| /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * This module enables machines with Intel VT-x extensions to run virtual | 
 |  * machines without emulation or binary translation. | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * | 
 |  * Authors: | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2.  See | 
 |  * the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include "kvm.h" | 
 | #include "vmx.h" | 
 | #include "kvm_vmx.h" | 
 | #include <linux/module.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/highmem.h> | 
 | #include <asm/io.h> | 
 | #include <asm/desc.h> | 
 |  | 
 | #include "segment_descriptor.h" | 
 |  | 
 |  | 
 | MODULE_AUTHOR("Qumranet"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static DEFINE_PER_CPU(struct vmcs *, vmxarea); | 
 | static DEFINE_PER_CPU(struct vmcs *, current_vmcs); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | #define HOST_IS_64 1 | 
 | #else | 
 | #define HOST_IS_64 0 | 
 | #endif | 
 |  | 
 | static struct vmcs_descriptor { | 
 | 	int size; | 
 | 	int order; | 
 | 	u32 revision_id; | 
 | } vmcs_descriptor; | 
 |  | 
 | #define VMX_SEGMENT_FIELD(seg)					\ | 
 | 	[VCPU_SREG_##seg] = {                                   \ | 
 | 		.selector = GUEST_##seg##_SELECTOR,		\ | 
 | 		.base = GUEST_##seg##_BASE,		   	\ | 
 | 		.limit = GUEST_##seg##_LIMIT,		   	\ | 
 | 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\ | 
 | 	} | 
 |  | 
 | static struct kvm_vmx_segment_field { | 
 | 	unsigned selector; | 
 | 	unsigned base; | 
 | 	unsigned limit; | 
 | 	unsigned ar_bytes; | 
 | } kvm_vmx_segment_fields[] = { | 
 | 	VMX_SEGMENT_FIELD(CS), | 
 | 	VMX_SEGMENT_FIELD(DS), | 
 | 	VMX_SEGMENT_FIELD(ES), | 
 | 	VMX_SEGMENT_FIELD(FS), | 
 | 	VMX_SEGMENT_FIELD(GS), | 
 | 	VMX_SEGMENT_FIELD(SS), | 
 | 	VMX_SEGMENT_FIELD(TR), | 
 | 	VMX_SEGMENT_FIELD(LDTR), | 
 | }; | 
 |  | 
 | static const u32 vmx_msr_index[] = { | 
 | #ifdef CONFIG_X86_64 | 
 | 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE, | 
 | #endif | 
 | 	MSR_EFER, MSR_K6_STAR, | 
 | }; | 
 | #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index)) | 
 |  | 
 | static inline int is_page_fault(u32 intr_info) | 
 | { | 
 | 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
 | 			     INTR_INFO_VALID_MASK)) == | 
 | 		(INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK); | 
 | } | 
 |  | 
 | static inline int is_external_interrupt(u32 intr_info) | 
 | { | 
 | 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) | 
 | 		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); | 
 | } | 
 |  | 
 | static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < vcpu->nmsrs; ++i) | 
 | 		if (vcpu->guest_msrs[i].index == msr) | 
 | 			return &vcpu->guest_msrs[i]; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void vmcs_clear(struct vmcs *vmcs) | 
 | { | 
 | 	u64 phys_addr = __pa(vmcs); | 
 | 	u8 error; | 
 |  | 
 | 	asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0" | 
 | 		      : "=g"(error) : "a"(&phys_addr), "m"(phys_addr) | 
 | 		      : "cc", "memory"); | 
 | 	if (error) | 
 | 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", | 
 | 		       vmcs, phys_addr); | 
 | } | 
 |  | 
 | static void __vcpu_clear(void *arg) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = arg; | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	if (vcpu->cpu == cpu) | 
 | 		vmcs_clear(vcpu->vmcs); | 
 | 	if (per_cpu(current_vmcs, cpu) == vcpu->vmcs) | 
 | 		per_cpu(current_vmcs, cpu) = NULL; | 
 | } | 
 |  | 
 | static unsigned long vmcs_readl(unsigned long field) | 
 | { | 
 | 	unsigned long value; | 
 |  | 
 | 	asm volatile (ASM_VMX_VMREAD_RDX_RAX | 
 | 		      : "=a"(value) : "d"(field) : "cc"); | 
 | 	return value; | 
 | } | 
 |  | 
 | static u16 vmcs_read16(unsigned long field) | 
 | { | 
 | 	return vmcs_readl(field); | 
 | } | 
 |  | 
 | static u32 vmcs_read32(unsigned long field) | 
 | { | 
 | 	return vmcs_readl(field); | 
 | } | 
 |  | 
 | static u64 vmcs_read64(unsigned long field) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	return vmcs_readl(field); | 
 | #else | 
 | 	return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32); | 
 | #endif | 
 | } | 
 |  | 
 | static void vmcs_writel(unsigned long field, unsigned long value) | 
 | { | 
 | 	u8 error; | 
 |  | 
 | 	asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0" | 
 | 		       : "=q"(error) : "a"(value), "d"(field) : "cc" ); | 
 | 	if (error) | 
 | 		printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", | 
 | 		       field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); | 
 | } | 
 |  | 
 | static void vmcs_write16(unsigned long field, u16 value) | 
 | { | 
 | 	vmcs_writel(field, value); | 
 | } | 
 |  | 
 | static void vmcs_write32(unsigned long field, u32 value) | 
 | { | 
 | 	vmcs_writel(field, value); | 
 | } | 
 |  | 
 | static void vmcs_write64(unsigned long field, u64 value) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	vmcs_writel(field, value); | 
 | #else | 
 | 	vmcs_writel(field, value); | 
 | 	asm volatile (""); | 
 | 	vmcs_writel(field+1, value >> 32); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Switches to specified vcpu, until a matching vcpu_put(), but assumes | 
 |  * vcpu mutex is already taken. | 
 |  */ | 
 | static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 phys_addr = __pa(vcpu->vmcs); | 
 | 	int cpu; | 
 |  | 
 | 	cpu = get_cpu(); | 
 |  | 
 | 	if (vcpu->cpu != cpu) { | 
 | 		smp_call_function(__vcpu_clear, vcpu, 0, 1); | 
 | 		vcpu->launched = 0; | 
 | 	} | 
 |  | 
 | 	if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) { | 
 | 		u8 error; | 
 |  | 
 | 		per_cpu(current_vmcs, cpu) = vcpu->vmcs; | 
 | 		asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0" | 
 | 			      : "=g"(error) : "a"(&phys_addr), "m"(phys_addr) | 
 | 			      : "cc"); | 
 | 		if (error) | 
 | 			printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n", | 
 | 			       vcpu->vmcs, phys_addr); | 
 | 	} | 
 |  | 
 | 	if (vcpu->cpu != cpu) { | 
 | 		struct descriptor_table dt; | 
 | 		unsigned long sysenter_esp; | 
 |  | 
 | 		vcpu->cpu = cpu; | 
 | 		/* | 
 | 		 * Linux uses per-cpu TSS and GDT, so set these when switching | 
 | 		 * processors. | 
 | 		 */ | 
 | 		vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */ | 
 | 		get_gdt(&dt); | 
 | 		vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */ | 
 |  | 
 | 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); | 
 | 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ | 
 | 	} | 
 | 	return vcpu; | 
 | } | 
 |  | 
 | static void vmx_vcpu_put(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vmcs_readl(GUEST_RFLAGS); | 
 | } | 
 |  | 
 | static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
 | { | 
 | 	vmcs_writel(GUEST_RFLAGS, rflags); | 
 | } | 
 |  | 
 | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long rip; | 
 | 	u32 interruptibility; | 
 |  | 
 | 	rip = vmcs_readl(GUEST_RIP); | 
 | 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
 | 	vmcs_writel(GUEST_RIP, rip); | 
 |  | 
 | 	/* | 
 | 	 * We emulated an instruction, so temporary interrupt blocking | 
 | 	 * should be removed, if set. | 
 | 	 */ | 
 | 	interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); | 
 | 	if (interruptibility & 3) | 
 | 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, | 
 | 			     interruptibility & ~3); | 
 | } | 
 |  | 
 | static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code) | 
 | { | 
 | 	printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n", | 
 | 	       vmcs_readl(GUEST_RIP)); | 
