| /* | 
 |  * Copyright © 2008-2015 Intel Corporation | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a | 
 |  * copy of this software and associated documentation files (the "Software"), | 
 |  * to deal in the Software without restriction, including without limitation | 
 |  * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
 |  * and/or sell copies of the Software, and to permit persons to whom the | 
 |  * Software is furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice (including the next | 
 |  * paragraph) shall be included in all copies or substantial portions of the | 
 |  * Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
 |  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
 |  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | 
 |  * IN THE SOFTWARE. | 
 |  * | 
 |  * Authors: | 
 |  *    Eric Anholt <eric@anholt.net> | 
 |  * | 
 |  */ | 
 |  | 
 | #include <drm/drmP.h> | 
 | #include <drm/drm_vma_manager.h> | 
 | #include <drm/i915_drm.h> | 
 | #include "i915_drv.h" | 
 | #include "i915_gem_dmabuf.h" | 
 | #include "i915_vgpu.h" | 
 | #include "i915_trace.h" | 
 | #include "intel_drv.h" | 
 | #include "intel_frontbuffer.h" | 
 | #include "intel_mocs.h" | 
 | #include <linux/reservation.h> | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/dma-buf.h> | 
 |  | 
 | static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); | 
 | static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); | 
 |  | 
 | static bool cpu_cache_is_coherent(struct drm_device *dev, | 
 | 				  enum i915_cache_level level) | 
 | { | 
 | 	return HAS_LLC(dev) || level != I915_CACHE_NONE; | 
 | } | 
 |  | 
 | static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) | 
 | 		return false; | 
 |  | 
 | 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) | 
 | 		return true; | 
 |  | 
 | 	return obj->pin_display; | 
 | } | 
 |  | 
 | static int | 
 | insert_mappable_node(struct drm_i915_private *i915, | 
 |                      struct drm_mm_node *node, u32 size) | 
 | { | 
 | 	memset(node, 0, sizeof(*node)); | 
 | 	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node, | 
 | 						   size, 0, 0, 0, | 
 | 						   i915->ggtt.mappable_end, | 
 | 						   DRM_MM_SEARCH_DEFAULT, | 
 | 						   DRM_MM_CREATE_DEFAULT); | 
 | } | 
 |  | 
 | static void | 
 | remove_mappable_node(struct drm_mm_node *node) | 
 | { | 
 | 	drm_mm_remove_node(node); | 
 | } | 
 |  | 
 | /* some bookkeeping */ | 
 | static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, | 
 | 				  size_t size) | 
 | { | 
 | 	spin_lock(&dev_priv->mm.object_stat_lock); | 
 | 	dev_priv->mm.object_count++; | 
 | 	dev_priv->mm.object_memory += size; | 
 | 	spin_unlock(&dev_priv->mm.object_stat_lock); | 
 | } | 
 |  | 
 | static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, | 
 | 				     size_t size) | 
 | { | 
 | 	spin_lock(&dev_priv->mm.object_stat_lock); | 
 | 	dev_priv->mm.object_count--; | 
 | 	dev_priv->mm.object_memory -= size; | 
 | 	spin_unlock(&dev_priv->mm.object_stat_lock); | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_wait_for_error(struct i915_gpu_error *error) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!i915_reset_in_progress(error)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging | 
 | 	 * userspace. If it takes that long something really bad is going on and | 
 | 	 * we should simply try to bail out and fail as gracefully as possible. | 
 | 	 */ | 
 | 	ret = wait_event_interruptible_timeout(error->reset_queue, | 
 | 					       !i915_reset_in_progress(error), | 
 | 					       10*HZ); | 
 | 	if (ret == 0) { | 
 | 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); | 
 | 		return -EIO; | 
 | 	} else if (ret < 0) { | 
 | 		return ret; | 
 | 	} else { | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | int i915_mutex_lock_interruptible(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = mutex_lock_interruptible(&dev->struct_mutex); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, | 
 | 			    struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	struct drm_i915_gem_get_aperture *args = data; | 
 | 	struct i915_vma *vma; | 
 | 	size_t pinned; | 
 |  | 
 | 	pinned = 0; | 
 | 	mutex_lock(&dev->struct_mutex); | 
 | 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link) | 
 | 		if (i915_vma_is_pinned(vma)) | 
 | 			pinned += vma->node.size; | 
 | 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) | 
 | 		if (i915_vma_is_pinned(vma)) | 
 | 			pinned += vma->node.size; | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 |  | 
 | 	args->aper_size = ggtt->base.total; | 
 | 	args->aper_available_size = args->aper_size - pinned; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct address_space *mapping = obj->base.filp->f_mapping; | 
 | 	char *vaddr = obj->phys_handle->vaddr; | 
 | 	struct sg_table *st; | 
 | 	struct scatterlist *sg; | 
 | 	int i; | 
 |  | 
 | 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { | 
 | 		struct page *page; | 
 | 		char *src; | 
 |  | 
 | 		page = shmem_read_mapping_page(mapping, i); | 
 | 		if (IS_ERR(page)) | 
 | 			return PTR_ERR(page); | 
 |  | 
 | 		src = kmap_atomic(page); | 
 | 		memcpy(vaddr, src, PAGE_SIZE); | 
 | 		drm_clflush_virt_range(vaddr, PAGE_SIZE); | 
 | 		kunmap_atomic(src); | 
 |  | 
 | 		put_page(page); | 
 | 		vaddr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	i915_gem_chipset_flush(to_i915(obj->base.dev)); | 
 |  | 
 | 	st = kmalloc(sizeof(*st), GFP_KERNEL); | 
 | 	if (st == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (sg_alloc_table(st, 1, GFP_KERNEL)) { | 
 | 		kfree(st); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	sg = st->sgl; | 
 | 	sg->offset = 0; | 
 | 	sg->length = obj->base.size; | 
 |  | 
 | 	sg_dma_address(sg) = obj->phys_handle->busaddr; | 
 | 	sg_dma_len(sg) = obj->base.size; | 
 |  | 
 | 	obj->pages = st; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(obj->madv == __I915_MADV_PURGED); | 
 |  | 
 | 	ret = i915_gem_object_set_to_cpu_domain(obj, true); | 
 | 	if (WARN_ON(ret)) { | 
 | 		/* In the event of a disaster, abandon all caches and | 
 | 		 * hope for the best. | 
 | 		 */ | 
 | 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; | 
 | 	} | 
 |  | 
 | 	if (obj->madv == I915_MADV_DONTNEED) | 
 | 		obj->dirty = 0; | 
 |  | 
 | 	if (obj->dirty) { | 
 | 		struct address_space *mapping = obj->base.filp->f_mapping; | 
 | 		char *vaddr = obj->phys_handle->vaddr; | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { | 
 | 			struct page *page; | 
 | 			char *dst; | 
 |  | 
 | 			page = shmem_read_mapping_page(mapping, i); | 
 | 			if (IS_ERR(page)) | 
 | 				continue; | 
 |  | 
 | 			dst = kmap_atomic(page); | 
 | 			drm_clflush_virt_range(vaddr, PAGE_SIZE); | 
 | 			memcpy(dst, vaddr, PAGE_SIZE); | 
 | 			kunmap_atomic(dst); | 
 |  | 
 | 			set_page_dirty(page); | 
 | 			if (obj->madv == I915_MADV_WILLNEED) | 
 | 				mark_page_accessed(page); | 
 | 			put_page(page); | 
 | 			vaddr += PAGE_SIZE; | 
 | 		} | 
 | 		obj->dirty = 0; | 
 | 	} | 
 |  | 
 | 	sg_free_table(obj->pages); | 
 | 	kfree(obj->pages); | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_object_release_phys(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	drm_pci_free(obj->base.dev, obj->phys_handle); | 
 | } | 
 |  | 
 | static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { | 
 | 	.get_pages = i915_gem_object_get_pages_phys, | 
 | 	.put_pages = i915_gem_object_put_pages_phys, | 
 | 	.release = i915_gem_object_release_phys, | 
 | }; | 
 |  | 
 | int i915_gem_object_unbind(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct i915_vma *vma; | 
 | 	LIST_HEAD(still_in_list); | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	/* Closed vma are removed from the obj->vma_list - but they may | 
 | 	 * still have an active binding on the object. To remove those we | 
 | 	 * must wait for all rendering to complete to the object (as unbinding | 
 | 	 * must anyway), and retire the requests. | 
 | 	 */ | 
 | 	ret = i915_gem_object_wait_rendering(obj, false); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	i915_gem_retire_requests(to_i915(obj->base.dev)); | 
 |  | 
 | 	while ((vma = list_first_entry_or_null(&obj->vma_list, | 
 | 					       struct i915_vma, | 
 | 					       obj_link))) { | 
 | 		list_move_tail(&vma->obj_link, &still_in_list); | 
 | 		ret = i915_vma_unbind(vma); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	list_splice(&still_in_list, &obj->vma_list); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Ensures that all rendering to the object has completed and the object is | 
 |  * safe to unbind from the GTT or access from the CPU. | 
 |  * @obj: i915 gem object | 
 |  * @readonly: waiting for just read access or read-write access | 
 |  */ | 
 | int | 
 | i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, | 
 | 			       bool readonly) | 
 | { | 
 | 	struct reservation_object *resv; | 
 | 	struct i915_gem_active *active; | 
 | 	unsigned long active_mask; | 
 | 	int idx; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	if (!readonly) { | 
 | 		active = obj->last_read; | 
 | 		active_mask = i915_gem_object_get_active(obj); | 
 | 	} else { | 
 | 		active_mask = 1; | 
 | 		active = &obj->last_write; | 
 | 	} | 
 |  | 
 | 	for_each_active(active_mask, idx) { | 
 | 		int ret; | 
 |  | 
 | 		ret = i915_gem_active_wait(&active[idx], | 
 | 					   &obj->base.dev->struct_mutex); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	resv = i915_gem_object_get_dmabuf_resv(obj); | 
 | 	if (resv) { | 
 | 		long err; | 
 |  | 
 | 		err = reservation_object_wait_timeout_rcu(resv, !readonly, true, | 
 | 							  MAX_SCHEDULE_TIMEOUT); | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* A nonblocking variant of the above wait. Must be called prior to | 
 |  * acquiring the mutex for the object, as the object state may change | 
 |  * during this call. A reference must be held by the caller for the object. | 
 |  */ | 
 | static __must_check int | 
 | __unsafe_wait_rendering(struct drm_i915_gem_object *obj, | 
 | 			struct intel_rps_client *rps, | 
 | 			bool readonly) | 
 | { | 
 | 	struct i915_gem_active *active; | 
 | 	unsigned long active_mask; | 
 | 	int idx; | 
 |  | 
 | 	active_mask = __I915_BO_ACTIVE(obj); | 
 | 	if (!active_mask) | 
 | 		return 0; | 
 |  | 
 | 	if (!readonly) { | 
 | 		active = obj->last_read; | 
 | 	} else { | 
 | 		active_mask = 1; | 
 | 		active = &obj->last_write; | 
 | 	} | 
 |  | 
 | 	for_each_active(active_mask, idx) { | 
 | 		int ret; | 
 |  | 
 | 		ret = i915_gem_active_wait_unlocked(&active[idx], | 
 | 						    I915_WAIT_INTERRUPTIBLE, | 
 | 						    NULL, rps); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct intel_rps_client *to_rps_client(struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_file_private *fpriv = file->driver_priv; | 
 |  | 
 | 	return &fpriv->rps; | 
 | } | 
 |  | 
 | int | 
 | i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, | 
 | 			    int align) | 
 | { | 
 | 	drm_dma_handle_t *phys; | 
 | 	int ret; | 
 |  | 
 | 	if (obj->phys_handle) { | 
 | 		if ((unsigned long)obj->phys_handle->vaddr & (align -1)) | 
 | 			return -EBUSY; | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (obj->madv != I915_MADV_WILLNEED) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (obj->base.filp == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = i915_gem_object_unbind(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = i915_gem_object_put_pages(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* create a new object */ | 
 | 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); | 
 | 	if (!phys) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	obj->phys_handle = phys; | 
 | 	obj->ops = &i915_gem_phys_ops; | 
 |  | 
 | 	return i915_gem_object_get_pages(obj); | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, | 
 | 		     struct drm_i915_gem_pwrite *args, | 
 | 		     struct drm_file *file_priv) | 
 | { | 
 | 	struct drm_device *dev = obj->base.dev; | 
 | 	void *vaddr = obj->phys_handle->vaddr + args->offset; | 
 | 	char __user *user_data = u64_to_user_ptr(args->data_ptr); | 
 | 	int ret = 0; | 
 |  | 
 | 	/* We manually control the domain here and pretend that it | 
 | 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite. | 
 | 	 */ | 
 | 	ret = i915_gem_object_wait_rendering(obj, false); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	intel_fb_obj_invalidate(obj, ORIGIN_CPU); | 
 | 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { | 
 | 		unsigned long unwritten; | 
 |  | 
 | 		/* The physical object once assigned is fixed for the lifetime | 
 | 		 * of the obj, so we can safely drop the lock and continue | 
 | 		 * to access vaddr. | 
 | 		 */ | 
 | 		mutex_unlock(&dev->struct_mutex); | 
 | 		unwritten = copy_from_user(vaddr, user_data, args->size); | 
 | 		mutex_lock(&dev->struct_mutex); | 
 | 		if (unwritten) { | 
 | 			ret = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	drm_clflush_virt_range(vaddr, args->size); | 
 | 	i915_gem_chipset_flush(to_i915(dev)); | 
 |  | 
 | out: | 
 | 	intel_fb_obj_flush(obj, false, ORIGIN_CPU); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void *i915_gem_object_alloc(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); | 
 | } | 
 |  | 
 | void i915_gem_object_free(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	kmem_cache_free(dev_priv->objects, obj); | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_create(struct drm_file *file, | 
 | 		struct drm_device *dev, | 
 | 		uint64_t size, | 
 | 		uint32_t *handle_p) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int ret; | 
 | 	u32 handle; | 
 |  | 
 | 	size = roundup(size, PAGE_SIZE); | 
 | 	if (size == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Allocate the new object */ | 
 | 	obj = i915_gem_object_create(dev, size); | 
 | 	if (IS_ERR(obj)) | 
 | 		return PTR_ERR(obj); | 
 |  | 
 | 	ret = drm_gem_handle_create(file, &obj->base, &handle); | 
 | 	/* drop reference from allocate - handle holds it now */ | 
 | 	i915_gem_object_put_unlocked(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	*handle_p = handle; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | i915_gem_dumb_create(struct drm_file *file, | 
 | 		     struct drm_device *dev, | 
 | 		     struct drm_mode_create_dumb *args) | 
 | { | 
 | 	/* have to work out size/pitch and return them */ | 
 | 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); | 
 | 	args->size = args->pitch * args->height; | 
 | 	return i915_gem_create(file, dev, | 
 | 			       args->size, &args->handle); | 
 | } | 
 |  | 
 | /** | 
 |  * Creates a new mm object and returns a handle to it. | 
 |  * @dev: drm device pointer | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file pointer | 
 |  */ | 
 | int | 
 | i915_gem_create_ioctl(struct drm_device *dev, void *data, | 
 | 		      struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_create *args = data; | 
 |  | 
 | 	return i915_gem_create(file, dev, | 
 | 			       args->size, &args->handle); | 
 | } | 
 |  | 
 | static inline int | 
 | __copy_to_user_swizzled(char __user *cpu_vaddr, | 
 | 			const char *gpu_vaddr, int gpu_offset, | 
 | 			int length) | 
 | { | 
 | 	int ret, cpu_offset = 0; | 
 |  | 
 | 	while (length > 0) { | 
 | 		int cacheline_end = ALIGN(gpu_offset + 1, 64); | 
 | 		int this_length = min(cacheline_end - gpu_offset, length); | 
 | 		int swizzled_gpu_offset = gpu_offset ^ 64; | 
 |  | 
 | 		ret = __copy_to_user(cpu_vaddr + cpu_offset, | 
 | 				     gpu_vaddr + swizzled_gpu_offset, | 
 | 				     this_length); | 
 | 		if (ret) | 
 | 			return ret + length; | 
 |  | 
 | 		cpu_offset += this_length; | 
 | 		gpu_offset += this_length; | 
 | 		length -= this_length; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int | 
 | __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, | 
 | 			  const char __user *cpu_vaddr, | 
 | 			  int length) | 
 | { | 
 | 	int ret, cpu_offset = 0; | 
 |  | 
 | 	while (length > 0) { | 
 | 		int cacheline_end = ALIGN(gpu_offset + 1, 64); | 
 | 		int this_length = min(cacheline_end - gpu_offset, length); | 
 | 		int swizzled_gpu_offset = gpu_offset ^ 64; | 
 |  | 
 | 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, | 
 | 				       cpu_vaddr + cpu_offset, | 
 | 				       this_length); | 
 | 		if (ret) | 
 | 			return ret + length; | 
 |  | 
 | 		cpu_offset += this_length; | 
 | 		gpu_offset += this_length; | 
 | 		length -= this_length; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Pins the specified object's pages and synchronizes the object with | 
 |  * GPU accesses. Sets needs_clflush to non-zero if the caller should | 
 |  * flush the object from the CPU cache. | 
 |  */ | 
 | int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, | 
 | 				    unsigned int *needs_clflush) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	*needs_clflush = 0; | 
 |  | 
 | 	if (!i915_gem_object_has_struct_page(obj)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = i915_gem_object_wait_rendering(obj, true); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = i915_gem_object_get_pages(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	i915_gem_object_pin_pages(obj); | 
 |  | 
 | 	i915_gem_object_flush_gtt_write_domain(obj); | 
 |  | 
 | 	/* If we're not in the cpu read domain, set ourself into the gtt | 
 | 	 * read domain and manually flush cachelines (if required). This | 
 | 	 * optimizes for the case when the gpu will dirty the data | 
 | 	 * anyway again before the next pread happens. | 
 | 	 */ | 
 | 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) | 
 | 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev, | 
 | 							obj->cache_level); | 
 |  | 
 | 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) { | 
 | 		ret = i915_gem_object_set_to_cpu_domain(obj, false); | 
 | 		if (ret) | 
 | 			goto err_unpin; | 
 |  | 
 | 		*needs_clflush = 0; | 
 | 	} | 
 |  | 
 | 	/* return with the pages pinned */ | 
 | 	return 0; | 
 |  | 
 | err_unpin: | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, | 
 | 				     unsigned int *needs_clflush) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	*needs_clflush = 0; | 
 | 	if (!i915_gem_object_has_struct_page(obj)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ret = i915_gem_object_wait_rendering(obj, false); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = i915_gem_object_get_pages(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	i915_gem_object_pin_pages(obj); | 
 |  | 
 | 	i915_gem_object_flush_gtt_write_domain(obj); | 
 |  | 
 | 	/* If we're not in the cpu write domain, set ourself into the | 
 | 	 * gtt write domain and manually flush cachelines (as required). | 
 | 	 * This optimizes for the case when the gpu will use the data | 
 | 	 * right away and we therefore have to clflush anyway. | 
