topology. If there are asymmetries, | 
 |  * group having more cpu_capacity will pickup more load compared to the | 
 |  * group having less cpu_capacity. | 
 |  */ | 
 | static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) | 
 | { | 
 | 	struct sched_group *sg = sd->groups; | 
 |  | 
 | 	WARN_ON(!sg); | 
 |  | 
 | 	do { | 
 | 		sg->group_weight = cpumask_weight(sched_group_cpus(sg)); | 
 | 		sg = sg->next; | 
 | 	} while (sg != sd->groups); | 
 |  | 
 | 	if (cpu != group_balance_cpu(sg)) | 
 | 		return; | 
 |  | 
 | 	update_group_capacity(sd, cpu); | 
 | 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); | 
 | } | 
 |  | 
 | /* | 
 |  * Initializers for schedule domains | 
 |  * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | 
 |  */ | 
 |  | 
 | static int default_relax_domain_level = -1; | 
 | int sched_domain_level_max; | 
 |  | 
 | static int __init setup_relax_domain_level(char *str) | 
 | { | 
 | 	if (kstrtoint(str, 0, &default_relax_domain_level)) | 
 | 		pr_warn("Unable to set relax_domain_level\n"); | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("relax_domain_level=", setup_relax_domain_level); | 
 |  | 
 | static void set_domain_attribute(struct sched_domain *sd, | 
 | 				 struct sched_domain_attr *attr) | 
 | { | 
 | 	int request; | 
 |  | 
 | 	if (!attr || attr->relax_domain_level < 0) { | 
 | 		if (default_relax_domain_level < 0) | 
 | 			return; | 
 | 		else | 
 | 			request = default_relax_domain_level; | 
 | 	} else | 
 | 		request = attr->relax_domain_level; | 
 | 	if (request < sd->level) { | 
 | 		/* turn off idle balance on this domain */ | 
 | 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); | 
 | 	} else { | 
 | 		/* turn on idle balance on this domain */ | 
 | 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); | 
 | 	} | 
 | } | 
 |  | 
 | static void __sdt_free(const struct cpumask *cpu_map); | 
 | static int __sdt_alloc(const struct cpumask *cpu_map); | 
 |  | 
 | static void __free_domain_allocs(struct s_data *d, enum s_alloc what, | 
 | 				 const struct cpumask *cpu_map) | 
 | { | 
 | 	switch (what) { | 
 | 	case sa_rootdomain: | 
 | 		if (!atomic_read(&d->rd->refcount)) | 
 | 			free_rootdomain(&d->rd->rcu); /* fall through */ | 
 | 	case sa_sd: | 
 | 		free_percpu(d->sd); /* fall through */ | 
 | 	case sa_sd_storage: | 
 | 		__sdt_free(cpu_map); /* fall through */ | 
 | 	case sa_none: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, | 
 | 						   const struct cpumask *cpu_map) | 
 | { | 
 | 	memset(d, 0, sizeof(*d)); | 
 |  | 
 | 	if (__sdt_alloc(cpu_map)) | 
 | 		return sa_sd_storage; | 
 | 	d->sd = alloc_percpu(struct sched_domain *); | 
 | 	if (!d->sd) | 
 | 		return sa_sd_storage; | 
 | 	d->rd = alloc_rootdomain(); | 
 | 	if (!d->rd) | 
 | 		return sa_sd; | 
 | 	return sa_rootdomain; | 
 | } | 
 |  | 
 | /* | 
 |  * NULL the sd_data elements we've used to build the sched_domain and | 
 |  * sched_group structure so that the subsequent __free_domain_allocs() | 
 |  * will not free the data we're using. | 
 |  */ | 
 | static void claim_allocations(int cpu, struct sched_domain *sd) | 
 | { | 
 | 	struct sd_data *sdd = sd->private; | 
 |  | 
 | 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); | 
 | 	*per_cpu_ptr(sdd->sd, cpu) = NULL; | 
 |  | 
 | 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) | 
 | 		*per_cpu_ptr(sdd->sg, cpu) = NULL; | 
 |  | 
 | 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) | 
 | 		*per_cpu_ptr(sdd->sgc, cpu) = NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static int sched_domains_numa_levels; | 
 | static int *sched_domains_numa_distance; | 
 | static struct cpumask ***sched_domains_numa_masks; | 
 | static int sched_domains_curr_level; | 
 | #endif | 
 |  | 
 | /* | 
 |  * SD_flags allowed in topology descriptions. | 
 |  * | 
 |  * SD_SHARE_CPUCAPACITY      - describes SMT topologies | 
 |  * SD_SHARE_PKG_RESOURCES - describes shared caches | 
 |  * SD_NUMA                - describes NUMA topologies | 
 |  * SD_SHARE_POWERDOMAIN   - describes shared power domain | 
 |  * | 
 |  * Odd one out: | 
 |  * SD_ASYM_PACKING        - describes SMT quirks | 
 |  */ | 
 | #define TOPOLOGY_SD_FLAGS		\ | 
 | 	(SD_SHARE_CPUCAPACITY |		\ | 
 | 	 SD_SHARE_PKG_RESOURCES |	\ | 
 | 	 SD_NUMA |			\ | 
 | 	 SD_ASYM_PACKING |		\ | 
 | 	 SD_SHARE_POWERDOMAIN) | 
 |  | 
 | static struct sched_domain * | 
 | sd_init(struct sched_domain_topology_level *tl, int cpu) | 
 | { | 
 | 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); | 
 | 	int sd_weight, sd_flags = 0; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	/* | 
 | 	 * Ugly hack to pass state to sd_numa_mask()... | 
 | 	 */ | 
 | 	sched_domains_curr_level = tl->numa_level; | 
 | #endif | 
 |  | 
 | 	sd_weight = cpumask_weight(tl->mask(cpu)); | 
 |  | 
 | 	if (tl->sd_flags) | 
 | 		sd_flags = (*tl->sd_flags)(); | 
 | 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, | 
 | 			"wrong sd_flags in topology description\n")) | 
 | 		sd_flags &= ~TOPOLOGY_SD_FLAGS; | 
 |  | 
 | 	*sd = (struct sched_domain){ | 
 | 		.min_interval		= sd_weight, | 
 | 		.max_interval		= 2*sd_weight, | 
 | 		.busy_factor		= 32, | 
 | 		.imbalance_pct		= 125, | 
 |  | 
 | 		.cache_nice_tries	= 0, | 
 | 		.busy_idx		= 0, | 
 | 		.idle_idx		= 0, | 
 | 		.newidle_idx		= 0, | 
 | 		.wake_idx		= 0, | 
 | 		.forkexec_idx		= 0, | 
 |  | 
 | 		.flags			= 1*SD_LOAD_BALANCE | 
 | 					| 1*SD_BALANCE_NEWIDLE | 
 | 					| 1*SD_BALANCE_EXEC | 
 | 					| 1*SD_BALANCE_FORK | 
 | 					| 0*SD_BALANCE_WAKE | 
 | 					| 1*SD_WAKE_AFFINE | 
 | 					| 0*SD_SHARE_CPUCAPACITY | 
 | 					| 0*SD_SHARE_PKG_RESOURCES | 
 | 					| 0*SD_SERIALIZE | 
 | 					| 0*SD_PREFER_SIBLING | 
 | 					| 0*SD_NUMA | 
 | 					| sd_flags | 
 | 					, | 
 |  | 
 | 		.last_balance		= jiffies, | 
 | 		.balance_interval	= sd_weight, | 
 | 		.smt_gain		= 0, | 
 | 		.max_newidle_lb_cost	= 0, | 
 | 		.next_decay_max_lb_cost	= jiffies, | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 		.name			= tl->name, | 
 | #endif | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * Convert topological properties into behaviour. | 
 | 	 */ | 
 |  | 
 | 	if (sd->flags & SD_SHARE_CPUCAPACITY) { | 
 | 		sd->imbalance_pct = 110; | 
 | 		sd->smt_gain = 1178; /* ~15% */ | 
 |  | 
 | 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) { | 
 | 		sd->imbalance_pct = 117; | 
 | 		sd->cache_nice_tries = 1; | 
 | 		sd->busy_idx = 2; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	} else if (sd->flags & SD_NUMA) { | 
 | 		sd->cache_nice_tries = 2; | 
 | 		sd->busy_idx = 3; | 
 | 		sd->idle_idx = 2; | 
 |  | 
 | 		sd->flags |= SD_SERIALIZE; | 
 | 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { | 
 | 			sd->flags &= ~(SD_BALANCE_EXEC | | 
 | 				       SD_BALANCE_FORK | | 
 | 				       SD_WAKE_AFFINE); | 
 | 		} | 
 |  | 
 | #endif | 
 | 	} else { | 
 | 		sd->flags |= SD_PREFER_SIBLING; | 
 | 		sd->cache_nice_tries = 1; | 
 | 		sd->busy_idx = 2; | 
 | 		sd->idle_idx = 1; | 
 | 	} | 
 |  | 
 | 	sd->private = &tl->data; | 
 |  | 
 | 	return sd; | 
 | } | 
 |  | 
 | /* | 
 |  * Topology list, bottom-up. | 
 |  */ | 
 | static struct sched_domain_topology_level default_topology[] = { | 
 | #ifdef CONFIG_SCHED_SMT | 
 | 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, | 
 | #endif | 
 | #ifdef CONFIG_SCHED_MC | 
 | 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, | 
 | #endif | 
 | 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) }, | 
 | 	{ NULL, }, | 
 | }; | 
 |  | 
 | struct sched_domain_topology_level *sched_domain_topology = default_topology; | 
 |  | 
 | #define for_each_sd_topology(tl)			\ | 
 | 	for (tl = sched_domain_topology; tl->mask; tl++) | 
 |  | 
 | void set_sched_topology(struct sched_domain_topology_level *tl) | 
 | { | 
 | 	sched_domain_topology = tl; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | static const struct cpumask *sd_numa_mask(int cpu) | 
 | { | 
 | 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; | 
 | } | 
 |  | 
 | static void sched_numa_warn(const char *str) | 
 | { | 
 | 	static int done = false; | 
 | 	int i,j; | 
 |  | 
 | 	if (done) | 
 | 		return; | 
 |  | 
 | 	done = true; | 
 |  | 