 | 	vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); | 
 | 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
 | 		     GP_VECTOR | | 
 | 		     INTR_TYPE_EXCEPTION | | 
 | 		     INTR_INFO_DELIEVER_CODE_MASK | | 
 | 		     INTR_INFO_VALID_MASK); | 
 | } | 
 |  | 
 | /* | 
 |  * reads and returns guest's timestamp counter "register" | 
 |  * guest_tsc = host_tsc + tsc_offset    -- 21.3 | 
 |  */ | 
 | static u64 guest_read_tsc(void) | 
 | { | 
 | 	u64 host_tsc, tsc_offset; | 
 |  | 
 | 	rdtscll(host_tsc); | 
 | 	tsc_offset = vmcs_read64(TSC_OFFSET); | 
 | 	return host_tsc + tsc_offset; | 
 | } | 
 |  | 
 | /* | 
 |  * writes 'guest_tsc' into guest's timestamp counter "register" | 
 |  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc | 
 |  */ | 
 | static void guest_write_tsc(u64 guest_tsc) | 
 | { | 
 | 	u64 host_tsc; | 
 |  | 
 | 	rdtscll(host_tsc); | 
 | 	vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc); | 
 | } | 
 |  | 
 | static void reload_tss(void) | 
 | { | 
 | #ifndef CONFIG_X86_64 | 
 |  | 
 | 	/* | 
 | 	 * VT restores TR but not its size.  Useless. | 
 | 	 */ | 
 | 	struct descriptor_table gdt; | 
 | 	struct segment_descriptor *descs; | 
 |  | 
 | 	get_gdt(&gdt); | 
 | 	descs = (void *)gdt.base; | 
 | 	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ | 
 | 	load_TR_desc(); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Reads an msr value (of 'msr_index') into 'pdata'. | 
 |  * Returns 0 on success, non-0 otherwise. | 
 |  * Assumes vcpu_load() was already called. | 
 |  */ | 
 | static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | 
 | { | 
 | 	u64 data; | 
 | 	struct vmx_msr_entry *msr; | 
 |  | 
 | 	if (!pdata) { | 
 | 		printk(KERN_ERR "BUG: get_msr called with NULL pdata\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	switch (msr_index) { | 
 | #ifdef CONFIG_X86_64 | 
 | 	case MSR_FS_BASE: | 
 | 		data = vmcs_readl(GUEST_FS_BASE); | 
 | 		break; | 
 | 	case MSR_GS_BASE: | 
 | 		data = vmcs_readl(GUEST_GS_BASE); | 
 | 		break; | 
 | 	case MSR_EFER: | 
 | 		return kvm_get_msr_common(vcpu, msr_index, pdata); | 
 | #endif | 
 | 	case MSR_IA32_TIME_STAMP_COUNTER: | 
 | 		data = guest_read_tsc(); | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_CS: | 
 | 		data = vmcs_read32(GUEST_SYSENTER_CS); | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_EIP: | 
 | 		data = vmcs_read32(GUEST_SYSENTER_EIP); | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_ESP: | 
 | 		data = vmcs_read32(GUEST_SYSENTER_ESP); | 
 | 		break; | 
 | 	default: | 
 | 		msr = find_msr_entry(vcpu, msr_index); | 
 | 		if (msr) { | 
 | 			data = msr->data; | 
 | 			break; | 
 | 		} | 
 | 		return kvm_get_msr_common(vcpu, msr_index, pdata); | 
 | 	} | 
 |  | 
 | 	*pdata = data; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Writes msr value into into the appropriate "register". | 
 |  * Returns 0 on success, non-0 otherwise. | 
 |  * Assumes vcpu_load() was already called. | 
 |  */ | 
 | static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) | 
 | { | 
 | 	struct vmx_msr_entry *msr; | 
 | 	switch (msr_index) { | 
 | #ifdef CONFIG_X86_64 | 
 | 	case MSR_EFER: | 
 | 		return kvm_set_msr_common(vcpu, msr_index, data); | 
 | 	case MSR_FS_BASE: | 
 | 		vmcs_writel(GUEST_FS_BASE, data); | 
 | 		break; | 
 | 	case MSR_GS_BASE: | 
 | 		vmcs_writel(GUEST_GS_BASE, data); | 
 | 		break; | 
 | #endif | 
 | 	case MSR_IA32_SYSENTER_CS: | 
 | 		vmcs_write32(GUEST_SYSENTER_CS, data); | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_EIP: | 
 | 		vmcs_write32(GUEST_SYSENTER_EIP, data); | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_ESP: | 
 | 		vmcs_write32(GUEST_SYSENTER_ESP, data); | 
 | 		break; | 
 | 	case MSR_IA32_TIME_STAMP_COUNTER: { | 
 | 		guest_write_tsc(data); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		msr = find_msr_entry(vcpu, msr_index); | 
 | 		if (msr) { | 
 | 			msr->data = data; | 
 | 			break; | 
 | 		} | 
 | 		return kvm_set_msr_common(vcpu, msr_index, data); | 
 | 		msr->data = data; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Sync the rsp and rip registers into the vcpu structure.  This allows | 
 |  * registers to be accessed by indexing vcpu->regs. | 
 |  */ | 
 | static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); | 
 | 	vcpu->rip = vmcs_readl(GUEST_RIP); | 
 | } | 
 |  | 
 | /* | 
 |  * Syncs rsp and rip back into the vmcs.  Should be called after possible | 
 |  * modification. | 
 |  */ | 
 | static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]); | 
 | 	vmcs_writel(GUEST_RIP, vcpu->rip); | 
 | } | 
 |  | 
 | static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg) | 
 | { | 
 | 	unsigned long dr7 = 0x400; | 
 | 	u32 exception_bitmap; | 
 | 	int old_singlestep; | 
 |  | 
 | 	exception_bitmap = vmcs_read32(EXCEPTION_BITMAP); | 
 | 	old_singlestep = vcpu->guest_debug.singlestep; | 
 |  | 
 | 	vcpu->guest_debug.enabled = dbg->enabled; | 
 | 	if (vcpu->guest_debug.enabled) { | 
 | 		int i; | 
 |  | 
 | 		dr7 |= 0x200;  /* exact */ | 
 | 		for (i = 0; i < 4; ++i) { | 
 | 			if (!dbg->breakpoints[i].enabled) | 
 | 				continue; | 
 | 			vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address; | 
 | 			dr7 |= 2 << (i*2);    /* global enable */ | 
 | 			dr7 |= 0 << (i*4+16); /* execution breakpoint */ | 
 | 		} | 
 |  | 
 | 		exception_bitmap |= (1u << 1);  /* Trap debug exceptions */ | 
 |  | 
 | 		vcpu->guest_debug.singlestep = dbg->singlestep; | 
 | 	} else { | 
 | 		exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */ | 
 | 		vcpu->guest_debug.singlestep = 0; | 
 | 	} | 
 |  | 
 | 	if (old_singlestep && !vcpu->guest_debug.singlestep) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		flags = vmcs_readl(GUEST_RFLAGS); | 
 | 		flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); | 
 | 		vmcs_writel(GUEST_RFLAGS, flags); | 
 | 	} | 
 |  | 
 | 	vmcs_write32(EXCEPTION_BITMAP, exception_bitmap); | 
 | 	vmcs_writel(GUEST_DR7, dr7); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __init int cpu_has_kvm_support(void) | 
 | { | 
 | 	unsigned long ecx = cpuid_ecx(1); | 
 | 	return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */ | 
 | } | 
 |  | 
 | static __init int vmx_disabled_by_bios(void) | 
 | { | 
 | 	u64 msr; | 
 |  | 
 | 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); | 
 | 	return (msr & 5) == 1; /* locked but not enabled */ | 
 | } | 
 |  | 
 | static __init void hardware_enable(void *garbage) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 | 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); | 
 | 	u64 old; | 
 |  | 
 | 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old); | 
 | 	if ((old & 5) != 5) | 
 | 		/* enable and lock */ | 
 | 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5); | 
 | 	write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */ | 
 | 	asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr) | 
 | 		      : "memory", "cc"); | 
 | } | 
 |  | 
 | static void hardware_disable(void *garbage) | 
 | { | 
 | 	asm volatile (ASM_VMX_VMXOFF : : : "cc"); | 
 | } | 
 |  | 
 | static __init void setup_vmcs_descriptor(void) | 
 | { | 
 | 	u32 vmx_msr_low, vmx_msr_high; | 
 |  | 
 | 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); | 
 | 	vmcs_descriptor.size = vmx_msr_high & 0x1fff; | 
 | 	vmcs_descriptor.order = get_order(vmcs_descriptor.size); | 
 | 	vmcs_descriptor.revision_id = vmx_msr_low; | 
 | } | 
 |  | 
 | static struct vmcs *alloc_vmcs_cpu(int cpu) | 
 | { | 
 | 	int node = cpu_to_node(cpu); | 
 | 	struct page *pages; | 
 | 	struct vmcs *vmcs; | 
 |  | 