 | 	 */ | 
 | 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) | 
 | 		*needs_clflush |= cpu_write_needs_clflush(obj) << 1; | 
 |  | 
 | 	/* Same trick applies to invalidate partially written cachelines read | 
 | 	 * before writing. | 
 | 	 */ | 
 | 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) | 
 | 		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev, | 
 | 							 obj->cache_level); | 
 |  | 
 | 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) { | 
 | 		ret = i915_gem_object_set_to_cpu_domain(obj, true); | 
 | 		if (ret) | 
 | 			goto err_unpin; | 
 |  | 
 | 		*needs_clflush = 0; | 
 | 	} | 
 |  | 
 | 	if ((*needs_clflush & CLFLUSH_AFTER) == 0) | 
 | 		obj->cache_dirty = true; | 
 |  | 
 | 	intel_fb_obj_invalidate(obj, ORIGIN_CPU); | 
 | 	obj->dirty = 1; | 
 | 	/* return with the pages pinned */ | 
 | 	return 0; | 
 |  | 
 | err_unpin: | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Per-page copy function for the shmem pread fastpath. | 
 |  * Flushes invalid cachelines before reading the target if | 
 |  * needs_clflush is set. */ | 
 | static int | 
 | shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, | 
 | 		 char __user *user_data, | 
 | 		 bool page_do_bit17_swizzling, bool needs_clflush) | 
 | { | 
 | 	char *vaddr; | 
 | 	int ret; | 
 |  | 
 | 	if (unlikely(page_do_bit17_swizzling)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vaddr = kmap_atomic(page); | 
 | 	if (needs_clflush) | 
 | 		drm_clflush_virt_range(vaddr + shmem_page_offset, | 
 | 				       page_length); | 
 | 	ret = __copy_to_user_inatomic(user_data, | 
 | 				      vaddr + shmem_page_offset, | 
 | 				      page_length); | 
 | 	kunmap_atomic(vaddr); | 
 |  | 
 | 	return ret ? -EFAULT : 0; | 
 | } | 
 |  | 
 | static void | 
 | shmem_clflush_swizzled_range(char *addr, unsigned long length, | 
 | 			     bool swizzled) | 
 | { | 
 | 	if (unlikely(swizzled)) { | 
 | 		unsigned long start = (unsigned long) addr; | 
 | 		unsigned long end = (unsigned long) addr + length; | 
 |  | 
 | 		/* For swizzling simply ensure that we always flush both | 
 | 		 * channels. Lame, but simple and it works. Swizzled | 
 | 		 * pwrite/pread is far from a hotpath - current userspace | 
 | 		 * doesn't use it at all. */ | 
 | 		start = round_down(start, 128); | 
 | 		end = round_up(end, 128); | 
 |  | 
 | 		drm_clflush_virt_range((void *)start, end - start); | 
 | 	} else { | 
 | 		drm_clflush_virt_range(addr, length); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /* Only difference to the fast-path function is that this can handle bit17 | 
 |  * and uses non-atomic copy and kmap functions. */ | 
 | static int | 
 | shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, | 
 | 		 char __user *user_data, | 
 | 		 bool page_do_bit17_swizzling, bool needs_clflush) | 
 | { | 
 | 	char *vaddr; | 
 | 	int ret; | 
 |  | 
 | 	vaddr = kmap(page); | 
 | 	if (needs_clflush) | 
 | 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset, | 
 | 					     page_length, | 
 | 					     page_do_bit17_swizzling); | 
 |  | 
 | 	if (page_do_bit17_swizzling) | 
 | 		ret = __copy_to_user_swizzled(user_data, | 
 | 					      vaddr, shmem_page_offset, | 
 | 					      page_length); | 
 | 	else | 
 | 		ret = __copy_to_user(user_data, | 
 | 				     vaddr + shmem_page_offset, | 
 | 				     page_length); | 
 | 	kunmap(page); | 
 |  | 
 | 	return ret ? - EFAULT : 0; | 
 | } | 
 |  | 
 | static inline unsigned long | 
 | slow_user_access(struct io_mapping *mapping, | 
 | 		 uint64_t page_base, int page_offset, | 
 | 		 char __user *user_data, | 
 | 		 unsigned long length, bool pwrite) | 
 | { | 
 | 	void __iomem *ioaddr; | 
 | 	void *vaddr; | 
 | 	uint64_t unwritten; | 
 |  | 
 | 	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE); | 
 | 	/* We can use the cpu mem copy function because this is X86. */ | 
 | 	vaddr = (void __force *)ioaddr + page_offset; | 
 | 	if (pwrite) | 
 | 		unwritten = __copy_from_user(vaddr, user_data, length); | 
 | 	else | 
 | 		unwritten = __copy_to_user(user_data, vaddr, length); | 
 |  | 
 | 	io_mapping_unmap(ioaddr); | 
 | 	return unwritten; | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_gtt_pread(struct drm_device *dev, | 
 | 		   struct drm_i915_gem_object *obj, uint64_t size, | 
 | 		   uint64_t data_offset, uint64_t data_ptr) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	struct i915_vma *vma; | 
 | 	struct drm_mm_node node; | 
 | 	char __user *user_data; | 
 | 	uint64_t remain; | 
 | 	uint64_t offset; | 
 | 	int ret; | 
 |  | 
 | 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE); | 
 | 	if (!IS_ERR(vma)) { | 
 | 		node.start = i915_ggtt_offset(vma); | 
 | 		node.allocated = false; | 
 | 		ret = i915_vma_put_fence(vma); | 
 | 		if (ret) { | 
 | 			i915_vma_unpin(vma); | 
 | 			vma = ERR_PTR(ret); | 
 | 		} | 
 | 	} | 
 | 	if (IS_ERR(vma)) { | 
 | 		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		ret = i915_gem_object_get_pages(obj); | 
 | 		if (ret) { | 
 | 			remove_mappable_node(&node); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		i915_gem_object_pin_pages(obj); | 
 | 	} | 
 |  | 
 | 	ret = i915_gem_object_set_to_gtt_domain(obj, false); | 
 | 	if (ret) | 
 | 		goto out_unpin; | 
 |  | 
 | 	user_data = u64_to_user_ptr(data_ptr); | 
 | 	remain = size; | 
 | 	offset = data_offset; | 
 |  | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 | 	if (likely(!i915.prefault_disable)) { | 
 | 		ret = fault_in_pages_writeable(user_data, remain); | 
 | 		if (ret) { | 
 | 			mutex_lock(&dev->struct_mutex); | 
 | 			goto out_unpin; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	while (remain > 0) { | 
 | 		/* Operation in this page | 
 | 		 * | 
 | 		 * page_base = page offset within aperture | 
 | 		 * page_offset = offset within page | 
 | 		 * page_length = bytes to copy for this page | 
 | 		 */ | 
 | 		u32 page_base = node.start; | 
 | 		unsigned page_offset = offset_in_page(offset); | 
 | 		unsigned page_length = PAGE_SIZE - page_offset; | 
 | 		page_length = remain < page_length ? remain : page_length; | 
 | 		if (node.allocated) { | 
 | 			wmb(); | 
 | 			ggtt->base.insert_page(&ggtt->base, | 
 | 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), | 
 | 					       node.start, | 
 | 					       I915_CACHE_NONE, 0); | 
 | 			wmb(); | 
 | 		} else { | 
 | 			page_base += offset & PAGE_MASK; | 
 | 		} | 
 | 		/* This is a slow read/write as it tries to read from | 
 | 		 * and write to user memory which may result into page | 
 | 		 * faults, and so we cannot perform this under struct_mutex. | 
 | 		 */ | 
 | 		if (slow_user_access(&ggtt->mappable, page_base, | 
 | 				     page_offset, user_data, | 
 | 				     page_length, false)) { | 
 | 			ret = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		remain -= page_length; | 
 | 		user_data += page_length; | 
 | 		offset += page_length; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&dev->struct_mutex); | 
 | 	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) { | 
 | 		/* The user has modified the object whilst we tried | 
 | 		 * reading from it, and we now have no idea what domain | 
 | 		 * the pages should be in. As we have just been touching | 
 | 		 * them directly, flush everything back to the GTT | 
 | 		 * domain. | 
 | 		 */ | 
 | 		ret = i915_gem_object_set_to_gtt_domain(obj, false); | 
 | 	} | 
 |  | 
 | out_unpin: | 
 | 	if (node.allocated) { | 
 | 		wmb(); | 
 | 		ggtt->base.clear_range(&ggtt->base, | 
 | 				       node.start, node.size, | 
 | 				       true); | 
 | 		i915_gem_object_unpin_pages(obj); | 
 | 		remove_mappable_node(&node); | 
 | 	} else { | 
 | 		i915_vma_unpin(vma); | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_shmem_pread(struct drm_device *dev, | 
 | 		     struct drm_i915_gem_object *obj, | 
 | 		     struct drm_i915_gem_pread *args, | 
 | 		     struct drm_file *file) | 
 | { | 
 | 	char __user *user_data; | 
 | 	ssize_t remain; | 
 | 	loff_t offset; | 
 | 	int shmem_page_offset, page_length, ret = 0; | 
 | 	int obj_do_bit17_swizzling, page_do_bit17_swizzling; | 
 | 	int prefaulted = 0; | 
 | 	int needs_clflush = 0; | 
 | 	struct sg_page_iter sg_iter; | 
 |  | 
 | 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); | 
 | 	user_data = u64_to_user_ptr(args->data_ptr); | 
 | 	offset = args->offset; | 
 | 	remain = args->size; | 
 |  | 
 | 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, | 
 | 			 offset >> PAGE_SHIFT) { | 
 | 		struct page *page = sg_page_iter_page(&sg_iter); | 
 |  | 
 | 		if (remain <= 0) | 
 | 			break; | 
 |  | 
 | 		/* Operation in this page | 
 | 		 * | 
 | 		 * shmem_page_offset = offset within page in shmem file | 
 | 		 * page_length = bytes to copy for this page | 
 | 		 */ | 
 | 		shmem_page_offset = offset_in_page(offset); | 
 | 		page_length = remain; | 
 | 		if ((shmem_page_offset + page_length) > PAGE_SIZE) | 
 | 			page_length = PAGE_SIZE - shmem_page_offset; | 
 |  | 
 | 		page_do_bit17_swizzling = obj_do_bit17_swizzling && | 
 | 			(page_to_phys(page) & (1 << 17)) != 0; | 
 |  | 
 | 		ret = shmem_pread_fast(page, shmem_page_offset, page_length, | 
 | 				       user_data, page_do_bit17_swizzling, | 
 | 				       needs_clflush); | 
 | 		if (ret == 0) | 
 | 			goto next_page; | 
 |  | 
 | 		mutex_unlock(&dev->struct_mutex); | 
 |  | 
 | 		if (likely(!i915.prefault_disable) && !prefaulted) { | 
 | 			ret = fault_in_pages_writeable(user_data, remain); | 
 | 			/* Userspace is tricking us, but we've already clobbered | 
 | 			 * its pages with the prefault and promised to write the | 
 | 			 * data up to the first fault. Hence ignore any errors | 
 | 			 * and just continue. */ | 
 | 			(void)ret; | 
 | 			prefaulted = 1; | 
 | 		} | 
 |  | 
 | 		ret = shmem_pread_slow(page, shmem_page_offset, page_length, | 
 | 				       user_data, page_do_bit17_swizzling, | 
 | 				       needs_clflush); | 
 |  | 
 | 		mutex_lock(&dev->struct_mutex); | 
 |  | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | next_page: | 
 | 		remain -= page_length; | 
 | 		user_data += page_length; | 
 | 		offset += page_length; | 
 | 	} | 
 |  | 
 | out: | 
 | 	i915_gem_obj_finish_shmem_access(obj); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Reads data from the object referenced by handle. | 
 |  * @dev: drm device pointer | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file pointer | 
 |  * | 
 |  * On error, the contents of *data are undefined. | 
 |  */ | 
 | int | 
 | i915_gem_pread_ioctl(struct drm_device *dev, void *data, | 
 | 		     struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_pread *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (args->size == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (!access_ok(VERIFY_WRITE, | 
 | 		       u64_to_user_ptr(args->data_ptr), | 
 | 		       args->size)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* Bounds check source.  */ | 
 | 	if (args->offset > obj->base.size || | 
 | 	    args->size > obj->base.size - args->offset) { | 
 | 		ret = -EINVAL; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	trace_i915_gem_object_pread(obj, args->offset, args->size); | 
 |  | 
 | 	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	ret = i915_mutex_lock_interruptible(dev); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	ret = i915_gem_shmem_pread(dev, obj, args, file); | 
 |  | 
 | 	/* pread for non shmem backed objects */ | 
 | 	if (ret == -EFAULT || ret == -ENODEV) { | 
 | 		intel_runtime_pm_get(to_i915(dev)); | 
 | 		ret = i915_gem_gtt_pread(dev, obj, args->size, | 
 | 					args->offset, args->data_ptr); | 
 | 		intel_runtime_pm_put(to_i915(dev)); | 
 | 	} | 
 |  | 
 | 	i915_gem_object_put(obj); | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 |  | 
 | 	return ret; | 
 |  | 
 | err: | 
 | 	i915_gem_object_put_unlocked(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* This is the fast write path which cannot handle | 
 |  * page faults in the source data | 
 |  */ | 
 |  | 
 | static inline int | 
 | fast_user_write(struct io_mapping *mapping, | 
 | 		loff_t page_base, int page_offset, | 
 | 		char __user *user_data, | 
 | 		int length) | 
 | { | 
 | 	void __iomem *vaddr_atomic; | 
 | 	void *vaddr; | 
 | 	unsigned long unwritten; | 
 |  | 
 | 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); | 
 | 	/* We can use the cpu mem copy function because this is X86. */ | 
 | 	vaddr = (void __force*)vaddr_atomic + page_offset; | 
 | 	unwritten = __copy_from_user_inatomic_nocache(vaddr, | 
 | 						      user_data, length); | 
 | 	io_mapping_unmap_atomic(vaddr_atomic); | 
 | 	return unwritten; | 
 | } | 
 |  | 
 | /** | 
 |  * This is the fast pwrite path, where we copy the data directly from the | 
 |  * user into the GTT, uncached. | 
 |  * @i915: i915 device private data | 
 |  * @obj: i915 gem object | 
 |  * @args: pwrite arguments structure | 
 |  * @file: drm file pointer | 
 |  */ | 
 | static int | 
 | i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915, | 
 | 			 struct drm_i915_gem_object *obj, | 
 | 			 struct drm_i915_gem_pwrite *args, | 
 | 			 struct drm_file *file) | 
 | { | 
 | 	struct i915_ggtt *ggtt = &i915->ggtt; | 
 | 	struct drm_device *dev = obj->base.dev; | 
 | 	struct i915_vma *vma; | 
 | 	struct drm_mm_node node; | 
 | 	uint64_t remain, offset; | 
 | 	char __user *user_data; | 
 | 	int ret; | 
 | 	bool hit_slow_path = false; | 
 |  | 
 | 	if (i915_gem_object_is_tiled(obj)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, | 
 | 				       PIN_MAPPABLE | PIN_NONBLOCK); | 
 | 	if (!IS_ERR(vma)) { | 
 | 		node.start = i915_ggtt_offset(vma); | 
 | 		node.allocated = false; | 
 | 		ret = i915_vma_put_fence(vma); | 
 | 		if (ret) { | 
 | 			i915_vma_unpin(vma); | 
 | 			vma = ERR_PTR(ret); | 
 | 		} | 
 | 	} | 
 | 	if (IS_ERR(vma)) { | 
 | 		ret = insert_mappable_node(i915, &node, PAGE_SIZE); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		ret = i915_gem_object_get_pages(obj); | 
 | 		if (ret) { | 
 | 			remove_mappable_node(&node); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		i915_gem_object_pin_pages(obj); | 
 | 	} | 
 |  | 
 | 	ret = i915_gem_object_set_to_gtt_domain(obj, true); | 
 | 	if (ret) | 
 | 		goto out_unpin; | 
 |  | 
 | 	intel_fb_obj_invalidate(obj, ORIGIN_CPU); | 
 | 	obj->dirty = true; | 
 |  | 
 | 	user_data = u64_to_user_ptr(args->data_ptr); | 
 | 	offset = args->offset; | 
 | 	remain = args->size; | 
 | 	while (remain) { | 
 | 		/* Operation in this page | 
 | 		 * | 
 | 		 * page_base = page offset within aperture | 
 | 		 * page_offset = offset within page | 
 | 		 * page_length = bytes to copy for this page | 
 | 		 */ | 
 | 		u32 page_base = node.start; | 
 | 		unsigned page_offset = offset_in_page(offset); | 
 | 		unsigned page_length = PAGE_SIZE - page_offset; | 
 | 		page_length = remain < page_length ? remain : page_length; | 
 | 		if (node.allocated) { | 
 | 			wmb(); /* flush the write before we modify the GGTT */ | 
 | 			ggtt->base.insert_page(&ggtt->base, | 
 | 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), | 
 | 					       node.start, I915_CACHE_NONE, 0); | 
 | 			wmb(); /* flush modifications to the GGTT (insert_page) */ | 
 | 		} else { | 
 | 			page_base += offset & PAGE_MASK; | 
 | 		} | 
 | 		/* If we get a fault while copying data, then (presumably) our | 
 | 		 * source page isn't available.  Return the error and we'll | 
 | 		 * retry in the slow path. | 
 | 		 * If the object is non-shmem backed, we retry again with the | 
 | 		 * path that handles page fault. | 
 | 		 */ | 
 | 		if (fast_user_write(&ggtt->mappable, page_base, | 
 | 				    page_offset, user_data, page_length)) { | 
 | 			hit_slow_path = true; | 
 | 			mutex_unlock(&dev->struct_mutex); | 
 | 			if (slow_user_access(&ggtt->mappable, | 
 | 					     page_base, | 
 | 					     page_offset, user_data, | 
 | 					     page_length, true)) { | 
 | 				ret = -EFAULT; | 
 | 				mutex_lock(&dev->struct_mutex); | 
 | 				goto out_flush; | 
 | 			} | 
 |  | 
 | 			mutex_lock(&dev->struct_mutex); | 
 | 		} | 
 |  | 
 | 		remain -= page_length; | 
 | 		user_data += page_length; | 
 | 		offset += page_length; | 
 | 	} | 
 |  | 
 | out_flush: | 
 | 	if (hit_slow_path) { | 
 | 		if (ret == 0 && | 
 | 		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) { | 
 | 			/* The user has modified the object whilst we tried | 
 | 			 * reading from it, and we now have no idea what domain | 
 | 			 * the pages should be in. As we have just been touching | 
 | 			 * them directly, flush everything back to the GTT | 
 | 			 * domain. | 
 | 			 */ | 
 | 			ret = i915_gem_object_set_to_gtt_domain(obj, false); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	intel_fb_obj_flush(obj, false, ORIGIN_CPU); | 
 | out_unpin: | 
 | 	if (node.allocated) { | 
 | 		wmb(); | 
 | 		ggtt->base.clear_range(&ggtt->base, | 
 | 				       node.start, node.size, | 
 | 				       true); | 
 | 		i915_gem_object_unpin_pages(obj); | 
 | 		remove_mappable_node(&node); | 
 | 	} else { | 
 | 		i915_vma_unpin(vma); | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Per-page copy function for the shmem pwrite fastpath. | 
 |  * Flushes invalid cachelines before writing to the target if | 
 |  * needs_clflush_before is set and flushes out any written cachelines after | 
 |  * writing if needs_clflush is set. */ | 
 | static int | 
 | shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, | 
 | 		  char __user *user_data, | 
 | 		  bool page_do_bit17_swizzling, | 
 | 		  bool needs_clflush_before, | 
 | 		  bool needs_clflush_after) | 
 | { | 
 | 	char *vaddr; | 
 | 	int ret; | 
 |  | 
 | 	if (unlikely(page_do_bit17_swizzling)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vaddr = kmap_atomic(page); | 
 | 	if (needs_clflush_before) | 
 | 		drm_clflush_virt_range(vaddr + shmem_page_offset, | 
 | 				       page_length); | 
 | 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, | 
 | 					user_data, page_length); | 
 | 	if (needs_clflush_after) | 
 | 		drm_clflush_virt_range(vaddr + shmem_page_offset, | 
 | 				       page_length); | 
 | 	kunmap_atomic(vaddr); | 
 |  | 
 | 	return ret ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /* Only difference to the fast-path function is that this can handle bit17 | 
 |  * and uses non-atomic copy and kmap functions. */ | 
 | static int | 
 | shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, | 
 | 		  char __user *user_data, | 
 | 		  bool page_do_bit17_swizzling, | 
 | 		  bool needs_clflush_before, | 
 | 		  bool needs_clflush_after) | 
 | { | 
 | 	char *vaddr; | 
 | 	int ret; | 
 |  | 
 | 	vaddr = kmap(page); | 
 | 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) | 
 | 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset, | 
 | 					     page_length, | 
 | 					     page_do_bit17_swizzling); | 
 | 	if (page_do_bit17_swizzling) | 