 | 	printk(KERN_WARNING "ERROR: %s\n\n", str); | 
 |  | 
 | 	for (i = 0; i < nr_node_ids; i++) { | 
 | 		printk(KERN_WARNING "  "); | 
 | 		for (j = 0; j < nr_node_ids; j++) | 
 | 			printk(KERN_CONT "%02d ", node_distance(i,j)); | 
 | 		printk(KERN_CONT "\n"); | 
 | 	} | 
 | 	printk(KERN_WARNING "\n"); | 
 | } | 
 |  | 
 | static bool find_numa_distance(int distance) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (distance == node_distance(0, 0)) | 
 | 		return true; | 
 |  | 
 | 	for (i = 0; i < sched_domains_numa_levels; i++) { | 
 | 		if (sched_domains_numa_distance[i] == distance) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void sched_init_numa(void) | 
 | { | 
 | 	int next_distance, curr_distance = node_distance(0, 0); | 
 | 	struct sched_domain_topology_level *tl; | 
 | 	int level = 0; | 
 | 	int i, j, k; | 
 |  | 
 | 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); | 
 | 	if (!sched_domains_numa_distance) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the | 
 | 	 * unique distances in the node_distance() table. | 
 | 	 * | 
 | 	 * Assumes node_distance(0,j) includes all distances in | 
 | 	 * node_distance(i,j) in order to avoid cubic time. | 
 | 	 */ | 
 | 	next_distance = curr_distance; | 
 | 	for (i = 0; i < nr_node_ids; i++) { | 
 | 		for (j = 0; j < nr_node_ids; j++) { | 
 | 			for (k = 0; k < nr_node_ids; k++) { | 
 | 				int distance = node_distance(i, k); | 
 |  | 
 | 				if (distance > curr_distance && | 
 | 				    (distance < next_distance || | 
 | 				     next_distance == curr_distance)) | 
 | 					next_distance = distance; | 
 |  | 
 | 				/* | 
 | 				 * While not a strong assumption it would be nice to know | 
 | 				 * about cases where if node A is connected to B, B is not | 
 | 				 * equally connected to A. | 
 | 				 */ | 
 | 				if (sched_debug() && node_distance(k, i) != distance) | 
 | 					sched_numa_warn("Node-distance not symmetric"); | 
 |  | 
 | 				if (sched_debug() && i && !find_numa_distance(distance)) | 
 | 					sched_numa_warn("Node-0 not representative"); | 
 | 			} | 
 | 			if (next_distance != curr_distance) { | 
 | 				sched_domains_numa_distance[level++] = next_distance; | 
 | 				sched_domains_numa_levels = level; | 
 | 				curr_distance = next_distance; | 
 | 			} else break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * In case of sched_debug() we verify the above assumption. | 
 | 		 */ | 
 | 		if (!sched_debug()) | 
 | 			break; | 
 | 	} | 
 | 	/* | 
 | 	 * 'level' contains the number of unique distances, excluding the | 
 | 	 * identity distance node_distance(i,i). | 
 | 	 * | 
 | 	 * The sched_domains_numa_distance[] array includes the actual distance | 
 | 	 * numbers. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Here, we should temporarily reset sched_domains_numa_levels to 0. | 
 | 	 * If it fails to allocate memory for array sched_domains_numa_masks[][], | 
 | 	 * the array will contain less then 'level' members. This could be | 
 | 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][] | 
 | 	 * in other functions. | 
 | 	 * | 
 | 	 * We reset it to 'level' at the end of this function. | 
 | 	 */ | 
 | 	sched_domains_numa_levels = 0; | 
 |  | 
 | 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); | 
 | 	if (!sched_domains_numa_masks) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Now for each level, construct a mask per node which contains all | 
 | 	 * cpus of nodes that are that many hops away from us. | 
 | 	 */ | 
 | 	for (i = 0; i < level; i++) { | 
 | 		sched_domains_numa_masks[i] = | 
 | 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); | 
 | 		if (!sched_domains_numa_masks[i]) | 
 | 			return; | 
 |  | 
 | 		for (j = 0; j < nr_node_ids; j++) { | 
 | 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); | 
 | 			if (!mask) | 
 | 				return; | 
 |  | 
 | 			sched_domains_numa_masks[i][j] = mask; | 
 |  | 
 | 			for (k = 0; k < nr_node_ids; k++) { | 
 | 				if (node_distance(j, k) > sched_domains_numa_distance[i]) | 
 | 					continue; | 
 |  | 
 | 				cpumask_or(mask, mask, cpumask_of_node(k)); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Compute default topology size */ | 
 | 	for (i = 0; sched_domain_topology[i].mask; i++); | 
 |  | 
 | 	tl = kzalloc((i + level + 1) * | 
 | 			sizeof(struct sched_domain_topology_level), GFP_KERNEL); | 
 | 	if (!tl) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Copy the default topology bits.. | 
 | 	 */ | 
 | 	for (i = 0; sched_domain_topology[i].mask; i++) | 
 | 		tl[i] = sched_domain_topology[i]; | 
 |  | 
 | 	/* | 
 | 	 * .. and append 'j' levels of NUMA goodness. | 
 | 	 */ | 
 | 	for (j = 0; j < level; i++, j++) { | 
 | 		tl[i] = (struct sched_domain_topology_level){ | 
 | 			.mask = sd_numa_mask, | 
 | 			.sd_flags = cpu_numa_flags, | 
 | 			.flags = SDTL_OVERLAP, | 
 | 			.numa_level = j, | 
 | 			SD_INIT_NAME(NUMA) | 
 | 		}; | 
 | 	} | 
 |  | 
 | 	sched_domain_topology = tl; | 
 |  | 
 | 	sched_domains_numa_levels = level; | 
 | } | 
 |  | 
 | static void sched_domains_numa_masks_set(int cpu) | 
 | { | 
 | 	int i, j; | 
 | 	int node = cpu_to_node(cpu); | 
 |  | 
 | 	for (i = 0; i < sched_domains_numa_levels; i++) { | 
 | 		for (j = 0; j < nr_node_ids; j++) { | 
 | 			if (node_distance(j, node) <= sched_domains_numa_distance[i]) | 
 | 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void sched_domains_numa_masks_clear(int cpu) | 
 | { | 
 | 	int i, j; | 
 | 	for (i = 0; i < sched_domains_numa_levels; i++) { | 
 | 		for (j = 0; j < nr_node_ids; j++) | 
 | 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Update sched_domains_numa_masks[level][node] array when new cpus | 
 |  * are onlined. | 
 |  */ | 
 | static int sched_domains_numa_masks_update(struct notifier_block *nfb, | 
 | 					   unsigned long action, | 
 | 					   void *hcpu) | 
 | { | 
 | 	int cpu = (long)hcpu; | 
 |  | 
 | 	switch (action & ~CPU_TASKS_FROZEN) { | 
 | 	case CPU_ONLINE: | 
 | 		sched_domains_numa_masks_set(cpu); | 
 | 		break; | 
 |  | 
 | 	case CPU_DEAD: | 
 | 		sched_domains_numa_masks_clear(cpu); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 | #else | 
 | static inline void sched_init_numa(void) | 
 | { | 
 | } | 
 |  | 
 | static int sched_domains_numa_masks_update(struct notifier_block *nfb, | 
 | 					   unsigned long action, | 
 | 					   void *hcpu) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | static int __sdt_alloc(const struct cpumask *cpu_map) | 
 | { | 
 | 	struct sched_domain_topology_level *tl; | 
 | 	int j; | 
 |  | 
 | 	for_each_sd_topology(tl) { | 
 | 		struct sd_data *sdd = &tl->data; | 
 |  | 
 | 		sdd->sd = alloc_percpu(struct sched_domain *); | 
 | 		if (!sdd->sd) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		sdd->sg = alloc_percpu(struct sched_group *); | 
 | 		if (!sdd->sg) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		sdd->sgc = alloc_percpu(struct sched_group_capacity *); | 
 | 		if (!sdd->sgc) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		for_each_cpu(j, cpu_map) { | 
 | 			struct sched_domain *sd; | 
 | 			struct sched_group *sg; | 
 | 			struct sched_group_capacity *sgc; | 
 |  | 
 | 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), | 
 | 					GFP_KERNEL, cpu_to_node(j)); | 
 | 			if (!sd) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			*per_cpu_ptr(sdd->sd, j) = sd; | 
 |  | 
 | 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), | 
 | 					GFP_KERNEL, cpu_to_node(j)); | 
 | 			if (!sg) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			sg->next = sg; | 
 |  | 
 | 			*per_cpu_ptr(sdd->sg, j) = sg; | 
 |  | 
 | 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), | 
 | 					GFP_KERNEL, cpu_to_node(j)); | 
 | 			if (!sgc) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			*per_cpu_ptr(sdd->sgc, j) = sgc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __sdt_free(const struct cpumask *cpu_map) | 
 | { | 
 | 	struct sched_domain_topology_level *tl; | 
 | 	int j; | 
 |  | 
 | 	for_each_sd_topology(tl) { | 
 | 		struct sd_data *sdd = &tl->data; | 
 |  | 
 | 		for_each_cpu(j, cpu_map) { | 
 | 			struct sched_domain *sd; | 
 |  | 
 | 			if (sdd->sd) { | 
 | 				sd = *per_cpu_ptr(sdd->sd, j); | 
