|  | /* | 
|  | * Copyright(c) 2015, 2016 Intel Corporation. | 
|  | * | 
|  | * This file is provided under a dual BSD/GPLv2 license.  When using or | 
|  | * redistributing this file, you may do so under either license. | 
|  | * | 
|  | * GPL LICENSE SUMMARY | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of version 2 of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * BSD LICENSE | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | *  - Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | *  - Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | *  - Neither the name of Intel Corporation nor the names of its | 
|  | *    contributors may be used to endorse or promote products derived | 
|  | *    from this software without specific prior written permission. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/seqlock.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/highmem.h> | 
|  |  | 
|  | #include "hfi.h" | 
|  | #include "common.h" | 
|  | #include "qp.h" | 
|  | #include "sdma.h" | 
|  | #include "iowait.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | /* must be a power of 2 >= 64 <= 32768 */ | 
|  | #define SDMA_DESCQ_CNT 2048 | 
|  | #define SDMA_DESC_INTR 64 | 
|  | #define INVALID_TAIL 0xffff | 
|  |  | 
|  | static uint sdma_descq_cnt = SDMA_DESCQ_CNT; | 
|  | module_param(sdma_descq_cnt, uint, S_IRUGO); | 
|  | MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries"); | 
|  |  | 
|  | static uint sdma_idle_cnt = 250; | 
|  | module_param(sdma_idle_cnt, uint, S_IRUGO); | 
|  | MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)"); | 
|  |  | 
|  | uint mod_num_sdma; | 
|  | module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO); | 
|  | MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use"); | 
|  |  | 
|  | static uint sdma_desct_intr = SDMA_DESC_INTR; | 
|  | module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR); | 
|  | MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt"); | 
|  |  | 
|  | #define SDMA_WAIT_BATCH_SIZE 20 | 
|  | /* max wait time for a SDMA engine to indicate it has halted */ | 
|  | #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */ | 
|  | /* all SDMA engine errors that cause a halt */ | 
|  |  | 
|  | #define SD(name) SEND_DMA_##name | 
|  | #define ALL_SDMA_ENG_HALT_ERRS \ | 
|  | (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \ | 
|  | | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK)) | 
|  |  | 
|  | /* sdma_sendctrl operations */ | 
|  | #define SDMA_SENDCTRL_OP_ENABLE    BIT(0) | 
|  | #define SDMA_SENDCTRL_OP_INTENABLE BIT(1) | 
|  | #define SDMA_SENDCTRL_OP_HALT      BIT(2) | 
|  | #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3) | 
|  |  | 
|  | /* handle long defines */ | 
|  | #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \ | 
|  | SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK | 
|  | #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \ | 
|  | SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT | 
|  |  | 
|  | static const char * const sdma_state_names[] = { | 
|  | [sdma_state_s00_hw_down]                = "s00_HwDown", | 
|  | [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait", | 
|  | [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait", | 
|  | [sdma_state_s20_idle]                   = "s20_Idle", | 
|  | [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait", | 
|  | [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait", | 
|  | [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait", | 
|  | [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait", | 
|  | [sdma_state_s80_hw_freeze]		= "s80_HwFreeze", | 
|  | [sdma_state_s82_freeze_sw_clean]	= "s82_FreezeSwClean", | 
|  | [sdma_state_s99_running]                = "s99_Running", | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | static const char * const sdma_event_names[] = { | 
|  | [sdma_event_e00_go_hw_down]   = "e00_GoHwDown", | 
|  | [sdma_event_e10_go_hw_start]  = "e10_GoHwStart", | 
|  | [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone", | 
|  | [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone", | 
|  | [sdma_event_e30_go_running]   = "e30_GoRunning", | 
|  | [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned", | 
|  | [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned", | 
|  | [sdma_event_e60_hw_halted]    = "e60_HwHalted", | 
|  | [sdma_event_e70_go_idle]      = "e70_GoIdle", | 
|  | [sdma_event_e80_hw_freeze]    = "e80_HwFreeze", | 
|  | [sdma_event_e81_hw_frozen]    = "e81_HwFrozen", | 
|  | [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze", | 
|  | [sdma_event_e85_link_down]    = "e85_LinkDown", | 
|  | [sdma_event_e90_sw_halted]    = "e90_SwHalted", | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static const struct sdma_set_state_action sdma_action_table[] = { | 