 | 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, | 
 | 						user_data, | 
 | 						page_length); | 
 | 	else | 
 | 		ret = __copy_from_user(vaddr + shmem_page_offset, | 
 | 				       user_data, | 
 | 				       page_length); | 
 | 	if (needs_clflush_after) | 
 | 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset, | 
 | 					     page_length, | 
 | 					     page_do_bit17_swizzling); | 
 | 	kunmap(page); | 
 |  | 
 | 	return ret ? -EFAULT : 0; | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_shmem_pwrite(struct drm_device *dev, | 
 | 		      struct drm_i915_gem_object *obj, | 
 | 		      struct drm_i915_gem_pwrite *args, | 
 | 		      struct drm_file *file) | 
 | { | 
 | 	ssize_t remain; | 
 | 	loff_t offset; | 
 | 	char __user *user_data; | 
 | 	int shmem_page_offset, page_length, ret = 0; | 
 | 	int obj_do_bit17_swizzling, page_do_bit17_swizzling; | 
 | 	int hit_slowpath = 0; | 
 | 	unsigned int needs_clflush; | 
 | 	struct sg_page_iter sg_iter; | 
 |  | 
 | 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); | 
 | 	user_data = u64_to_user_ptr(args->data_ptr); | 
 | 	offset = args->offset; | 
 | 	remain = args->size; | 
 |  | 
 | 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, | 
 | 			 offset >> PAGE_SHIFT) { | 
 | 		struct page *page = sg_page_iter_page(&sg_iter); | 
 | 		int partial_cacheline_write; | 
 |  | 
 | 		if (remain <= 0) | 
 | 			break; | 
 |  | 
 | 		/* Operation in this page | 
 | 		 * | 
 | 		 * shmem_page_offset = offset within page in shmem file | 
 | 		 * page_length = bytes to copy for this page | 
 | 		 */ | 
 | 		shmem_page_offset = offset_in_page(offset); | 
 |  | 
 | 		page_length = remain; | 
 | 		if ((shmem_page_offset + page_length) > PAGE_SIZE) | 
 | 			page_length = PAGE_SIZE - shmem_page_offset; | 
 |  | 
 | 		/* If we don't overwrite a cacheline completely we need to be | 
 | 		 * careful to have up-to-date data by first clflushing. Don't | 
 | 		 * overcomplicate things and flush the entire patch. */ | 
 | 		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE && | 
 | 			((shmem_page_offset | page_length) | 
 | 				& (boot_cpu_data.x86_clflush_size - 1)); | 
 |  | 
 | 		page_do_bit17_swizzling = obj_do_bit17_swizzling && | 
 | 			(page_to_phys(page) & (1 << 17)) != 0; | 
 |  | 
 | 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, | 
 | 					user_data, page_do_bit17_swizzling, | 
 | 					partial_cacheline_write, | 
 | 					needs_clflush & CLFLUSH_AFTER); | 
 | 		if (ret == 0) | 
 | 			goto next_page; | 
 |  | 
 | 		hit_slowpath = 1; | 
 | 		mutex_unlock(&dev->struct_mutex); | 
 | 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, | 
 | 					user_data, page_do_bit17_swizzling, | 
 | 					partial_cacheline_write, | 
 | 					needs_clflush & CLFLUSH_AFTER); | 
 |  | 
 | 		mutex_lock(&dev->struct_mutex); | 
 |  | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | next_page: | 
 | 		remain -= page_length; | 
 | 		user_data += page_length; | 
 | 		offset += page_length; | 
 | 	} | 
 |  | 
 | out: | 
 | 	i915_gem_obj_finish_shmem_access(obj); | 
 |  | 
 | 	if (hit_slowpath) { | 
 | 		/* | 
 | 		 * Fixup: Flush cpu caches in case we didn't flush the dirty | 
 | 		 * cachelines in-line while writing and the object moved | 
 | 		 * out of the cpu write domain while we've dropped the lock. | 
 | 		 */ | 
 | 		if (!(needs_clflush & CLFLUSH_AFTER) && | 
 | 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) { | 
 | 			if (i915_gem_clflush_object(obj, obj->pin_display)) | 
 | 				needs_clflush |= CLFLUSH_AFTER; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (needs_clflush & CLFLUSH_AFTER) | 
 | 		i915_gem_chipset_flush(to_i915(dev)); | 
 |  | 
 | 	intel_fb_obj_flush(obj, false, ORIGIN_CPU); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Writes data to the object referenced by handle. | 
 |  * @dev: drm device | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file | 
 |  * | 
 |  * On error, the contents of the buffer that were to be modified are undefined. | 
 |  */ | 
 | int | 
 | i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, | 
 | 		      struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct drm_i915_gem_pwrite *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int ret; | 
 |  | 
 | 	if (args->size == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (!access_ok(VERIFY_READ, | 
 | 		       u64_to_user_ptr(args->data_ptr), | 
 | 		       args->size)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (likely(!i915.prefault_disable)) { | 
 | 		ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr), | 
 | 						   args->size); | 
 | 		if (ret) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* Bounds check destination. */ | 
 | 	if (args->offset > obj->base.size || | 
 | 	    args->size > obj->base.size - args->offset) { | 
 | 		ret = -EINVAL; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	trace_i915_gem_object_pwrite(obj, args->offset, args->size); | 
 |  | 
 | 	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	intel_runtime_pm_get(dev_priv); | 
 |  | 
 | 	ret = i915_mutex_lock_interruptible(dev); | 
 | 	if (ret) | 
 | 		goto err_rpm; | 
 |  | 
 | 	ret = -EFAULT; | 
 | 	/* We can only do the GTT pwrite on untiled buffers, as otherwise | 
 | 	 * it would end up going through the fenced access, and we'll get | 
 | 	 * different detiling behavior between reading and writing. | 
 | 	 * pread/pwrite currently are reading and writing from the CPU | 
 | 	 * perspective, requiring manual detiling by the client. | 
 | 	 */ | 
 | 	if (!i915_gem_object_has_struct_page(obj) || | 
 | 	    cpu_write_needs_clflush(obj)) { | 
 | 		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file); | 
 | 		/* Note that the gtt paths might fail with non-page-backed user | 
 | 		 * pointers (e.g. gtt mappings when moving data between | 
 | 		 * textures). Fallback to the shmem path in that case. */ | 
 | 	} | 
 |  | 
 | 	if (ret == -EFAULT || ret == -ENOSPC) { | 
 | 		if (obj->phys_handle) | 
 | 			ret = i915_gem_phys_pwrite(obj, args, file); | 
 | 		else | 
 | 			ret = i915_gem_shmem_pwrite(dev, obj, args, file); | 
 | 	} | 
 |  | 
 | 	i915_gem_object_put(obj); | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 | 	intel_runtime_pm_put(dev_priv); | 
 |  | 
 | 	return ret; | 
 |  | 
 | err_rpm: | 
 | 	intel_runtime_pm_put(dev_priv); | 
 | err: | 
 | 	i915_gem_object_put_unlocked(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline enum fb_op_origin | 
 | write_origin(struct drm_i915_gem_object *obj, unsigned domain) | 
 | { | 
 | 	return (domain == I915_GEM_DOMAIN_GTT ? | 
 | 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU); | 
 | } | 
 |  | 
 | /** | 
 |  * Called when user space prepares to use an object with the CPU, either | 
 |  * through the mmap ioctl's mapping or a GTT mapping. | 
 |  * @dev: drm device | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file | 
 |  */ | 
 | int | 
 | i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, | 
 | 			  struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_set_domain *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	uint32_t read_domains = args->read_domains; | 
 | 	uint32_t write_domain = args->write_domain; | 
 | 	int ret; | 
 |  | 
 | 	/* Only handle setting domains to types used by the CPU. */ | 
 | 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Having something in the write domain implies it's in the read | 
 | 	 * domain, and only that read domain.  Enforce that in the request. | 
 | 	 */ | 
 | 	if (write_domain != 0 && read_domains != write_domain) | 
 | 		return -EINVAL; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* Try to flush the object off the GPU without holding the lock. | 
 | 	 * We will repeat the flush holding the lock in the normal manner | 
 | 	 * to catch cases where we are gazumped. | 
 | 	 */ | 
 | 	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	ret = i915_mutex_lock_interruptible(dev); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	if (read_domains & I915_GEM_DOMAIN_GTT) | 
 | 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); | 
 | 	else | 
 | 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); | 
 |  | 
 | 	if (write_domain != 0) | 
 | 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain)); | 
 |  | 
 | 	i915_gem_object_put(obj); | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 | 	return ret; | 
 |  | 
 | err: | 
 | 	i915_gem_object_put_unlocked(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Called when user space has done writes to this buffer | 
 |  * @dev: drm device | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file | 
 |  */ | 
 | int | 
 | i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, | 
 | 			 struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_sw_finish *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int err = 0; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* Pinned buffers may be scanout, so flush the cache */ | 
 | 	if (READ_ONCE(obj->pin_display)) { | 
 | 		err = i915_mutex_lock_interruptible(dev); | 
 | 		if (!err) { | 
 | 			i915_gem_object_flush_cpu_write_domain(obj); | 
 | 			mutex_unlock(&dev->struct_mutex); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	i915_gem_object_put_unlocked(obj); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address | 
 |  *			 it is mapped to. | 
 |  * @dev: drm device | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file | 
 |  * | 
 |  * While the mapping holds a reference on the contents of the object, it doesn't | 
 |  * imply a ref on the object itself. | 
 |  * | 
 |  * IMPORTANT: | 
 |  * | 
 |  * DRM driver writers who look a this function as an example for how to do GEM | 
 |  * mmap support, please don't implement mmap support like here. The modern way | 
 |  * to implement DRM mmap support is with an mmap offset ioctl (like | 
 |  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. | 
 |  * That way debug tooling like valgrind will understand what's going on, hiding | 
 |  * the mmap call in a driver private ioctl will break that. The i915 driver only | 
 |  * does cpu mmaps this way because we didn't know better. | 
 |  */ | 
 | int | 
 | i915_gem_mmap_ioctl(struct drm_device *dev, void *data, | 
 | 		    struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_mmap *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (args->flags & ~(I915_MMAP_WC)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* prime objects have no backing filp to GEM mmap | 
 | 	 * pages from. | 
 | 	 */ | 
 | 	if (!obj->base.filp) { | 
 | 		i915_gem_object_put_unlocked(obj); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	addr = vm_mmap(obj->base.filp, 0, args->size, | 
 | 		       PROT_READ | PROT_WRITE, MAP_SHARED, | 
 | 		       args->offset); | 
 | 	if (args->flags & I915_MMAP_WC) { | 
 | 		struct mm_struct *mm = current->mm; | 
 | 		struct vm_area_struct *vma; | 
 |  | 
 | 		if (down_write_killable(&mm->mmap_sem)) { | 
 | 			i915_gem_object_put_unlocked(obj); | 
 | 			return -EINTR; | 
 | 		} | 
 | 		vma = find_vma(mm, addr); | 
 | 		if (vma) | 
 | 			vma->vm_page_prot = | 
 | 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); | 
 | 		else | 
 | 			addr = -ENOMEM; | 
 | 		up_write(&mm->mmap_sem); | 
 |  | 
 | 		/* This may race, but that's ok, it only gets set */ | 
 | 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); | 
 | 	} | 
 | 	i915_gem_object_put_unlocked(obj); | 
 | 	if (IS_ERR((void *)addr)) | 
 | 		return addr; | 
 |  | 
 | 	args->addr_ptr = (uint64_t) addr; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	u64 size; | 
 |  | 
 | 	size = i915_gem_object_get_stride(obj); | 
 | 	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8; | 
 |  | 
 | 	return size >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps | 
 |  * | 
 |  * A history of the GTT mmap interface: | 
 |  * | 
 |  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to | 
 |  *     aligned and suitable for fencing, and still fit into the available | 
 |  *     mappable space left by the pinned display objects. A classic problem | 
 |  *     we called the page-fault-of-doom where we would ping-pong between | 
 |  *     two objects that could not fit inside the GTT and so the memcpy | 
 |  *     would page one object in at the expense of the other between every | 
 |  *     single byte. | 
 |  * | 
 |  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none | 
 |  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the | 
 |  *     object is too large for the available space (or simply too large | 
 |  *     for the mappable aperture!), a view is created instead and faulted | 
 |  *     into userspace. (This view is aligned and sized appropriately for | 
 |  *     fenced access.) | 
 |  * | 
 |  * Restrictions: | 
 |  * | 
 |  *  * snoopable objects cannot be accessed via the GTT. It can cause machine | 
 |  *    hangs on some architectures, corruption on others. An attempt to service | 
 |  *    a GTT page fault from a snoopable object will generate a SIGBUS. | 
 |  * | 
 |  *  * the object must be able to fit into RAM (physical memory, though no | 
 |  *    limited to the mappable aperture). | 
 |  * | 
 |  * | 
 |  * Caveats: | 
 |  * | 
 |  *  * a new GTT page fault will synchronize rendering from the GPU and flush | 
 |  *    all data to system memory. Subsequent access will not be synchronized. | 
 |  * | 
 |  *  * all mappings are revoked on runtime device suspend. | 
 |  * | 
 |  *  * there are only 8, 16 or 32 fence registers to share between all users | 
 |  *    (older machines require fence register for display and blitter access | 
 |  *    as well). Contention of the fence registers will cause the previous users | 
 |  *    to be unmapped and any new access will generate new page faults. | 
 |  * | 
 |  *  * running out of memory while servicing a fault may generate a SIGBUS, | 
 |  *    rather than the expected SIGSEGV. | 
 |  */ | 
 | int i915_gem_mmap_gtt_version(void) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_fault - fault a page into the GTT | 
 |  * @area: CPU VMA in question | 
 |  * @vmf: fault info | 
 |  * | 
 |  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped | 
 |  * from userspace.  The fault handler takes care of binding the object to | 
 |  * the GTT (if needed), allocating and programming a fence register (again, | 
 |  * only if needed based on whether the old reg is still valid or the object | 
 |  * is tiled) and inserting a new PTE into the faulting process. | 
 |  * | 
 |  * Note that the faulting process may involve evicting existing objects | 
 |  * from the GTT and/or fence registers to make room.  So performance may | 
 |  * suffer if the GTT working set is large or there are few fence registers | 
 |  * left. | 
 |  * | 
 |  * The current feature set supported by i915_gem_fault() and thus GTT mmaps | 
 |  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). | 
 |  */ | 
 | int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf) | 
 | { | 
 | #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ | 
 | 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); | 
 | 	struct drm_device *dev = obj->base.dev; | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE); | 
 | 	struct i915_vma *vma; | 
 | 	pgoff_t page_offset; | 
 | 	unsigned int flags; | 
 | 	int ret; | 
 |  | 
 | 	/* We don't use vmf->pgoff since that has the fake offset */ | 
 | 	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >> | 
 | 		PAGE_SHIFT; | 
 |  | 
 | 	trace_i915_gem_object_fault(obj, page_offset, true, write); | 
 |  | 
 | 	/* Try to flush the object off the GPU first without holding the lock. | 
 | 	 * Upon acquiring the lock, we will perform our sanity checks and then | 
 | 	 * repeat the flush holding the lock in the normal manner to catch cases | 
 | 	 * where we are gazumped. | 
 | 	 */ | 
 | 	ret = __unsafe_wait_rendering(obj, NULL, !write); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	intel_runtime_pm_get(dev_priv); | 
 |  | 
 | 	ret = i915_mutex_lock_interruptible(dev); | 
 | 	if (ret) | 
 | 		goto err_rpm; | 
 |  | 
 | 	/* Access to snoopable pages through the GTT is incoherent. */ | 
 | 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { | 
 | 		ret = -EFAULT; | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	/* If the object is smaller than a couple of partial vma, it is | 
 | 	 * not worth only creating a single partial vma - we may as well | 
 | 	 * clear enough space for the full object. | 
 | 	 */ | 
 | 	flags = PIN_MAPPABLE; | 
 | 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) | 
 | 		flags |= PIN_NONBLOCK | PIN_NONFAULT; | 
 |  | 
 | 	/* Now pin it into the GTT as needed */ | 
 | 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); | 
 | 	if (IS_ERR(vma)) { | 
 | 		struct i915_ggtt_view view; | 
 | 		unsigned int chunk_size; | 
 |  | 
 | 		/* Use a partial view if it is bigger than available space */ | 
 | 		chunk_size = MIN_CHUNK_PAGES; | 
 | 		if (i915_gem_object_is_tiled(obj)) | 
 | 			chunk_size = roundup(chunk_size, tile_row_pages(obj)); | 
 |  | 
 | 		memset(&view, 0, sizeof(view)); | 
 | 		view.type = I915_GGTT_VIEW_PARTIAL; | 
 | 		view.params.partial.offset = rounddown(page_offset, chunk_size); | 
 | 		view.params.partial.size = | 
 | 			min_t(unsigned int, chunk_size, | 
 | 			      (area->vm_end - area->vm_start) / PAGE_SIZE - | 
 | 			      view.params.partial.offset); | 
 |  | 
 | 		/* If the partial covers the entire object, just create a | 
 | 		 * normal VMA. | 
 | 		 */ | 
 | 		if (chunk_size >= obj->base.size >> PAGE_SHIFT) | 
 | 			view.type = I915_GGTT_VIEW_NORMAL; | 
 |  | 
 | 		/* Userspace is now writing through an untracked VMA, abandon | 
 | 		 * all hope that the hardware is able to track future writes. | 
 | 		 */ | 
 | 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU; | 
 |  | 
 | 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); | 
 | 	} | 
 | 	if (IS_ERR(vma)) { | 
 | 		ret = PTR_ERR(vma); | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	ret = i915_gem_object_set_to_gtt_domain(obj, write); | 
 | 	if (ret) | 
 | 		goto err_unpin; | 
 |  | 
 | 	ret = i915_vma_get_fence(vma); | 
 | 	if (ret) | 
 | 		goto err_unpin; | 
 |  | 
 | 	/* Finally, remap it using the new GTT offset */ | 
 | 	ret = remap_io_mapping(area, | 
 | 			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT), | 
 | 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT, | 
 | 			       min_t(u64, vma->size, area->vm_end - area->vm_start), | 
 | 			       &ggtt->mappable); | 
 | 	if (ret) | 
 | 		goto err_unpin; | 
 |  | 
 | 	obj->fault_mappable = true; | 
 | err_unpin: | 
 | 	__i915_vma_unpin(vma); | 
 | err_unlock: | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 | err_rpm: | 
 | 	intel_runtime_pm_put(dev_priv); | 
 | err: | 
 | 	switch (ret) { | 
 | 	case -EIO: | 
 | 		/* | 