 | 	pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 | 	vmcs = page_address(pages); | 
 | 	memset(vmcs, 0, vmcs_descriptor.size); | 
 | 	vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */ | 
 | 	return vmcs; | 
 | } | 
 |  | 
 | static struct vmcs *alloc_vmcs(void) | 
 | { | 
 | 	return alloc_vmcs_cpu(smp_processor_id()); | 
 | } | 
 |  | 
 | static void free_vmcs(struct vmcs *vmcs) | 
 | { | 
 | 	free_pages((unsigned long)vmcs, vmcs_descriptor.order); | 
 | } | 
 |  | 
 | static __exit void free_kvm_area(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		free_vmcs(per_cpu(vmxarea, cpu)); | 
 | } | 
 |  | 
 | extern struct vmcs *alloc_vmcs_cpu(int cpu); | 
 |  | 
 | static __init int alloc_kvm_area(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct vmcs *vmcs; | 
 |  | 
 | 		vmcs = alloc_vmcs_cpu(cpu); | 
 | 		if (!vmcs) { | 
 | 			free_kvm_area(); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		per_cpu(vmxarea, cpu) = vmcs; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __init int hardware_setup(void) | 
 | { | 
 | 	setup_vmcs_descriptor(); | 
 | 	return alloc_kvm_area(); | 
 | } | 
 |  | 
 | static __exit void hardware_unsetup(void) | 
 | { | 
 | 	free_kvm_area(); | 
 | } | 
 |  | 
 | static void update_exception_bitmap(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (vcpu->rmode.active) | 
 | 		vmcs_write32(EXCEPTION_BITMAP, ~0); | 
 | 	else | 
 | 		vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR); | 
 | } | 
 |  | 
 | static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save) | 
 | { | 
 | 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
 |  | 
 | 	if (vmcs_readl(sf->base) == save->base) { | 
 | 		vmcs_write16(sf->selector, save->selector); | 
 | 		vmcs_writel(sf->base, save->base); | 
 | 		vmcs_write32(sf->limit, save->limit); | 
 | 		vmcs_write32(sf->ar_bytes, save->ar); | 
 | 	} else { | 
 | 		u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK) | 
 | 			<< AR_DPL_SHIFT; | 
 | 		vmcs_write32(sf->ar_bytes, 0x93 | dpl); | 
 | 	} | 
 | } | 
 |  | 
 | static void enter_pmode(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	vcpu->rmode.active = 0; | 
 |  | 
 | 	vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base); | 
 | 	vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit); | 
 | 	vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar); | 
 |  | 
 | 	flags = vmcs_readl(GUEST_RFLAGS); | 
 | 	flags &= ~(IOPL_MASK | X86_EFLAGS_VM); | 
 | 	flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT); | 
 | 	vmcs_writel(GUEST_RFLAGS, flags); | 
 |  | 
 | 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) | | 
 | 			(vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK)); | 
 |  | 
 | 	update_exception_bitmap(vcpu); | 
 |  | 
 | 	fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es); | 
 | 	fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds); | 
 | 	fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs); | 
 | 	fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs); | 
 |  | 
 | 	vmcs_write16(GUEST_SS_SELECTOR, 0); | 
 | 	vmcs_write32(GUEST_SS_AR_BYTES, 0x93); | 
 |  | 
 | 	vmcs_write16(GUEST_CS_SELECTOR, | 
 | 		     vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK); | 
 | 	vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); | 
 | } | 
 |  | 
 | static int rmode_tss_base(struct kvm* kvm) | 
 | { | 
 | 	gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3; | 
 | 	return base_gfn << PAGE_SHIFT; | 
 | } | 
 |  | 
 | static void fix_rmode_seg(int seg, struct kvm_save_segment *save) | 
 | { | 
 | 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
 |  | 
 | 	save->selector = vmcs_read16(sf->selector); | 
 | 	save->base = vmcs_readl(sf->base); | 
 | 	save->limit = vmcs_read32(sf->limit); | 
 | 	save->ar = vmcs_read32(sf->ar_bytes); | 
 | 	vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4); | 
 | 	vmcs_write32(sf->limit, 0xffff); | 
 | 	vmcs_write32(sf->ar_bytes, 0xf3); | 
 | } | 
 |  | 
 | static void enter_rmode(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	vcpu->rmode.active = 1; | 
 |  | 
 | 	vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE); | 
 | 	vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm)); | 
 |  | 
 | 	vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT); | 
 | 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); | 
 |  | 
 | 	vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES); | 
 | 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); | 
 |  | 
 | 	flags = vmcs_readl(GUEST_RFLAGS); | 
 | 	vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT; | 
 |  | 
 | 	flags |= IOPL_MASK | X86_EFLAGS_VM; | 
 |  | 
 | 	vmcs_writel(GUEST_RFLAGS, flags); | 
 | 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK); | 
 | 	update_exception_bitmap(vcpu); | 
 |  | 
 | 	vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4); | 
 | 	vmcs_write32(GUEST_SS_LIMIT, 0xffff); | 
 | 	vmcs_write32(GUEST_SS_AR_BYTES, 0xf3); | 
 |  | 
 | 	vmcs_write32(GUEST_CS_AR_BYTES, 0xf3); | 
 | 	vmcs_write32(GUEST_CS_LIMIT, 0xffff); | 
 | 	vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4); | 
 |  | 
 | 	fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es); | 
 | 	fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds); | 
 | 	fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs); | 
 | 	fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 |  | 
 | static void enter_lmode(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 guest_tr_ar; | 
 |  | 
 | 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); | 
 | 	if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) { | 
 | 		printk(KERN_DEBUG "%s: tss fixup for long mode. \n", | 
 | 		       __FUNCTION__); | 
 | 		vmcs_write32(GUEST_TR_AR_BYTES, | 
 | 			     (guest_tr_ar & ~AR_TYPE_MASK) | 
 | 			     | AR_TYPE_BUSY_64_TSS); | 
 | 	} | 
 |  | 
 | 	vcpu->shadow_efer |= EFER_LMA; | 
 |  | 
 | 	find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME; | 
 | 	vmcs_write32(VM_ENTRY_CONTROLS, | 
 | 		     vmcs_read32(VM_ENTRY_CONTROLS) | 
 | 		     | VM_ENTRY_CONTROLS_IA32E_MASK); | 
 | } | 
 |  | 
 | static void exit_lmode(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vcpu->shadow_efer &= ~EFER_LMA; | 
 |  | 
 | 	vmcs_write32(VM_ENTRY_CONTROLS, | 
 | 		     vmcs_read32(VM_ENTRY_CONTROLS) | 
 | 		     & ~VM_ENTRY_CONTROLS_IA32E_MASK); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
 | { | 
 | 	if (vcpu->rmode.active && (cr0 & CR0_PE_MASK)) | 
 | 		enter_pmode(vcpu); | 
 |  | 
 | 	if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK)) | 
 | 		enter_rmode(vcpu); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (vcpu->shadow_efer & EFER_LME) { | 
 | 		if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) | 
 | 			enter_lmode(vcpu); | 
 | 		if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK)) | 
 | 			exit_lmode(vcpu); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	vmcs_writel(CR0_READ_SHADOW, cr0); | 
 | 	vmcs_writel(GUEST_CR0, | 
 | 		    (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON); | 
 | 	vcpu->cr0 = cr0; | 
 | } | 
 |  | 
 | /* | 
 |  * Used when restoring the VM to avoid corrupting segment registers | 
 |  */ | 
 | static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0) | 
 | { | 
 | 	vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0); | 
 | 	update_exception_bitmap(vcpu); | 
 | 	vmcs_writel(CR0_READ_SHADOW, cr0); | 
 | 	vmcs_writel(GUEST_CR0, | 
 | 		    (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON); | 
 | 	vcpu->cr0 = cr0; | 
 | } | 
 |  | 
 | static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) | 
 | { | 