 | 				if (sd && (sd->flags & SD_OVERLAP)) | 
 | 					free_sched_groups(sd->groups, 0); | 
 | 				kfree(*per_cpu_ptr(sdd->sd, j)); | 
 | 			} | 
 |  | 
 | 			if (sdd->sg) | 
 | 				kfree(*per_cpu_ptr(sdd->sg, j)); | 
 | 			if (sdd->sgc) | 
 | 				kfree(*per_cpu_ptr(sdd->sgc, j)); | 
 | 		} | 
 | 		free_percpu(sdd->sd); | 
 | 		sdd->sd = NULL; | 
 | 		free_percpu(sdd->sg); | 
 | 		sdd->sg = NULL; | 
 | 		free_percpu(sdd->sgc); | 
 | 		sdd->sgc = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, | 
 | 		const struct cpumask *cpu_map, struct sched_domain_attr *attr, | 
 | 		struct sched_domain *child, int cpu) | 
 | { | 
 | 	struct sched_domain *sd = sd_init(tl, cpu); | 
 | 	if (!sd) | 
 | 		return child; | 
 |  | 
 | 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); | 
 | 	if (child) { | 
 | 		sd->level = child->level + 1; | 
 | 		sched_domain_level_max = max(sched_domain_level_max, sd->level); | 
 | 		child->parent = sd; | 
 | 		sd->child = child; | 
 |  | 
 | 		if (!cpumask_subset(sched_domain_span(child), | 
 | 				    sched_domain_span(sd))) { | 
 | 			pr_err("BUG: arch topology borken\n"); | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 			pr_err("     the %s domain not a subset of the %s domain\n", | 
 | 					child->name, sd->name); | 
 | #endif | 
 | 			/* Fixup, ensure @sd has at least @child cpus. */ | 
 | 			cpumask_or(sched_domain_span(sd), | 
 | 				   sched_domain_span(sd), | 
 | 				   sched_domain_span(child)); | 
 | 		} | 
 |  | 
 | 	} | 
 | 	set_domain_attribute(sd, attr); | 
 |  | 
 | 	return sd; | 
 | } | 
 |  | 
 | /* | 
 |  * Build sched domains for a given set of cpus and attach the sched domains | 
 |  * to the individual cpus | 
 |  */ | 
 | static int build_sched_domains(const struct cpumask *cpu_map, | 
 | 			       struct sched_domain_attr *attr) | 
 | { | 
 | 	enum s_alloc alloc_state; | 
 | 	struct sched_domain *sd; | 
 | 	struct s_data d; | 
 | 	int i, ret = -ENOMEM; | 
 |  | 
 | 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map); | 
 | 	if (alloc_state != sa_rootdomain) | 
 | 		goto error; | 
 |  | 
 | 	/* Set up domains for cpus specified by the cpu_map. */ | 
 | 	for_each_cpu(i, cpu_map) { | 
 | 		struct sched_domain_topology_level *tl; | 
 |  | 
 | 		sd = NULL; | 
 | 		for_each_sd_topology(tl) { | 
 | 			sd = build_sched_domain(tl, cpu_map, attr, sd, i); | 
 | 			if (tl == sched_domain_topology) | 
 | 				*per_cpu_ptr(d.sd, i) = sd; | 
 | 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) | 
 | 				sd->flags |= SD_OVERLAP; | 
 | 			if (cpumask_equal(cpu_map, sched_domain_span(sd))) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Build the groups for the domains */ | 
 | 	for_each_cpu(i, cpu_map) { | 
 | 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { | 
 | 			sd->span_weight = cpumask_weight(sched_domain_span(sd)); | 
 | 			if (sd->flags & SD_OVERLAP) { | 
 | 				if (build_overlap_sched_groups(sd, i)) | 
 | 					goto error; | 
 | 			} else { | 
 | 				if (build_sched_groups(sd, i)) | 
 | 					goto error; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Calculate CPU capacity for physical packages and nodes */ | 
 | 	for (i = nr_cpumask_bits-1; i >= 0; i--) { | 
 | 		if (!cpumask_test_cpu(i, cpu_map)) | 
 | 			continue; | 
 |  | 
 | 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { | 
 | 			claim_allocations(i, sd); | 
 | 			init_sched_groups_capacity(i, sd); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Attach the domains */ | 
 | 	rcu_read_lock(); | 
 | 	for_each_cpu(i, cpu_map) { | 
 | 		sd = *per_cpu_ptr(d.sd, i); | 
 | 		cpu_attach_domain(sd, d.rd, i); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	ret = 0; | 
 | error: | 
 | 	__free_domain_allocs(&d, alloc_state, cpu_map); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static cpumask_var_t *doms_cur;	/* current sched domains */ | 
 | static int ndoms_cur;		/* number of sched domains in 'doms_cur' */ | 
 | static struct sched_domain_attr *dattr_cur; | 
 | 				/* attribues of custom domains in 'doms_cur' */ | 
 |  | 
 | /* | 
 |  * Special case: If a kmalloc of a doms_cur partition (array of | 
 |  * cpumask) fails, then fallback to a single sched domain, | 
 |  * as determined by the single cpumask fallback_doms. | 
 |  */ | 
 | static cpumask_var_t fallback_doms; | 
 |  | 
 | /* | 
 |  * arch_update_cpu_topology lets virtualized architectures update the | 
 |  * cpu core maps. It is supposed to return 1 if the topology changed | 
 |  * or 0 if it stayed the same. | 
 |  */ | 
 | int __weak arch_update_cpu_topology(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | cpumask_var_t *alloc_sched_domains(unsigned int ndoms) | 
 | { | 
 | 	int i; | 
 | 	cpumask_var_t *doms; | 
 |  | 
 | 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | 
 | 	if (!doms) | 
 | 		return NULL; | 
 | 	for (i = 0; i < ndoms; i++) { | 
 | 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | 
 | 			free_sched_domains(doms, i); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	return doms; | 
 | } | 
 |  | 
 | void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | 
 | { | 
 | 	unsigned int i; | 
 | 	for (i = 0; i < ndoms; i++) | 
 | 		free_cpumask_var(doms[i]); | 
 | 	kfree(doms); | 
 | } | 
 |  | 
 | /* | 
 |  * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 
 |  * For now this just excludes isolated cpus, but could be used to | 
 |  * exclude other special cases in the future. | 
 |  */ | 
 | static int init_sched_domains(const struct cpumask *cpu_map) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	arch_update_cpu_topology(); | 
 | 	ndoms_cur = 1; | 
 | 	doms_cur = alloc_sched_domains(ndoms_cur); | 
 | 	if (!doms_cur) | 
 | 		doms_cur = &fallback_doms; | 
 | 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); | 
 | 	err = build_sched_domains(doms_cur[0], NULL); | 
 | 	register_sched_domain_sysctl(); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Detach sched domains from a group of cpus specified in cpu_map | 
 |  * These cpus will now be attached to the NULL domain | 
 |  */ | 
 | static void detach_destroy_domains(const struct cpumask *cpu_map) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_cpu(i, cpu_map) | 
 | 		cpu_attach_domain(NULL, &def_root_domain, i); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* handle null as "default" */ | 
 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | 
 | 			struct sched_domain_attr *new, int idx_new) | 
 | { | 
 | 	struct sched_domain_attr tmp; | 
 |  | 
 | 	/* fast path */ | 
 | 	if (!new && !cur) | 
 | 		return 1; | 
 |  | 
 | 	tmp = SD_ATTR_INIT; | 
 | 	return !memcmp(cur ? (cur + idx_cur) : &tmp, | 
 | 			new ? (new + idx_new) : &tmp, | 
 | 			sizeof(struct sched_domain_attr)); | 
 | } | 
 |  | 
 | /* | 
 |  * Partition sched domains as specified by the 'ndoms_new' | 
 |  * cpumasks in the array doms_new[] of cpumasks. This compares | 
 |  * doms_new[] to the current sched domain partitioning, doms_cur[]. | 
 |  * It destroys each deleted domain and builds each new domain. | 
 |  * | 
 |  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. | 
 |  * The masks don't intersect (don't overlap.) We should setup one | 
 |  * sched domain for each mask. CPUs not in any of the cpumasks will | 
 |  * not be load balanced. If the same cpumask appears both in the | 
 |  * current 'doms_cur' domains and in the new 'doms_new', we can leave | 
 |  * it as it is. | 
 |  * | 
 |  * The passed in 'doms_new' should be allocated using | 
 |  * alloc_sched_domains.  This routine takes ownership of it and will | 
 |  * free_sched_domains it when done with it. If the caller failed the | 
 |  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, | 
 |  * and partition_sched_domains() will fallback to the single partition | 
 |  * 'fallback_doms', it also forces the domains to be rebuilt. | 
 |  * | 
 |  * If doms_new == NULL it will be replaced with cpu_online_mask. | 
 |  * ndoms_new == 0 is a special case for destroying existing domains, | 
 |  * and it will not create the default domain. | 
 |  * | 
 |  * Call with hotplug lock held | 
 |  */ | 
 | void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], | 
 | 			     struct sched_domain_attr *dattr_new) | 