|  | [sdma_state_s00_hw_down] = { | 
|  | .go_s99_running_tofalse = 1, | 
|  | .op_enable = 0, | 
|  | .op_intenable = 0, | 
|  | .op_halt = 0, | 
|  | .op_cleanup = 0, | 
|  | }, | 
|  | [sdma_state_s10_hw_start_up_halt_wait] = { | 
|  | .op_enable = 0, | 
|  | .op_intenable = 0, | 
|  | .op_halt = 1, | 
|  | .op_cleanup = 0, | 
|  | }, | 
|  | [sdma_state_s15_hw_start_up_clean_wait] = { | 
|  | .op_enable = 0, | 
|  | .op_intenable = 1, | 
|  | .op_halt = 0, | 
|  | .op_cleanup = 1, | 
|  | }, | 
|  | [sdma_state_s20_idle] = { | 
|  | .op_enable = 0, | 
|  | .op_intenable = 1, | 
|  | .op_halt = 0, | 
|  | .op_cleanup = 0, | 
|  | }, | 
|  | [sdma_state_s30_sw_clean_up_wait] = { | 
|  | .op_enable = 0, | 
|  | .op_intenable = 0, | 
|  | .op_halt = 0, | 
|  | .op_cleanup = 0, | 
|  | }, | 
|  | [sdma_state_s40_hw_clean_up_wait] = { | 
|  | .op_enable = 0, | 
|  | .op_intenable = 0, | 
|  | .op_halt = 0, | 
|  | .op_cleanup = 1, | 
|  | }, | 
|  | [sdma_state_s50_hw_halt_wait] = { | 
|  | .op_enable = 0, | 
|  | .op_intenable = 0, | 
|  | .op_halt = 0, | 
|  | .op_cleanup = 0, | 
|  | }, | 
|  | [sdma_state_s60_idle_halt_wait] = { | 
|  | .go_s99_running_tofalse = 1, | 
|  | .op_enable = 0, | 
|  | .op_intenable = 0, | 
|  | .op_halt = 1, | 
|  | .op_cleanup = 0, | 
|  | }, | 
|  | [sdma_state_s80_hw_freeze] = { | 
|  | .op_enable = 0, | 
|  | .op_intenable = 0, | 
|  | .op_halt = 0, | 
|  | .op_cleanup = 0, | 
|  | }, | 
|  | [sdma_state_s82_freeze_sw_clean] = { | 
|  | .op_enable = 0, | 
|  | .op_intenable = 0, | 
|  | .op_halt = 0, | 
|  | .op_cleanup = 0, | 
|  | }, | 
|  | [sdma_state_s99_running] = { | 
|  | .op_enable = 1, | 
|  | .op_intenable = 1, | 
|  | .op_halt = 0, | 
|  | .op_cleanup = 0, | 
|  | .go_s99_running_totrue = 1, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | #define SDMA_TAIL_UPDATE_THRESH 0x1F | 
|  |  | 
|  | /* declare all statics here rather than keep sorting */ | 
|  | static void sdma_complete(struct kref *); | 
|  | static void sdma_finalput(struct sdma_state *); | 
|  | static void sdma_get(struct sdma_state *); | 
|  | static void sdma_hw_clean_up_task(unsigned long); | 
|  | static void sdma_put(struct sdma_state *); | 
|  | static void sdma_set_state(struct sdma_engine *, enum sdma_states); | 
|  | static void sdma_start_hw_clean_up(struct sdma_engine *); | 
|  | static void sdma_sw_clean_up_task(unsigned long); | 
|  | static void sdma_sendctrl(struct sdma_engine *, unsigned); | 
|  | static void init_sdma_regs(struct sdma_engine *, u32, uint); | 
|  | static void sdma_process_event( | 
|  | struct sdma_engine *sde, | 
|  | enum sdma_events event); | 
|  | static void __sdma_process_event( | 
|  | struct sdma_engine *sde, | 
|  | enum sdma_events event); | 
|  | static void dump_sdma_state(struct sdma_engine *sde); | 
|  | static void sdma_make_progress(struct sdma_engine *sde, u64 status); | 
|  | static void sdma_desc_avail(struct sdma_engine *sde, uint avail); | 
|  | static void sdma_flush_descq(struct sdma_engine *sde); | 
|  |  | 
|  | /** | 
|  | * sdma_state_name() - return state string from enum | 
|  | * @state: state | 
|  | */ | 
|  | static const char *sdma_state_name(enum sdma_states state) | 
|  | { | 
|  | return sdma_state_names[state]; | 
|  | } | 
|  |  | 
|  | static void sdma_get(struct sdma_state *ss) | 
|  | { | 
|  | kref_get(&ss->kref); | 
|  | } | 
|  |  | 
|  | static void sdma_complete(struct kref *kref) | 
|  | { | 
|  | struct sdma_state *ss = | 
|  | container_of(kref, struct sdma_state, kref); | 
|  |  | 
|  | complete(&ss->comp); | 
|  | } | 
|  |  | 
|  | static void sdma_put(struct sdma_state *ss) | 
|  | { | 
|  | kref_put(&ss->kref, sdma_complete); | 
|  | } | 
|  |  | 
|  | static void sdma_finalput(struct sdma_state *ss) | 
|  | { | 
|  | sdma_put(ss); | 
|  | wait_for_completion(&ss->comp); | 
|  | } | 
|  |  | 
|  | static inline void write_sde_csr( | 
|  | struct sdma_engine *sde, | 
|  | u32 offset0, | 
|  | u64 value) | 
|  | { | 
|  | write_kctxt_csr(sde->dd, sde->this_idx, offset0, value); | 
|  | } | 
|  |  | 
|  | static inline u64 read_sde_csr( | 
|  | struct sdma_engine *sde, | 
|  | u32 offset0) | 
|  | { | 
|  | return read_kctxt_csr(sde->dd, sde->this_idx, offset0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for | 
|  | * sdma engine 'sde' to drop to 0. | 
|  | */ | 
|  | static void sdma_wait_for_packet_egress(struct sdma_engine *sde, | 
|  | int pause) | 
|  | { | 
|  | u64 off = 8 * sde->this_idx; | 
|  | struct hfi1_devdata *dd = sde->dd; | 
|  | int lcnt = 0; | 
|  | u64 reg_prev; | 
|  | u64 reg = 0; | 
|  |  | 
|  | while (1) { | 
|  | reg_prev = reg; | 
|  | reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS); | 
|  |  | 
|  | reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK; | 