 | 	vmcs_writel(GUEST_CR3, cr3); | 
 | } | 
 |  | 
 | static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
 | { | 
 | 	vmcs_writel(CR4_READ_SHADOW, cr4); | 
 | 	vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ? | 
 | 		    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON)); | 
 | 	vcpu->cr4 = cr4; | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 |  | 
 | static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
 | { | 
 | 	struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER); | 
 |  | 
 | 	vcpu->shadow_efer = efer; | 
 | 	if (efer & EFER_LMA) { | 
 | 		vmcs_write32(VM_ENTRY_CONTROLS, | 
 | 				     vmcs_read32(VM_ENTRY_CONTROLS) | | 
 | 				     VM_ENTRY_CONTROLS_IA32E_MASK); | 
 | 		msr->data = efer; | 
 |  | 
 | 	} else { | 
 | 		vmcs_write32(VM_ENTRY_CONTROLS, | 
 | 				     vmcs_read32(VM_ENTRY_CONTROLS) & | 
 | 				     ~VM_ENTRY_CONTROLS_IA32E_MASK); | 
 |  | 
 | 		msr->data = efer & ~EFER_LME; | 
 | 	} | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
 |  | 
 | 	return vmcs_readl(sf->base); | 
 | } | 
 |  | 
 | static void vmx_get_segment(struct kvm_vcpu *vcpu, | 
 | 			    struct kvm_segment *var, int seg) | 
 | { | 
 | 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
 | 	u32 ar; | 
 |  | 
 | 	var->base = vmcs_readl(sf->base); | 
 | 	var->limit = vmcs_read32(sf->limit); | 
 | 	var->selector = vmcs_read16(sf->selector); | 
 | 	ar = vmcs_read32(sf->ar_bytes); | 
 | 	if (ar & AR_UNUSABLE_MASK) | 
 | 		ar = 0; | 
 | 	var->type = ar & 15; | 
 | 	var->s = (ar >> 4) & 1; | 
 | 	var->dpl = (ar >> 5) & 3; | 
 | 	var->present = (ar >> 7) & 1; | 
 | 	var->avl = (ar >> 12) & 1; | 
 | 	var->l = (ar >> 13) & 1; | 
 | 	var->db = (ar >> 14) & 1; | 
 | 	var->g = (ar >> 15) & 1; | 
 | 	var->unusable = (ar >> 16) & 1; | 
 | } | 
 |  | 
 | static void vmx_set_segment(struct kvm_vcpu *vcpu, | 
 | 			    struct kvm_segment *var, int seg) | 
 | { | 
 | 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
 | 	u32 ar; | 
 |  | 
 | 	vmcs_writel(sf->base, var->base); | 
 | 	vmcs_write32(sf->limit, var->limit); | 
 | 	vmcs_write16(sf->selector, var->selector); | 
 | 	if (var->unusable) | 
 | 		ar = 1 << 16; | 
 | 	else { | 
 | 		ar = var->type & 15; | 
 | 		ar |= (var->s & 1) << 4; | 
 | 		ar |= (var->dpl & 3) << 5; | 
 | 		ar |= (var->present & 1) << 7; | 
 | 		ar |= (var->avl & 1) << 12; | 
 | 		ar |= (var->l & 1) << 13; | 
 | 		ar |= (var->db & 1) << 14; | 
 | 		ar |= (var->g & 1) << 15; | 
 | 	} | 
 | 	if (ar == 0) /* a 0 value means unusable */ | 
 | 		ar = AR_UNUSABLE_MASK; | 
 | 	vmcs_write32(sf->ar_bytes, ar); | 
 | } | 
 |  | 
 | static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) | 
 | { | 
 | 	u32 ar = vmcs_read32(GUEST_CS_AR_BYTES); | 
 |  | 
 | 	*db = (ar >> 14) & 1; | 
 | 	*l = (ar >> 13) & 1; | 
 | } | 
 |  | 
 | static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) | 
 | { | 
 | 	dt->limit = vmcs_read32(GUEST_IDTR_LIMIT); | 
 | 	dt->base = vmcs_readl(GUEST_IDTR_BASE); | 
 | } | 
 |  | 
 | static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) | 
 | { | 
 | 	vmcs_write32(GUEST_IDTR_LIMIT, dt->limit); | 
 | 	vmcs_writel(GUEST_IDTR_BASE, dt->base); | 
 | } | 
 |  | 
 | static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) | 
 | { | 
 | 	dt->limit = vmcs_read32(GUEST_GDTR_LIMIT); | 
 | 	dt->base = vmcs_readl(GUEST_GDTR_BASE); | 
 | } | 
 |  | 
 | static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) | 
 | { | 
 | 	vmcs_write32(GUEST_GDTR_LIMIT, dt->limit); | 
 | 	vmcs_writel(GUEST_GDTR_BASE, dt->base); | 
 | } | 
 |  | 
 | static int init_rmode_tss(struct kvm* kvm) | 
 | { | 
 | 	struct page *p1, *p2, *p3; | 
 | 	gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT; | 
 | 	char *page; | 
 |  | 
 | 	p1 = _gfn_to_page(kvm, fn++); | 
 | 	p2 = _gfn_to_page(kvm, fn++); | 
 | 	p3 = _gfn_to_page(kvm, fn); | 
 |  | 
 | 	if (!p1 || !p2 || !p3) { | 
 | 		kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	page = kmap_atomic(p1, KM_USER0); | 
 | 	memset(page, 0, PAGE_SIZE); | 
 | 	*(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; | 
 | 	kunmap_atomic(page, KM_USER0); | 
 |  | 
 | 	page = kmap_atomic(p2, KM_USER0); | 
 | 	memset(page, 0, PAGE_SIZE); | 
 | 	kunmap_atomic(page, KM_USER0); | 
 |  | 
 | 	page = kmap_atomic(p3, KM_USER0); | 
 | 	memset(page, 0, PAGE_SIZE); | 
 | 	*(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0; | 
 | 	kunmap_atomic(page, KM_USER0); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val) | 
 | { | 
 | 	u32 msr_high, msr_low; | 
 |  | 
 | 	rdmsr(msr, msr_low, msr_high); | 
 |  | 
 | 	val &= msr_high; | 
 | 	val |= msr_low; | 
 | 	vmcs_write32(vmcs_field, val); | 
 | } | 
 |  | 
 | static void seg_setup(int seg) | 
 | { | 
 | 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
 |  | 
 | 	vmcs_write16(sf->selector, 0); | 
 | 	vmcs_writel(sf->base, 0); | 
 | 	vmcs_write32(sf->limit, 0xffff); | 
 | 	vmcs_write32(sf->ar_bytes, 0x93); | 
 | } | 
 |  | 
 | /* | 
 |  * Sets up the vmcs for emulated real mode. | 
 |  */ | 
 | static int vmx_vcpu_setup(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 host_sysenter_cs; | 
 | 	u32 junk; | 
 | 	unsigned long a; | 
 | 	struct descriptor_table dt; | 
 | 	int i; | 
 | 	int ret = 0; | 
 | 	int nr_good_msrs; | 
 | 	extern asmlinkage void kvm_vmx_return(void); | 
 |  | 
 | 	if (!init_rmode_tss(vcpu->kvm)) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memset(vcpu->regs, 0, sizeof(vcpu->regs)); | 
 | 	vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val(); | 
 | 	vcpu->cr8 = 0; | 
 | 	vcpu->apic_base = 0xfee00000 | | 
 | 			/*for vcpu 0*/ MSR_IA32_APICBASE_BSP | | 
 | 			MSR_IA32_APICBASE_ENABLE; | 
 |  | 
 | 	fx_init(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode | 
 | 	 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh. | 
 | 	 */ | 
 | 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000); | 
 | 	vmcs_writel(GUEST_CS_BASE, 0x000f0000); | 
 | 	vmcs_write32(GUEST_CS_LIMIT, 0xffff); | 
 | 	vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); | 
 |  | 
 | 	seg_setup(VCPU_SREG_DS); | 
 | 	seg_setup(VCPU_SREG_ES); | 
 | 	seg_setup(VCPU_SREG_FS); | 
 | 	seg_setup(VCPU_SREG_GS); | 
 | 	seg_setup(VCPU_SREG_SS); | 
 |  | 
 | 	vmcs_write16(GUEST_TR_SELECTOR, 0); | 
 | 	vmcs_writel(GUEST_TR_BASE, 0); | 
 | 	vmcs_write32(GUEST_TR_LIMIT, 0xffff); | 
 | 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); | 
 |  | 
 | 	vmcs_write16(GUEST_LDTR_SELECTOR, 0); | 
 | 	vmcs_writel(GUEST_LDTR_BASE, 0); | 
 | 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); | 
 | 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); | 
 |  | 
 | 	vmcs_write32(GUEST_SYSENTER_CS, 0); | 
 | 	vmcs_writel(GUEST_SYSENTER_ESP, 0); | 
 | 	vmcs_writel(GUEST_SYSENTER_EIP, 0); | 
 |  | 
 | 	vmcs_writel(GUEST_RFLAGS, 0x02); | 
 | 	vmcs_writel(GUEST_RIP, 0xfff0); | 
 | 	vmcs_writel(GUEST_RSP, 0); | 
 |  | 
 | 	vmcs_writel(GUEST_CR3, 0); | 
 |  | 
 | 	//todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 | 
 | 	vmcs_writel(GUEST_DR7, 0x400); | 
 |  | 
 | 	vmcs_writel(GUEST_GDTR_BASE, 0); | 
 | 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); | 
 |  | 
 | 	vmcs_writel(GUEST_IDTR_BASE, 0); | 
 | 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); | 
 |  | 
 | 	vmcs_write32(GUEST_ACTIVITY_STATE, 0); | 
 | 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); | 
 | 	vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0); | 
 |  | 
 | 	/* I/O */ | 
 | 	vmcs_write64(IO_BITMAP_A, 0); | 
 | 	vmcs_write64(IO_BITMAP_B, 0); | 
 |  | 
 | 	guest_write_tsc(0); | 
 |  | 
 | 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ | 