 | 		 * We eat errors when the gpu is terminally wedged to avoid | 
 | 		 * userspace unduly crashing (gl has no provisions for mmaps to | 
 | 		 * fail). But any other -EIO isn't ours (e.g. swap in failure) | 
 | 		 * and so needs to be reported. | 
 | 		 */ | 
 | 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) { | 
 | 			ret = VM_FAULT_SIGBUS; | 
 | 			break; | 
 | 		} | 
 | 	case -EAGAIN: | 
 | 		/* | 
 | 		 * EAGAIN means the gpu is hung and we'll wait for the error | 
 | 		 * handler to reset everything when re-faulting in | 
 | 		 * i915_mutex_lock_interruptible. | 
 | 		 */ | 
 | 	case 0: | 
 | 	case -ERESTARTSYS: | 
 | 	case -EINTR: | 
 | 	case -EBUSY: | 
 | 		/* | 
 | 		 * EBUSY is ok: this just means that another thread | 
 | 		 * already did the job. | 
 | 		 */ | 
 | 		ret = VM_FAULT_NOPAGE; | 
 | 		break; | 
 | 	case -ENOMEM: | 
 | 		ret = VM_FAULT_OOM; | 
 | 		break; | 
 | 	case -ENOSPC: | 
 | 	case -EFAULT: | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_release_mmap - remove physical page mappings | 
 |  * @obj: obj in question | 
 |  * | 
 |  * Preserve the reservation of the mmapping with the DRM core code, but | 
 |  * relinquish ownership of the pages back to the system. | 
 |  * | 
 |  * It is vital that we remove the page mapping if we have mapped a tiled | 
 |  * object through the GTT and then lose the fence register due to | 
 |  * resource pressure. Similarly if the object has been moved out of the | 
 |  * aperture, than pages mapped into userspace must be revoked. Removing the | 
 |  * mapping will then trigger a page fault on the next user access, allowing | 
 |  * fixup by i915_gem_fault(). | 
 |  */ | 
 | void | 
 | i915_gem_release_mmap(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	/* Serialisation between user GTT access and our code depends upon | 
 | 	 * revoking the CPU's PTE whilst the mutex is held. The next user | 
 | 	 * pagefault then has to wait until we release the mutex. | 
 | 	 */ | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 |  | 
 | 	if (!obj->fault_mappable) | 
 | 		return; | 
 |  | 
 | 	drm_vma_node_unmap(&obj->base.vma_node, | 
 | 			   obj->base.dev->anon_inode->i_mapping); | 
 |  | 
 | 	/* Ensure that the CPU's PTE are revoked and there are not outstanding | 
 | 	 * memory transactions from userspace before we return. The TLB | 
 | 	 * flushing implied above by changing the PTE above *should* be | 
 | 	 * sufficient, an extra barrier here just provides us with a bit | 
 | 	 * of paranoid documentation about our requirement to serialise | 
 | 	 * memory writes before touching registers / GSM. | 
 | 	 */ | 
 | 	wmb(); | 
 |  | 
 | 	obj->fault_mappable = false; | 
 | } | 
 |  | 
 | void | 
 | i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 |  | 
 | 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) | 
 | 		i915_gem_release_mmap(obj); | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_get_ggtt_size - return required global GTT size for an object | 
 |  * @dev_priv: i915 device | 
 |  * @size: object size | 
 |  * @tiling_mode: tiling mode | 
 |  * | 
 |  * Return the required global GTT size for an object, taking into account | 
 |  * potential fence register mapping. | 
 |  */ | 
 | u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, | 
 | 			   u64 size, int tiling_mode) | 
 | { | 
 | 	u64 ggtt_size; | 
 |  | 
 | 	GEM_BUG_ON(size == 0); | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 4 || | 
 | 	    tiling_mode == I915_TILING_NONE) | 
 | 		return size; | 
 |  | 
 | 	/* Previous chips need a power-of-two fence region when tiling */ | 
 | 	if (IS_GEN3(dev_priv)) | 
 | 		ggtt_size = 1024*1024; | 
 | 	else | 
 | 		ggtt_size = 512*1024; | 
 |  | 
 | 	while (ggtt_size < size) | 
 | 		ggtt_size <<= 1; | 
 |  | 
 | 	return ggtt_size; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_get_ggtt_alignment - return required global GTT alignment | 
 |  * @dev_priv: i915 device | 
 |  * @size: object size | 
 |  * @tiling_mode: tiling mode | 
 |  * @fenced: is fenced alignment required or not | 
 |  * | 
 |  * Return the required global GTT alignment for an object, taking into account | 
 |  * potential fence register mapping. | 
 |  */ | 
 | u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size, | 
 | 				int tiling_mode, bool fenced) | 
 | { | 
 | 	GEM_BUG_ON(size == 0); | 
 |  | 
 | 	/* | 
 | 	 * Minimum alignment is 4k (GTT page size), but might be greater | 
 | 	 * if a fence register is needed for the object. | 
 | 	 */ | 
 | 	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) || | 
 | 	    tiling_mode == I915_TILING_NONE) | 
 | 		return 4096; | 
 |  | 
 | 	/* | 
 | 	 * Previous chips need to be aligned to the size of the smallest | 
 | 	 * fence register that can contain the object. | 
 | 	 */ | 
 | 	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode); | 
 | } | 
 |  | 
 | static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	int err; | 
 |  | 
 | 	err = drm_gem_create_mmap_offset(&obj->base); | 
 | 	if (!err) | 
 | 		return 0; | 
 |  | 
 | 	/* We can idle the GPU locklessly to flush stale objects, but in order | 
 | 	 * to claim that space for ourselves, we need to take the big | 
 | 	 * struct_mutex to free the requests+objects and allocate our slot. | 
 | 	 */ | 
 | 	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = i915_mutex_lock_interruptible(&dev_priv->drm); | 
 | 	if (!err) { | 
 | 		i915_gem_retire_requests(dev_priv); | 
 | 		err = drm_gem_create_mmap_offset(&obj->base); | 
 | 		mutex_unlock(&dev_priv->drm.struct_mutex); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	drm_gem_free_mmap_offset(&obj->base); | 
 | } | 
 |  | 
 | int | 
 | i915_gem_mmap_gtt(struct drm_file *file, | 
 | 		  struct drm_device *dev, | 
 | 		  uint32_t handle, | 
 | 		  uint64_t *offset) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int ret; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	ret = i915_gem_object_create_mmap_offset(obj); | 
 | 	if (ret == 0) | 
 | 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node); | 
 |  | 
 | 	i915_gem_object_put_unlocked(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing | 
 |  * @dev: DRM device | 
 |  * @data: GTT mapping ioctl data | 
 |  * @file: GEM object info | 
 |  * | 
 |  * Simply returns the fake offset to userspace so it can mmap it. | 
 |  * The mmap call will end up in drm_gem_mmap(), which will set things | 
 |  * up so we can get faults in the handler above. | 
 |  * | 
 |  * The fault handler will take care of binding the object into the GTT | 
 |  * (since it may have been evicted to make room for something), allocating | 
 |  * a fence register, and mapping the appropriate aperture address into | 
 |  * userspace. | 
 |  */ | 
 | int | 
 | i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, | 
 | 			struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_mmap_gtt *args = data; | 
 |  | 
 | 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); | 
 | } | 
 |  | 
 | /* Immediately discard the backing storage */ | 
 | static void | 
 | i915_gem_object_truncate(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	i915_gem_object_free_mmap_offset(obj); | 
 |  | 
 | 	if (obj->base.filp == NULL) | 
 | 		return; | 
 |  | 
 | 	/* Our goal here is to return as much of the memory as | 
 | 	 * is possible back to the system as we are called from OOM. | 
 | 	 * To do this we must instruct the shmfs to drop all of its | 
 | 	 * backing pages, *now*. | 
 | 	 */ | 
 | 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); | 
 | 	obj->madv = __I915_MADV_PURGED; | 
 | } | 
 |  | 
 | /* Try to discard unwanted pages */ | 
 | static void | 
 | i915_gem_object_invalidate(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct address_space *mapping; | 
 |  | 
 | 	switch (obj->madv) { | 
 | 	case I915_MADV_DONTNEED: | 
 | 		i915_gem_object_truncate(obj); | 
 | 	case __I915_MADV_PURGED: | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (obj->base.filp == NULL) | 
 | 		return; | 
 |  | 
 | 	mapping = obj->base.filp->f_mapping, | 
 | 	invalidate_mapping_pages(mapping, 0, (loff_t)-1); | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct sgt_iter sgt_iter; | 
 | 	struct page *page; | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(obj->madv == __I915_MADV_PURGED); | 
 |  | 
 | 	ret = i915_gem_object_set_to_cpu_domain(obj, true); | 
 | 	if (WARN_ON(ret)) { | 
 | 		/* In the event of a disaster, abandon all caches and | 
 | 		 * hope for the best. | 
 | 		 */ | 
 | 		i915_gem_clflush_object(obj, true); | 
 | 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; | 
 | 	} | 
 |  | 
 | 	i915_gem_gtt_finish_object(obj); | 
 |  | 
 | 	if (i915_gem_object_needs_bit17_swizzle(obj)) | 
 | 		i915_gem_object_save_bit_17_swizzle(obj); | 
 |  | 
 | 	if (obj->madv == I915_MADV_DONTNEED) | 
 | 		obj->dirty = 0; | 
 |  | 
 | 	for_each_sgt_page(page, sgt_iter, obj->pages) { | 
 | 		if (obj->dirty) | 
 | 			set_page_dirty(page); | 
 |  | 
 | 		if (obj->madv == I915_MADV_WILLNEED) | 
 | 			mark_page_accessed(page); | 
 |  | 
 | 		put_page(page); | 
 | 	} | 
 | 	obj->dirty = 0; | 
 |  | 
 | 	sg_free_table(obj->pages); | 
 | 	kfree(obj->pages); | 
 | } | 
 |  | 
 | int | 
 | i915_gem_object_put_pages(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	const struct drm_i915_gem_object_ops *ops = obj->ops; | 
 |  | 
 | 	if (obj->pages == NULL) | 
 | 		return 0; | 
 |  | 
 | 	if (obj->pages_pin_count) | 
 | 		return -EBUSY; | 
 |  | 
 | 	GEM_BUG_ON(obj->bind_count); | 
 |  | 
 | 	/* ->put_pages might need to allocate memory for the bit17 swizzle | 
 | 	 * array, hence protect them from being reaped by removing them from gtt | 
 | 	 * lists early. */ | 
 | 	list_del(&obj->global_list); | 
 |  | 
 | 	if (obj->mapping) { | 
 | 		void *ptr; | 
 |  | 
 | 		ptr = ptr_mask_bits(obj->mapping); | 
 | 		if (is_vmalloc_addr(ptr)) | 
 | 			vunmap(ptr); | 
 | 		else | 
 | 			kunmap(kmap_to_page(ptr)); | 
 |  | 
 | 		obj->mapping = NULL; | 
 | 	} | 
 |  | 
 | 	ops->put_pages(obj); | 
 | 	obj->pages = NULL; | 
 |  | 
 | 	i915_gem_object_invalidate(obj); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	int page_count, i; | 
 | 	struct address_space *mapping; | 
 | 	struct sg_table *st; | 
 | 	struct scatterlist *sg; | 
 | 	struct sgt_iter sgt_iter; | 
 | 	struct page *page; | 
 | 	unsigned long last_pfn = 0;	/* suppress gcc warning */ | 
 | 	int ret; | 
 | 	gfp_t gfp; | 
 |  | 
 | 	/* Assert that the object is not currently in any GPU domain. As it | 
 | 	 * wasn't in the GTT, there shouldn't be any way it could have been in | 
 | 	 * a GPU cache | 
 | 	 */ | 
 | 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); | 
 | 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); | 
 |  | 
 | 	st = kmalloc(sizeof(*st), GFP_KERNEL); | 
 | 	if (st == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	page_count = obj->base.size / PAGE_SIZE; | 
 | 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) { | 
 | 		kfree(st); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Get the list of pages out of our struct file.  They'll be pinned | 
 | 	 * at this point until we release them. | 
 | 	 * | 
 | 	 * Fail silently without starting the shrinker | 
 | 	 */ | 
 | 	mapping = obj->base.filp->f_mapping; | 
 | 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM)); | 
 | 	gfp |= __GFP_NORETRY | __GFP_NOWARN; | 
 | 	sg = st->sgl; | 
 | 	st->nents = 0; | 
 | 	for (i = 0; i < page_count; i++) { | 
 | 		page = shmem_read_mapping_page_gfp(mapping, i, gfp); | 
 | 		if (IS_ERR(page)) { | 
 | 			i915_gem_shrink(dev_priv, | 
 | 					page_count, | 
 | 					I915_SHRINK_BOUND | | 
 | 					I915_SHRINK_UNBOUND | | 
 | 					I915_SHRINK_PURGEABLE); | 
 | 			page = shmem_read_mapping_page_gfp(mapping, i, gfp); | 
 | 		} | 
 | 		if (IS_ERR(page)) { | 
 | 			/* We've tried hard to allocate the memory by reaping | 
 | 			 * our own buffer, now let the real VM do its job and | 
 | 			 * go down in flames if truly OOM. | 
 | 			 */ | 
 | 			i915_gem_shrink_all(dev_priv); | 
 | 			page = shmem_read_mapping_page(mapping, i); | 
 | 			if (IS_ERR(page)) { | 
 | 				ret = PTR_ERR(page); | 
 | 				goto err_pages; | 
 | 			} | 
 | 		} | 
 | #ifdef CONFIG_SWIOTLB | 
 | 		if (swiotlb_nr_tbl()) { | 
 | 			st->nents++; | 
 | 			sg_set_page(sg, page, PAGE_SIZE, 0); | 
 | 			sg = sg_next(sg); | 
 | 			continue; | 
 | 		} | 
 | #endif | 
 | 		if (!i || page_to_pfn(page) != last_pfn + 1) { | 
 | 			if (i) | 
 | 				sg = sg_next(sg); | 
 | 			st->nents++; | 
 | 			sg_set_page(sg, page, PAGE_SIZE, 0); | 
 | 		} else { | 
 | 			sg->length += PAGE_SIZE; | 
 | 		} | 
 | 		last_pfn = page_to_pfn(page); | 
 |  | 
 | 		/* Check that the i965g/gm workaround works. */ | 
 | 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); | 
 | 	} | 
 | #ifdef CONFIG_SWIOTLB | 
 | 	if (!swiotlb_nr_tbl()) | 
 | #endif | 
 | 		sg_mark_end(sg); | 
 | 	obj->pages = st; | 
 |  | 
 | 	ret = i915_gem_gtt_prepare_object(obj); | 
 | 	if (ret) | 
 | 		goto err_pages; | 
 |  | 
 | 	if (i915_gem_object_needs_bit17_swizzle(obj)) | 
 | 		i915_gem_object_do_bit_17_swizzle(obj); | 
 |  | 
 | 	if (i915_gem_object_is_tiled(obj) && | 
 | 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) | 
 | 		i915_gem_object_pin_pages(obj); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_pages: | 
 | 	sg_mark_end(sg); | 
 | 	for_each_sgt_page(page, sgt_iter, st) | 
 | 		put_page(page); | 
 | 	sg_free_table(st); | 
 | 	kfree(st); | 
 |  | 
 | 	/* shmemfs first checks if there is enough memory to allocate the page | 
 | 	 * and reports ENOSPC should there be insufficient, along with the usual | 
 | 	 * ENOMEM for a genuine allocation failure. | 
 | 	 * | 
 | 	 * We use ENOSPC in our driver to mean that we have run out of aperture | 
 | 	 * space and so want to translate the error from shmemfs back to our | 
 | 	 * usual understanding of ENOMEM. | 
 | 	 */ | 
 | 	if (ret == -ENOSPC) | 
 | 		ret = -ENOMEM; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Ensure that the associated pages are gathered from the backing storage | 
 |  * and pinned into our object. i915_gem_object_get_pages() may be called | 
 |  * multiple times before they are released by a single call to | 
 |  * i915_gem_object_put_pages() - once the pages are no longer referenced | 
 |  * either as a result of memory pressure (reaping pages under the shrinker) | 
 |  * or as the object is itself released. | 
 |  */ | 
 | int | 
 | i915_gem_object_get_pages(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	const struct drm_i915_gem_object_ops *ops = obj->ops; | 
 | 	int ret; | 
 |  | 
 | 	if (obj->pages) | 
 | 		return 0; | 
 |  | 
 | 	if (obj->madv != I915_MADV_WILLNEED) { | 
 | 		DRM_DEBUG("Attempting to obtain a purgeable object\n"); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	BUG_ON(obj->pages_pin_count); | 
 |  | 
 | 	ret = ops->get_pages(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); | 
 |  | 
 | 	obj->get_page.sg = obj->pages->sgl; | 
 | 	obj->get_page.last = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* The 'mapping' part of i915_gem_object_pin_map() below */ | 
 | static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, | 
 | 				 enum i915_map_type type) | 
 | { | 
 | 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT; | 
 | 	struct sg_table *sgt = obj->pages; | 
 | 	struct sgt_iter sgt_iter; | 
 | 	struct page *page; | 
 | 	struct page *stack_pages[32]; | 
 | 	struct page **pages = stack_pages; | 
 | 	unsigned long i = 0; | 
 | 	pgprot_t pgprot; | 
 | 	void *addr; | 
 |  | 
 | 	/* A single page can always be kmapped */ | 
 | 	if (n_pages == 1 && type == I915_MAP_WB) | 
 | 		return kmap(sg_page(sgt->sgl)); | 
 |  | 
 | 	if (n_pages > ARRAY_SIZE(stack_pages)) { | 
 | 		/* Too big for stack -- allocate temporary array instead */ | 
 | 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY); | 
 | 		if (!pages) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	for_each_sgt_page(page, sgt_iter, sgt) | 
 | 		pages[i++] = page; | 
 |  | 
 | 	/* Check that we have the expected number of pages */ | 
 | 	GEM_BUG_ON(i != n_pages); | 
 |  | 
 | 	switch (type) { | 
 | 	case I915_MAP_WB: | 
 | 		pgprot = PAGE_KERNEL; | 
 | 		break; | 
 | 	case I915_MAP_WC: | 
 | 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO); | 
 | 		break; | 
 | 	} | 
 | 	addr = vmap(pages, n_pages, 0, pgprot); | 
 |  | 
 | 	if (pages != stack_pages) | 
 | 		drm_free_large(pages); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | /* get, pin, and map the pages of the object into kernel space */ | 
 | void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, | 
 | 			      enum i915_map_type type) | 
 | { | 
 | 	enum i915_map_type has_type; | 
 | 	bool pinned; | 
 | 	void *ptr; | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held(&obj->base.dev->struct_mutex); | 
 | 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); | 
 |  | 
 | 	ret = i915_gem_object_get_pages(obj); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	i915_gem_object_pin_pages(obj); | 
 | 	pinned = obj->pages_pin_count > 1; | 
 |  | 
 | 	ptr = ptr_unpack_bits(obj->mapping, has_type); | 
 | 	if (ptr && has_type != type) { | 
 | 		if (pinned) { | 
 | 			ret = -EBUSY; | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		if (is_vmalloc_addr(ptr)) | 
 | 			vunmap(ptr); | 
 | 		else | 
 | 			kunmap(kmap_to_page(ptr)); | 
 |  | 
 | 		ptr = obj->mapping = NULL; | 
 | 	} | 
 |  | 
 | 	if (!ptr) { | 
 | 		ptr = i915_gem_object_map(obj, type); | 
 | 		if (!ptr) { | 
 | 			ret = -ENOMEM; | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		obj->mapping = ptr_pack_bits(ptr, type); | 
 | 	} | 
 |  | 
 | 	return ptr; | 
 |  | 
 | err: | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_object_retire__write(struct i915_gem_active *active, | 
 | 			      struct drm_i915_gem_request *request) | 
 | { | 
 | 	struct drm_i915_gem_object *obj = | 
 | 		container_of(active, struct drm_i915_gem_object, last_write); | 
 |  | 
 | 	intel_fb_obj_flush(obj, true, ORIGIN_CS); | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_object_retire__read(struct i915_gem_active *active, | 
 | 			     struct drm_i915_gem_request *request) | 
 | { | 
 | 	int idx = request->engine->id; | 
 | 	struct drm_i915_gem_object *obj = | 
 | 		container_of(active, struct drm_i915_gem_object, last_read[idx]); | 
 |  | 
 | 	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx)); | 
 |  | 
 | 	i915_gem_object_clear_active(obj, idx); | 
 | 	if (i915_gem_object_is_active(obj)) | 
 | 		return; | 
 |  | 
 | 	/* Bump our place on the bound list to keep it roughly in LRU order | 
 | 	 * so that we don't steal from recently used but inactive objects | 
 | 	 * (unless we are forced to ofc!) | 
 | 	 */ | 
 | 	if (obj->bind_count) | 
 | 		list_move_tail(&obj->global_list, | 
 | 			       &request->i915->mm.bound_list); | 