|  | reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT; | 
|  | if (reg == 0) | 
|  | break; | 
|  | /* counter is reest if accupancy count changes */ | 
|  | if (reg != reg_prev) | 
|  | lcnt = 0; | 
|  | if (lcnt++ > 500) { | 
|  | /* timed out - bounce the link */ | 
|  | dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n", | 
|  | __func__, sde->this_idx, (u32)reg); | 
|  | queue_work(dd->pport->link_wq, | 
|  | &dd->pport->link_bounce_work); | 
|  | break; | 
|  | } | 
|  | udelay(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sdma_wait() - wait for packet egress to complete for all SDMA engines, | 
|  | * and pause for credit return. | 
|  | */ | 
|  | void sdma_wait(struct hfi1_devdata *dd) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < dd->num_sdma; i++) { | 
|  | struct sdma_engine *sde = &dd->per_sdma[i]; | 
|  |  | 
|  | sdma_wait_for_packet_egress(sde, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt) | 
|  | { | 
|  | u64 reg; | 
|  |  | 
|  | if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT)) | 
|  | return; | 
|  | reg = cnt; | 
|  | reg &= SD(DESC_CNT_CNT_MASK); | 
|  | reg <<= SD(DESC_CNT_CNT_SHIFT); | 
|  | write_sde_csr(sde, SD(DESC_CNT), reg); | 
|  | } | 
|  |  | 
|  | static inline void complete_tx(struct sdma_engine *sde, | 
|  | struct sdma_txreq *tx, | 
|  | int res) | 
|  | { | 
|  | /* protect against complete modifying */ | 
|  | struct iowait *wait = tx->wait; | 
|  | callback_t complete = tx->complete; | 
|  |  | 
|  | #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER | 
|  | trace_hfi1_sdma_out_sn(sde, tx->sn); | 
|  | if (WARN_ON_ONCE(sde->head_sn != tx->sn)) | 
|  | dd_dev_err(sde->dd, "expected %llu got %llu\n", | 
|  | sde->head_sn, tx->sn); | 
|  | sde->head_sn++; | 
|  | #endif | 
|  | __sdma_txclean(sde->dd, tx); | 
|  | if (complete) | 
|  | (*complete)(tx, res); | 
|  | if (wait && iowait_sdma_dec(wait)) | 
|  | iowait_drain_wakeup(wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status | 
|  | * | 
|  | * Depending on timing there can be txreqs in two places: | 
|  | * - in the descq ring | 
|  | * - in the flush list | 
|  | * | 
|  | * To avoid ordering issues the descq ring needs to be flushed | 
|  | * first followed by the flush list. | 
|  | * | 
|  | * This routine is called from two places | 
|  | * - From a work queue item | 
|  | * - Directly from the state machine just before setting the | 
|  | *   state to running | 
|  | * | 
|  | * Must be called with head_lock held | 
|  | * | 
|  | */ | 
|  | static void sdma_flush(struct sdma_engine *sde) | 
|  | { | 
|  | struct sdma_txreq *txp, *txp_next; | 
|  | LIST_HEAD(flushlist); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* flush from head to tail */ | 
|  | sdma_flush_descq(sde); | 
|  | spin_lock_irqsave(&sde->flushlist_lock, flags); | 
|  | /* copy flush list */ | 
|  | list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) { | 
|  | list_del_init(&txp->list); | 
|  | list_add_tail(&txp->list, &flushlist); | 
|  | } | 
|  | spin_unlock_irqrestore(&sde->flushlist_lock, flags); | 
|  | /* flush from flush list */ | 
|  | list_for_each_entry_safe(txp, txp_next, &flushlist, list) | 
|  | complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fields a work request for flushing the descq ring | 
|  | * and the flush list | 
|  | * | 
|  | * If the engine has been brought to running during | 
|  | * the scheduling delay, the flush is ignored, assuming | 
|  | * that the process of bringing the engine to running | 
|  | * would have done this flush prior to going to running. | 
|  | * | 
|  | */ | 
|  | static void sdma_field_flush(struct work_struct *work) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct sdma_engine *sde = | 
|  | container_of(work, struct sdma_engine, flush_worker); | 
|  |  | 
|  | write_seqlock_irqsave(&sde->head_lock, flags); | 
|  | if (!__sdma_running(sde)) | 
|  | sdma_flush(sde); | 
|  | write_sequnlock_irqrestore(&sde->head_lock, flags); | 
|  | } | 
|  |  | 
|  | static void sdma_err_halt_wait(struct work_struct *work) | 
|  | { | 
|  | struct sdma_engine *sde = container_of(work, struct sdma_engine, | 
|  | err_halt_worker); | 
|  | u64 statuscsr; | 
|  | unsigned long timeout; | 
|  |  | 
|  | timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT); | 
|  | while (1) { | 
|  | statuscsr = read_sde_csr(sde, SD(STATUS)); | 
|  | statuscsr &= SD(STATUS_ENG_HALTED_SMASK); | 
|  | if (statuscsr) | 
|  | break; | 
|  | if (time_after(jiffies, timeout)) { | 
|  | dd_dev_err(sde->dd, | 
|  | "SDMA engine %d - timeout waiting for engine to halt\n", | 
|  | sde->this_idx); | 
|  | /* | 
|  | * Continue anyway.  This could happen if there was | 
|  | * an uncorrectable error in the wrong spot. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | usleep_range(80, 120); | 
