| /**************************************************************************** | 
 |  * Driver for Solarflare network controllers and boards | 
 |  * Copyright 2005-2006 Fen Systems Ltd. | 
 |  * Copyright 2006-2013 Solarflare Communications Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 as published | 
 |  * by the Free Software Foundation, incorporated herein by reference. | 
 |  */ | 
 |  | 
 | #ifndef EF4_IO_H | 
 | #define EF4_IO_H | 
 |  | 
 | #include <linux/io.h> | 
 | #include <linux/spinlock.h> | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * NIC register I/O | 
 |  * | 
 |  ************************************************************************** | 
 |  * | 
 |  * Notes on locking strategy for the Falcon architecture: | 
 |  * | 
 |  * Many CSRs are very wide and cannot be read or written atomically. | 
 |  * Writes from the host are buffered by the Bus Interface Unit (BIU) | 
 |  * up to 128 bits.  Whenever the host writes part of such a register, | 
 |  * the BIU collects the written value and does not write to the | 
 |  * underlying register until all 4 dwords have been written.  A | 
 |  * similar buffering scheme applies to host access to the NIC's 64-bit | 
 |  * SRAM. | 
 |  * | 
 |  * Writes to different CSRs and 64-bit SRAM words must be serialised, | 
 |  * since interleaved access can result in lost writes.  We use | 
 |  * ef4_nic::biu_lock for this. | 
 |  * | 
 |  * We also serialise reads from 128-bit CSRs and SRAM with the same | 
 |  * spinlock.  This may not be necessary, but it doesn't really matter | 
 |  * as there are no such reads on the fast path. | 
 |  * | 
 |  * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are | 
 |  * 128-bit but are special-cased in the BIU to avoid the need for | 
 |  * locking in the host: | 
 |  * | 
 |  * - They are write-only. | 
 |  * - The semantics of writing to these registers are such that | 
 |  *   replacing the low 96 bits with zero does not affect functionality. | 
 |  * - If the host writes to the last dword address of such a register | 
 |  *   (i.e. the high 32 bits) the underlying register will always be | 
 |  *   written.  If the collector and the current write together do not | 
 |  *   provide values for all 128 bits of the register, the low 96 bits | 
 |  *   will be written as zero. | 
 |  * - If the host writes to the address of any other part of such a | 
 |  *   register while the collector already holds values for some other | 
 |  *   register, the write is discarded and the collector maintains its | 
 |  *   current state. | 
 |  * | 
 |  * The EF10 architecture exposes very few registers to the host and | 
 |  * most of them are only 32 bits wide.  The only exceptions are the MC | 
 |  * doorbell register pair, which has its own latching, and | 
 |  * TX_DESC_UPD, which works in a similar way to the Falcon | 
 |  * architecture. | 
 |  */ | 
 |  | 
 | #if BITS_PER_LONG == 64 | 
 | #define EF4_USE_QWORD_IO 1 | 
 | #endif | 
 |  | 
 | #ifdef EF4_USE_QWORD_IO | 
 | static inline void _ef4_writeq(struct ef4_nic *efx, __le64 value, | 
 | 				  unsigned int reg) | 
 | { | 
 | 	__raw_writeq((__force u64)value, efx->membase + reg); | 
 | } | 
 | static inline __le64 _ef4_readq(struct ef4_nic *efx, unsigned int reg) | 
 | { | 
 | 	return (__force __le64)__raw_readq(efx->membase + reg); | 
 | } | 
 | #endif | 
 |  | 
 | static inline void _ef4_writed(struct ef4_nic *efx, __le32 value, | 
 | 				  unsigned int reg) | 
 | { | 
 | 	__raw_writel((__force u32)value, efx->membase + reg); | 
 | } | 
 | static inline __le32 _ef4_readd(struct ef4_nic *efx, unsigned int reg) | 
 | { | 
 | 	return (__force __le32)__raw_readl(efx->membase + reg); | 
 | } | 
 |  | 