 |  | 
 | 	/* Special registers */ | 
 | 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0); | 
 |  | 
 | 	/* Control */ | 
 | 	vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS, | 
 | 			       PIN_BASED_VM_EXEC_CONTROL, | 
 | 			       PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */ | 
 | 			       | PIN_BASED_NMI_EXITING   /* 20.6.1 */ | 
 | 			); | 
 | 	vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS, | 
 | 			       CPU_BASED_VM_EXEC_CONTROL, | 
 | 			       CPU_BASED_HLT_EXITING         /* 20.6.2 */ | 
 | 			       | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */ | 
 | 			       | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */ | 
 | 			       | CPU_BASED_UNCOND_IO_EXITING   /* 20.6.2 */ | 
 | 			       | CPU_BASED_INVDPG_EXITING | 
 | 			       | CPU_BASED_MOV_DR_EXITING | 
 | 			       | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */ | 
 | 			); | 
 |  | 
 | 	vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR); | 
 | 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); | 
 | 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); | 
 | 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */ | 
 |  | 
 | 	vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */ | 
 | 	vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */ | 
 | 	vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */ | 
 |  | 
 | 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */ | 
 | 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
 | 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
 | 	vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */ | 
 | 	vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */ | 
 | 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
 | #ifdef CONFIG_X86_64 | 
 | 	rdmsrl(MSR_FS_BASE, a); | 
 | 	vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ | 
 | 	rdmsrl(MSR_GS_BASE, a); | 
 | 	vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ | 
 | #else | 
 | 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ | 
 | 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ | 
 | #endif | 
 |  | 
 | 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */ | 
 |  | 
 | 	get_idt(&dt); | 
 | 	vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */ | 
 |  | 
 |  | 
 | 	vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */ | 
 |  | 
 | 	rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk); | 
 | 	vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs); | 
 | 	rdmsrl(MSR_IA32_SYSENTER_ESP, a); | 
 | 	vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */ | 
 | 	rdmsrl(MSR_IA32_SYSENTER_EIP, a); | 
 | 	vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */ | 
 |  | 
 | 	for (i = 0; i < NR_VMX_MSR; ++i) { | 
 | 		u32 index = vmx_msr_index[i]; | 
 | 		u32 data_low, data_high; | 
 | 		u64 data; | 
 | 		int j = vcpu->nmsrs; | 
 |  | 
 | 		if (rdmsr_safe(index, &data_low, &data_high) < 0) | 
 | 			continue; | 
 | 		data = data_low | ((u64)data_high << 32); | 
 | 		vcpu->host_msrs[j].index = index; | 
 | 		vcpu->host_msrs[j].reserved = 0; | 
 | 		vcpu->host_msrs[j].data = data; | 
 | 		vcpu->guest_msrs[j] = vcpu->host_msrs[j]; | 
 | 		++vcpu->nmsrs; | 
 | 	} | 
 | 	printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs); | 
 |  | 
 | 	nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS; | 
 | 	vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR, | 
 | 		    virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS)); | 
 | 	vmcs_writel(VM_EXIT_MSR_STORE_ADDR, | 
 | 		    virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS)); | 
 | 	vmcs_writel(VM_EXIT_MSR_LOAD_ADDR, | 
 | 		    virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS)); | 
 | 	vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS, | 
 | 		     	       (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */ | 
 | 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */ | 
 | 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */ | 
 | 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */ | 
 |  | 
 |  | 
 | 	/* 22.2.1, 20.8.1 */ | 
 | 	vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS, | 
 |                                VM_ENTRY_CONTROLS, 0); | 
 | 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */ | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0); | 
 | 	vmcs_writel(TPR_THRESHOLD, 0); | 
 | #endif | 
 |  | 
 | 	vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK); | 
 | 	vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK); | 
 |  | 
 | 	vcpu->cr0 = 0x60000010; | 
 | 	vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode | 
 | 	vmx_set_cr4(vcpu, 0); | 
 | #ifdef CONFIG_X86_64 | 
 | 	vmx_set_efer(vcpu, 0); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq) | 
 | { | 
 | 	u16 ent[2]; | 
 | 	u16 cs; | 
 | 	u16 ip; | 
 | 	unsigned long flags; | 
 | 	unsigned long ss_base = vmcs_readl(GUEST_SS_BASE); | 
 | 	u16 sp =  vmcs_readl(GUEST_RSP); | 
 | 	u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT); | 
 |  | 
 | 	if (sp > ss_limit || sp - 6 > sp) { | 
 | 		vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n", | 
 | 			    __FUNCTION__, | 
 | 			    vmcs_readl(GUEST_RSP), | 
 | 			    vmcs_readl(GUEST_SS_BASE), | 
 | 			    vmcs_read32(GUEST_SS_LIMIT)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) != | 
 | 								sizeof(ent)) { | 
 | 		vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	flags =  vmcs_readl(GUEST_RFLAGS); | 
 | 	cs =  vmcs_readl(GUEST_CS_BASE) >> 4; | 
 | 	ip =  vmcs_readl(GUEST_RIP); | 
 |  | 
 |  | 
 | 	if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 || | 
 | 	    kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 || | 
 | 	    kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) { | 
 | 		vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	vmcs_writel(GUEST_RFLAGS, flags & | 
 | 		    ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF)); | 
 | 	vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ; | 
 | 	vmcs_writel(GUEST_CS_BASE, ent[1] << 4); | 
 | 	vmcs_writel(GUEST_RIP, ent[0]); | 
 | 	vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6)); | 
 | } | 
 |  | 
 | static void kvm_do_inject_irq(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int word_index = __ffs(vcpu->irq_summary); | 
 | 	int bit_index = __ffs(vcpu->irq_pending[word_index]); | 
 | 	int irq = word_index * BITS_PER_LONG + bit_index; | 
 |  | 
 | 	clear_bit(bit_index, &vcpu->irq_pending[word_index]); | 
 | 	if (!vcpu->irq_pending[word_index]) | 
 | 		clear_bit(word_index, &vcpu->irq_summary); | 
 |  | 
 | 	if (vcpu->rmode.active) { | 
 | 		inject_rmode_irq(vcpu, irq); | 
 | 		return; | 
 | 	} | 
 | 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
 | 			irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); | 
 | } | 
 |  | 
 | static void kvm_try_inject_irq(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) | 
 | 	    && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0) | 
 | 		/* | 
 | 		 * Interrupts enabled, and not blocked by sti or mov ss. Good. | 
 | 		 */ | 
 | 		kvm_do_inject_irq(vcpu); | 
 | 	else | 
 | 		/* | 
 | 		 * Interrupts blocked.  Wait for unblock. | 
 | 		 */ | 
 | 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, | 
 | 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | 
 | 			     | CPU_BASED_VIRTUAL_INTR_PENDING); | 
 | } | 
 |  | 
 | static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_guest_debug *dbg = &vcpu->guest_debug; | 
 |  | 
 | 	set_debugreg(dbg->bp[0], 0); | 
 | 	set_debugreg(dbg->bp[1], 1); | 
 | 	set_debugreg(dbg->bp[2], 2); | 
 | 	set_debugreg(dbg->bp[3], 3); | 