|  | } | 
|  |  | 
|  | sdma_process_event(sde, sdma_event_e15_hw_halt_done); | 
|  | } | 
|  |  | 
|  | static void sdma_err_progress_check_schedule(struct sdma_engine *sde) | 
|  | { | 
|  | if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) { | 
|  | unsigned index; | 
|  | struct hfi1_devdata *dd = sde->dd; | 
|  |  | 
|  | for (index = 0; index < dd->num_sdma; index++) { | 
|  | struct sdma_engine *curr_sdma = &dd->per_sdma[index]; | 
|  |  | 
|  | if (curr_sdma != sde) | 
|  | curr_sdma->progress_check_head = | 
|  | curr_sdma->descq_head; | 
|  | } | 
|  | dd_dev_err(sde->dd, | 
|  | "SDMA engine %d - check scheduled\n", | 
|  | sde->this_idx); | 
|  | mod_timer(&sde->err_progress_check_timer, jiffies + 10); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sdma_err_progress_check(unsigned long data) | 
|  | { | 
|  | unsigned index; | 
|  | struct sdma_engine *sde = (struct sdma_engine *)data; | 
|  |  | 
|  | dd_dev_err(sde->dd, "SDE progress check event\n"); | 
|  | for (index = 0; index < sde->dd->num_sdma; index++) { | 
|  | struct sdma_engine *curr_sde = &sde->dd->per_sdma[index]; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* check progress on each engine except the current one */ | 
|  | if (curr_sde == sde) | 
|  | continue; | 
|  | /* | 
|  | * We must lock interrupts when acquiring sde->lock, | 
|  | * to avoid a deadlock if interrupt triggers and spins on | 
|  | * the same lock on same CPU | 
|  | */ | 
|  | spin_lock_irqsave(&curr_sde->tail_lock, flags); | 
|  | write_seqlock(&curr_sde->head_lock); | 
|  |  | 
|  | /* skip non-running queues */ | 
|  | if (curr_sde->state.current_state != sdma_state_s99_running) { | 
|  | write_sequnlock(&curr_sde->head_lock); | 
|  | spin_unlock_irqrestore(&curr_sde->tail_lock, flags); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((curr_sde->descq_head != curr_sde->descq_tail) && | 
|  | (curr_sde->descq_head == | 
|  | curr_sde->progress_check_head)) | 
|  | __sdma_process_event(curr_sde, | 
|  | sdma_event_e90_sw_halted); | 
|  | write_sequnlock(&curr_sde->head_lock); | 
|  | spin_unlock_irqrestore(&curr_sde->tail_lock, flags); | 
|  | } | 
|  | schedule_work(&sde->err_halt_worker); | 
|  | } | 
|  |  | 
|  | static void sdma_hw_clean_up_task(unsigned long opaque) | 
|  | { | 
|  | struct sdma_engine *sde = (struct sdma_engine *)opaque; | 
|  | u64 statuscsr; | 
|  |  | 
|  | while (1) { | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", | 
|  | sde->this_idx, slashstrip(__FILE__), __LINE__, | 
|  | __func__); | 
|  | #endif | 
|  | statuscsr = read_sde_csr(sde, SD(STATUS)); | 
|  | statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK); | 
|  | if (statuscsr) | 
|  | break; | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | sdma_process_event(sde, sdma_event_e25_hw_clean_up_done); | 
|  | } | 
|  |  | 
|  | static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde) | 
|  | { | 
|  | smp_read_barrier_depends(); /* see sdma_update_tail() */ | 
|  | return sde->tx_ring[sde->tx_head & sde->sdma_mask]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * flush ring for recovery | 
|  | */ | 
|  | static void sdma_flush_descq(struct sdma_engine *sde) | 
|  | { | 
|  | u16 head, tail; | 
|  | int progress = 0; | 
|  | struct sdma_txreq *txp = get_txhead(sde); | 
|  |  | 
|  | /* The reason for some of the complexity of this code is that | 
|  | * not all descriptors have corresponding txps.  So, we have to | 
|  | * be able to skip over descs until we wander into the range of | 
|  | * the next txp on the list. | 
|  | */ | 
|  | head = sde->descq_head & sde->sdma_mask; | 
|  | tail = sde->descq_tail & sde->sdma_mask; | 
|  | while (head != tail) { | 
|  | /* advance head, wrap if needed */ | 
|  | head = ++sde->descq_head & sde->sdma_mask; | 
|  | /* if now past this txp's descs, do the callback */ | 
|  | if (txp && txp->next_descq_idx == head) { | 
|  | /* remove from list */ | 
|  | sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL; | 
|  | complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED); | 
|  | trace_hfi1_sdma_progress(sde, head, tail, txp); | 
|  | txp = get_txhead(sde); | 
|  | } | 
|  | progress++; | 
|  | } | 
|  | if (progress) | 
|  | sdma_desc_avail(sde, sdma_descq_freecnt(sde)); | 
|  | } | 
|  |  | 
|  | static void sdma_sw_clean_up_task(unsigned long opaque) | 
|  | { | 
|  | struct sdma_engine *sde = (struct sdma_engine *)opaque; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&sde->tail_lock, flags); | 
|  | write_seqlock(&sde->head_lock); | 
|  |  | 
|  | /* | 
|  | * At this point, the following should always be true: | 
|  | * - We are halted, so no more descriptors are getting retired. | 
|  | * - We are not running, so no one is submitting new work. | 
|  | * - Only we can send the e40_sw_cleaned, so we can't start | 