 | { | 
 | 	int i, j, n; | 
 | 	int new_topology; | 
 |  | 
 | 	mutex_lock(&sched_domains_mutex); | 
 |  | 
 | 	/* always unregister in case we don't destroy any domains */ | 
 | 	unregister_sched_domain_sysctl(); | 
 |  | 
 | 	/* Let architecture update cpu core mappings. */ | 
 | 	new_topology = arch_update_cpu_topology(); | 
 |  | 
 | 	n = doms_new ? ndoms_new : 0; | 
 |  | 
 | 	/* Destroy deleted domains */ | 
 | 	for (i = 0; i < ndoms_cur; i++) { | 
 | 		for (j = 0; j < n && !new_topology; j++) { | 
 | 			if (cpumask_equal(doms_cur[i], doms_new[j]) | 
 | 			    && dattrs_equal(dattr_cur, i, dattr_new, j)) | 
 | 				goto match1; | 
 | 		} | 
 | 		/* no match - a current sched domain not in new doms_new[] */ | 
 | 		detach_destroy_domains(doms_cur[i]); | 
 | match1: | 
 | 		; | 
 | 	} | 
 |  | 
 | 	n = ndoms_cur; | 
 | 	if (doms_new == NULL) { | 
 | 		n = 0; | 
 | 		doms_new = &fallback_doms; | 
 | 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); | 
 | 		WARN_ON_ONCE(dattr_new); | 
 | 	} | 
 |  | 
 | 	/* Build new domains */ | 
 | 	for (i = 0; i < ndoms_new; i++) { | 
 | 		for (j = 0; j < n && !new_topology; j++) { | 
 | 			if (cpumask_equal(doms_new[i], doms_cur[j]) | 
 | 			    && dattrs_equal(dattr_new, i, dattr_cur, j)) | 
 | 				goto match2; | 
 | 		} | 
 | 		/* no match - add a new doms_new */ | 
 | 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); | 
 | match2: | 
 | 		; | 
 | 	} | 
 |  | 
 | 	/* Remember the new sched domains */ | 
 | 	if (doms_cur != &fallback_doms) | 
 | 		free_sched_domains(doms_cur, ndoms_cur); | 
 | 	kfree(dattr_cur);	/* kfree(NULL) is safe */ | 
 | 	doms_cur = doms_new; | 
 | 	dattr_cur = dattr_new; | 
 | 	ndoms_cur = ndoms_new; | 
 |  | 
 | 	register_sched_domain_sysctl(); | 
 |  | 
 | 	mutex_unlock(&sched_domains_mutex); | 
 | } | 
 |  | 
 | static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */ | 
 |  | 
 | /* | 
 |  * Update cpusets according to cpu_active mask.  If cpusets are | 
 |  * disabled, cpuset_update_active_cpus() becomes a simple wrapper | 
 |  * around partition_sched_domains(). | 
 |  * | 
 |  * If we come here as part of a suspend/resume, don't touch cpusets because we | 
 |  * want to restore it back to its original state upon resume anyway. | 
 |  */ | 
 | static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, | 
 | 			     void *hcpu) | 
 | { | 
 | 	switch (action) { | 
 | 	case CPU_ONLINE_FROZEN: | 
 | 	case CPU_DOWN_FAILED_FROZEN: | 
 |  | 
 | 		/* | 
 | 		 * num_cpus_frozen tracks how many CPUs are involved in suspend | 
 | 		 * resume sequence. As long as this is not the last online | 
 | 		 * operation in the resume sequence, just build a single sched | 
 | 		 * domain, ignoring cpusets. | 
 | 		 */ | 
 | 		num_cpus_frozen--; | 
 | 		if (likely(num_cpus_frozen)) { | 
 | 			partition_sched_domains(1, NULL, NULL); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * This is the last CPU online operation. So fall through and | 
 | 		 * restore the original sched domains by considering the | 
 | 		 * cpuset configurations. | 
 | 		 */ | 
 |  | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_DOWN_FAILED: | 
 | 		cpuset_update_active_cpus(true); | 
 | 		break; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, | 
 | 			       void *hcpu) | 
 | { | 
 | 	switch (action) { | 
 | 	case CPU_DOWN_PREPARE: | 
 | 		cpuset_update_active_cpus(false); | 
 | 		break; | 
 | 	case CPU_DOWN_PREPARE_FROZEN: | 
 | 		num_cpus_frozen++; | 
 | 		partition_sched_domains(1, NULL, NULL); | 
 | 		break; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | void __init sched_init_smp(void) | 
 | { | 
 | 	cpumask_var_t non_isolated_cpus; | 
 |  | 
 | 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | 
 | 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | 
 |  | 
 | 	sched_init_numa(); | 
 |  | 
 | 	/* | 
 | 	 * There's no userspace yet to cause hotplug operations; hence all the | 
 | 	 * cpu masks are stable and all blatant races in the below code cannot | 
 | 	 * happen. | 
 | 	 */ | 
 | 	mutex_lock(&sched_domains_mutex); | 
 | 	init_sched_domains(cpu_active_mask); | 
 | 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | 
 | 	if (cpumask_empty(non_isolated_cpus)) | 
 | 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | 
 | 	mutex_unlock(&sched_domains_mutex); | 
 |  | 
 | 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); | 
 | 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); | 
 | 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); | 
 |  | 
 | 	init_hrtick(); | 
 |  | 
 | 	/* Move init over to a non-isolated CPU */ | 
 | 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) | 
 | 		BUG(); | 
 | 	sched_init_granularity(); | 
 | 	free_cpumask_var(non_isolated_cpus); | 
 |  | 
 | 	init_sched_rt_class(); | 
 | 	init_sched_dl_class(); | 
 | } | 
 | #else | 
 | void __init sched_init_smp(void) | 
 | { | 
 | 	sched_init_granularity(); | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | const_debug unsigned int sysctl_timer_migration = 1; | 
 |  | 
 | int in_sched_functions(unsigned long addr) | 
 | { | 
 | 	return in_lock_functions(addr) || | 
 | 		(addr >= (unsigned long)__sched_text_start | 
 | 		&& addr < (unsigned long)__sched_text_end); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 | /* | 
 |  * Default task group. | 
 |  * Every task in system belongs to this group at bootup. | 
 |  */ | 
 | struct task_group root_task_group; | 
 | LIST_HEAD(task_groups); | 
 | #endif | 
 |  | 
 | DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); | 
 |  | 
 | void __init sched_init(void) | 
 | { | 
 | 	int i, j; | 
 | 	unsigned long alloc_size = 0, ptr; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 
 | #endif | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 
 | #endif | 
 | #ifdef CONFIG_CPUMASK_OFFSTACK | 
 | 	alloc_size += num_possible_cpus() * cpumask_size(); | 
 | #endif | 
 | 	if (alloc_size) { | 
 | 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 		root_task_group.se = (struct sched_entity **)ptr; | 
 | 		ptr += nr_cpu_ids * sizeof(void **); | 
 |  | 
 | 		root_task_group.cfs_rq = (struct cfs_rq **)ptr; | 
 | 		ptr += nr_cpu_ids * sizeof(void **); | 
 |  | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 		root_task_group.rt_se = (struct sched_rt_entity **)ptr; | 
 | 		ptr += nr_cpu_ids * sizeof(void **); | 
 |  | 
 | 		root_task_group.rt_rq = (struct rt_rq **)ptr; | 
 | 		ptr += nr_cpu_ids * sizeof(void **); | 
 |  | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 | #ifdef CONFIG_CPUMASK_OFFSTACK | 
 | 		for_each_possible_cpu(i) { | 
 | 			per_cpu(load_balance_mask, i) = (void *)ptr; | 
 | 			ptr += cpumask_size(); | 
 | 		} | 
 | #endif /* CONFIG_CPUMASK_OFFSTACK */ | 
 | 	} | 
 |  | 
 | 	init_rt_bandwidth(&def_rt_bandwidth, | 
 | 			global_rt_period(), global_rt_runtime()); | 
 | 	init_dl_bandwidth(&def_dl_bandwidth, | 
 | 			global_rt_period(), global_rt_runtime()); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	init_defrootdomain(); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	init_rt_bandwidth(&root_task_group.rt_bandwidth, | 
 | 			global_rt_period(), global_rt_runtime()); | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 | 	list_add(&root_task_group.list, &task_groups); | 
 | 	INIT_LIST_HEAD(&root_task_group.children); | 
 | 	INIT_LIST_HEAD(&root_task_group.siblings); | 
 | 	autogroup_init(&init_task); | 
 |  | 
 | #endif /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rq *rq; | 
 |  | 
 | 		rq = cpu_rq(i); | 
 | 		raw_spin_lock_init(&rq->lock); | 
 | 		rq->nr_running = 0; | 
 | 		rq->calc_load_active = 0; | 
 | 		rq->calc_load_update = jiffies + LOAD_FREQ; | 
 | 		init_cfs_rq(&rq->cfs); | 
 | 		init_rt_rq(&rq->rt, rq); | 
 | 		init_dl_rq(&rq->dl, rq); | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 		root_task_group.shares = ROOT_TASK_GROUP_LOAD; | 
 | 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | 
 | 		/* | 
 | 		 * How much cpu bandwidth does root_task_group get? | 
 | 		 * | 
 | 		 * In case of task-groups formed thr' the cgroup filesystem, it | 
 | 		 * gets 100% of the cpu resources in the system. This overall | 