 |  | 
 | 	i915_gem_object_put(obj); | 
 | } | 
 |  | 
 | static bool i915_context_is_banned(const struct i915_gem_context *ctx) | 
 | { | 
 | 	unsigned long elapsed; | 
 |  | 
 | 	if (ctx->hang_stats.banned) | 
 | 		return true; | 
 |  | 
 | 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts; | 
 | 	if (ctx->hang_stats.ban_period_seconds && | 
 | 	    elapsed <= ctx->hang_stats.ban_period_seconds) { | 
 | 		DRM_DEBUG("context hanging too fast, banning!\n"); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void i915_set_reset_status(struct i915_gem_context *ctx, | 
 | 				  const bool guilty) | 
 | { | 
 | 	struct i915_ctx_hang_stats *hs = &ctx->hang_stats; | 
 |  | 
 | 	if (guilty) { | 
 | 		hs->banned = i915_context_is_banned(ctx); | 
 | 		hs->batch_active++; | 
 | 		hs->guilty_ts = get_seconds(); | 
 | 	} else { | 
 | 		hs->batch_pending++; | 
 | 	} | 
 | } | 
 |  | 
 | struct drm_i915_gem_request * | 
 | i915_gem_find_active_request(struct intel_engine_cs *engine) | 
 | { | 
 | 	struct drm_i915_gem_request *request; | 
 |  | 
 | 	/* We are called by the error capture and reset at a random | 
 | 	 * point in time. In particular, note that neither is crucially | 
 | 	 * ordered with an interrupt. After a hang, the GPU is dead and we | 
 | 	 * assume that no more writes can happen (we waited long enough for | 
 | 	 * all writes that were in transaction to be flushed) - adding an | 
 | 	 * extra delay for a recent interrupt is pointless. Hence, we do | 
 | 	 * not need an engine->irq_seqno_barrier() before the seqno reads. | 
 | 	 */ | 
 | 	list_for_each_entry(request, &engine->request_list, link) { | 
 | 		if (i915_gem_request_completed(request)) | 
 | 			continue; | 
 |  | 
 | 		if (!i915_sw_fence_done(&request->submit)) | 
 | 			break; | 
 |  | 
 | 		return request; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void reset_request(struct drm_i915_gem_request *request) | 
 | { | 
 | 	void *vaddr = request->ring->vaddr; | 
 | 	u32 head; | 
 |  | 
 | 	/* As this request likely depends on state from the lost | 
 | 	 * context, clear out all the user operations leaving the | 
 | 	 * breadcrumb at the end (so we get the fence notifications). | 
 | 	 */ | 
 | 	head = request->head; | 
 | 	if (request->postfix < head) { | 
 | 		memset(vaddr + head, 0, request->ring->size - head); | 
 | 		head = 0; | 
 | 	} | 
 | 	memset(vaddr + head, 0, request->postfix - head); | 
 | } | 
 |  | 
 | static void i915_gem_reset_engine(struct intel_engine_cs *engine) | 
 | { | 
 | 	struct drm_i915_gem_request *request; | 
 | 	struct i915_gem_context *incomplete_ctx; | 
 | 	bool ring_hung; | 
 |  | 
 | 	/* Ensure irq handler finishes, and not run again. */ | 
 | 	tasklet_kill(&engine->irq_tasklet); | 
 | 	if (engine->irq_seqno_barrier) | 
 | 		engine->irq_seqno_barrier(engine); | 
 |  | 
 | 	request = i915_gem_find_active_request(engine); | 
 | 	if (!request) | 
 | 		return; | 
 |  | 
 | 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; | 
 | 	i915_set_reset_status(request->ctx, ring_hung); | 
 | 	if (!ring_hung) | 
 | 		return; | 
 |  | 
 | 	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", | 
 | 			 engine->name, request->fence.seqno); | 
 |  | 
 | 	/* Setup the CS to resume from the breadcrumb of the hung request */ | 
 | 	engine->reset_hw(engine, request); | 
 |  | 
 | 	/* Users of the default context do not rely on logical state | 
 | 	 * preserved between batches. They have to emit full state on | 
 | 	 * every batch and so it is safe to execute queued requests following | 
 | 	 * the hang. | 
 | 	 * | 
 | 	 * Other contexts preserve state, now corrupt. We want to skip all | 
 | 	 * queued requests that reference the corrupt context. | 
 | 	 */ | 
 | 	incomplete_ctx = request->ctx; | 
 | 	if (i915_gem_context_is_default(incomplete_ctx)) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry_continue(request, &engine->request_list, link) | 
 | 		if (request->ctx == incomplete_ctx) | 
 | 			reset_request(request); | 
 | } | 
 |  | 
 | void i915_gem_reset(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 |  | 
 | 	i915_gem_retire_requests(dev_priv); | 
 |  | 
 | 	for_each_engine(engine, dev_priv) | 
 | 		i915_gem_reset_engine(engine); | 
 |  | 
 | 	i915_gem_restore_fences(&dev_priv->drm); | 
 |  | 
 | 	if (dev_priv->gt.awake) { | 
 | 		intel_sanitize_gt_powersave(dev_priv); | 
 | 		intel_enable_gt_powersave(dev_priv); | 
 | 		if (INTEL_GEN(dev_priv) >= 6) | 
 | 			gen6_rps_busy(dev_priv); | 
 | 	} | 
 | } | 
 |  | 
 | static void nop_submit_request(struct drm_i915_gem_request *request) | 
 | { | 
 | } | 
 |  | 
 | static void i915_gem_cleanup_engine(struct intel_engine_cs *engine) | 
 | { | 
 | 	engine->submit_request = nop_submit_request; | 
 |  | 
 | 	/* Mark all pending requests as complete so that any concurrent | 
 | 	 * (lockless) lookup doesn't try and wait upon the request as we | 
 | 	 * reset it. | 
 | 	 */ | 
 | 	intel_engine_init_seqno(engine, engine->last_submitted_seqno); | 
 |  | 
 | 	/* | 
 | 	 * Clear the execlists queue up before freeing the requests, as those | 
 | 	 * are the ones that keep the context and ringbuffer backing objects | 
 | 	 * pinned in place. | 
 | 	 */ | 
 |  | 
 | 	if (i915.enable_execlists) { | 
 | 		spin_lock(&engine->execlist_lock); | 
 | 		INIT_LIST_HEAD(&engine->execlist_queue); | 
 | 		i915_gem_request_put(engine->execlist_port[0].request); | 
 | 		i915_gem_request_put(engine->execlist_port[1].request); | 
 | 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port)); | 
 | 		spin_unlock(&engine->execlist_lock); | 
 | 	} | 
 |  | 
 | 	engine->i915->gt.active_engines &= ~intel_engine_flag(engine); | 
 | } | 
 |  | 
 | void i915_gem_set_wedged(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 |  | 
 | 	lockdep_assert_held(&dev_priv->drm.struct_mutex); | 
 | 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags); | 
 |  | 
 | 	i915_gem_context_lost(dev_priv); | 
 | 	for_each_engine(engine, dev_priv) | 
 | 		i915_gem_cleanup_engine(engine); | 
 | 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0); | 
 |  | 
 | 	i915_gem_retire_requests(dev_priv); | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_retire_work_handler(struct work_struct *work) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = | 
 | 		container_of(work, typeof(*dev_priv), gt.retire_work.work); | 
 | 	struct drm_device *dev = &dev_priv->drm; | 
 |  | 
 | 	/* Come back later if the device is busy... */ | 
 | 	if (mutex_trylock(&dev->struct_mutex)) { | 
 | 		i915_gem_retire_requests(dev_priv); | 
 | 		mutex_unlock(&dev->struct_mutex); | 
 | 	} | 
 |  | 
 | 	/* Keep the retire handler running until we are finally idle. | 
 | 	 * We do not need to do this test under locking as in the worst-case | 
 | 	 * we queue the retire worker once too often. | 
 | 	 */ | 
 | 	if (READ_ONCE(dev_priv->gt.awake)) { | 
 | 		i915_queue_hangcheck(dev_priv); | 
 | 		queue_delayed_work(dev_priv->wq, | 
 | 				   &dev_priv->gt.retire_work, | 
 | 				   round_jiffies_up_relative(HZ)); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | i915_gem_idle_work_handler(struct work_struct *work) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = | 
 | 		container_of(work, typeof(*dev_priv), gt.idle_work.work); | 
 | 	struct drm_device *dev = &dev_priv->drm; | 
 | 	struct intel_engine_cs *engine; | 
 | 	bool rearm_hangcheck; | 
 |  | 
 | 	if (!READ_ONCE(dev_priv->gt.awake)) | 
 | 		return; | 
 |  | 
 | 	if (READ_ONCE(dev_priv->gt.active_engines)) | 
 | 		return; | 
 |  | 
 | 	rearm_hangcheck = | 
 | 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); | 
 |  | 
 | 	if (!mutex_trylock(&dev->struct_mutex)) { | 
 | 		/* Currently busy, come back later */ | 
 | 		mod_delayed_work(dev_priv->wq, | 
 | 				 &dev_priv->gt.idle_work, | 
 | 				 msecs_to_jiffies(50)); | 
 | 		goto out_rearm; | 
 | 	} | 
 |  | 
 | 	if (dev_priv->gt.active_engines) | 
 | 		goto out_unlock; | 
 |  | 
 | 	for_each_engine(engine, dev_priv) | 
 | 		i915_gem_batch_pool_fini(&engine->batch_pool); | 
 |  | 
 | 	GEM_BUG_ON(!dev_priv->gt.awake); | 
 | 	dev_priv->gt.awake = false; | 
 | 	rearm_hangcheck = false; | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 6) | 
 | 		gen6_rps_idle(dev_priv); | 
 | 	intel_runtime_pm_put(dev_priv); | 
 | out_unlock: | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 |  | 
 | out_rearm: | 
 | 	if (rearm_hangcheck) { | 
 | 		GEM_BUG_ON(!dev_priv->gt.awake); | 
 | 		i915_queue_hangcheck(dev_priv); | 
 | 	} | 
 | } | 
 |  | 
 | void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_object *obj = to_intel_bo(gem); | 
 | 	struct drm_i915_file_private *fpriv = file->driver_priv; | 
 | 	struct i915_vma *vma, *vn; | 
 |  | 
 | 	mutex_lock(&obj->base.dev->struct_mutex); | 
 | 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link) | 
 | 		if (vma->vm->file == fpriv) | 
 | 			i915_vma_close(vma); | 
 | 	mutex_unlock(&obj->base.dev->struct_mutex); | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT | 
 |  * @dev: drm device pointer | 
 |  * @data: ioctl data blob | 
 |  * @file: drm file pointer | 
 |  * | 
 |  * Returns 0 if successful, else an error is returned with the remaining time in | 
 |  * the timeout parameter. | 
 |  *  -ETIME: object is still busy after timeout | 
 |  *  -ERESTARTSYS: signal interrupted the wait | 
 |  *  -ENONENT: object doesn't exist | 
 |  * Also possible, but rare: | 
 |  *  -EAGAIN: GPU wedged | 
 |  *  -ENOMEM: damn | 
 |  *  -ENODEV: Internal IRQ fail | 
 |  *  -E?: The add request failed | 
 |  * | 
 |  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any | 
 |  * non-zero timeout parameter the wait ioctl will wait for the given number of | 
 |  * nanoseconds on an object becoming unbusy. Since the wait itself does so | 
 |  * without holding struct_mutex the object may become re-busied before this | 
 |  * function completes. A similar but shorter * race condition exists in the busy | 
 |  * ioctl | 
 |  */ | 
 | int | 
 | i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_wait *args = data; | 
 | 	struct intel_rps_client *rps = to_rps_client(file); | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	unsigned long active; | 
 | 	int idx, ret = 0; | 
 |  | 
 | 	if (args->flags != 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->bo_handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	active = __I915_BO_ACTIVE(obj); | 
 | 	for_each_active(active, idx) { | 
 | 		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL; | 
 | 		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], | 
 | 						    I915_WAIT_INTERRUPTIBLE, | 
 | 						    timeout, rps); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	i915_gem_object_put_unlocked(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __i915_vma_iounmap(struct i915_vma *vma) | 
 | { | 
 | 	GEM_BUG_ON(i915_vma_is_pinned(vma)); | 
 |  | 
 | 	if (vma->iomap == NULL) | 
 | 		return; | 
 |  | 
 | 	io_mapping_unmap(vma->iomap); | 
 | 	vma->iomap = NULL; | 
 | } | 
 |  | 
 | int i915_vma_unbind(struct i915_vma *vma) | 
 | { | 
 | 	struct drm_i915_gem_object *obj = vma->obj; | 
 | 	unsigned long active; | 
 | 	int ret; | 
 |  | 
 | 	/* First wait upon any activity as retiring the request may | 
 | 	 * have side-effects such as unpinning or even unbinding this vma. | 
 | 	 */ | 
 | 	active = i915_vma_get_active(vma); | 
 | 	if (active) { | 
 | 		int idx; | 
 |  | 
 | 		/* When a closed VMA is retired, it is unbound - eek. | 
 | 		 * In order to prevent it from being recursively closed, | 
 | 		 * take a pin on the vma so that the second unbind is | 
 | 		 * aborted. | 
 | 		 */ | 
 | 		__i915_vma_pin(vma); | 
 |  | 
 | 		for_each_active(active, idx) { | 
 | 			ret = i915_gem_active_retire(&vma->last_read[idx], | 
 | 						   &vma->vm->dev->struct_mutex); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		__i915_vma_unpin(vma); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		GEM_BUG_ON(i915_vma_is_active(vma)); | 
 | 	} | 
 |  | 
 | 	if (i915_vma_is_pinned(vma)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!drm_mm_node_allocated(&vma->node)) | 
 | 		goto destroy; | 
 |  | 
 | 	GEM_BUG_ON(obj->bind_count == 0); | 
 | 	GEM_BUG_ON(!obj->pages); | 
 |  | 
 | 	if (i915_vma_is_map_and_fenceable(vma)) { | 
 | 		/* release the fence reg _after_ flushing */ | 
 | 		ret = i915_vma_put_fence(vma); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		/* Force a pagefault for domain tracking on next user access */ | 
 | 		i915_gem_release_mmap(obj); | 
 |  | 
 | 		__i915_vma_iounmap(vma); | 
 | 		vma->flags &= ~I915_VMA_CAN_FENCE; | 
 | 	} | 
 |  | 
 | 	if (likely(!vma->vm->closed)) { | 
 | 		trace_i915_vma_unbind(vma); | 
 | 		vma->vm->unbind_vma(vma); | 
 | 	} | 
 | 	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND); | 
 |  | 
 | 	drm_mm_remove_node(&vma->node); | 
 | 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list); | 
 |  | 
 | 	if (vma->pages != obj->pages) { | 
 | 		GEM_BUG_ON(!vma->pages); | 
 | 		sg_free_table(vma->pages); | 
 | 		kfree(vma->pages); | 
 | 	} | 
 | 	vma->pages = NULL; | 
 |  | 
 | 	/* Since the unbound list is global, only move to that list if | 
 | 	 * no more VMAs exist. */ | 
 | 	if (--obj->bind_count == 0) | 
 | 		list_move_tail(&obj->global_list, | 
 | 			       &to_i915(obj->base.dev)->mm.unbound_list); | 
 |  | 
 | 	/* And finally now the object is completely decoupled from this vma, | 
 | 	 * we can drop its hold on the backing storage and allow it to be | 
 | 	 * reaped by the shrinker. | 
 | 	 */ | 
 | 	i915_gem_object_unpin_pages(obj); | 
 |  | 
 | destroy: | 
 | 	if (unlikely(i915_vma_is_closed(vma))) | 
 | 		i915_vma_destroy(vma); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, | 
 | 			   unsigned int flags) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	int ret; | 
 |  | 
 | 	for_each_engine(engine, dev_priv) { | 
 | 		if (engine->last_context == NULL) | 
 | 			continue; | 
 |  | 
 | 		ret = intel_engine_idle(engine, flags); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool i915_gem_valid_gtt_space(struct i915_vma *vma, | 
 | 				     unsigned long cache_level) | 
 | { | 
 | 	struct drm_mm_node *gtt_space = &vma->node; | 
 | 	struct drm_mm_node *other; | 
 |  | 
 | 	/* | 
 | 	 * On some machines we have to be careful when putting differing types | 
 | 	 * of snoopable memory together to avoid the prefetcher crossing memory | 
 | 	 * domains and dying. During vm initialisation, we decide whether or not | 
 | 	 * these constraints apply and set the drm_mm.color_adjust | 
 | 	 * appropriately. | 
 | 	 */ | 
 | 	if (vma->vm->mm.color_adjust == NULL) | 
 | 		return true; | 
 |  | 
 | 	if (!drm_mm_node_allocated(gtt_space)) | 
 | 		return true; | 
 |  | 
 | 	if (list_empty(>t_space->node_list)) | 
 | 		return true; | 
 |  | 
 | 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); | 
 | 	if (other->allocated && !other->hole_follows && other->color != cache_level) | 
 | 		return false; | 
 |  | 
 | 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); | 
 | 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_vma_insert - finds a slot for the vma in its address space | 
 |  * @vma: the vma | 
 |  * @size: requested size in bytes (can be larger than the VMA) | 
 |  * @alignment: required alignment | 
 |  * @flags: mask of PIN_* flags to use | 
 |  * | 
 |  * First we try to allocate some free space that meets the requirements for | 
 |  * the VMA. Failiing that, if the flags permit, it will evict an old VMA, | 
 |  * preferrably the oldest idle entry to make room for the new VMA. | 
 |  * | 
 |  * Returns: | 
 |  * 0 on success, negative error code otherwise. | 
 |  */ | 
 | static int | 
 | i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev); | 
 | 	struct drm_i915_gem_object *obj = vma->obj; | 
 | 	u64 start, end; | 
 | 	int ret; | 
 |  | 
 | 	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); | 
 | 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); | 
 |  | 
 | 	size = max(size, vma->size); | 
 | 	if (flags & PIN_MAPPABLE) | 
 | 		size = i915_gem_get_ggtt_size(dev_priv, size, | 
 | 					      i915_gem_object_get_tiling(obj)); | 
 |  | 
 | 	alignment = max(max(alignment, vma->display_alignment), | 
 | 			i915_gem_get_ggtt_alignment(dev_priv, size, | 
 | 						    i915_gem_object_get_tiling(obj), | 
 | 						    flags & PIN_MAPPABLE)); | 
 |  | 
 | 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; | 
 |  | 
 | 	end = vma->vm->total; | 
 | 	if (flags & PIN_MAPPABLE) | 
 | 		end = min_t(u64, end, dev_priv->ggtt.mappable_end); | 
 | 	if (flags & PIN_ZONE_4G) | 
 | 		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE); | 
 |  | 
 | 	/* If binding the object/GGTT view requires more space than the entire | 
 | 	 * aperture has, reject it early before evicting everything in a vain | 
 | 	 * attempt to find space. | 
 | 	 */ | 
 | 	if (size > end) { | 
 | 		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n", | 
 | 			  size, obj->base.size, | 
 | 			  flags & PIN_MAPPABLE ? "mappable" : "total", | 
 | 			  end); | 
 | 		return -E2BIG; | 
 | 	} | 
 |  | 
 | 	ret = i915_gem_object_get_pages(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	i915_gem_object_pin_pages(obj); | 
 |  | 
 | 	if (flags & PIN_OFFSET_FIXED) { | 
 | 		u64 offset = flags & PIN_OFFSET_MASK; | 
 | 		if (offset & (alignment - 1) || offset > end - size) { | 
 | 			ret = -EINVAL; | 
 | 			goto err_unpin; | 
 | 		} | 
 |  | 
 | 		vma->node.start = offset; | 
 | 		vma->node.size = size; | 
 | 		vma->node.color = obj->cache_level; | 
 | 		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node); | 
 | 		if (ret) { | 
 | 			ret = i915_gem_evict_for_vma(vma); | 
 | 			if (ret == 0) | 
 | 				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node); | 
 | 			if (ret) | 
 | 				goto err_unpin; | 
 | 		} | 
 | 	} else { | 
 | 		u32 search_flag, alloc_flag; | 
 |  | 
 | 		if (flags & PIN_HIGH) { | 
 | 			search_flag = DRM_MM_SEARCH_BELOW; | 
 | 			alloc_flag = DRM_MM_CREATE_TOP; | 
 | 		} else { | 
 | 			search_flag = DRM_MM_SEARCH_DEFAULT; | 
 | 			alloc_flag = DRM_MM_CREATE_DEFAULT; | 
 | 		} | 
 |  | 
 | 		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, | 
 | 		 * so we know that we always have a minimum alignment of 4096. | 
 | 		 * The drm_mm range manager is optimised to return results | 
 | 		 * with zero alignment, so where possible use the optimal | 
 | 		 * path. | 
 | 		 */ | 
 | 		if (alignment <= 4096) | 
 | 			alignment = 0; | 
 |  | 
 | search_free: | 
 | 		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm, | 
 | 							  &vma->node, | 
 | 							  size, alignment, | 
 | 							  obj->cache_level, | 
 | 							  start, end, | 
 | 							  search_flag, | 
 | 							  alloc_flag); | 
 | 		if (ret) { | 
 | 			ret = i915_gem_evict_something(vma->vm, size, alignment, | 
 | 						       obj->cache_level, | 