|  | *   running again until we say so.  So, the active list and | 
|  | *   descq are ours to play with. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * In the error clean up sequence, software clean must be called | 
|  | * before the hardware clean so we can use the hardware head in | 
|  | * the progress routine.  A hardware clean or SPC unfreeze will | 
|  | * reset the hardware head. | 
|  | * | 
|  | * Process all retired requests. The progress routine will use the | 
|  | * latest physical hardware head - we are not running so speed does | 
|  | * not matter. | 
|  | */ | 
|  | sdma_make_progress(sde, 0); | 
|  |  | 
|  | sdma_flush(sde); | 
|  |  | 
|  | /* | 
|  | * Reset our notion of head and tail. | 
|  | * Note that the HW registers have been reset via an earlier | 
|  | * clean up. | 
|  | */ | 
|  | sde->descq_tail = 0; | 
|  | sde->descq_head = 0; | 
|  | sde->desc_avail = sdma_descq_freecnt(sde); | 
|  | *sde->head_dma = 0; | 
|  |  | 
|  | __sdma_process_event(sde, sdma_event_e40_sw_cleaned); | 
|  |  | 
|  | write_sequnlock(&sde->head_lock); | 
|  | spin_unlock_irqrestore(&sde->tail_lock, flags); | 
|  | } | 
|  |  | 
|  | static void sdma_sw_tear_down(struct sdma_engine *sde) | 
|  | { | 
|  | struct sdma_state *ss = &sde->state; | 
|  |  | 
|  | /* Releasing this reference means the state machine has stopped. */ | 
|  | sdma_put(ss); | 
|  |  | 
|  | /* stop waiting for all unfreeze events to complete */ | 
|  | atomic_set(&sde->dd->sdma_unfreeze_count, -1); | 
|  | wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); | 
|  | } | 
|  |  | 
|  | static void sdma_start_hw_clean_up(struct sdma_engine *sde) | 
|  | { | 
|  | tasklet_hi_schedule(&sde->sdma_hw_clean_up_task); | 
|  | } | 
|  |  | 
|  | static void sdma_set_state(struct sdma_engine *sde, | 
|  | enum sdma_states next_state) | 
|  | { | 
|  | struct sdma_state *ss = &sde->state; | 
|  | const struct sdma_set_state_action *action = sdma_action_table; | 
|  | unsigned op = 0; | 
|  |  | 
|  | trace_hfi1_sdma_state( | 
|  | sde, | 
|  | sdma_state_names[ss->current_state], | 
|  | sdma_state_names[next_state]); | 
|  |  | 
|  | /* debugging bookkeeping */ | 
|  | ss->previous_state = ss->current_state; | 
|  | ss->previous_op = ss->current_op; | 
|  | ss->current_state = next_state; | 
|  |  | 
|  | if (ss->previous_state != sdma_state_s99_running && | 
|  | next_state == sdma_state_s99_running) | 
|  | sdma_flush(sde); | 
|  |  | 
|  | if (action[next_state].op_enable) | 
|  | op |= SDMA_SENDCTRL_OP_ENABLE; | 
|  |  | 
|  | if (action[next_state].op_intenable) | 
|  | op |= SDMA_SENDCTRL_OP_INTENABLE; | 
|  |  | 
|  | if (action[next_state].op_halt) | 
|  | op |= SDMA_SENDCTRL_OP_HALT; | 
|  |  | 
|  | if (action[next_state].op_cleanup) | 
|  | op |= SDMA_SENDCTRL_OP_CLEANUP; | 
|  |  | 
|  | if (action[next_state].go_s99_running_tofalse) | 
|  | ss->go_s99_running = 0; | 
|  |  | 
|  | if (action[next_state].go_s99_running_totrue) | 
|  | ss->go_s99_running = 1; | 
|  |  | 
|  | ss->current_op = op; | 
|  | sdma_sendctrl(sde, ss->current_op); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_get_descq_cnt() - called when device probed | 
|  | * | 
|  | * Return a validated descq count. | 
|  | * | 
|  | * This is currently only used in the verbs initialization to build the tx | 
|  | * list. | 
|  | * | 
|  | * This will probably be deleted in favor of a more scalable approach to | 
|  | * alloc tx's. | 
|  | * | 
|  | */ | 
|  | u16 sdma_get_descq_cnt(void) | 
|  | { | 
|  | u16 count = sdma_descq_cnt; | 
|  |  | 
|  | if (!count) | 
|  | return SDMA_DESCQ_CNT; | 
|  | /* count must be a power of 2 greater than 64 and less than | 
|  | * 32768.   Otherwise return default. | 
|  | */ | 
|  | if (!is_power_of_2(count)) | 
|  | return SDMA_DESCQ_CNT; | 
|  | if (count < 64 || count > 32768) | 
|  | return SDMA_DESCQ_CNT; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_engine_get_vl() - return vl for a given sdma engine | 
|  | * @sde: sdma engine | 
|  | * | 
|  | * This function returns the vl mapped to a given engine, or an error if | 
|  | * the mapping can't be found. The mapping fields are protected by RCU. | 
|  | */ | 
|  | int sdma_engine_get_vl(struct sdma_engine *sde) | 
|  | { | 
|  | struct hfi1_devdata *dd = sde->dd; | 
|  | struct sdma_vl_map *m; | 
|  | u8 vl; | 
|  |  | 
|  | if (sde->this_idx >= TXE_NUM_SDMA_ENGINES) | 
|  | return -EINVAL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | m = rcu_dereference(dd->sdma_map); | 
|  | if (unlikely(!m)) { | 
|  | rcu_read_unlock(); | 
|  | return -EINVAL; | 
|  | } | 
|  | vl = m->engine_to_vl[sde->this_idx]; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return vl; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_select_engine_vl() - select sdma engine | 