 |  | 
 | 	if (dbg->singlestep) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		flags = vmcs_readl(GUEST_RFLAGS); | 
 | 		flags |= X86_EFLAGS_TF | X86_EFLAGS_RF; | 
 | 		vmcs_writel(GUEST_RFLAGS, flags); | 
 | 	} | 
 | } | 
 |  | 
 | static int handle_rmode_exception(struct kvm_vcpu *vcpu, | 
 | 				  int vec, u32 err_code) | 
 | { | 
 | 	if (!vcpu->rmode.active) | 
 | 		return 0; | 
 |  | 
 | 	if (vec == GP_VECTOR && err_code == 0) | 
 | 		if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE) | 
 | 			return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	u32 intr_info, error_code; | 
 | 	unsigned long cr2, rip; | 
 | 	u32 vect_info; | 
 | 	enum emulation_result er; | 
 |  | 
 | 	vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); | 
 | 	intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
 |  | 
 | 	if ((vect_info & VECTORING_INFO_VALID_MASK) && | 
 | 						!is_page_fault(intr_info)) { | 
 | 		printk(KERN_ERR "%s: unexpected, vectoring info 0x%x " | 
 | 		       "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info); | 
 | 	} | 
 |  | 
 | 	if (is_external_interrupt(vect_info)) { | 
 | 		int irq = vect_info & VECTORING_INFO_VECTOR_MASK; | 
 | 		set_bit(irq, vcpu->irq_pending); | 
 | 		set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary); | 
 | 	} | 
 |  | 
 | 	if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */ | 
 | 		asm ("int $2"); | 
 | 		return 1; | 
 | 	} | 
 | 	error_code = 0; | 
 | 	rip = vmcs_readl(GUEST_RIP); | 
 | 	if (intr_info & INTR_INFO_DELIEVER_CODE_MASK) | 
 | 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); | 
 | 	if (is_page_fault(intr_info)) { | 
 | 		cr2 = vmcs_readl(EXIT_QUALIFICATION); | 
 |  | 
 | 		spin_lock(&vcpu->kvm->lock); | 
 | 		if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) { | 
 | 			spin_unlock(&vcpu->kvm->lock); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		er = emulate_instruction(vcpu, kvm_run, cr2, error_code); | 
 | 		spin_unlock(&vcpu->kvm->lock); | 
 |  | 
 | 		switch (er) { | 
 | 		case EMULATE_DONE: | 
 | 			return 1; | 
 | 		case EMULATE_DO_MMIO: | 
 | 			++kvm_stat.mmio_exits; | 
 | 			kvm_run->exit_reason = KVM_EXIT_MMIO; | 
 | 			return 0; | 
 | 		 case EMULATE_FAIL: | 
 | 			vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__); | 
 | 			break; | 
 | 		default: | 
 | 			BUG(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (vcpu->rmode.active && | 
 | 	    handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK, | 
 | 								error_code)) | 
 | 		return 1; | 
 |  | 
 | 	if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) { | 
 | 		kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
 | 		return 0; | 
 | 	} | 
 | 	kvm_run->exit_reason = KVM_EXIT_EXCEPTION; | 
 | 	kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK; | 
 | 	kvm_run->ex.error_code = error_code; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int handle_external_interrupt(struct kvm_vcpu *vcpu, | 
 | 				     struct kvm_run *kvm_run) | 
 | { | 
 | 	++kvm_stat.irq_exits; | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | static int get_io_count(struct kvm_vcpu *vcpu, u64 *count) | 
 | { | 
 | 	u64 inst; | 
 | 	gva_t rip; | 
 | 	int countr_size; | 
 | 	int i, n; | 
 |  | 
 | 	if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) { | 
 | 		countr_size = 2; | 
 | 	} else { | 
 | 		u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES); | 
 |  | 
 | 		countr_size = (cs_ar & AR_L_MASK) ? 8: | 
 | 			      (cs_ar & AR_DB_MASK) ? 4: 2; | 
 | 	} | 
 |  | 
 | 	rip =  vmcs_readl(GUEST_RIP); | 
 | 	if (countr_size != 8) | 
 | 		rip += vmcs_readl(GUEST_CS_BASE); | 
 |  | 
 | 	n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst); | 
 |  | 
 | 	for (i = 0; i < n; i++) { | 
 | 		switch (((u8*)&inst)[i]) { | 
 | 		case 0xf0: | 
 | 		case 0xf2: | 
 | 		case 0xf3: | 
 | 		case 0x2e: | 
 | 		case 0x36: | 
 | 		case 0x3e: | 
 | 		case 0x26: | 
 | 		case 0x64: | 
 | 		case 0x65: | 
 | 		case 0x66: | 
 | 			break; | 
 | 		case 0x67: | 
 | 			countr_size = (countr_size == 2) ? 4: (countr_size >> 1); | 
 | 		default: | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | done: | 
 | 	countr_size *= 8; | 
 | 	*count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size)); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	u64 exit_qualification; | 
 |  | 
 | 	++kvm_stat.io_exits; | 
 | 	exit_qualification = vmcs_read64(EXIT_QUALIFICATION); | 
 | 	kvm_run->exit_reason = KVM_EXIT_IO; | 
 | 	if (exit_qualification & 8) | 
 | 		kvm_run->io.direction = KVM_EXIT_IO_IN; | 
 | 	else | 
 | 		kvm_run->io.direction = KVM_EXIT_IO_OUT; | 
 | 	kvm_run->io.size = (exit_qualification & 7) + 1; | 
 | 	kvm_run->io.string = (exit_qualification & 16) != 0; | 
 | 	kvm_run->io.string_down | 
 | 		= (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0; | 
 | 	kvm_run->io.rep = (exit_qualification & 32) != 0; | 
 | 	kvm_run->io.port = exit_qualification >> 16; | 
 | 	if (kvm_run->io.string) { | 
 | 		if (!get_io_count(vcpu, &kvm_run->io.count)) | 
 | 			return 1; | 
 | 		kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS); | 
 | 	} else | 
 | 		kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	u64 address = vmcs_read64(EXIT_QUALIFICATION); | 
 | 	int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
 | 	spin_lock(&vcpu->kvm->lock); | 
 | 	vcpu->mmu.inval_page(vcpu, address); | 
 | 	spin_unlock(&vcpu->kvm->lock); | 
 | 	vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	u64 exit_qualification; | 
 | 	int cr; | 
 | 	int reg; | 
 |  | 
 | 	exit_qualification = vmcs_read64(EXIT_QUALIFICATION); | 
 | 	cr = exit_qualification & 15; | 
 | 	reg = (exit_qualification >> 8) & 15; | 
 | 	switch ((exit_qualification >> 4) & 3) { | 
 | 	case 0: /* mov to cr */ | 
 | 		switch (cr) { | 
 | 		case 0: | 
 | 			vcpu_load_rsp_rip(vcpu); | 
 | 			set_cr0(vcpu, vcpu->regs[reg]); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		case 3: | 
 | 			vcpu_load_rsp_rip(vcpu); | 
 | 			set_cr3(vcpu, vcpu->regs[reg]); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		case 4: | 
 | 			vcpu_load_rsp_rip(vcpu); | 
 | 			set_cr4(vcpu, vcpu->regs[reg]); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		case 8: | 
 | 			vcpu_load_rsp_rip(vcpu); | 
 | 			set_cr8(vcpu, vcpu->regs[reg]); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		}; | 
 | 		break; | 
 | 	case 1: /*mov from cr*/ | 
 | 		switch (cr) { | 
 | 		case 3: | 
 | 			vcpu_load_rsp_rip(vcpu); | 
 | 			vcpu->regs[reg] = vcpu->cr3; | 
 | 			vcpu_put_rsp_rip(vcpu); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		case 8: | 
 | 			printk(KERN_DEBUG "handle_cr: read CR8 " | 
 | 			       "cpu erratum AA15\n"); | 
 | 			vcpu_load_rsp_rip(vcpu); | 
 | 			vcpu->regs[reg] = vcpu->cr8; | 
 | 			vcpu_put_rsp_rip(vcpu); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		} | 
 | 		break; | 
 | 	case 3: /* lmsw */ | 
 | 		lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f); | 
 |  | 
 | 		skip_emulated_instruction(vcpu); | 
 | 		return 1; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	kvm_run->exit_reason = 0; | 
 | 	printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n", | 
 | 	       (int)(exit_qualification >> 4) & 3, cr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	u64 exit_qualification; | 
 | 	unsigned long val; | 
 | 	int dr, reg; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: this code assumes the host is debugging the guest. | 
 | 	 *        need to deal with guest debugging itself too. | 
 | 	 */ | 
 | 	exit_qualification = vmcs_read64(EXIT_QUALIFICATION); | 
 | 	dr = exit_qualification & 7; | 