 | 						       start, end, | 
 | 						       flags); | 
 | 			if (ret == 0) | 
 | 				goto search_free; | 
 |  | 
 | 			goto err_unpin; | 
 | 		} | 
 | 	} | 
 | 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level)); | 
 |  | 
 | 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); | 
 | 	list_move_tail(&vma->vm_link, &vma->vm->inactive_list); | 
 | 	obj->bind_count++; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_unpin: | 
 | 	i915_gem_object_unpin_pages(obj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | bool | 
 | i915_gem_clflush_object(struct drm_i915_gem_object *obj, | 
 | 			bool force) | 
 | { | 
 | 	/* If we don't have a page list set up, then we're not pinned | 
 | 	 * to GPU, and we can ignore the cache flush because it'll happen | 
 | 	 * again at bind time. | 
 | 	 */ | 
 | 	if (obj->pages == NULL) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Stolen memory is always coherent with the GPU as it is explicitly | 
 | 	 * marked as wc by the system, or the system is cache-coherent. | 
 | 	 */ | 
 | 	if (obj->stolen || obj->phys_handle) | 
 | 		return false; | 
 |  | 
 | 	/* If the GPU is snooping the contents of the CPU cache, | 
 | 	 * we do not need to manually clear the CPU cache lines.  However, | 
 | 	 * the caches are only snooped when the render cache is | 
 | 	 * flushed/invalidated.  As we always have to emit invalidations | 
 | 	 * and flushes when moving into and out of the RENDER domain, correct | 
 | 	 * snooping behaviour occurs naturally as the result of our domain | 
 | 	 * tracking. | 
 | 	 */ | 
 | 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) { | 
 | 		obj->cache_dirty = true; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	trace_i915_gem_object_clflush(obj); | 
 | 	drm_clflush_sg(obj->pages); | 
 | 	obj->cache_dirty = false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** Flushes the GTT write domain for the object if it's dirty. */ | 
 | static void | 
 | i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 |  | 
 | 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) | 
 | 		return; | 
 |  | 
 | 	/* No actual flushing is required for the GTT write domain.  Writes | 
 | 	 * to it "immediately" go to main memory as far as we know, so there's | 
 | 	 * no chipset flush.  It also doesn't land in render cache. | 
 | 	 * | 
 | 	 * However, we do have to enforce the order so that all writes through | 
 | 	 * the GTT land before any writes to the device, such as updates to | 
 | 	 * the GATT itself. | 
 | 	 * | 
 | 	 * We also have to wait a bit for the writes to land from the GTT. | 
 | 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip | 
 | 	 * timing. This issue has only been observed when switching quickly | 
 | 	 * between GTT writes and CPU reads from inside the kernel on recent hw, | 
 | 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC | 
 | 	 * system agents we cannot reproduce this behaviour). | 
 | 	 */ | 
 | 	wmb(); | 
 | 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) | 
 | 		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base)); | 
 |  | 
 | 	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT)); | 
 |  | 
 | 	obj->base.write_domain = 0; | 
 | 	trace_i915_gem_object_change_domain(obj, | 
 | 					    obj->base.read_domains, | 
 | 					    I915_GEM_DOMAIN_GTT); | 
 | } | 
 |  | 
 | /** Flushes the CPU write domain for the object if it's dirty. */ | 
 | static void | 
 | i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) | 
 | 		return; | 
 |  | 
 | 	if (i915_gem_clflush_object(obj, obj->pin_display)) | 
 | 		i915_gem_chipset_flush(to_i915(obj->base.dev)); | 
 |  | 
 | 	intel_fb_obj_flush(obj, false, ORIGIN_CPU); | 
 |  | 
 | 	obj->base.write_domain = 0; | 
 | 	trace_i915_gem_object_change_domain(obj, | 
 | 					    obj->base.read_domains, | 
 | 					    I915_GEM_DOMAIN_CPU); | 
 | } | 
 |  | 
 | static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct i915_vma *vma; | 
 |  | 
 | 	list_for_each_entry(vma, &obj->vma_list, obj_link) { | 
 | 		if (!i915_vma_is_ggtt(vma)) | 
 | 			continue; | 
 |  | 
 | 		if (i915_vma_is_active(vma)) | 
 | 			continue; | 
 |  | 
 | 		if (!drm_mm_node_allocated(&vma->node)) | 
 | 			continue; | 
 |  | 
 | 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * Moves a single object to the GTT read, and possibly write domain. | 
 |  * @obj: object to act on | 
 |  * @write: ask for write access or read only | 
 |  * | 
 |  * This function returns when the move is complete, including waiting on | 
 |  * flushes to occur. | 
 |  */ | 
 | int | 
 | i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) | 
 | { | 
 | 	uint32_t old_write_domain, old_read_domains; | 
 | 	int ret; | 
 |  | 
 | 	ret = i915_gem_object_wait_rendering(obj, !write); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) | 
 | 		return 0; | 
 |  | 
 | 	/* Flush and acquire obj->pages so that we are coherent through | 
 | 	 * direct access in memory with previous cached writes through | 
 | 	 * shmemfs and that our cache domain tracking remains valid. | 
 | 	 * For example, if the obj->filp was moved to swap without us | 
 | 	 * being notified and releasing the pages, we would mistakenly | 
 | 	 * continue to assume that the obj remained out of the CPU cached | 
 | 	 * domain. | 
 | 	 */ | 
 | 	ret = i915_gem_object_get_pages(obj); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	i915_gem_object_flush_cpu_write_domain(obj); | 
 |  | 
 | 	/* Serialise direct access to this object with the barriers for | 
 | 	 * coherent writes from the GPU, by effectively invalidating the | 
 | 	 * GTT domain upon first access. | 
 | 	 */ | 
 | 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) | 
 | 		mb(); | 
 |  | 
 | 	old_write_domain = obj->base.write_domain; | 
 | 	old_read_domains = obj->base.read_domains; | 
 |  | 
 | 	/* It should now be out of any other write domains, and we can update | 
 | 	 * the domain values for our changes. | 
 | 	 */ | 
 | 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); | 
 | 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT; | 
 | 	if (write) { | 
 | 		obj->base.read_domains = I915_GEM_DOMAIN_GTT; | 
 | 		obj->base.write_domain = I915_GEM_DOMAIN_GTT; | 
 | 		obj->dirty = 1; | 
 | 	} | 
 |  | 
 | 	trace_i915_gem_object_change_domain(obj, | 
 | 					    old_read_domains, | 
 | 					    old_write_domain); | 
 |  | 
 | 	/* And bump the LRU for this access */ | 
 | 	i915_gem_object_bump_inactive_ggtt(obj); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * Changes the cache-level of an object across all VMA. | 
 |  * @obj: object to act on | 
 |  * @cache_level: new cache level to set for the object | 
 |  * | 
 |  * After this function returns, the object will be in the new cache-level | 
 |  * across all GTT and the contents of the backing storage will be coherent, | 
 |  * with respect to the new cache-level. In order to keep the backing storage | 
 |  * coherent for all users, we only allow a single cache level to be set | 
 |  * globally on the object and prevent it from being changed whilst the | 
 |  * hardware is reading from the object. That is if the object is currently | 
 |  * on the scanout it will be set to uncached (or equivalent display | 
 |  * cache coherency) and all non-MOCS GPU access will also be uncached so | 
 |  * that all direct access to the scanout remains coherent. | 
 |  */ | 
 | int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, | 
 | 				    enum i915_cache_level cache_level) | 
 | { | 
 | 	struct i915_vma *vma; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (obj->cache_level == cache_level) | 
 | 		goto out; | 
 |  | 
 | 	/* Inspect the list of currently bound VMA and unbind any that would | 
 | 	 * be invalid given the new cache-level. This is principally to | 
 | 	 * catch the issue of the CS prefetch crossing page boundaries and | 
 | 	 * reading an invalid PTE on older architectures. | 
 | 	 */ | 
 | restart: | 
 | 	list_for_each_entry(vma, &obj->vma_list, obj_link) { | 
 | 		if (!drm_mm_node_allocated(&vma->node)) | 
 | 			continue; | 
 |  | 
 | 		if (i915_vma_is_pinned(vma)) { | 
 | 			DRM_DEBUG("can not change the cache level of pinned objects\n"); | 
 | 			return -EBUSY; | 
 | 		} | 
 |  | 
 | 		if (i915_gem_valid_gtt_space(vma, cache_level)) | 
 | 			continue; | 
 |  | 
 | 		ret = i915_vma_unbind(vma); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		/* As unbinding may affect other elements in the | 
 | 		 * obj->vma_list (due to side-effects from retiring | 
 | 		 * an active vma), play safe and restart the iterator. | 
 | 		 */ | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	/* We can reuse the existing drm_mm nodes but need to change the | 
 | 	 * cache-level on the PTE. We could simply unbind them all and | 
 | 	 * rebind with the correct cache-level on next use. However since | 
 | 	 * we already have a valid slot, dma mapping, pages etc, we may as | 
 | 	 * rewrite the PTE in the belief that doing so tramples upon less | 
 | 	 * state and so involves less work. | 
 | 	 */ | 
 | 	if (obj->bind_count) { | 
 | 		/* Before we change the PTE, the GPU must not be accessing it. | 
 | 		 * If we wait upon the object, we know that all the bound | 
 | 		 * VMA are no longer active. | 
 | 		 */ | 
 | 		ret = i915_gem_object_wait_rendering(obj, false); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) { | 
 | 			/* Access to snoopable pages through the GTT is | 
 | 			 * incoherent and on some machines causes a hard | 
 | 			 * lockup. Relinquish the CPU mmaping to force | 
 | 			 * userspace to refault in the pages and we can | 
 | 			 * then double check if the GTT mapping is still | 
 | 			 * valid for that pointer access. | 
 | 			 */ | 
 | 			i915_gem_release_mmap(obj); | 
 |  | 
 | 			/* As we no longer need a fence for GTT access, | 
 | 			 * we can relinquish it now (and so prevent having | 
 | 			 * to steal a fence from someone else on the next | 
 | 			 * fence request). Note GPU activity would have | 
 | 			 * dropped the fence as all snoopable access is | 
 | 			 * supposed to be linear. | 
 | 			 */ | 
 | 			list_for_each_entry(vma, &obj->vma_list, obj_link) { | 
 | 				ret = i915_vma_put_fence(vma); | 
 | 				if (ret) | 
 | 					return ret; | 
 | 			} | 
 | 		} else { | 
 | 			/* We either have incoherent backing store and | 
 | 			 * so no GTT access or the architecture is fully | 
 | 			 * coherent. In such cases, existing GTT mmaps | 
 | 			 * ignore the cache bit in the PTE and we can | 
 | 			 * rewrite it without confusing the GPU or having | 
 | 			 * to force userspace to fault back in its mmaps. | 
 | 			 */ | 
 | 		} | 
 |  | 
 | 		list_for_each_entry(vma, &obj->vma_list, obj_link) { | 
 | 			if (!drm_mm_node_allocated(&vma->node)) | 
 | 				continue; | 
 |  | 
 | 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(vma, &obj->vma_list, obj_link) | 
 | 		vma->node.color = cache_level; | 
 | 	obj->cache_level = cache_level; | 
 |  | 
 | out: | 
 | 	/* Flush the dirty CPU caches to the backing storage so that the | 
 | 	 * object is now coherent at its new cache level (with respect | 
 | 	 * to the access domain). | 
 | 	 */ | 
 | 	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) { | 
 | 		if (i915_gem_clflush_object(obj, true)) | 
 | 			i915_gem_chipset_flush(to_i915(obj->base.dev)); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, | 
 | 			       struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_caching *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	switch (obj->cache_level) { | 
 | 	case I915_CACHE_LLC: | 
 | 	case I915_CACHE_L3_LLC: | 
 | 		args->caching = I915_CACHING_CACHED; | 
 | 		break; | 
 |  | 
 | 	case I915_CACHE_WT: | 
 | 		args->caching = I915_CACHING_DISPLAY; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		args->caching = I915_CACHING_NONE; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	i915_gem_object_put_unlocked(obj); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, | 
 | 			       struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct drm_i915_gem_caching *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	enum i915_cache_level level; | 
 | 	int ret; | 
 |  | 
 | 	switch (args->caching) { | 
 | 	case I915_CACHING_NONE: | 
 | 		level = I915_CACHE_NONE; | 
 | 		break; | 
 | 	case I915_CACHING_CACHED: | 
 | 		/* | 
 | 		 * Due to a HW issue on BXT A stepping, GPU stores via a | 
 | 		 * snooped mapping may leave stale data in a corresponding CPU | 
 | 		 * cacheline, whereas normally such cachelines would get | 
 | 		 * invalidated. | 
 | 		 */ | 
 | 		if (!HAS_LLC(dev) && !HAS_SNOOP(dev)) | 
 | 			return -ENODEV; | 
 |  | 
 | 		level = I915_CACHE_LLC; | 
 | 		break; | 
 | 	case I915_CACHING_DISPLAY: | 
 | 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	intel_runtime_pm_get(dev_priv); | 
 |  | 
 | 	ret = i915_mutex_lock_interruptible(dev); | 
 | 	if (ret) | 
 | 		goto rpm_put; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) { | 
 | 		ret = -ENOENT; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	ret = i915_gem_object_set_cache_level(obj, level); | 
 |  | 
 | 	i915_gem_object_put(obj); | 
 | unlock: | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 | rpm_put: | 
 | 	intel_runtime_pm_put(dev_priv); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare buffer for display plane (scanout, cursors, etc). | 
 |  * Can be called from an uninterruptible phase (modesetting) and allows | 
 |  * any flushes to be pipelined (for pageflips). | 
 |  */ | 
 | struct i915_vma * | 
 | i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, | 
 | 				     u32 alignment, | 
 | 				     const struct i915_ggtt_view *view) | 
 | { | 
 | 	struct i915_vma *vma; | 
 | 	u32 old_read_domains, old_write_domain; | 
 | 	int ret; | 
 |  | 
 | 	/* Mark the pin_display early so that we account for the | 
 | 	 * display coherency whilst setting up the cache domains. | 
 | 	 */ | 
 | 	obj->pin_display++; | 
 |  | 
 | 	/* The display engine is not coherent with the LLC cache on gen6.  As | 
 | 	 * a result, we make sure that the pinning that is about to occur is | 
 | 	 * done with uncached PTEs. This is lowest common denominator for all | 
 | 	 * chipsets. | 
 | 	 * | 
 | 	 * However for gen6+, we could do better by using the GFDT bit instead | 
 | 	 * of uncaching, which would allow us to flush all the LLC-cached data | 
 | 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL. | 
 | 	 */ | 
 | 	ret = i915_gem_object_set_cache_level(obj, | 
 | 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); | 
 | 	if (ret) { | 
 | 		vma = ERR_PTR(ret); | 
 | 		goto err_unpin_display; | 
 | 	} | 
 |  | 
 | 	/* As the user may map the buffer once pinned in the display plane | 
 | 	 * (e.g. libkms for the bootup splash), we have to ensure that we | 
 | 	 * always use map_and_fenceable for all scanout buffers. However, | 
 | 	 * it may simply be too big to fit into mappable, in which case | 
 | 	 * put it anyway and hope that userspace can cope (but always first | 
 | 	 * try to preserve the existing ABI). | 
 | 	 */ | 
 | 	vma = ERR_PTR(-ENOSPC); | 
 | 	if (view->type == I915_GGTT_VIEW_NORMAL) | 
 | 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, | 
 | 					       PIN_MAPPABLE | PIN_NONBLOCK); | 
 | 	if (IS_ERR(vma)) { | 
 | 		struct drm_i915_private *i915 = to_i915(obj->base.dev); | 
 | 		unsigned int flags; | 
 |  | 
 | 		/* Valleyview is definitely limited to scanning out the first | 
 | 		 * 512MiB. Lets presume this behaviour was inherited from the | 
 | 		 * g4x display engine and that all earlier gen are similarly | 
 | 		 * limited. Testing suggests that it is a little more | 
 | 		 * complicated than this. For example, Cherryview appears quite | 
 | 		 * happy to scanout from anywhere within its global aperture. | 
 | 		 */ | 
 | 		flags = 0; | 
 | 		if (HAS_GMCH_DISPLAY(i915)) | 
 | 			flags = PIN_MAPPABLE; | 
 | 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); | 
 | 	} | 
 | 	if (IS_ERR(vma)) | 
 | 		goto err_unpin_display; | 
 |  | 
 | 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment); | 
 |  | 
 | 	i915_gem_object_flush_cpu_write_domain(obj); | 
 |  | 
 | 	old_write_domain = obj->base.write_domain; | 
 | 	old_read_domains = obj->base.read_domains; | 
 |  | 
 | 	/* It should now be out of any other write domains, and we can update | 
 | 	 * the domain values for our changes. | 
 | 	 */ | 
 | 	obj->base.write_domain = 0; | 
 | 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT; | 
 |  | 
 | 	trace_i915_gem_object_change_domain(obj, | 
 | 					    old_read_domains, | 
 | 					    old_write_domain); | 
 |  | 
 | 	return vma; | 
 |  | 
 | err_unpin_display: | 
 | 	obj->pin_display--; | 
 | 	return vma; | 
 | } | 
 |  | 
 | void | 
 | i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) | 
 | { | 
 | 	if (WARN_ON(vma->obj->pin_display == 0)) | 
 | 		return; | 
 |  | 
 | 	if (--vma->obj->pin_display == 0) | 
 | 		vma->display_alignment = 0; | 
 |  | 
 | 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */ | 
 | 	if (!i915_vma_is_active(vma)) | 
 | 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list); | 
 |  | 
 | 	i915_vma_unpin(vma); | 
 | } | 
 |  | 
 | /** | 
 |  * Moves a single object to the CPU read, and possibly write domain. | 
 |  * @obj: object to act on | 
 |  * @write: requesting write or read-only access | 
 |  * | 
 |  * This function returns when the move is complete, including waiting on | 
 |  * flushes to occur. | 
 |  */ | 
 | int | 
 | i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) | 
 | { | 
 | 	uint32_t old_write_domain, old_read_domains; | 
 | 	int ret; | 
 |  | 
 | 	ret = i915_gem_object_wait_rendering(obj, !write); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) | 
 | 		return 0; | 
 |  | 
 | 	i915_gem_object_flush_gtt_write_domain(obj); | 
 |  | 
 | 	old_write_domain = obj->base.write_domain; | 
 | 	old_read_domains = obj->base.read_domains; | 
 |  | 
 | 	/* Flush the CPU cache if it's still invalid. */ | 
 | 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { | 
 | 		i915_gem_clflush_object(obj, false); | 
 |  | 
 | 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU; | 
 | 	} | 
 |  | 
 | 	/* It should now be out of any other write domains, and we can update | 
 | 	 * the domain values for our changes. | 
 | 	 */ | 
 | 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); | 
 |  | 
 | 	/* If we're writing through the CPU, then the GPU read domains will | 
 | 	 * need to be invalidated at next use. | 
 | 	 */ | 
 | 	if (write) { | 
 | 		obj->base.read_domains = I915_GEM_DOMAIN_CPU; | 
 | 		obj->base.write_domain = I915_GEM_DOMAIN_CPU; | 
 | 	} | 
 |  | 
 | 	trace_i915_gem_object_change_domain(obj, | 
 | 					    old_read_domains, | 
 | 					    old_write_domain); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Throttle our rendering by waiting until the ring has completed our requests | 