|  | * @dd: devdata | 
|  | * @selector: a spreading factor | 
|  | * @vl: this vl | 
|  | * | 
|  | * | 
|  | * This function returns an engine based on the selector and a vl.  The | 
|  | * mapping fields are protected by RCU. | 
|  | */ | 
|  | struct sdma_engine *sdma_select_engine_vl( | 
|  | struct hfi1_devdata *dd, | 
|  | u32 selector, | 
|  | u8 vl) | 
|  | { | 
|  | struct sdma_vl_map *m; | 
|  | struct sdma_map_elem *e; | 
|  | struct sdma_engine *rval; | 
|  |  | 
|  | /* NOTE This should only happen if SC->VL changed after the initial | 
|  | *      checks on the QP/AH | 
|  | *      Default will return engine 0 below | 
|  | */ | 
|  | if (vl >= num_vls) { | 
|  | rval = NULL; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | m = rcu_dereference(dd->sdma_map); | 
|  | if (unlikely(!m)) { | 
|  | rcu_read_unlock(); | 
|  | return &dd->per_sdma[0]; | 
|  | } | 
|  | e = m->map[vl & m->mask]; | 
|  | rval = e->sde[selector & e->mask]; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | done: | 
|  | rval =  !rval ? &dd->per_sdma[0] : rval; | 
|  | trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_select_engine_sc() - select sdma engine | 
|  | * @dd: devdata | 
|  | * @selector: a spreading factor | 
|  | * @sc5: the 5 bit sc | 
|  | * | 
|  | * | 
|  | * This function returns an engine based on the selector and an sc. | 
|  | */ | 
|  | struct sdma_engine *sdma_select_engine_sc( | 
|  | struct hfi1_devdata *dd, | 
|  | u32 selector, | 
|  | u8 sc5) | 
|  | { | 
|  | u8 vl = sc_to_vlt(dd, sc5); | 
|  |  | 
|  | return sdma_select_engine_vl(dd, selector, vl); | 
|  | } | 
|  |  | 
|  | struct sdma_rht_map_elem { | 
|  | u32 mask; | 
|  | u8 ctr; | 
|  | struct sdma_engine *sde[0]; | 
|  | }; | 
|  |  | 
|  | struct sdma_rht_node { | 
|  | unsigned long cpu_id; | 
|  | struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED]; | 
|  | struct rhash_head node; | 
|  | }; | 
|  |  | 
|  | #define NR_CPUS_HINT 192 | 
|  |  | 
|  | static const struct rhashtable_params sdma_rht_params = { | 
|  | .nelem_hint = NR_CPUS_HINT, | 
|  | .head_offset = offsetof(struct sdma_rht_node, node), | 
|  | .key_offset = offsetof(struct sdma_rht_node, cpu_id), | 
|  | .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id), | 
|  | .max_size = NR_CPUS, | 
|  | .min_size = 8, | 
|  | .automatic_shrinking = true, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * sdma_select_user_engine() - select sdma engine based on user setup | 
|  | * @dd: devdata | 
|  | * @selector: a spreading factor | 
|  | * @vl: this vl | 
|  | * | 
|  | * This function returns an sdma engine for a user sdma request. | 
|  | * User defined sdma engine affinity setting is honored when applicable, | 
|  | * otherwise system default sdma engine mapping is used. To ensure correct | 
|  | * ordering, the mapping from <selector, vl> to sde must remain unchanged. | 
|  | */ | 
|  | struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd, | 
|  | u32 selector, u8 vl) | 
|  | { | 
|  | struct sdma_rht_node *rht_node; | 
|  | struct sdma_engine *sde = NULL; | 
|  | const struct cpumask *current_mask = ¤t->cpus_allowed; | 
|  | unsigned long cpu_id; | 
|  |  | 
|  | /* | 
|  | * To ensure that always the same sdma engine(s) will be | 
|  | * selected make sure the process is pinned to this CPU only. | 
|  | */ | 
|  | if (cpumask_weight(current_mask) != 1) | 
|  | goto out; | 
|  |  | 
|  | cpu_id = smp_processor_id(); | 
|  | rcu_read_lock(); | 
|  | rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id, | 
|  | sdma_rht_params); | 
|  |  | 
|  | if (rht_node && rht_node->map[vl]) { | 
|  | struct sdma_rht_map_elem *map = rht_node->map[vl]; | 
|  |  | 
|  | sde = map->sde[selector & map->mask]; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (sde) | 
|  | return sde; | 
|  |  | 
|  | out: | 
|  | return sdma_select_engine_vl(dd, selector, vl); | 
|  | } | 
|  |  | 
|  | static void sdma_populate_sde_map(struct sdma_rht_map_elem *map) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++) | 
|  | map->sde[map->ctr + i] = map->sde[i]; | 
|  | } | 
|  |  | 
|  | static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map, | 
|  | struct sdma_engine *sde) | 
|  | { | 
|  | unsigned int i, pow; | 
|  |  | 
|  | /* only need to check the first ctr entries for a match */ | 
|  | for (i = 0; i < map->ctr; i++) { | 
|  | if (map->sde[i] == sde) { | 
|  | memmove(&map->sde[i], &map->sde[i + 1], | 
|  | (map->ctr - i - 1) * sizeof(map->sde[0])); | 
|  | map->ctr--; | 
|  | pow = roundup_pow_of_two(map->ctr ? : 1); | 
|  | map->mask = pow - 1; | 
|  | sdma_populate_sde_map(map); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prevents concurrent reads and writes of the sdma engine cpu_mask | 
|  | */ | 
|  | static DEFINE_MUTEX(process_to_sde_mutex); | 
|  |  | 