 | 	reg = (exit_qualification >> 8) & 15; | 
 | 	vcpu_load_rsp_rip(vcpu); | 
 | 	if (exit_qualification & 16) { | 
 | 		/* mov from dr */ | 
 | 		switch (dr) { | 
 | 		case 6: | 
 | 			val = 0xffff0ff0; | 
 | 			break; | 
 | 		case 7: | 
 | 			val = 0x400; | 
 | 			break; | 
 | 		default: | 
 | 			val = 0; | 
 | 		} | 
 | 		vcpu->regs[reg] = val; | 
 | 	} else { | 
 | 		/* mov to dr */ | 
 | 	} | 
 | 	vcpu_put_rsp_rip(vcpu); | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	kvm_run->exit_reason = KVM_EXIT_CPUID; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	u32 ecx = vcpu->regs[VCPU_REGS_RCX]; | 
 | 	u64 data; | 
 |  | 
 | 	if (vmx_get_msr(vcpu, ecx, &data)) { | 
 | 		vmx_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* FIXME: handling of bits 32:63 of rax, rdx */ | 
 | 	vcpu->regs[VCPU_REGS_RAX] = data & -1u; | 
 | 	vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u; | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	u32 ecx = vcpu->regs[VCPU_REGS_RCX]; | 
 | 	u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u) | 
 | 		| ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32); | 
 |  | 
 | 	if (vmx_set_msr(vcpu, ecx, data) != 0) { | 
 | 		vmx_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_interrupt_window(struct kvm_vcpu *vcpu, | 
 | 				   struct kvm_run *kvm_run) | 
 | { | 
 | 	/* Turn off interrupt window reporting. */ | 
 | 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, | 
 | 		     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | 
 | 		     & ~CPU_BASED_VIRTUAL_INTR_PENDING); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)) | 
 | 		return 1; | 
 |  | 
 | 	kvm_run->exit_reason = KVM_EXIT_HLT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The exit handlers return 1 if the exit was handled fully and guest execution | 
 |  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs | 
 |  * to be done to userspace and return 0. | 
 |  */ | 
 | static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu, | 
 | 				      struct kvm_run *kvm_run) = { | 
 | 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception, | 
 | 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt, | 
 | 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io, | 
 | 	[EXIT_REASON_INVLPG]                  = handle_invlpg, | 
 | 	[EXIT_REASON_CR_ACCESS]               = handle_cr, | 
 | 	[EXIT_REASON_DR_ACCESS]               = handle_dr, | 
 | 	[EXIT_REASON_CPUID]                   = handle_cpuid, | 
 | 	[EXIT_REASON_MSR_READ]                = handle_rdmsr, | 
 | 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr, | 
 | 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window, | 
 | 	[EXIT_REASON_HLT]                     = handle_halt, | 
 | }; | 
 |  | 
 | static const int kvm_vmx_max_exit_handlers = | 
 | 	sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers); | 
 |  | 
 | /* | 
 |  * The guest has exited.  See if we can fix it or if we need userspace | 
 |  * assistance. | 
 |  */ | 
 | static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); | 
 | 	u32 exit_reason = vmcs_read32(VM_EXIT_REASON); | 
 |  | 
 | 	if ( (vectoring_info & VECTORING_INFO_VALID_MASK) && | 
 | 				exit_reason != EXIT_REASON_EXCEPTION_NMI ) | 
 | 		printk(KERN_WARNING "%s: unexpected, valid vectoring info and " | 
 | 		       "exit reason is 0x%x\n", __FUNCTION__, exit_reason); | 
 | 	kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
 | 	if (exit_reason < kvm_vmx_max_exit_handlers | 
 | 	    && kvm_vmx_exit_handlers[exit_reason]) | 
 | 		return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run); | 
 | 	else { | 
 | 		kvm_run->exit_reason = KVM_EXIT_UNKNOWN; | 
 | 		kvm_run->hw.hardware_exit_reason = exit_reason; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	u8 fail; | 
 | 	u16 fs_sel, gs_sel, ldt_sel; | 
 | 	int fs_gs_ldt_reload_needed; | 
 |  | 
 | again: | 
 | 	/* | 
 | 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not | 
 | 	 * allow segment selectors with cpl > 0 or ti == 1. | 
 | 	 */ | 
 | 	fs_sel = read_fs(); | 
 | 	gs_sel = read_gs(); | 
 | 	ldt_sel = read_ldt(); | 
 | 	fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel; | 
 | 	if (!fs_gs_ldt_reload_needed) { | 
 | 		vmcs_write16(HOST_FS_SELECTOR, fs_sel); | 
 | 		vmcs_write16(HOST_GS_SELECTOR, gs_sel); | 
 | 	} else { | 
 | 		vmcs_write16(HOST_FS_SELECTOR, 0); | 
 | 		vmcs_write16(HOST_GS_SELECTOR, 0); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); | 
 | 	vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); | 
 | #else | 
 | 	vmcs_writel(HOST_FS_BASE, segment_base(fs_sel)); | 
 | 	vmcs_writel(HOST_GS_BASE, segment_base(gs_sel)); | 
 | #endif | 
 |  | 
 | 	if (vcpu->irq_summary && | 
 | 	    !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK)) | 
 | 		kvm_try_inject_irq(vcpu); | 
 |  | 
 | 	if (vcpu->guest_debug.enabled) | 
 | 		kvm_guest_debug_pre(vcpu); | 
 |  | 
 | 	fx_save(vcpu->host_fx_image); | 
 | 	fx_restore(vcpu->guest_fx_image); | 
 |  | 
 | 	save_msrs(vcpu->host_msrs, vcpu->nmsrs); | 
 | 	load_msrs(vcpu->guest_msrs, NR_BAD_MSRS); | 
 |  | 
 | 	asm ( | 
 | 		/* Store host registers */ | 
 | 		"pushf \n\t" | 
 | #ifdef CONFIG_X86_64 | 
 | 		"push %%rax; push %%rbx; push %%rdx;" | 
 | 		"push %%rsi; push %%rdi; push %%rbp;" | 
 | 		"push %%r8;  push %%r9;  push %%r10; push %%r11;" | 
 | 		"push %%r12; push %%r13; push %%r14; push %%r15;" | 
 | 		"push %%rcx \n\t" | 
 | 		ASM_VMX_VMWRITE_RSP_RDX "\n\t" | 
 | #else | 
 | 		"pusha; push %%ecx \n\t" | 
 | 		ASM_VMX_VMWRITE_RSP_RDX "\n\t" | 
 | #endif | 
 | 		/* Check if vmlaunch of vmresume is needed */ | 
 | 		"cmp $0, %1 \n\t" | 
 | 		/* Load guest registers.  Don't clobber flags. */ | 
 | #ifdef CONFIG_X86_64 | 
 | 		"mov %c[cr2](%3), %%rax \n\t" | 
 | 		"mov %%rax, %%cr2 \n\t" | 
 | 		"mov %c[rax](%3), %%rax \n\t" | 
 | 		"mov %c[rbx](%3), %%rbx \n\t" | 
 | 		"mov %c[rdx](%3), %%rdx \n\t" | 
 | 		"mov %c[rsi](%3), %%rsi \n\t" | 
 | 		"mov %c[rdi](%3), %%rdi \n\t" | 
 | 		"mov %c[rbp](%3), %%rbp \n\t" | 
 | 		"mov %c[r8](%3),  %%r8  \n\t" | 
 | 		"mov %c[r9](%3),  %%r9  \n\t" | 
 | 		"mov %c[r10](%3), %%r10 \n\t" | 
 | 		"mov %c[r11](%3), %%r11 \n\t" | 
 | 		"mov %c[r12](%3), %%r12 \n\t" | 
 | 		"mov %c[r13](%3), %%r13 \n\t" | 
 | 		"mov %c[r14](%3), %%r14 \n\t" | 
 | 		"mov %c[r15](%3), %%r15 \n\t" | 
 | 		"mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */ | 
 | #else | 
 | 		"mov %c[cr2](%3), %%eax \n\t" | 
 | 		"mov %%eax,   %%cr2 \n\t" | 
 | 		"mov %c[rax](%3), %%eax \n\t" | 
 | 		"mov %c[rbx](%3), %%ebx \n\t" | 
 | 		"mov %c[rdx](%3), %%edx \n\t" | 
 | 		"mov %c[rsi](%3), %%esi \n\t" | 
 | 		"mov %c[rdi](%3), %%edi \n\t" | 
 | 		"mov %c[rbp](%3), %%ebp \n\t" | 
 | 		"mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */ | 
 | #endif | 
 | 		/* Enter guest mode */ | 
 | 		"jne launched \n\t" | 
 | 		ASM_VMX_VMLAUNCH "\n\t" | 
 | 		"jmp kvm_vmx_return \n\t" | 
 | 		"launched: " ASM_VMX_VMRESUME "\n\t" | 
 | 		".globl kvm_vmx_return \n\t" | 
 | 		"kvm_vmx_return: " | 
 | 		/* Save guest registers, load host registers, keep flags */ | 
 | #ifdef CONFIG_X86_64 | 
 | 		"xchg %3,     0(%%rsp) \n\t" | 
 | 		"mov %%rax, %c[rax](%3) \n\t" | 
 | 		"mov %%rbx, %c[rbx](%3) \n\t" | 
 | 		"pushq 0(%%rsp); popq %c[rcx](%3) \n\t" | 
 | 		"mov %%rdx, %c[rdx](%3) \n\t" | 
 | 		"mov %%rsi, %c[rsi](%3) \n\t" | 
 | 		"mov %%rdi, %c[rdi](%3) \n\t" | 
 | 		"mov %%rbp, %c[rbp](%3) \n\t" | 
 | 		"mov %%r8,  %c[r8](%3) \n\t" | 
 | 		"mov %%r9,  %c[r9](%3) \n\t" | 
 | 		"mov %%r10, %c[r10](%3) \n\t" | 
 | 		"mov %%r11, %c[r11](%3) \n\t" | 
 | 		"mov %%r12, %c[r12](%3) \n\t" | 