 |  * emitted over 20 msec ago. | 
 |  * | 
 |  * Note that if we were to use the current jiffies each time around the loop, | 
 |  * we wouldn't escape the function with any frames outstanding if the time to | 
 |  * render a frame was over 20ms. | 
 |  * | 
 |  * This should get us reasonable parallelism between CPU and GPU but also | 
 |  * relatively low latency when blocking on a particular request to finish. | 
 |  */ | 
 | static int | 
 | i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct drm_i915_file_private *file_priv = file->driver_priv; | 
 | 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; | 
 | 	struct drm_i915_gem_request *request, *target = NULL; | 
 | 	int ret; | 
 |  | 
 | 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* ABI: return -EIO if already wedged */ | 
 | 	if (i915_terminally_wedged(&dev_priv->gpu_error)) | 
 | 		return -EIO; | 
 |  | 
 | 	spin_lock(&file_priv->mm.lock); | 
 | 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) { | 
 | 		if (time_after_eq(request->emitted_jiffies, recent_enough)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Note that the request might not have been submitted yet. | 
 | 		 * In which case emitted_jiffies will be zero. | 
 | 		 */ | 
 | 		if (!request->emitted_jiffies) | 
 | 			continue; | 
 |  | 
 | 		target = request; | 
 | 	} | 
 | 	if (target) | 
 | 		i915_gem_request_get(target); | 
 | 	spin_unlock(&file_priv->mm.lock); | 
 |  | 
 | 	if (target == NULL) | 
 | 		return 0; | 
 |  | 
 | 	ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL); | 
 | 	i915_gem_request_put(target); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool | 
 | i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) | 
 | { | 
 | 	if (!drm_mm_node_allocated(&vma->node)) | 
 | 		return false; | 
 |  | 
 | 	if (vma->node.size < size) | 
 | 		return true; | 
 |  | 
 | 	if (alignment && vma->node.start & (alignment - 1)) | 
 | 		return true; | 
 |  | 
 | 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) | 
 | 		return true; | 
 |  | 
 | 	if (flags & PIN_OFFSET_BIAS && | 
 | 	    vma->node.start < (flags & PIN_OFFSET_MASK)) | 
 | 		return true; | 
 |  | 
 | 	if (flags & PIN_OFFSET_FIXED && | 
 | 	    vma->node.start != (flags & PIN_OFFSET_MASK)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) | 
 | { | 
 | 	struct drm_i915_gem_object *obj = vma->obj; | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	bool mappable, fenceable; | 
 | 	u32 fence_size, fence_alignment; | 
 |  | 
 | 	fence_size = i915_gem_get_ggtt_size(dev_priv, | 
 | 					    vma->size, | 
 | 					    i915_gem_object_get_tiling(obj)); | 
 | 	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv, | 
 | 						      vma->size, | 
 | 						      i915_gem_object_get_tiling(obj), | 
 | 						      true); | 
 |  | 
 | 	fenceable = (vma->node.size == fence_size && | 
 | 		     (vma->node.start & (fence_alignment - 1)) == 0); | 
 |  | 
 | 	mappable = (vma->node.start + fence_size <= | 
 | 		    dev_priv->ggtt.mappable_end); | 
 |  | 
 | 	/* | 
 | 	 * Explicitly disable for rotated VMA since the display does not | 
 | 	 * need the fence and the VMA is not accessible to other users. | 
 | 	 */ | 
 | 	if (mappable && fenceable && | 
 | 	    vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED) | 
 | 		vma->flags |= I915_VMA_CAN_FENCE; | 
 | 	else | 
 | 		vma->flags &= ~I915_VMA_CAN_FENCE; | 
 | } | 
 |  | 
 | int __i915_vma_do_pin(struct i915_vma *vma, | 
 | 		      u64 size, u64 alignment, u64 flags) | 
 | { | 
 | 	unsigned int bound = vma->flags; | 
 | 	int ret; | 
 |  | 
 | 	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0); | 
 | 	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma)); | 
 |  | 
 | 	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) { | 
 | 		ret = -EBUSY; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	if ((bound & I915_VMA_BIND_MASK) == 0) { | 
 | 		ret = i915_vma_insert(vma, size, alignment, flags); | 
 | 		if (ret) | 
 | 			goto err; | 
 | 	} | 
 |  | 
 | 	ret = i915_vma_bind(vma, vma->obj->cache_level, flags); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND) | 
 | 		__i915_vma_set_map_and_fenceable(vma); | 
 |  | 
 | 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	__i915_vma_unpin(vma); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct i915_vma * | 
 | i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, | 
 | 			 const struct i915_ggtt_view *view, | 
 | 			 u64 size, | 
 | 			 u64 alignment, | 
 | 			 u64 flags) | 
 | { | 
 | 	struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base; | 
 | 	struct i915_vma *vma; | 
 | 	int ret; | 
 |  | 
 | 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view); | 
 | 	if (IS_ERR(vma)) | 
 | 		return vma; | 
 |  | 
 | 	if (i915_vma_misplaced(vma, size, alignment, flags)) { | 
 | 		if (flags & PIN_NONBLOCK && | 
 | 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))) | 
 | 			return ERR_PTR(-ENOSPC); | 
 |  | 
 | 		WARN(i915_vma_is_pinned(vma), | 
 | 		     "bo is already pinned in ggtt with incorrect alignment:" | 
 | 		     " offset=%08x, req.alignment=%llx," | 
 | 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", | 
 | 		     i915_ggtt_offset(vma), alignment, | 
 | 		     !!(flags & PIN_MAPPABLE), | 
 | 		     i915_vma_is_map_and_fenceable(vma)); | 
 | 		ret = i915_vma_unbind(vma); | 
 | 		if (ret) | 
 | 			return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	return vma; | 
 | } | 
 |  | 
 | static __always_inline unsigned int __busy_read_flag(unsigned int id) | 
 | { | 
 | 	/* Note that we could alias engines in the execbuf API, but | 
 | 	 * that would be very unwise as it prevents userspace from | 
 | 	 * fine control over engine selection. Ahem. | 
 | 	 * | 
 | 	 * This should be something like EXEC_MAX_ENGINE instead of | 
 | 	 * I915_NUM_ENGINES. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(I915_NUM_ENGINES > 16); | 
 | 	return 0x10000 << id; | 
 | } | 
 |  | 
 | static __always_inline unsigned int __busy_write_id(unsigned int id) | 
 | { | 
 | 	/* The uABI guarantees an active writer is also amongst the read | 
 | 	 * engines. This would be true if we accessed the activity tracking | 
 | 	 * under the lock, but as we perform the lookup of the object and | 
 | 	 * its activity locklessly we can not guarantee that the last_write | 
 | 	 * being active implies that we have set the same engine flag from | 
 | 	 * last_read - hence we always set both read and write busy for | 
 | 	 * last_write. | 
 | 	 */ | 
 | 	return id | __busy_read_flag(id); | 
 | } | 
 |  | 
 | static __always_inline unsigned int | 
 | __busy_set_if_active(const struct i915_gem_active *active, | 
 | 		     unsigned int (*flag)(unsigned int id)) | 
 | { | 
 | 	struct drm_i915_gem_request *request; | 
 |  | 
 | 	request = rcu_dereference(active->request); | 
 | 	if (!request || i915_gem_request_completed(request)) | 
 | 		return 0; | 
 |  | 
 | 	/* This is racy. See __i915_gem_active_get_rcu() for an in detail | 
 | 	 * discussion of how to handle the race correctly, but for reporting | 
 | 	 * the busy state we err on the side of potentially reporting the | 
 | 	 * wrong engine as being busy (but we guarantee that the result | 
 | 	 * is at least self-consistent). | 
 | 	 * | 
 | 	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated | 
 | 	 * whilst we are inspecting it, even under the RCU read lock as we are. | 
 | 	 * This means that there is a small window for the engine and/or the | 
 | 	 * seqno to have been overwritten. The seqno will always be in the | 
 | 	 * future compared to the intended, and so we know that if that | 
 | 	 * seqno is idle (on whatever engine) our request is idle and the | 
 | 	 * return 0 above is correct. | 
 | 	 * | 
 | 	 * The issue is that if the engine is switched, it is just as likely | 
 | 	 * to report that it is busy (but since the switch happened, we know | 
 | 	 * the request should be idle). So there is a small chance that a busy | 
 | 	 * result is actually the wrong engine. | 
 | 	 * | 
 | 	 * So why don't we care? | 
 | 	 * | 
 | 	 * For starters, the busy ioctl is a heuristic that is by definition | 
 | 	 * racy. Even with perfect serialisation in the driver, the hardware | 
 | 	 * state is constantly advancing - the state we report to the user | 
 | 	 * is stale. | 
 | 	 * | 
 | 	 * The critical information for the busy-ioctl is whether the object | 
 | 	 * is idle as userspace relies on that to detect whether its next | 
 | 	 * access will stall, or if it has missed submitting commands to | 
 | 	 * the hardware allowing the GPU to stall. We never generate a | 
 | 	 * false-positive for idleness, thus busy-ioctl is reliable at the | 
 | 	 * most fundamental level, and we maintain the guarantee that a | 
 | 	 * busy object left to itself will eventually become idle (and stay | 
 | 	 * idle!). | 
 | 	 * | 
 | 	 * We allow ourselves the leeway of potentially misreporting the busy | 
 | 	 * state because that is an optimisation heuristic that is constantly | 
 | 	 * in flux. Being quickly able to detect the busy/idle state is much | 
 | 	 * more important than accurate logging of exactly which engines were | 
 | 	 * busy. | 
 | 	 * | 
 | 	 * For accuracy in reporting the engine, we could use | 
 | 	 * | 
 | 	 *	result = 0; | 
 | 	 *	request = __i915_gem_active_get_rcu(active); | 
 | 	 *	if (request) { | 
 | 	 *		if (!i915_gem_request_completed(request)) | 
 | 	 *			result = flag(request->engine->exec_id); | 
 | 	 *		i915_gem_request_put(request); | 
 | 	 *	} | 
 | 	 * | 
 | 	 * but that still remains susceptible to both hardware and userspace | 
 | 	 * races. So we accept making the result of that race slightly worse, | 
 | 	 * given the rarity of the race and its low impact on the result. | 
 | 	 */ | 
 | 	return flag(READ_ONCE(request->engine->exec_id)); | 
 | } | 
 |  | 
 | static __always_inline unsigned int | 
 | busy_check_reader(const struct i915_gem_active *active) | 
 | { | 
 | 	return __busy_set_if_active(active, __busy_read_flag); | 
 | } | 
 |  | 
 | static __always_inline unsigned int | 
 | busy_check_writer(const struct i915_gem_active *active) | 
 | { | 
 | 	return __busy_set_if_active(active, __busy_write_id); | 
 | } | 
 |  | 
 | int | 
 | i915_gem_busy_ioctl(struct drm_device *dev, void *data, | 
 | 		    struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_gem_busy *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	unsigned long active; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file, args->handle); | 
 | 	if (!obj) | 
 | 		return -ENOENT; | 
 |  | 
 | 	args->busy = 0; | 
 | 	active = __I915_BO_ACTIVE(obj); | 
 | 	if (active) { | 
 | 		int idx; | 
 |  | 
 | 		/* Yes, the lookups are intentionally racy. | 
 | 		 * | 
 | 		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have | 
 | 		 * to regard the value as stale and as our ABI guarantees | 
 | 		 * forward progress, we confirm the status of each active | 
 | 		 * request with the hardware. | 
 | 		 * | 
 | 		 * Even though we guard the pointer lookup by RCU, that only | 
 | 		 * guarantees that the pointer and its contents remain | 
 | 		 * dereferencable and does *not* mean that the request we | 
 | 		 * have is the same as the one being tracked by the object. | 
 | 		 * | 
 | 		 * Consider that we lookup the request just as it is being | 
 | 		 * retired and freed. We take a local copy of the pointer, | 
 | 		 * but before we add its engine into the busy set, the other | 
 | 		 * thread reallocates it and assigns it to a task on another | 
 | 		 * engine with a fresh and incomplete seqno. Guarding against | 
 | 		 * that requires careful serialisation and reference counting, | 
 | 		 * i.e. using __i915_gem_active_get_request_rcu(). We don't, | 
 | 		 * instead we expect that if the result is busy, which engines | 
 | 		 * are busy is not completely reliable - we only guarantee | 
 | 		 * that the object was busy. | 
 | 		 */ | 
 | 		rcu_read_lock(); | 
 |  | 
 | 		for_each_active(active, idx) | 
 | 			args->busy |= busy_check_reader(&obj->last_read[idx]); | 
 |  | 
 | 		/* For ABI sanity, we only care that the write engine is in | 
 | 		 * the set of read engines. This should be ensured by the | 
 | 		 * ordering of setting last_read/last_write in | 
 | 		 * i915_vma_move_to_active(), and then in reverse in retire. | 
 | 		 * However, for good measure, we always report the last_write | 
 | 		 * request as a busy read as well as being a busy write. | 
 | 		 * | 
 | 		 * We don't care that the set of active read/write engines | 
 | 		 * may change during construction of the result, as it is | 
 | 		 * equally liable to change before userspace can inspect | 
 | 		 * the result. | 
 | 		 */ | 
 | 		args->busy |= busy_check_writer(&obj->last_write); | 
 |  | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	i915_gem_object_put_unlocked(obj); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | i915_gem_throttle_ioctl(struct drm_device *dev, void *data, | 
 | 			struct drm_file *file_priv) | 
 | { | 
 | 	return i915_gem_ring_throttle(dev, file_priv); | 
 | } | 
 |  | 
 | int | 
 | i915_gem_madvise_ioctl(struct drm_device *dev, void *data, | 
 | 		       struct drm_file *file_priv) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct drm_i915_gem_madvise *args = data; | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	int ret; | 
 |  | 
 | 	switch (args->madv) { | 
 | 	case I915_MADV_DONTNEED: | 
 | 	case I915_MADV_WILLNEED: | 
 | 	    break; | 
 | 	default: | 
 | 	    return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ret = i915_mutex_lock_interruptible(dev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	obj = i915_gem_object_lookup(file_priv, args->handle); | 
 | 	if (!obj) { | 
 | 		ret = -ENOENT; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	if (obj->pages && | 
 | 	    i915_gem_object_is_tiled(obj) && | 
 | 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { | 
 | 		if (obj->madv == I915_MADV_WILLNEED) | 
 | 			i915_gem_object_unpin_pages(obj); | 
 | 		if (args->madv == I915_MADV_WILLNEED) | 
 | 			i915_gem_object_pin_pages(obj); | 
 | 	} | 
 |  | 
 | 	if (obj->madv != __I915_MADV_PURGED) | 
 | 		obj->madv = args->madv; | 
 |  | 
 | 	/* if the object is no longer attached, discard its backing storage */ | 
 | 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL) | 
 | 		i915_gem_object_truncate(obj); | 
 |  | 
 | 	args->retained = obj->madv != __I915_MADV_PURGED; | 
 |  | 
 | 	i915_gem_object_put(obj); | 
 | unlock: | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void i915_gem_object_init(struct drm_i915_gem_object *obj, | 
 | 			  const struct drm_i915_gem_object_ops *ops) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	INIT_LIST_HEAD(&obj->global_list); | 
 | 	for (i = 0; i < I915_NUM_ENGINES; i++) | 
 | 		init_request_active(&obj->last_read[i], | 
 | 				    i915_gem_object_retire__read); | 
 | 	init_request_active(&obj->last_write, | 
 | 			    i915_gem_object_retire__write); | 
 | 	INIT_LIST_HEAD(&obj->obj_exec_link); | 
 | 	INIT_LIST_HEAD(&obj->vma_list); | 
 | 	INIT_LIST_HEAD(&obj->batch_pool_link); | 
 |  | 
 | 	obj->ops = ops; | 
 |  | 
 | 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT; | 
 | 	obj->madv = I915_MADV_WILLNEED; | 
 |  | 
 | 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); | 
 | } | 
 |  | 
 | static const struct drm_i915_gem_object_ops i915_gem_object_ops = { | 
 | 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE, | 
 | 	.get_pages = i915_gem_object_get_pages_gtt, | 
 | 	.put_pages = i915_gem_object_put_pages_gtt, | 
 | }; | 
 |  | 
 | struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev, | 
 | 						  size_t size) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	struct address_space *mapping; | 
 | 	gfp_t mask; | 
 | 	int ret; | 
 |  | 
 | 	obj = i915_gem_object_alloc(dev); | 
 | 	if (obj == NULL) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ret = drm_gem_object_init(dev, &obj->base, size); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; | 
 | 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { | 
 | 		/* 965gm cannot relocate objects above 4GiB. */ | 
 | 		mask &= ~__GFP_HIGHMEM; | 
 | 		mask |= __GFP_DMA32; | 
 | 	} | 
 |  | 
 | 	mapping = obj->base.filp->f_mapping; | 
 | 	mapping_set_gfp_mask(mapping, mask); | 
 |  | 
 | 	i915_gem_object_init(obj, &i915_gem_object_ops); | 
 |  | 
 | 	obj->base.write_domain = I915_GEM_DOMAIN_CPU; | 
 | 	obj->base.read_domains = I915_GEM_DOMAIN_CPU; | 
 |  | 
 | 	if (HAS_LLC(dev)) { | 
 | 		/* On some devices, we can have the GPU use the LLC (the CPU | 
 | 		 * cache) for about a 10% performance improvement | 
 | 		 * compared to uncached.  Graphics requests other than | 
 | 		 * display scanout are coherent with the CPU in | 
 | 		 * accessing this cache.  This means in this mode we | 
 | 		 * don't need to clflush on the CPU side, and on the | 
 | 		 * GPU side we only need to flush internal caches to | 
 | 		 * get data visible to the CPU. | 
 | 		 * | 
 | 		 * However, we maintain the display planes as UC, and so | 
 | 		 * need to rebind when first used as such. | 
 | 		 */ | 
 | 		obj->cache_level = I915_CACHE_LLC; | 
 | 	} else | 
 | 		obj->cache_level = I915_CACHE_NONE; | 
 |  | 
 | 	trace_i915_gem_object_create(obj); | 
 |  | 
 | 	return obj; | 
 |  | 
 | fail: | 
 | 	i915_gem_object_free(obj); | 
 |  | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static bool discard_backing_storage(struct drm_i915_gem_object *obj) | 
 | { | 
 | 	/* If we are the last user of the backing storage (be it shmemfs | 
 | 	 * pages or stolen etc), we know that the pages are going to be | 
 | 	 * immediately released. In this case, we can then skip copying | 
 | 	 * back the contents from the GPU. | 
 | 	 */ | 
 |  | 
 | 	if (obj->madv != I915_MADV_WILLNEED) | 
 | 		return false; | 
 |  | 
 | 	if (obj->base.filp == NULL) | 
 | 		return true; | 
 |  | 
 | 	/* At first glance, this looks racy, but then again so would be | 
 | 	 * userspace racing mmap against close. However, the first external | 
 | 	 * reference to the filp can only be obtained through the | 
 | 	 * i915_gem_mmap_ioctl() which safeguards us against the user | 
 | 	 * acquiring such a reference whilst we are in the middle of | 
 | 	 * freeing the object. | 
 | 	 */ | 
 | 	return atomic_long_read(&obj->base.filp->f_count) == 1; | 
 | } | 
 |  | 
 | void i915_gem_free_object(struct drm_gem_object *gem_obj) | 
 | { | 
 | 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); | 
 | 	struct drm_device *dev = obj->base.dev; | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct i915_vma *vma, *next; | 
 |  | 
 | 	intel_runtime_pm_get(dev_priv); | 
 |  | 
 | 	trace_i915_gem_object_destroy(obj); | 
 |  | 
 | 	/* All file-owned VMA should have been released by this point through | 