 | 		 * system cpu resource is divided among the tasks of | 
 | 		 * root_task_group and its child task-groups in a fair manner, | 
 | 		 * based on each entity's (task or task-group's) weight | 
 | 		 * (se->load.weight). | 
 | 		 * | 
 | 		 * In other words, if root_task_group has 10 tasks of weight | 
 | 		 * 1024) and two child groups A0 and A1 (of weight 1024 each), | 
 | 		 * then A0's share of the cpu resource is: | 
 | 		 * | 
 | 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | 
 | 		 * | 
 | 		 * We achieve this by letting root_task_group's tasks sit | 
 | 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL). | 
 | 		 */ | 
 | 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth); | 
 | 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); | 
 | #endif | 
 |  | 
 | 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++) | 
 | 			rq->cpu_load[j] = 0; | 
 |  | 
 | 		rq->last_load_update_tick = jiffies; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 		rq->sd = NULL; | 
 | 		rq->rd = NULL; | 
 | 		rq->cpu_capacity = SCHED_CAPACITY_SCALE; | 
 | 		rq->post_schedule = 0; | 
 | 		rq->active_balance = 0; | 
 | 		rq->next_balance = jiffies; | 
 | 		rq->push_cpu = 0; | 
 | 		rq->cpu = i; | 
 | 		rq->online = 0; | 
 | 		rq->idle_stamp = 0; | 
 | 		rq->avg_idle = 2*sysctl_sched_migration_cost; | 
 | 		rq->max_idle_balance_cost = sysctl_sched_migration_cost; | 
 |  | 
 | 		INIT_LIST_HEAD(&rq->cfs_tasks); | 
 |  | 
 | 		rq_attach_root(rq, &def_root_domain); | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | 		rq->nohz_flags = 0; | 
 | #endif | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | 		rq->last_sched_tick = 0; | 
 | #endif | 
 | #endif | 
 | 		init_rq_hrtick(rq); | 
 | 		atomic_set(&rq->nr_iowait, 0); | 
 | 	} | 
 |  | 
 | 	set_load_weight(&init_task); | 
 |  | 
 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
 | 	INIT_HLIST_HEAD(&init_task.preempt_notifiers); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * The boot idle thread does lazy MMU switching as well: | 
 | 	 */ | 
 | 	atomic_inc(&init_mm.mm_count); | 
 | 	enter_lazy_tlb(&init_mm, current); | 
 |  | 
 | 	/* | 
 | 	 * Make us the idle thread. Technically, schedule() should not be | 
 | 	 * called from this thread, however somewhere below it might be, | 
 | 	 * but because we are the idle thread, we just pick up running again | 
 | 	 * when this runqueue becomes "idle". | 
 | 	 */ | 
 | 	init_idle(current, smp_processor_id()); | 
 |  | 
 | 	calc_load_update = jiffies + LOAD_FREQ; | 
 |  | 
 | 	/* | 
 | 	 * During early bootup we pretend to be a normal task: | 
 | 	 */ | 
 | 	current->sched_class = &fair_sched_class; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); | 
 | 	/* May be allocated at isolcpus cmdline parse time */ | 
 | 	if (cpu_isolated_map == NULL) | 
 | 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 
 | 	idle_thread_set_boot_cpu(); | 
 | 	set_cpu_rq_start_time(); | 
 | #endif | 
 | 	init_sched_fair_class(); | 
 |  | 
 | 	scheduler_running = 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP | 
 | static inline int preempt_count_equals(int preempt_offset) | 
 | { | 
 | 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); | 
 |  | 
 | 	return (nested == preempt_offset); | 
 | } | 
 |  | 
 | void __might_sleep(const char *file, int line, int preempt_offset) | 
 | { | 
 | 	static unsigned long prev_jiffy;	/* ratelimiting */ | 
 |  | 
 | 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ | 
 | 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && | 
 | 	     !is_idle_task(current)) || | 
 | 	    system_state != SYSTEM_RUNNING || oops_in_progress) | 
 | 		return; | 
 | 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
 | 		return; | 
 | 	prev_jiffy = jiffies; | 
 |  | 
 | 	printk(KERN_ERR | 
 | 		"BUG: sleeping function called from invalid context at %s:%d\n", | 
 | 			file, line); | 
 | 	printk(KERN_ERR | 
 | 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | 
 | 			in_atomic(), irqs_disabled(), | 
 | 			current->pid, current->comm); | 
 |  | 
 | 	debug_show_held_locks(current); | 
 | 	if (irqs_disabled()) | 
 | 		print_irqtrace_events(current); | 
 | #ifdef CONFIG_DEBUG_PREEMPT | 
 | 	if (!preempt_count_equals(preempt_offset)) { | 
 | 		pr_err("Preemption disabled at:"); | 
 | 		print_ip_sym(current->preempt_disable_ip); | 
 | 		pr_cont("\n"); | 
 | 	} | 
 | #endif | 
 | 	dump_stack(); | 
 | } | 
 | EXPORT_SYMBOL(__might_sleep); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MAGIC_SYSRQ | 
 | static void normalize_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	const struct sched_class *prev_class = p->sched_class; | 
 | 	struct sched_attr attr = { | 
 | 		.sched_policy = SCHED_NORMAL, | 
 | 	}; | 
 | 	int old_prio = p->prio; | 
 | 	int queued; | 
 |  | 
 | 	queued = task_on_rq_queued(p); | 
 | 	if (queued) | 
 | 		dequeue_task(rq, p, 0); | 
 | 	__setscheduler(rq, p, &attr); | 
 | 	if (queued) { | 
 | 		enqueue_task(rq, p, 0); | 
 | 		resched_curr(rq); | 
 | 	} | 
 |  | 
 | 	check_class_changed(rq, p, prev_class, old_prio); | 
 | } | 
 |  | 
 | void normalize_rt_tasks(void) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	for_each_process_thread(g, p) { | 
 | 		/* | 
 | 		 * Only normalize user tasks: | 
 | 		 */ | 
 | 		if (p->flags & PF_KTHREAD) | 
 | 			continue; | 
 |  | 
 | 		p->se.exec_start		= 0; | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 		p->se.statistics.wait_start	= 0; | 
 | 		p->se.statistics.sleep_start	= 0; | 
 | 		p->se.statistics.block_start	= 0; | 
 | #endif | 
 |  | 
 | 		if (!dl_task(p) && !rt_task(p)) { | 
 | 			/* | 
 | 			 * Renice negative nice level userspace | 
 | 			 * tasks back to 0: | 
 | 			 */ | 
 | 			if (task_nice(p) < 0) | 
 | 				set_user_nice(p, 0); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		rq = task_rq_lock(p, &flags); | 
 | 		normalize_task(rq, p); | 
 | 		task_rq_unlock(rq, p, &flags); | 
 | 	} | 
 | 	read_unlock(&tasklist_lock); | 
 | } | 
 |  | 
 | #endif /* CONFIG_MAGIC_SYSRQ */ | 
 |  | 
 | #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) | 
 | /* | 
 |  * These functions are only useful for the IA64 MCA handling, or kdb. | 
 |  * | 
 |  * They can only be called when the whole system has been | 
 |  * stopped - every CPU needs to be quiescent, and no scheduling | 
 |  * activity can take place. Using them for anything else would | 
 |  * be a serious bug, and as a result, they aren't even visible | 
 |  * under any other configuration. | 
 |  */ | 
 |  | 
 | /** | 
 |  * curr_task - return the current task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  * | 
 |  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
 |  * | 
 |  * Return: The current task for @cpu. | 
 |  */ | 
 | struct task_struct *curr_task(int cpu) | 
 | { | 
 | 	return cpu_curr(cpu); | 
 | } | 
 |  | 
 | #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ | 
 |  | 
 | #ifdef CONFIG_IA64 | 
 | /** | 
 |  * set_curr_task - set the current task for a given cpu. | 
 |  * @cpu: the processor in question. | 
 |  * @p: the task pointer to set. | 
 |  * | 
 |  * Description: This function must only be used when non-maskable interrupts | 
 |  * are serviced on a separate stack. It allows the architecture to switch the | 
 |  * notion of the current task on a cpu in a non-blocking manner. This function | 
 |  * must be called with all CPU's synchronized, and interrupts disabled, the | 
 |  * and caller must save the original value of the current task (see | 
 |  * curr_task() above) and restore that value before reenabling interrupts and | 
 |  * re-starting the system. | 
 |  * | 
 |  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
 |  */ | 
 | void set_curr_task(int cpu, struct task_struct *p) | 
 | { | 
 | 	cpu_curr(cpu) = p; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 | /* task_group_lock serializes the addition/removal of task groups */ | 
 | static DEFINE_SPINLOCK(task_group_lock); | 
 |  | 
 | static void free_sched_group(struct task_group *tg) | 
 | { | 
 | 	free_fair_sched_group(tg); | 
 | 	free_rt_sched_group(tg); | 
 | 	autogroup_free(tg); | 
 | 	kfree(tg); | 
 | } | 
 |  | 
 | /* allocate runqueue etc for a new task group */ | 