 | /* Write a normal 128-bit CSR, locking as appropriate. */ | 
 | static inline void ef4_writeo(struct ef4_nic *efx, const ef4_oword_t *value, | 
 | 			      unsigned int reg) | 
 | { | 
 | 	unsigned long flags __attribute__ ((unused)); | 
 |  | 
 | 	netif_vdbg(efx, hw, efx->net_dev, | 
 | 		   "writing register %x with " EF4_OWORD_FMT "\n", reg, | 
 | 		   EF4_OWORD_VAL(*value)); | 
 |  | 
 | 	spin_lock_irqsave(&efx->biu_lock, flags); | 
 | #ifdef EF4_USE_QWORD_IO | 
 | 	_ef4_writeq(efx, value->u64[0], reg + 0); | 
 | 	_ef4_writeq(efx, value->u64[1], reg + 8); | 
 | #else | 
 | 	_ef4_writed(efx, value->u32[0], reg + 0); | 
 | 	_ef4_writed(efx, value->u32[1], reg + 4); | 
 | 	_ef4_writed(efx, value->u32[2], reg + 8); | 
 | 	_ef4_writed(efx, value->u32[3], reg + 12); | 
 | #endif | 
 | 	mmiowb(); | 
 | 	spin_unlock_irqrestore(&efx->biu_lock, flags); | 
 | } | 
 |  | 
 | /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */ | 
 | static inline void ef4_sram_writeq(struct ef4_nic *efx, void __iomem *membase, | 
 | 				   const ef4_qword_t *value, unsigned int index) | 
 | { | 
 | 	unsigned int addr = index * sizeof(*value); | 
 | 	unsigned long flags __attribute__ ((unused)); | 
 |  | 
 | 	netif_vdbg(efx, hw, efx->net_dev, | 
 | 		   "writing SRAM address %x with " EF4_QWORD_FMT "\n", | 
 | 		   addr, EF4_QWORD_VAL(*value)); | 
 |  | 
 | 	spin_lock_irqsave(&efx->biu_lock, flags); | 
 | #ifdef EF4_USE_QWORD_IO | 
 | 	__raw_writeq((__force u64)value->u64[0], membase + addr); | 
 | #else | 
 | 	__raw_writel((__force u32)value->u32[0], membase + addr); | 
 | 	__raw_writel((__force u32)value->u32[1], membase + addr + 4); | 
 | #endif | 
 | 	mmiowb(); | 
 | 	spin_unlock_irqrestore(&efx->biu_lock, flags); | 
 | } | 
 |  | 
 | /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */ | 
 | static inline void ef4_writed(struct ef4_nic *efx, const ef4_dword_t *value, | 
 | 			      unsigned int reg) | 
 | { | 
 | 	netif_vdbg(efx, hw, efx->net_dev, | 
 | 		   "writing register %x with "EF4_DWORD_FMT"\n", | 
 | 		   reg, EF4_DWORD_VAL(*value)); | 
 |  | 
 | 	/* No lock required */ | 
 | 	_ef4_writed(efx, value->u32[0], reg); | 
 | } | 
 |  | 
 | /* Read a 128-bit CSR, locking as appropriate. */ | 
 | static inline void ef4_reado(struct ef4_nic *efx, ef4_oword_t *value, | 
 | 			     unsigned int reg) | 
 | { | 
 | 	unsigned long flags __attribute__ ((unused)); | 
 |  | 
 | 	spin_lock_irqsave(&efx->biu_lock, flags); | 
 | 	value->u32[0] = _ef4_readd(efx, reg + 0); | 
 | 	value->u32[1] = _ef4_readd(efx, reg + 4); | 
 | 	value->u32[2] = _ef4_readd(efx, reg + 8); | 
 | 	value->u32[3] = _ef4_readd(efx, reg + 12); | 
 | 	spin_unlock_irqrestore(&efx->biu_lock, flags); | 
 |  | 
 | 	netif_vdbg(efx, hw, efx->net_dev, | 
 | 		   "read from register %x, got " EF4_OWORD_FMT "\n", reg, | 
 | 		   EF4_OWORD_VAL(*value)); | 
 | } | 
 |  | 
 | /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */ | 
 | static inline void ef4_sram_readq(struct ef4_nic *efx, void __iomem *membase, | 
 | 				  ef4_qword_t *value, unsigned int index) | 
 | { | 
 | 	unsigned int addr = index * sizeof(*value); | 
 | 	unsigned long flags __attribute__ ((unused)); | 
 |  | 
 | 	spin_lock_irqsave(&efx->biu_lock, flags); | 
 | #ifdef EF4_USE_QWORD_IO | 
 | 	value->u64[0] = (__force __le64)__raw_readq(membase + addr); | 
 | #else | 
 | 	value->u32[0] = (__force __le32)__raw_readl(membase + addr); | 
 | 	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4); | 
 | #endif | 
 | 	spin_unlock_irqrestore(&efx->biu_lock, flags); | 
 |  | 
 | 	netif_vdbg(efx, hw, efx->net_dev, | 
 | 		   "read from SRAM address %x, got "EF4_QWORD_FMT"\n", | 
 | 		   addr, EF4_QWORD_VAL(*value)); | 
 | } | 
 |  | 
 | /* Read a 32-bit CSR or SRAM */ | 