|  | ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf, | 
|  | size_t count) | 
|  | { | 
|  | struct hfi1_devdata *dd = sde->dd; | 
|  | cpumask_var_t mask, new_mask; | 
|  | unsigned long cpu; | 
|  | int ret, vl, sz; | 
|  |  | 
|  | vl = sdma_engine_get_vl(sde); | 
|  | if (unlikely(vl < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = zalloc_cpumask_var(&mask, GFP_KERNEL); | 
|  | if (!ret) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL); | 
|  | if (!ret) { | 
|  | free_cpumask_var(mask); | 
|  | return -ENOMEM; | 
|  | } | 
|  | ret = cpulist_parse(buf, mask); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | if (!cpumask_subset(mask, cpu_online_mask)) { | 
|  | dd_dev_warn(sde->dd, "Invalid CPU mask\n"); | 
|  | ret = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | sz = sizeof(struct sdma_rht_map_elem) + | 
|  | (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *)); | 
|  |  | 
|  | mutex_lock(&process_to_sde_mutex); | 
|  |  | 
|  | for_each_cpu(cpu, mask) { | 
|  | struct sdma_rht_node *rht_node; | 
|  |  | 
|  | /* Check if we have this already mapped */ | 
|  | if (cpumask_test_cpu(cpu, &sde->cpu_mask)) { | 
|  | cpumask_set_cpu(cpu, new_mask); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (vl >= ARRAY_SIZE(rht_node->map)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu, | 
|  | sdma_rht_params); | 
|  | if (!rht_node) { | 
|  | rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL); | 
|  | if (!rht_node) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rht_node->map[vl] = kzalloc(sz, GFP_KERNEL); | 
|  | if (!rht_node->map[vl]) { | 
|  | kfree(rht_node); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | rht_node->cpu_id = cpu; | 
|  | rht_node->map[vl]->mask = 0; | 
|  | rht_node->map[vl]->ctr = 1; | 
|  | rht_node->map[vl]->sde[0] = sde; | 
|  |  | 
|  | ret = rhashtable_insert_fast(dd->sdma_rht, | 
|  | &rht_node->node, | 
|  | sdma_rht_params); | 
|  | if (ret) { | 
|  | kfree(rht_node->map[vl]); | 
|  | kfree(rht_node); | 
|  | dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n", | 
|  | cpu); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | int ctr, pow; | 
|  |  | 
|  | /* Add new user mappings */ | 
|  | if (!rht_node->map[vl]) | 
|  | rht_node->map[vl] = kzalloc(sz, GFP_KERNEL); | 
|  |  | 
|  | if (!rht_node->map[vl]) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rht_node->map[vl]->ctr++; | 
|  | ctr = rht_node->map[vl]->ctr; | 
|  | rht_node->map[vl]->sde[ctr - 1] = sde; | 
|  | pow = roundup_pow_of_two(ctr); | 
|  | rht_node->map[vl]->mask = pow - 1; | 
|  |  | 
|  | /* Populate the sde map table */ | 
|  | sdma_populate_sde_map(rht_node->map[vl]); | 
|  | } | 
|  | cpumask_set_cpu(cpu, new_mask); | 
|  | } | 
|  |  | 
|  | /* Clean up old mappings */ | 
|  | for_each_cpu(cpu, cpu_online_mask) { | 
|  | struct sdma_rht_node *rht_node; | 
|  |  | 
|  | /* Don't cleanup sdes that are set in the new mask */ | 
|  | if (cpumask_test_cpu(cpu, mask)) | 
|  | continue; | 
|  |  | 
|  | rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu, | 
|  | sdma_rht_params); | 
|  | if (rht_node) { | 
|  | bool empty = true; | 
|  | int i; | 
|  |  | 
|  | /* Remove mappings for old sde */ | 
|  | for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) | 
|  | if (rht_node->map[i]) | 
|  | sdma_cleanup_sde_map(rht_node->map[i], | 
|  | sde); | 
|  |  | 
|  | /* Free empty hash table entries */ | 
|  | for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) { | 
|  | if (!rht_node->map[i]) | 
|  | continue; | 
|  |  | 
|  | if (rht_node->map[i]->ctr) { | 
|  | empty = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (empty) { | 
|  | ret = rhashtable_remove_fast(dd->sdma_rht, | 
|  | &rht_node->node, | 
|  | sdma_rht_params); | 
|  | WARN_ON(ret); | 
|  |  | 
|  | for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) | 
|  | kfree(rht_node->map[i]); | 
|  |  | 
|  | kfree(rht_node); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | cpumask_copy(&sde->cpu_mask, new_mask); | 
|  | out: | 
|  | mutex_unlock(&process_to_sde_mutex); | 
|  | out_free: | 
|  | free_cpumask_var(mask); | 
|  | free_cpumask_var(new_mask); | 
|  | return ret ? : strnlen(buf, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf) | 
|  | { | 
|  | mutex_lock(&process_to_sde_mutex); | 
|  | if (cpumask_empty(&sde->cpu_mask)) | 
|  | snprintf(buf, PAGE_SIZE, "%s\n", "empty"); | 
|  | else | 
|  | cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask); | 
|  | mutex_unlock(&process_to_sde_mutex); | 
|  | return strnlen(buf, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static void sdma_rht_free(void *ptr, void *arg) | 
|  | { | 
|  | struct sdma_rht_node *rht_node = ptr; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) | 
|  | kfree(rht_node->map[i]); | 
|  |  | 