 | struct task_group *sched_create_group(struct task_group *parent) | 
 | { | 
 | 	struct task_group *tg; | 
 |  | 
 | 	tg = kzalloc(sizeof(*tg), GFP_KERNEL); | 
 | 	if (!tg) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (!alloc_fair_sched_group(tg, parent)) | 
 | 		goto err; | 
 |  | 
 | 	if (!alloc_rt_sched_group(tg, parent)) | 
 | 		goto err; | 
 |  | 
 | 	return tg; | 
 |  | 
 | err: | 
 | 	free_sched_group(tg); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | void sched_online_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&task_group_lock, flags); | 
 | 	list_add_rcu(&tg->list, &task_groups); | 
 |  | 
 | 	WARN_ON(!parent); /* root should already exist */ | 
 |  | 
 | 	tg->parent = parent; | 
 | 	INIT_LIST_HEAD(&tg->children); | 
 | 	list_add_rcu(&tg->siblings, &parent->children); | 
 | 	spin_unlock_irqrestore(&task_group_lock, flags); | 
 | } | 
 |  | 
 | /* rcu callback to free various structures associated with a task group */ | 
 | static void free_sched_group_rcu(struct rcu_head *rhp) | 
 | { | 
 | 	/* now it should be safe to free those cfs_rqs */ | 
 | 	free_sched_group(container_of(rhp, struct task_group, rcu)); | 
 | } | 
 |  | 
 | /* Destroy runqueue etc associated with a task group */ | 
 | void sched_destroy_group(struct task_group *tg) | 
 | { | 
 | 	/* wait for possible concurrent references to cfs_rqs complete */ | 
 | 	call_rcu(&tg->rcu, free_sched_group_rcu); | 
 | } | 
 |  | 
 | void sched_offline_group(struct task_group *tg) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	/* end participation in shares distribution */ | 
 | 	for_each_possible_cpu(i) | 
 | 		unregister_fair_sched_group(tg, i); | 
 |  | 
 | 	spin_lock_irqsave(&task_group_lock, flags); | 
 | 	list_del_rcu(&tg->list); | 
 | 	list_del_rcu(&tg->siblings); | 
 | 	spin_unlock_irqrestore(&task_group_lock, flags); | 
 | } | 
 |  | 
 | /* change task's runqueue when it moves between groups. | 
 |  *	The caller of this function should have put the task in its new group | 
 |  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | 
 |  *	reflect its new group. | 
 |  */ | 
 | void sched_move_task(struct task_struct *tsk) | 
 | { | 
 | 	struct task_group *tg; | 
 | 	int queued, running; | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 |  | 
 | 	rq = task_rq_lock(tsk, &flags); | 
 |  | 
 | 	running = task_current(rq, tsk); | 
 | 	queued = task_on_rq_queued(tsk); | 
 |  | 
 | 	if (queued) | 
 | 		dequeue_task(rq, tsk, 0); | 
 | 	if (unlikely(running)) | 
 | 		put_prev_task(rq, tsk); | 
 |  | 
 | 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, | 
 | 				lockdep_is_held(&tsk->sighand->siglock)), | 
 | 			  struct task_group, css); | 
 | 	tg = autogroup_task_group(tsk, tg); | 
 | 	tsk->sched_task_group = tg; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	if (tsk->sched_class->task_move_group) | 
 | 		tsk->sched_class->task_move_group(tsk, queued); | 
 | 	else | 
 | #endif | 
 | 		set_task_rq(tsk, task_cpu(tsk)); | 
 |  | 
 | 	if (unlikely(running)) | 
 | 		tsk->sched_class->set_curr_task(rq); | 
 | 	if (queued) | 
 | 		enqueue_task(rq, tsk, 0); | 
 |  | 
 | 	task_rq_unlock(rq, tsk, &flags); | 
 | } | 
 | #endif /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | /* | 
 |  * Ensure that the real time constraints are schedulable. | 
 |  */ | 
 | static DEFINE_MUTEX(rt_constraints_mutex); | 
 |  | 
 | /* Must be called with tasklist_lock held */ | 
 | static inline int tg_has_rt_tasks(struct task_group *tg) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 |  | 
 | 	for_each_process_thread(g, p) { | 
 | 		if (rt_task(p) && task_group(p) == tg) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct rt_schedulable_data { | 
 | 	struct task_group *tg; | 
 | 	u64 rt_period; | 
 | 	u64 rt_runtime; | 
 | }; | 
 |  | 
 | static int tg_rt_schedulable(struct task_group *tg, void *data) | 
 | { | 
 | 	struct rt_schedulable_data *d = data; | 
 | 	struct task_group *child; | 
 | 	unsigned long total, sum = 0; | 
 | 	u64 period, runtime; | 
 |  | 
 | 	period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
 | 	runtime = tg->rt_bandwidth.rt_runtime; | 
 |  | 
 | 	if (tg == d->tg) { | 
 | 		period = d->rt_period; | 
 | 		runtime = d->rt_runtime; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Cannot have more runtime than the period. | 
 | 	 */ | 
 | 	if (runtime > period && runtime != RUNTIME_INF) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Ensure we don't starve existing RT tasks. | 
 | 	 */ | 
 | 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	total = to_ratio(period, runtime); | 
 |  | 
 | 	/* | 
 | 	 * Nobody can have more than the global setting allows. | 
 | 	 */ | 
 | 	if (total > to_ratio(global_rt_period(), global_rt_runtime())) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * The sum of our children's runtime should not exceed our own. | 
 | 	 */ | 
 | 	list_for_each_entry_rcu(child, &tg->children, siblings) { | 
 | 		period = ktime_to_ns(child->rt_bandwidth.rt_period); | 
 | 		runtime = child->rt_bandwidth.rt_runtime; | 
 |  | 
 | 		if (child == d->tg) { | 
 | 			period = d->rt_period; | 
 | 			runtime = d->rt_runtime; | 
 | 		} | 
 |  | 
 | 		sum += to_ratio(period, runtime); | 
 | 	} | 
 |  | 
 | 	if (sum > total) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	struct rt_schedulable_data data = { | 
 | 		.tg = tg, | 
 | 		.rt_period = period, | 
 | 		.rt_runtime = runtime, | 
 | 	}; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int tg_set_rt_bandwidth(struct task_group *tg, | 
 | 		u64 rt_period, u64 rt_runtime) | 
 | { | 
 | 	int i, err = 0; | 
 |  | 
 | 	mutex_lock(&rt_constraints_mutex); | 
 | 	read_lock(&tasklist_lock); | 
 | 	err = __rt_schedulable(tg, rt_period, rt_runtime); | 
 | 	if (err) | 
 | 		goto unlock; | 
 |  | 
 | 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 
 | 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | 
 | 	tg->rt_bandwidth.rt_runtime = rt_runtime; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rt_rq *rt_rq = tg->rt_rq[i]; | 
 |  | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		rt_rq->rt_runtime = rt_runtime; | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 	} | 
 | 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 
 | unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	mutex_unlock(&rt_constraints_mutex); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | 
 | { | 
 | 	u64 rt_runtime, rt_period; | 
 |  | 
 | 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
 | 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | 
 | 	if (rt_runtime_us < 0) | 
 | 		rt_runtime = RUNTIME_INF; | 
 |  | 
 | 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | 
 | } | 
 |  | 
 | static long sched_group_rt_runtime(struct task_group *tg) | 
 | { | 
 | 	u64 rt_runtime_us; | 
 |  | 
 | 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | 
 | 		return -1; | 
 |  | 
 | 	rt_runtime_us = tg->rt_bandwidth.rt_runtime; | 
 | 	do_div(rt_runtime_us, NSEC_PER_USEC); | 
 | 	return rt_runtime_us; | 
 | } | 
 |  | 
 | static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | 
 | { | 
 | 	u64 rt_runtime, rt_period; | 
 |  | 
 | 	rt_period = (u64)rt_period_us * NSEC_PER_USEC; | 
 | 	rt_runtime = tg->rt_bandwidth.rt_runtime; | 
 |  | 
 | 	if (rt_period == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | 
 | } | 
 |  | 
 | static long sched_group_rt_period(struct task_group *tg) | 
 | { | 
 | 	u64 rt_period_us; | 
 |  | 
 | 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
 | 	do_div(rt_period_us, NSEC_PER_USEC); | 
 | 	return rt_period_us; | 
 | } | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | static int sched_rt_global_constraints(void) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&rt_constraints_mutex); | 
 | 	read_lock(&tasklist_lock); | 
 | 	ret = __rt_schedulable(NULL, 0, 0); | 
 | 	read_unlock(&tasklist_lock); | 
 | 	mutex_unlock(&rt_constraints_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | 
 | { | 
 | 	/* Don't accept realtime tasks when there is no way for them to run */ | 
 | 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | #else /* !CONFIG_RT_GROUP_SCHED */ | 