 | static inline void ef4_readd(struct ef4_nic *efx, ef4_dword_t *value, | 
 | 				unsigned int reg) | 
 | { | 
 | 	value->u32[0] = _ef4_readd(efx, reg); | 
 | 	netif_vdbg(efx, hw, efx->net_dev, | 
 | 		   "read from register %x, got "EF4_DWORD_FMT"\n", | 
 | 		   reg, EF4_DWORD_VAL(*value)); | 
 | } | 
 |  | 
 | /* Write a 128-bit CSR forming part of a table */ | 
 | static inline void | 
 | ef4_writeo_table(struct ef4_nic *efx, const ef4_oword_t *value, | 
 | 		 unsigned int reg, unsigned int index) | 
 | { | 
 | 	ef4_writeo(efx, value, reg + index * sizeof(ef4_oword_t)); | 
 | } | 
 |  | 
 | /* Read a 128-bit CSR forming part of a table */ | 
 | static inline void ef4_reado_table(struct ef4_nic *efx, ef4_oword_t *value, | 
 | 				     unsigned int reg, unsigned int index) | 
 | { | 
 | 	ef4_reado(efx, value, reg + index * sizeof(ef4_oword_t)); | 
 | } | 
 |  | 
 | /* Page size used as step between per-VI registers */ | 
 | #define EF4_VI_PAGE_SIZE 0x2000 | 
 |  | 
 | /* Calculate offset to page-mapped register */ | 
 | #define EF4_PAGED_REG(page, reg) \ | 
 | 	((page) * EF4_VI_PAGE_SIZE + (reg)) | 
 |  | 
 | /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */ | 
 | static inline void _ef4_writeo_page(struct ef4_nic *efx, ef4_oword_t *value, | 
 | 				    unsigned int reg, unsigned int page) | 
 | { | 
 | 	reg = EF4_PAGED_REG(page, reg); | 
 |  | 
 | 	netif_vdbg(efx, hw, efx->net_dev, | 
 | 		   "writing register %x with " EF4_OWORD_FMT "\n", reg, | 
 | 		   EF4_OWORD_VAL(*value)); | 
 |  | 
 | #ifdef EF4_USE_QWORD_IO | 
 | 	_ef4_writeq(efx, value->u64[0], reg + 0); | 
 | 	_ef4_writeq(efx, value->u64[1], reg + 8); | 
 | #else | 
 | 	_ef4_writed(efx, value->u32[0], reg + 0); | 
 | 	_ef4_writed(efx, value->u32[1], reg + 4); | 
 | 	_ef4_writed(efx, value->u32[2], reg + 8); | 
 | 	_ef4_writed(efx, value->u32[3], reg + 12); | 
 | #endif | 
 | } | 
 | #define ef4_writeo_page(efx, value, reg, page)				\ | 
 | 	_ef4_writeo_page(efx, value,					\ | 
 | 			 reg +						\ | 
 | 			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \ | 
 | 			 page) | 
 |  | 
 | /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the | 
 |  * high bits of RX_DESC_UPD or TX_DESC_UPD) | 
 |  */ | 
 | static inline void | 
 | _ef4_writed_page(struct ef4_nic *efx, const ef4_dword_t *value, | 
 | 		 unsigned int reg, unsigned int page) | 
 | { | 
 | 	ef4_writed(efx, value, EF4_PAGED_REG(page, reg)); | 
 | } | 
 | #define ef4_writed_page(efx, value, reg, page)				\ | 
 | 	_ef4_writed_page(efx, value,					\ | 
 | 			 reg +						\ | 
 | 			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\ | 
 | 					   (reg) != 0x420 &&		\ | 
 | 					   (reg) != 0x830 &&		\ | 
 | 					   (reg) != 0x83c &&		\ | 
 | 					   (reg) != 0xa18 &&		\ | 
 | 					   (reg) != 0xa1c),		\ | 
 | 			 page) | 
 |  | 
 | /* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug | 
 |  * in the BIU means that writes to TIMER_COMMAND[0] invalidate the | 
 |  * collector register. | 
 |  */ | 
 | static inline void _ef4_writed_page_locked(struct ef4_nic *efx, | 
 | 					   const ef4_dword_t *value, | 
 | 					   unsigned int reg, | 
 | 					   unsigned int page) | 
 | { | 
 | 	unsigned long flags __attribute__ ((unused)); | 
 |  | 
 | 	if (page == 0) { | 
 | 		spin_lock_irqsave(&efx->biu_lock, flags); | 
 | 		ef4_writed(efx, value, EF4_PAGED_REG(page, reg)); | 
 | 		spin_unlock_irqrestore(&efx->biu_lock, flags); | 
 | 	} else { | 
 | 		ef4_writed(efx, value, EF4_PAGED_REG(page, reg)); | 
 | 	} | 
 | } | 
 | #define ef4_writed_page_locked(efx, value, reg, page)			\ | 
 | 	_ef4_writed_page_locked(efx, value,				\ | 
 | 				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \ | 
 | 				page) | 
 |  | 
 | #endif /* EF4_IO_H */ |