 | 	 * i915_gem_close_object(), or earlier by i915_gem_context_close(). | 
 | 	 * However, the object may also be bound into the global GTT (e.g. | 
 | 	 * older GPUs without per-process support, or for direct access through | 
 | 	 * the GTT either for the user or for scanout). Those VMA still need to | 
 | 	 * unbound now. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) { | 
 | 		GEM_BUG_ON(!i915_vma_is_ggtt(vma)); | 
 | 		GEM_BUG_ON(i915_vma_is_active(vma)); | 
 | 		vma->flags &= ~I915_VMA_PIN_MASK; | 
 | 		i915_vma_close(vma); | 
 | 	} | 
 | 	GEM_BUG_ON(obj->bind_count); | 
 |  | 
 | 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up | 
 | 	 * before progressing. */ | 
 | 	if (obj->stolen) | 
 | 		i915_gem_object_unpin_pages(obj); | 
 |  | 
 | 	WARN_ON(atomic_read(&obj->frontbuffer_bits)); | 
 |  | 
 | 	if (obj->pages && obj->madv == I915_MADV_WILLNEED && | 
 | 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES && | 
 | 	    i915_gem_object_is_tiled(obj)) | 
 | 		i915_gem_object_unpin_pages(obj); | 
 |  | 
 | 	if (WARN_ON(obj->pages_pin_count)) | 
 | 		obj->pages_pin_count = 0; | 
 | 	if (discard_backing_storage(obj)) | 
 | 		obj->madv = I915_MADV_DONTNEED; | 
 | 	i915_gem_object_put_pages(obj); | 
 |  | 
 | 	BUG_ON(obj->pages); | 
 |  | 
 | 	if (obj->base.import_attach) | 
 | 		drm_prime_gem_destroy(&obj->base, NULL); | 
 |  | 
 | 	if (obj->ops->release) | 
 | 		obj->ops->release(obj); | 
 |  | 
 | 	drm_gem_object_release(&obj->base); | 
 | 	i915_gem_info_remove_obj(dev_priv, obj->base.size); | 
 |  | 
 | 	kfree(obj->bit_17); | 
 | 	i915_gem_object_free(obj); | 
 |  | 
 | 	intel_runtime_pm_put(dev_priv); | 
 | } | 
 |  | 
 | int i915_gem_suspend(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	int ret; | 
 |  | 
 | 	intel_suspend_gt_powersave(dev_priv); | 
 |  | 
 | 	mutex_lock(&dev->struct_mutex); | 
 |  | 
 | 	/* We have to flush all the executing contexts to main memory so | 
 | 	 * that they can saved in the hibernation image. To ensure the last | 
 | 	 * context image is coherent, we have to switch away from it. That | 
 | 	 * leaves the dev_priv->kernel_context still active when | 
 | 	 * we actually suspend, and its image in memory may not match the GPU | 
 | 	 * state. Fortunately, the kernel_context is disposable and we do | 
 | 	 * not rely on its state. | 
 | 	 */ | 
 | 	ret = i915_gem_switch_to_kernel_context(dev_priv); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	ret = i915_gem_wait_for_idle(dev_priv, | 
 | 				     I915_WAIT_INTERRUPTIBLE | | 
 | 				     I915_WAIT_LOCKED); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	i915_gem_retire_requests(dev_priv); | 
 |  | 
 | 	i915_gem_context_lost(dev_priv); | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 |  | 
 | 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); | 
 | 	cancel_delayed_work_sync(&dev_priv->gt.retire_work); | 
 | 	flush_delayed_work(&dev_priv->gt.idle_work); | 
 |  | 
 | 	/* Assert that we sucessfully flushed all the work and | 
 | 	 * reset the GPU back to its idle, low power state. | 
 | 	 */ | 
 | 	WARN_ON(dev_priv->gt.awake); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void i915_gem_resume(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 |  | 
 | 	mutex_lock(&dev->struct_mutex); | 
 | 	i915_gem_restore_gtt_mappings(dev); | 
 |  | 
 | 	/* As we didn't flush the kernel context before suspend, we cannot | 
 | 	 * guarantee that the context image is complete. So let's just reset | 
 | 	 * it and start again. | 
 | 	 */ | 
 | 	dev_priv->gt.resume(dev_priv); | 
 |  | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 | } | 
 |  | 
 | void i915_gem_init_swizzling(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 |  | 
 | 	if (INTEL_INFO(dev)->gen < 5 || | 
 | 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) | 
 | 		return; | 
 |  | 
 | 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | | 
 | 				 DISP_TILE_SURFACE_SWIZZLING); | 
 |  | 
 | 	if (IS_GEN5(dev)) | 
 | 		return; | 
 |  | 
 | 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); | 
 | 	if (IS_GEN6(dev)) | 
 | 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); | 
 | 	else if (IS_GEN7(dev)) | 
 | 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); | 
 | 	else if (IS_GEN8(dev)) | 
 | 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); | 
 | 	else | 
 | 		BUG(); | 
 | } | 
 |  | 
 | static void init_unused_ring(struct drm_device *dev, u32 base) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 |  | 
 | 	I915_WRITE(RING_CTL(base), 0); | 
 | 	I915_WRITE(RING_HEAD(base), 0); | 
 | 	I915_WRITE(RING_TAIL(base), 0); | 
 | 	I915_WRITE(RING_START(base), 0); | 
 | } | 
 |  | 
 | static void init_unused_rings(struct drm_device *dev) | 
 | { | 
 | 	if (IS_I830(dev)) { | 
 | 		init_unused_ring(dev, PRB1_BASE); | 
 | 		init_unused_ring(dev, SRB0_BASE); | 
 | 		init_unused_ring(dev, SRB1_BASE); | 
 | 		init_unused_ring(dev, SRB2_BASE); | 
 | 		init_unused_ring(dev, SRB3_BASE); | 
 | 	} else if (IS_GEN2(dev)) { | 
 | 		init_unused_ring(dev, SRB0_BASE); | 
 | 		init_unused_ring(dev, SRB1_BASE); | 
 | 	} else if (IS_GEN3(dev)) { | 
 | 		init_unused_ring(dev, PRB1_BASE); | 
 | 		init_unused_ring(dev, PRB2_BASE); | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | i915_gem_init_hw(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct intel_engine_cs *engine; | 
 | 	int ret; | 
 |  | 
 | 	/* Double layer security blanket, see i915_gem_init() */ | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9) | 
 | 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); | 
 |  | 
 | 	if (IS_HASWELL(dev)) | 
 | 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? | 
 | 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); | 
 |  | 
 | 	if (HAS_PCH_NOP(dev)) { | 
 | 		if (IS_IVYBRIDGE(dev)) { | 
 | 			u32 temp = I915_READ(GEN7_MSG_CTL); | 
 | 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); | 
 | 			I915_WRITE(GEN7_MSG_CTL, temp); | 
 | 		} else if (INTEL_INFO(dev)->gen >= 7) { | 
 | 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); | 
 | 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE; | 
 | 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	i915_gem_init_swizzling(dev); | 
 |  | 
 | 	/* | 
 | 	 * At least 830 can leave some of the unused rings | 
 | 	 * "active" (ie. head != tail) after resume which | 
 | 	 * will prevent c3 entry. Makes sure all unused rings | 
 | 	 * are totally idle. | 
 | 	 */ | 
 | 	init_unused_rings(dev); | 
 |  | 
 | 	BUG_ON(!dev_priv->kernel_context); | 
 |  | 
 | 	ret = i915_ppgtt_init_hw(dev); | 
 | 	if (ret) { | 
 | 		DRM_ERROR("PPGTT enable HW failed %d\n", ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Need to do basic initialisation of all rings first: */ | 
 | 	for_each_engine(engine, dev_priv) { | 
 | 		ret = engine->init_hw(engine); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	intel_mocs_init_l3cc_table(dev); | 
 |  | 
 | 	/* We can't enable contexts until all firmware is loaded */ | 
 | 	ret = intel_guc_setup(dev); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | out: | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | 	return ret; | 
 | } | 
 |  | 
 | bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value) | 
 | { | 
 | 	if (INTEL_INFO(dev_priv)->gen < 6) | 
 | 		return false; | 
 |  | 
 | 	/* TODO: make semaphores and Execlists play nicely together */ | 
 | 	if (i915.enable_execlists) | 
 | 		return false; | 
 |  | 
 | 	if (value >= 0) | 
 | 		return value; | 
 |  | 
 | #ifdef CONFIG_INTEL_IOMMU | 
 | 	/* Enable semaphores on SNB when IO remapping is off */ | 
 | 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped) | 
 | 		return false; | 
 | #endif | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | int i915_gem_init(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&dev->struct_mutex); | 
 |  | 
 | 	if (!i915.enable_execlists) { | 
 | 		dev_priv->gt.resume = intel_legacy_submission_resume; | 
 | 		dev_priv->gt.cleanup_engine = intel_engine_cleanup; | 
 | 	} else { | 
 | 		dev_priv->gt.resume = intel_lr_context_resume; | 
 | 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; | 
 | 	} | 
 |  | 
 | 	/* This is just a security blanket to placate dragons. | 
 | 	 * On some systems, we very sporadically observe that the first TLBs | 
 | 	 * used by the CS may be stale, despite us poking the TLB reset. If | 
 | 	 * we hold the forcewake during initialisation these problems | 
 | 	 * just magically go away. | 
 | 	 */ | 
 | 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); | 
 |  | 
 | 	i915_gem_init_userptr(dev_priv); | 
 |  | 
 | 	ret = i915_gem_init_ggtt(dev_priv); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = i915_gem_context_init(dev); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = intel_engines_init(dev); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = i915_gem_init_hw(dev); | 
 | 	if (ret == -EIO) { | 
 | 		/* Allow engine initialisation to fail by marking the GPU as | 
 | 		 * wedged. But we only want to do this where the GPU is angry, | 
 | 		 * for all other failure, such as an allocation failure, bail. | 
 | 		 */ | 
 | 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); | 
 | 		i915_gem_set_wedged(dev_priv); | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); | 
 | 	mutex_unlock(&dev->struct_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void | 
 | i915_gem_cleanup_engines(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	struct intel_engine_cs *engine; | 
 |  | 
 | 	for_each_engine(engine, dev_priv) | 
 | 		dev_priv->gt.cleanup_engine(engine); | 
 | } | 
 |  | 
 | static void | 
 | init_engine_lists(struct intel_engine_cs *engine) | 
 | { | 
 | 	INIT_LIST_HEAD(&engine->request_list); | 
 | } | 
 |  | 
 | void | 
 | i915_gem_load_init_fences(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct drm_device *dev = &dev_priv->drm; | 
 | 	int i; | 
 |  | 
 | 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) && | 
 | 	    !IS_CHERRYVIEW(dev_priv)) | 
 | 		dev_priv->num_fence_regs = 32; | 
 | 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) || | 
 | 		 IS_I945GM(dev_priv) || IS_G33(dev_priv)) | 
 | 		dev_priv->num_fence_regs = 16; | 
 | 	else | 
 | 		dev_priv->num_fence_regs = 8; | 
 |  | 
 | 	if (intel_vgpu_active(dev_priv)) | 
 | 		dev_priv->num_fence_regs = | 
 | 				I915_READ(vgtif_reg(avail_rs.fence_num)); | 
 |  | 
 | 	/* Initialize fence registers to zero */ | 
 | 	for (i = 0; i < dev_priv->num_fence_regs; i++) { | 
 | 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; | 
 |  | 
 | 		fence->i915 = dev_priv; | 
 | 		fence->id = i; | 
 | 		list_add_tail(&fence->link, &dev_priv->mm.fence_list); | 
 | 	} | 
 | 	i915_gem_restore_fences(dev); | 
 |  | 
 | 	i915_gem_detect_bit_6_swizzle(dev); | 
 | } | 
 |  | 
 | void | 
 | i915_gem_load_init(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 | 	int i; | 
 |  | 
 | 	dev_priv->objects = | 
 | 		kmem_cache_create("i915_gem_object", | 
 | 				  sizeof(struct drm_i915_gem_object), 0, | 
 | 				  SLAB_HWCACHE_ALIGN, | 
 | 				  NULL); | 
 | 	dev_priv->vmas = | 
 | 		kmem_cache_create("i915_gem_vma", | 
 | 				  sizeof(struct i915_vma), 0, | 
 | 				  SLAB_HWCACHE_ALIGN, | 
 | 				  NULL); | 
 | 	dev_priv->requests = | 
 | 		kmem_cache_create("i915_gem_request", | 
 | 				  sizeof(struct drm_i915_gem_request), 0, | 
 | 				  SLAB_HWCACHE_ALIGN | | 
 | 				  SLAB_RECLAIM_ACCOUNT | | 
 | 				  SLAB_DESTROY_BY_RCU, | 
 | 				  NULL); | 
 |  | 
 | 	INIT_LIST_HEAD(&dev_priv->context_list); | 
 | 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list); | 
 | 	INIT_LIST_HEAD(&dev_priv->mm.bound_list); | 
 | 	INIT_LIST_HEAD(&dev_priv->mm.fence_list); | 
 | 	for (i = 0; i < I915_NUM_ENGINES; i++) | 
 | 		init_engine_lists(&dev_priv->engine[i]); | 
 | 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work, | 
 | 			  i915_gem_retire_work_handler); | 
 | 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work, | 
 | 			  i915_gem_idle_work_handler); | 
 | 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue); | 
 | 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue); | 
 |  | 
 | 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; | 
 |  | 
 | 	init_waitqueue_head(&dev_priv->pending_flip_queue); | 
 |  | 
 | 	dev_priv->mm.interruptible = true; | 
 |  | 
 | 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); | 
 |  | 
 | 	spin_lock_init(&dev_priv->fb_tracking.lock); | 
 | } | 
 |  | 
 | void i915_gem_load_cleanup(struct drm_device *dev) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(dev); | 
 |  | 
 | 	kmem_cache_destroy(dev_priv->requests); | 
 | 	kmem_cache_destroy(dev_priv->vmas); | 
 | 	kmem_cache_destroy(dev_priv->objects); | 
 |  | 
 | 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ | 
 | 	rcu_barrier(); | 
 | } | 
 |  | 
 | int i915_gem_freeze(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	intel_runtime_pm_get(dev_priv); | 
 |  | 
 | 	mutex_lock(&dev_priv->drm.struct_mutex); | 
 | 	i915_gem_shrink_all(dev_priv); | 
 | 	mutex_unlock(&dev_priv->drm.struct_mutex); | 
 |  | 
 | 	intel_runtime_pm_put(dev_priv); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int i915_gem_freeze_late(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	struct list_head *phases[] = { | 
 | 		&dev_priv->mm.unbound_list, | 
 | 		&dev_priv->mm.bound_list, | 
 | 		NULL | 
 | 	}, **p; | 
 |  | 
 | 	/* Called just before we write the hibernation image. | 
 | 	 * | 
 | 	 * We need to update the domain tracking to reflect that the CPU | 
 | 	 * will be accessing all the pages to create and restore from the | 
 | 	 * hibernation, and so upon restoration those pages will be in the | 
 | 	 * CPU domain. | 
 | 	 * | 
 | 	 * To make sure the hibernation image contains the latest state, | 
 | 	 * we update that state just before writing out the image. | 
 | 	 * | 
 | 	 * To try and reduce the hibernation image, we manually shrink | 
 | 	 * the objects as well. | 
 | 	 */ | 
 |  | 
 | 	mutex_lock(&dev_priv->drm.struct_mutex); | 
 | 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND); | 
 |  | 
 | 	for (p = phases; *p; p++) { | 
 | 		list_for_each_entry(obj, *p, global_list) { | 
 | 			obj->base.read_domains = I915_GEM_DOMAIN_CPU; | 
 | 			obj->base.write_domain = I915_GEM_DOMAIN_CPU; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&dev_priv->drm.struct_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void i915_gem_release(struct drm_device *dev, struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_file_private *file_priv = file->driver_priv; | 
 | 	struct drm_i915_gem_request *request; | 
 |  | 
 | 	/* Clean up our request list when the client is going away, so that | 
 | 	 * later retire_requests won't dereference our soon-to-be-gone | 
 | 	 * file_priv. | 
 | 	 */ | 
 | 	spin_lock(&file_priv->mm.lock); | 
 | 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) | 
 | 		request->file_priv = NULL; | 
 | 	spin_unlock(&file_priv->mm.lock); | 
 |  | 
 | 	if (!list_empty(&file_priv->rps.link)) { | 
 | 		spin_lock(&to_i915(dev)->rps.client_lock); | 
 | 		list_del(&file_priv->rps.link); | 
 | 		spin_unlock(&to_i915(dev)->rps.client_lock); | 
 | 	} | 
 | } | 
 |  | 
 | int i915_gem_open(struct drm_device *dev, struct drm_file *file) | 
 | { | 
 | 	struct drm_i915_file_private *file_priv; | 
 | 	int ret; | 
 |  | 
 | 	DRM_DEBUG_DRIVER("\n"); | 
 |  | 
 | 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); | 
 | 	if (!file_priv) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	file->driver_priv = file_priv; | 
 | 	file_priv->dev_priv = to_i915(dev); | 
 | 	file_priv->file = file; | 
 | 	INIT_LIST_HEAD(&file_priv->rps.link); | 
 |  | 
 | 	spin_lock_init(&file_priv->mm.lock); | 
 | 	INIT_LIST_HEAD(&file_priv->mm.request_list); | 
 |  | 
 | 	file_priv->bsd_engine = -1; | 
 |  | 
 | 	ret = i915_gem_context_open(dev, file); | 
 | 	if (ret) | 
 | 		kfree(file_priv); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_track_fb - update frontbuffer tracking | 
 |  * @old: current GEM buffer for the frontbuffer slots | 
 |  * @new: new GEM buffer for the frontbuffer slots | 
 |  * @frontbuffer_bits: bitmask of frontbuffer slots | 
 |  * | 
 |  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them | 
 |  * from @old and setting them in @new. Both @old and @new can be NULL. | 
 |  */ | 
 | void i915_gem_track_fb(struct drm_i915_gem_object *old, | 
 | 		       struct drm_i915_gem_object *new, | 
 | 		       unsigned frontbuffer_bits) | 
 | { | 
 | 	/* Control of individual bits within the mask are guarded by | 
 | 	 * the owning plane->mutex, i.e. we can never see concurrent | 
 | 	 * manipulation of individual bits. But since the bitfield as a whole | 
 | 	 * is updated using RMW, we need to use atomics in order to update | 
 | 	 * the bits. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > | 
 | 		     sizeof(atomic_t) * BITS_PER_BYTE); | 
 |  | 
 | 	if (old) { | 
 | 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); | 
 | 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); | 
 | 	} | 
 |  | 
 | 	if (new) { | 
 | 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); | 
 | 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits); | 
 | 	} | 
 | } | 
 |  | 
 | /* Like i915_gem_object_get_page(), but mark the returned page dirty */ | 
 | struct page * | 
 | i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	/* Only default objects have per-page dirty tracking */ | 
 | 	if (WARN_ON(!i915_gem_object_has_struct_page(obj))) | 
 | 		return NULL; | 
 |  | 
 | 	page = i915_gem_object_get_page(obj, n); | 
 | 	set_page_dirty(page); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* Allocate a new GEM object and fill it with the supplied data */ | 
 | struct drm_i915_gem_object * | 
 | i915_gem_object_create_from_data(struct drm_device *dev, | 
 | 			         const void *data, size_t size) | 
 | { | 
 | 	struct drm_i915_gem_object *obj; | 
 | 	struct sg_table *sg; | 
 | 	size_t bytes; | 
 | 	int ret; | 
 |  | 
 | 	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE)); | 
 | 	if (IS_ERR(obj)) | 
 | 		return obj; | 
 |  | 
 | 	ret = i915_gem_object_set_to_cpu_domain(obj, true); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	ret = i915_gem_object_get_pages(obj); | 
 | 	if (ret) | 
 | 		goto fail; | 
 |  | 
 | 	i915_gem_object_pin_pages(obj); | 
 | 	sg = obj->pages; | 
 | 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size); | 
 | 	obj->dirty = 1;		/* Backing store is now out of date */ | 
 | 	i915_gem_object_unpin_pages(obj); | 
 |  | 
 | 	if (WARN_ON(bytes != size)) { | 
 | 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size); | 
 | 		ret = -EFAULT; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	return obj; | 
 |  | 
 | fail: | 
 | 	i915_gem_object_put(obj); | 
 | 	return ERR_PTR(ret); | 
 | } |