 | static int sched_rt_global_constraints(void) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int i, ret = 0; | 
 |  | 
 | 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rt_rq *rt_rq = &cpu_rq(i)->rt; | 
 |  | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		rt_rq->rt_runtime = global_rt_runtime(); | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 	} | 
 | 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | static int sched_dl_global_constraints(void) | 
 | { | 
 | 	u64 runtime = global_rt_runtime(); | 
 | 	u64 period = global_rt_period(); | 
 | 	u64 new_bw = to_ratio(period, runtime); | 
 | 	struct dl_bw *dl_b; | 
 | 	int cpu, ret = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Here we want to check the bandwidth not being set to some | 
 | 	 * value smaller than the currently allocated bandwidth in | 
 | 	 * any of the root_domains. | 
 | 	 * | 
 | 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than | 
 | 	 * cycling on root_domains... Discussion on different/better | 
 | 	 * solutions is welcome! | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		rcu_read_lock_sched(); | 
 | 		dl_b = dl_bw_of(cpu); | 
 |  | 
 | 		raw_spin_lock_irqsave(&dl_b->lock, flags); | 
 | 		if (new_bw < dl_b->total_bw) | 
 | 			ret = -EBUSY; | 
 | 		raw_spin_unlock_irqrestore(&dl_b->lock, flags); | 
 |  | 
 | 		rcu_read_unlock_sched(); | 
 |  | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void sched_dl_do_global(void) | 
 | { | 
 | 	u64 new_bw = -1; | 
 | 	struct dl_bw *dl_b; | 
 | 	int cpu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	def_dl_bandwidth.dl_period = global_rt_period(); | 
 | 	def_dl_bandwidth.dl_runtime = global_rt_runtime(); | 
 |  | 
 | 	if (global_rt_runtime() != RUNTIME_INF) | 
 | 		new_bw = to_ratio(global_rt_period(), global_rt_runtime()); | 
 |  | 
 | 	/* | 
 | 	 * FIXME: As above... | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		rcu_read_lock_sched(); | 
 | 		dl_b = dl_bw_of(cpu); | 
 |  | 
 | 		raw_spin_lock_irqsave(&dl_b->lock, flags); | 
 | 		dl_b->bw = new_bw; | 
 | 		raw_spin_unlock_irqrestore(&dl_b->lock, flags); | 
 |  | 
 | 		rcu_read_unlock_sched(); | 
 | 	} | 
 | } | 
 |  | 
 | static int sched_rt_global_validate(void) | 
 | { | 
 | 	if (sysctl_sched_rt_period <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) && | 
 | 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void sched_rt_do_global(void) | 
 | { | 
 | 	def_rt_bandwidth.rt_runtime = global_rt_runtime(); | 
 | 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); | 
 | } | 
 |  | 
 | int sched_rt_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int old_period, old_runtime; | 
 | 	static DEFINE_MUTEX(mutex); | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&mutex); | 
 | 	old_period = sysctl_sched_rt_period; | 
 | 	old_runtime = sysctl_sched_rt_runtime; | 
 |  | 
 | 	ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
 |  | 
 | 	if (!ret && write) { | 
 | 		ret = sched_rt_global_validate(); | 
 | 		if (ret) | 
 | 			goto undo; | 
 |  | 
 | 		ret = sched_rt_global_constraints(); | 
 | 		if (ret) | 
 | 			goto undo; | 
 |  | 
 | 		ret = sched_dl_global_constraints(); | 
 | 		if (ret) | 
 | 			goto undo; | 
 |  | 
 | 		sched_rt_do_global(); | 
 | 		sched_dl_do_global(); | 
 | 	} | 
 | 	if (0) { | 
 | undo: | 
 | 		sysctl_sched_rt_period = old_period; | 
 | 		sysctl_sched_rt_runtime = old_runtime; | 
 | 	} | 
 | 	mutex_unlock(&mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int sched_rr_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret; | 
 | 	static DEFINE_MUTEX(mutex); | 
 |  | 
 | 	mutex_lock(&mutex); | 
 | 	ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
 | 	/* make sure that internally we keep jiffies */ | 
 | 	/* also, writing zero resets timeslice to default */ | 
 | 	if (!ret && write) { | 
 | 		sched_rr_timeslice = sched_rr_timeslice <= 0 ? | 
 | 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); | 
 | 	} | 
 | 	mutex_unlock(&mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 |  | 
 | static inline struct task_group *css_tg(struct cgroup_subsys_state *css) | 
 | { | 
 | 	return css ? container_of(css, struct task_group, css) : NULL; | 
 | } | 
 |  | 
 | static struct cgroup_subsys_state * | 
 | cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | 
 | { | 
 | 	struct task_group *parent = css_tg(parent_css); | 
 | 	struct task_group *tg; | 
 |  | 
 | 	if (!parent) { | 
 | 		/* This is early initialization for the top cgroup */ | 
 | 		return &root_task_group.css; | 
 | 	} | 
 |  | 
 | 	tg = sched_create_group(parent); | 
 | 	if (IS_ERR(tg)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	return &tg->css; | 
 | } | 
 |  | 
 | static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct task_group *tg = css_tg(css); | 
 | 	struct task_group *parent = css_tg(css->parent); | 
 |  | 
 | 	if (parent) | 
 | 		sched_online_group(tg, parent); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct task_group *tg = css_tg(css); | 
 |  | 
 | 	sched_destroy_group(tg); | 
 | } | 
 |  | 
 | static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct task_group *tg = css_tg(css); | 
 |  | 
 | 	sched_offline_group(tg); | 
 | } | 
 |  | 
 | static void cpu_cgroup_fork(struct task_struct *task) | 
 | { | 
 | 	sched_move_task(task); | 
 | } | 
 |  | 
 | static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, | 
 | 				 struct cgroup_taskset *tset) | 
 | { | 
 | 	struct task_struct *task; | 
 |  | 
 | 	cgroup_taskset_for_each(task, tset) { | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 		if (!sched_rt_can_attach(css_tg(css), task)) | 
 | 			return -EINVAL; | 
 | #else | 
 | 		/* We don't support RT-tasks being in separate groups */ | 
 | 		if (task->sched_class != &fair_sched_class) | 
 | 			return -EINVAL; | 
 | #endif | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cpu_cgroup_attach(struct cgroup_subsys_state *css, | 
 | 			      struct cgroup_taskset *tset) | 
 | { | 
 | 	struct task_struct *task; | 
 |  | 
 | 	cgroup_taskset_for_each(task, tset) | 
 | 		sched_move_task(task); | 
 | } | 
 |  | 
 | static void cpu_cgroup_exit(struct cgroup_subsys_state *css, | 
 | 			    struct cgroup_subsys_state *old_css, | 
 | 			    struct task_struct *task) | 
 | { | 
 | 	/* | 
 | 	 * cgroup_exit() is called in the copy_process() failure path. | 
 | 	 * Ignore this case since the task hasn't ran yet, this avoids | 
 | 	 * trying to poke a half freed task state from generic code. | 
 | 	 */ | 
 | 	if (!(task->flags & PF_EXITING)) | 
 | 		return; | 
 |  | 
 | 	sched_move_task(task); | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static int cpu_shares_write_u64(struct cgroup_subsys_state *css, | 
 | 				struct cftype *cftype, u64 shareval) | 
 | { | 
 | 	return sched_group_set_shares(css_tg(css), scale_load(shareval)); | 
 | } | 
 |  | 
 | static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, | 
 | 			       struct cftype *cft) | 
 | { | 
 | 	struct task_group *tg = css_tg(css); | 
 |  | 
 | 	return (u64) scale_load_down(tg->shares); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 | static DEFINE_MUTEX(cfs_constraints_mutex); | 
 |  | 
 | const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ | 
 | const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ | 
 |  | 
 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); | 
 |  | 
 | static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) | 
 | { | 
 | 	int i, ret = 0, runtime_enabled, runtime_was_enabled; | 
 | 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
 |  | 
 | 	if (tg == &root_task_group) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Ensure we have at some amount of bandwidth every period.  This is | 
 | 	 * to prevent reaching a state of large arrears when throttled via | 
 | 	 * entity_tick() resulting in prolonged exit starvation. | 
 | 	 */ | 
 | 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Likewise, bound things on the otherside by preventing insane quota | 
 | 	 * periods.  This also allows us to normalize in computing quota | 
 | 	 * feasibility. | 
 | 	 */ | 
 | 	if (period > max_cfs_quota_period) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Prevent race between setting of cfs_rq->runtime_enabled and | 