 | 		"mov %%r13, %c[r13](%3) \n\t" | 
 | 		"mov %%r14, %c[r14](%3) \n\t" | 
 | 		"mov %%r15, %c[r15](%3) \n\t" | 
 | 		"mov %%cr2, %%rax   \n\t" | 
 | 		"mov %%rax, %c[cr2](%3) \n\t" | 
 | 		"mov 0(%%rsp), %3 \n\t" | 
 |  | 
 | 		"pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;" | 
 | 		"pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;" | 
 | 		"pop  %%rbp; pop  %%rdi; pop  %%rsi;" | 
 | 		"pop  %%rdx; pop  %%rbx; pop  %%rax \n\t" | 
 | #else | 
 | 		"xchg %3, 0(%%esp) \n\t" | 
 | 		"mov %%eax, %c[rax](%3) \n\t" | 
 | 		"mov %%ebx, %c[rbx](%3) \n\t" | 
 | 		"pushl 0(%%esp); popl %c[rcx](%3) \n\t" | 
 | 		"mov %%edx, %c[rdx](%3) \n\t" | 
 | 		"mov %%esi, %c[rsi](%3) \n\t" | 
 | 		"mov %%edi, %c[rdi](%3) \n\t" | 
 | 		"mov %%ebp, %c[rbp](%3) \n\t" | 
 | 		"mov %%cr2, %%eax  \n\t" | 
 | 		"mov %%eax, %c[cr2](%3) \n\t" | 
 | 		"mov 0(%%esp), %3 \n\t" | 
 |  | 
 | 		"pop %%ecx; popa \n\t" | 
 | #endif | 
 | 		"setbe %0 \n\t" | 
 | 		"popf \n\t" | 
 | 	      : "=g" (fail) | 
 | 	      : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP), | 
 | 		"c"(vcpu), | 
 | 		[rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])), | 
 | 		[rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])), | 
 | 		[rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])), | 
 | 		[rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])), | 
 | 		[rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])), | 
 | 		[rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])), | 
 | 		[rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])), | 
 | #ifdef CONFIG_X86_64 | 
 | 		[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])), | 
 | 		[r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])), | 
 | 		[r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])), | 
 | 		[r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])), | 
 | 		[r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])), | 
 | 		[r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])), | 
 | 		[r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])), | 
 | 		[r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])), | 
 | #endif | 
 | 		[cr2]"i"(offsetof(struct kvm_vcpu, cr2)) | 
 | 	      : "cc", "memory" ); | 
 |  | 
 | 	++kvm_stat.exits; | 
 |  | 
 | 	save_msrs(vcpu->guest_msrs, NR_BAD_MSRS); | 
 | 	load_msrs(vcpu->host_msrs, NR_BAD_MSRS); | 
 |  | 
 | 	fx_save(vcpu->guest_fx_image); | 
 | 	fx_restore(vcpu->host_fx_image); | 
 |  | 
 | #ifndef CONFIG_X86_64 | 
 | 	asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS)); | 
 | #endif | 
 |  | 
 | 	kvm_run->exit_type = 0; | 
 | 	if (fail) { | 
 | 		kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY; | 
 | 		kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR); | 
 | 	} else { | 
 | 		if (fs_gs_ldt_reload_needed) { | 
 | 			load_ldt(ldt_sel); | 
 | 			load_fs(fs_sel); | 
 | 			/* | 
 | 			 * If we have to reload gs, we must take care to | 
 | 			 * preserve our gs base. | 
 | 			 */ | 
 | 			local_irq_disable(); | 
 | 			load_gs(gs_sel); | 
 | #ifdef CONFIG_X86_64 | 
 | 			wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE)); | 
 | #endif | 
 | 			local_irq_enable(); | 
 |  | 
 | 			reload_tss(); | 
 | 		} | 
 | 		vcpu->launched = 1; | 
 | 		kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT; | 
 | 		if (kvm_handle_exit(kvm_run, vcpu)) { | 
 | 			/* Give scheduler a change to reschedule. */ | 
 | 			if (signal_pending(current)) { | 
 | 				++kvm_stat.signal_exits; | 
 | 				return -EINTR; | 
 | 			} | 
 | 			kvm_resched(vcpu); | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void vmx_flush_tlb(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3)); | 
 | } | 
 |  | 
 | static void vmx_inject_page_fault(struct kvm_vcpu *vcpu, | 
 | 				  unsigned long addr, | 
 | 				  u32 err_code) | 
 | { | 
 | 	u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); | 
 |  | 
 | 	++kvm_stat.pf_guest; | 
 |  | 
 | 	if (is_page_fault(vect_info)) { | 
 | 		printk(KERN_DEBUG "inject_page_fault: " | 
 | 		       "double fault 0x%lx @ 0x%lx\n", | 
 | 		       addr, vmcs_readl(GUEST_RIP)); | 
 | 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0); | 
 | 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
 | 			     DF_VECTOR | | 
 | 			     INTR_TYPE_EXCEPTION | | 
 | 			     INTR_INFO_DELIEVER_CODE_MASK | | 
 | 			     INTR_INFO_VALID_MASK); | 
 | 		return; | 
 | 	} | 
 | 	vcpu->cr2 = addr; | 
 | 	vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code); | 
 | 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
 | 		     PF_VECTOR | | 
 | 		     INTR_TYPE_EXCEPTION | | 
 | 		     INTR_INFO_DELIEVER_CODE_MASK | | 
 | 		     INTR_INFO_VALID_MASK); | 
 |  | 
 | } | 
 |  | 
 | static void vmx_free_vmcs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (vcpu->vmcs) { | 
 | 		on_each_cpu(__vcpu_clear, vcpu, 0, 1); | 
 | 		free_vmcs(vcpu->vmcs); | 
 | 		vcpu->vmcs = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_free_vcpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vmx_free_vmcs(vcpu); | 
 | } | 
 |  | 
 | static int vmx_create_vcpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vmcs *vmcs; | 
 |  | 
 | 	vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!vcpu->guest_msrs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!vcpu->host_msrs) | 
 | 		goto out_free_guest_msrs; | 
 |  | 
 | 	vmcs = alloc_vmcs(); | 
 | 	if (!vmcs) | 
 | 		goto out_free_msrs; | 
 |  | 
 | 	vmcs_clear(vmcs); | 
 | 	vcpu->vmcs = vmcs; | 
 | 	vcpu->launched = 0; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_msrs: | 
 | 	kfree(vcpu->host_msrs); | 
 | 	vcpu->host_msrs = NULL; | 
 |  | 
 | out_free_guest_msrs: | 
 | 	kfree(vcpu->guest_msrs); | 
 | 	vcpu->guest_msrs = NULL; | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static struct kvm_arch_ops vmx_arch_ops = { | 
 | 	.cpu_has_kvm_support = cpu_has_kvm_support, | 
 | 	.disabled_by_bios = vmx_disabled_by_bios, | 
 | 	.hardware_setup = hardware_setup, | 
 | 	.hardware_unsetup = hardware_unsetup, | 
 | 	.hardware_enable = hardware_enable, | 
 | 	.hardware_disable = hardware_disable, | 
 |  | 
 | 	.vcpu_create = vmx_create_vcpu, | 
 | 	.vcpu_free = vmx_free_vcpu, | 
 |  | 
 | 	.vcpu_load = vmx_vcpu_load, | 
 | 	.vcpu_put = vmx_vcpu_put, | 
 |  | 
 | 	.set_guest_debug = set_guest_debug, | 
 | 	.get_msr = vmx_get_msr, | 
 | 	.set_msr = vmx_set_msr, | 
 | 	.get_segment_base = vmx_get_segment_base, | 
 | 	.get_segment = vmx_get_segment, | 
 | 	.set_segment = vmx_set_segment, | 
 | 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits, | 
 | 	.set_cr0 = vmx_set_cr0, | 
 | 	.set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch, | 
 | 	.set_cr3 = vmx_set_cr3, | 
 | 	.set_cr4 = vmx_set_cr4, | 
 | #ifdef CONFIG_X86_64 | 
 | 	.set_efer = vmx_set_efer, | 
 | #endif | 
 | 	.get_idt = vmx_get_idt, | 
 | 	.set_idt = vmx_set_idt, | 
 | 	.get_gdt = vmx_get_gdt, | 
 | 	.set_gdt = vmx_set_gdt, | 
 | 	.cache_regs = vcpu_load_rsp_rip, | 
 | 	.decache_regs = vcpu_put_rsp_rip, | 
 | 	.get_rflags = vmx_get_rflags, | 
 | 	.set_rflags = vmx_set_rflags, | 
 |  | 
 | 	.tlb_flush = vmx_flush_tlb, | 
 | 	.inject_page_fault = vmx_inject_page_fault, | 
 |  | 
 | 	.inject_gp = vmx_inject_gp, | 
 |  | 
 | 	.run = vmx_vcpu_run, | 
 | 	.skip_emulated_instruction = skip_emulated_instruction, | 
 | 	.vcpu_setup = vmx_vcpu_setup, | 
 | }; | 
 |  | 
 | static int __init vmx_init(void) | 
 | { | 
 | 	return kvm_init_arch(&vmx_arch_ops, THIS_MODULE); | 
 | } | 
 |  | 
 | static void __exit vmx_exit(void) | 
 | { | 
 | 	kvm_exit_arch(); | 
 | } | 
 |  | 
 | module_init(vmx_init) | 
 | module_exit(vmx_exit) |