 | 	 * unthrottle_offline_cfs_rqs(). | 
 | 	 */ | 
 | 	get_online_cpus(); | 
 | 	mutex_lock(&cfs_constraints_mutex); | 
 | 	ret = __cfs_schedulable(tg, period, quota); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	runtime_enabled = quota != RUNTIME_INF; | 
 | 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF; | 
 | 	/* | 
 | 	 * If we need to toggle cfs_bandwidth_used, off->on must occur | 
 | 	 * before making related changes, and on->off must occur afterwards | 
 | 	 */ | 
 | 	if (runtime_enabled && !runtime_was_enabled) | 
 | 		cfs_bandwidth_usage_inc(); | 
 | 	raw_spin_lock_irq(&cfs_b->lock); | 
 | 	cfs_b->period = ns_to_ktime(period); | 
 | 	cfs_b->quota = quota; | 
 |  | 
 | 	__refill_cfs_bandwidth_runtime(cfs_b); | 
 | 	/* restart the period timer (if active) to handle new period expiry */ | 
 | 	if (runtime_enabled && cfs_b->timer_active) { | 
 | 		/* force a reprogram */ | 
 | 		__start_cfs_bandwidth(cfs_b, true); | 
 | 	} | 
 | 	raw_spin_unlock_irq(&cfs_b->lock); | 
 |  | 
 | 	for_each_online_cpu(i) { | 
 | 		struct cfs_rq *cfs_rq = tg->cfs_rq[i]; | 
 | 		struct rq *rq = cfs_rq->rq; | 
 |  | 
 | 		raw_spin_lock_irq(&rq->lock); | 
 | 		cfs_rq->runtime_enabled = runtime_enabled; | 
 | 		cfs_rq->runtime_remaining = 0; | 
 |  | 
 | 		if (cfs_rq->throttled) | 
 | 			unthrottle_cfs_rq(cfs_rq); | 
 | 		raw_spin_unlock_irq(&rq->lock); | 
 | 	} | 
 | 	if (runtime_was_enabled && !runtime_enabled) | 
 | 		cfs_bandwidth_usage_dec(); | 
 | out_unlock: | 
 | 	mutex_unlock(&cfs_constraints_mutex); | 
 | 	put_online_cpus(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) | 
 | { | 
 | 	u64 quota, period; | 
 |  | 
 | 	period = ktime_to_ns(tg->cfs_bandwidth.period); | 
 | 	if (cfs_quota_us < 0) | 
 | 		quota = RUNTIME_INF; | 
 | 	else | 
 | 		quota = (u64)cfs_quota_us * NSEC_PER_USEC; | 
 |  | 
 | 	return tg_set_cfs_bandwidth(tg, period, quota); | 
 | } | 
 |  | 
 | long tg_get_cfs_quota(struct task_group *tg) | 
 | { | 
 | 	u64 quota_us; | 
 |  | 
 | 	if (tg->cfs_bandwidth.quota == RUNTIME_INF) | 
 | 		return -1; | 
 |  | 
 | 	quota_us = tg->cfs_bandwidth.quota; | 
 | 	do_div(quota_us, NSEC_PER_USEC); | 
 |  | 
 | 	return quota_us; | 
 | } | 
 |  | 
 | int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) | 
 | { | 
 | 	u64 quota, period; | 
 |  | 
 | 	period = (u64)cfs_period_us * NSEC_PER_USEC; | 
 | 	quota = tg->cfs_bandwidth.quota; | 
 |  | 
 | 	return tg_set_cfs_bandwidth(tg, period, quota); | 
 | } | 
 |  | 
 | long tg_get_cfs_period(struct task_group *tg) | 
 | { | 
 | 	u64 cfs_period_us; | 
 |  | 
 | 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); | 
 | 	do_div(cfs_period_us, NSEC_PER_USEC); | 
 |  | 
 | 	return cfs_period_us; | 
 | } | 
 |  | 
 | static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, | 
 | 				  struct cftype *cft) | 
 | { | 
 | 	return tg_get_cfs_quota(css_tg(css)); | 
 | } | 
 |  | 
 | static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, | 
 | 				   struct cftype *cftype, s64 cfs_quota_us) | 
 | { | 
 | 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us); | 
 | } | 
 |  | 
 | static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, | 
 | 				   struct cftype *cft) | 
 | { | 
 | 	return tg_get_cfs_period(css_tg(css)); | 
 | } | 
 |  | 
 | static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, | 
 | 				    struct cftype *cftype, u64 cfs_period_us) | 
 | { | 
 | 	return tg_set_cfs_period(css_tg(css), cfs_period_us); | 
 | } | 
 |  | 
 | struct cfs_schedulable_data { | 
 | 	struct task_group *tg; | 
 | 	u64 period, quota; | 
 | }; | 
 |  | 
 | /* | 
 |  * normalize group quota/period to be quota/max_period | 
 |  * note: units are usecs | 
 |  */ | 
 | static u64 normalize_cfs_quota(struct task_group *tg, | 
 | 			       struct cfs_schedulable_data *d) | 
 | { | 
 | 	u64 quota, period; | 
 |  | 
 | 	if (tg == d->tg) { | 
 | 		period = d->period; | 
 | 		quota = d->quota; | 
 | 	} else { | 
 | 		period = tg_get_cfs_period(tg); | 
 | 		quota = tg_get_cfs_quota(tg); | 
 | 	} | 
 |  | 
 | 	/* note: these should typically be equivalent */ | 
 | 	if (quota == RUNTIME_INF || quota == -1) | 
 | 		return RUNTIME_INF; | 
 |  | 
 | 	return to_ratio(period, quota); | 
 | } | 
 |  | 
 | static int tg_cfs_schedulable_down(struct task_group *tg, void *data) | 
 | { | 
 | 	struct cfs_schedulable_data *d = data; | 
 | 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
 | 	s64 quota = 0, parent_quota = -1; | 
 |  | 
 | 	if (!tg->parent) { | 
 | 		quota = RUNTIME_INF; | 
 | 	} else { | 
 | 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; | 
 |  | 
 | 		quota = normalize_cfs_quota(tg, d); | 
 | 		parent_quota = parent_b->hierarchical_quota; | 
 |  | 
 | 		/* | 
 | 		 * ensure max(child_quota) <= parent_quota, inherit when no | 
 | 		 * limit is set | 
 | 		 */ | 
 | 		if (quota == RUNTIME_INF) | 
 | 			quota = parent_quota; | 
 | 		else if (parent_quota != RUNTIME_INF && quota > parent_quota) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	cfs_b->hierarchical_quota = quota; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) | 
 | { | 
 | 	int ret; | 
 | 	struct cfs_schedulable_data data = { | 
 | 		.tg = tg, | 
 | 		.period = period, | 
 | 		.quota = quota, | 
 | 	}; | 
 |  | 
 | 	if (quota != RUNTIME_INF) { | 
 | 		do_div(data.period, NSEC_PER_USEC); | 
 | 		do_div(data.quota, NSEC_PER_USEC); | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int cpu_stats_show(struct seq_file *sf, void *v) | 
 | { | 
 | 	struct task_group *tg = css_tg(seq_css(sf)); | 
 | 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | 
 |  | 
 | 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); | 
 | 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); | 
 | 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, | 
 | 				struct cftype *cft, s64 val) | 
 | { | 
 | 	return sched_group_set_rt_runtime(css_tg(css), val); | 
 | } | 
 |  | 
 | static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, | 
 | 			       struct cftype *cft) | 
 | { | 
 | 	return sched_group_rt_runtime(css_tg(css)); | 
 | } | 
 |  | 
 | static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, | 
 | 				    struct cftype *cftype, u64 rt_period_us) | 
 | { | 
 | 	return sched_group_set_rt_period(css_tg(css), rt_period_us); | 
 | } | 
 |  | 
 | static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, | 
 | 				   struct cftype *cft) | 
 | { | 
 | 	return sched_group_rt_period(css_tg(css)); | 
 | } | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | static struct cftype cpu_files[] = { | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	{ | 
 | 		.name = "shares", | 
 | 		.read_u64 = cpu_shares_read_u64, | 
 | 		.write_u64 = cpu_shares_write_u64, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 | 	{ | 
 | 		.name = "cfs_quota_us", | 
 | 		.read_s64 = cpu_cfs_quota_read_s64, | 
 | 		.write_s64 = cpu_cfs_quota_write_s64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "cfs_period_us", | 
 | 		.read_u64 = cpu_cfs_period_read_u64, | 
 | 		.write_u64 = cpu_cfs_period_write_u64, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "stat", | 
 | 		.seq_show = cpu_stats_show, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	{ | 
 | 		.name = "rt_runtime_us", | 
 | 		.read_s64 = cpu_rt_runtime_read, | 
 | 		.write_s64 = cpu_rt_runtime_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "rt_period_us", | 
 | 		.read_u64 = cpu_rt_period_read_uint, | 
 | 		.write_u64 = cpu_rt_period_write_uint, | 
 | 	}, | 
 | #endif | 
 | 	{ }	/* terminate */ | 
 | }; | 
 |  | 
 | struct cgroup_subsys cpu_cgrp_subsys = { | 
 | 	.css_alloc	= cpu_cgroup_css_alloc, | 
 | 	.css_free	= cpu_cgroup_css_free, | 
 | 	.css_online	= cpu_cgroup_css_online, | 
 | 	.css_offline	= cpu_cgroup_css_offline, | 
 | 	.fork		= cpu_cgroup_fork, | 
 | 	.can_attach	= cpu_cgroup_can_attach, | 
 | 	.attach		= cpu_cgroup_attach, | 
 | 	.exit		= cpu_cgroup_exit, | 
 | 	.legacy_cftypes	= cpu_files, | 
 | 	.early_init	= 1, | 
 | }; | 
 |  | 
 | #endif	/* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | void dump_cpu_task(int cpu) | 
 | { | 
 | 	pr_info("Task dump for CPU %d:\n", cpu); | 
 | 	sched_show_task(cpu_curr(cpu)); | 
 | } |