|  | kfree(rht_node); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings | 
|  | * @s: seq file | 
|  | * @dd: hfi1_devdata | 
|  | * @cpuid: cpu id | 
|  | * | 
|  | * This routine dumps the process to sde mappings per cpu | 
|  | */ | 
|  | void sdma_seqfile_dump_cpu_list(struct seq_file *s, | 
|  | struct hfi1_devdata *dd, | 
|  | unsigned long cpuid) | 
|  | { | 
|  | struct sdma_rht_node *rht_node; | 
|  | int i, j; | 
|  |  | 
|  | rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid, | 
|  | sdma_rht_params); | 
|  | if (!rht_node) | 
|  | return; | 
|  |  | 
|  | seq_printf(s, "cpu%3lu: ", cpuid); | 
|  | for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) { | 
|  | if (!rht_node->map[i] || !rht_node->map[i]->ctr) | 
|  | continue; | 
|  |  | 
|  | seq_printf(s, " vl%d: [", i); | 
|  |  | 
|  | for (j = 0; j < rht_node->map[i]->ctr; j++) { | 
|  | if (!rht_node->map[i]->sde[j]) | 
|  | continue; | 
|  |  | 
|  | if (j > 0) | 
|  | seq_puts(s, ","); | 
|  |  | 
|  | seq_printf(s, " sdma%2d", | 
|  | rht_node->map[i]->sde[j]->this_idx); | 
|  | } | 
|  | seq_puts(s, " ]"); | 
|  | } | 
|  |  | 
|  | seq_puts(s, "\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the indicated map struct | 
|  | */ | 
|  | static void sdma_map_free(struct sdma_vl_map *m) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; m && i < m->actual_vls; i++) | 
|  | kfree(m->map[i]); | 
|  | kfree(m); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle RCU callback | 
|  | */ | 
|  | static void sdma_map_rcu_callback(struct rcu_head *list) | 
|  | { | 
|  | struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list); | 
|  |  | 
|  | sdma_map_free(m); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_map_init - called when # vls change | 
|  | * @dd: hfi1_devdata | 
|  | * @port: port number | 
|  | * @num_vls: number of vls | 
|  | * @vl_engines: per vl engine mapping (optional) | 
|  | * | 
|  | * This routine changes the mapping based on the number of vls. | 
|  | * | 
|  | * vl_engines is used to specify a non-uniform vl/engine loading. NULL | 
|  | * implies auto computing the loading and giving each VLs a uniform | 
|  | * distribution of engines per VL. | 
|  | * | 
|  | * The auto algorithm computes the sde_per_vl and the number of extra | 
|  | * engines.  Any extra engines are added from the last VL on down. | 
|  | * | 
|  | * rcu locking is used here to control access to the mapping fields. | 
|  | * | 
|  | * If either the num_vls or num_sdma are non-power of 2, the array sizes | 
|  | * in the struct sdma_vl_map and the struct sdma_map_elem are rounded | 
|  | * up to the next highest power of 2 and the first entry is reused | 
|  | * in a round robin fashion. | 
|  | * | 
|  | * If an error occurs the map change is not done and the mapping is | 
|  | * not changed. | 
|  | * | 
|  | */ | 
|  | int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines) | 
|  | { | 
|  | int i, j; | 
|  | int extra, sde_per_vl; | 
|  | int engine = 0; | 
|  | u8 lvl_engines[OPA_MAX_VLS]; | 
|  | struct sdma_vl_map *oldmap, *newmap; | 
|  |  | 
|  | if (!(dd->flags & HFI1_HAS_SEND_DMA)) | 
|  | return 0; | 
|  |  | 
|  | if (!vl_engines) { | 
|  | /* truncate divide */ | 
|  | sde_per_vl = dd->num_sdma / num_vls; | 
|  | /* extras */ | 
|  | extra = dd->num_sdma % num_vls; | 
|  | vl_engines = lvl_engines; | 
|  | /* add extras from last vl down */ | 
|  | for (i = num_vls - 1; i >= 0; i--, extra--) | 
|  | vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0); | 
|  | } | 
|  | /* build new map */ | 
|  | newmap = kzalloc( | 
|  | sizeof(struct sdma_vl_map) + | 
|  | roundup_pow_of_two(num_vls) * | 
|  | sizeof(struct sdma_map_elem *), | 
|  | GFP_KERNEL); | 
|  | if (!newmap) | 
|  | goto bail; | 
|  | newmap->actual_vls = num_vls; | 
|  | newmap->vls = roundup_pow_of_two(num_vls); | 
|  | newmap->mask = (1 << ilog2(newmap->vls)) - 1; | 
|  | /* initialize back-map */ | 
|  | for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++) | 
|  | newmap->engine_to_vl[i] = -1; | 
|  | for (i = 0; i < newmap->vls; i++) { | 
|  | /* save for wrap around */ | 
|  | int first_engine = engine; | 
|  |  | 
|  | if (i < newmap->actual_vls) { | 
|  | int sz = roundup_pow_of_two(vl_engines[i]); | 
|  |  | 
|  | /* only allocate once */ | 
|  | newmap->map[i] = kzalloc( | 
|  | sizeof(struct sdma_map_elem) + | 
|  | sz * sizeof(struct sdma_engine *), | 
|  | GFP_KERNEL); | 
|  | if (!newmap->map[i]) | 
|  | goto bail; | 
|  | newmap->map[i]->mask = (1 << ilog2(sz)) - 1; | 
|  | /* assign engines */ | 
|  | for (j = 0; j < sz; j++) { | 
|  | newmap->map[i]->sde[j] = | 
|  | &dd->per_sdma[engine]; | 
|  | if (++engine >= first_engine + vl_engines[i]) | 
|  | /* wrap back to first engine */ | 
|  | engine = first_engine; | 
|  | } | 
|  | /* assign back-map */ | 
|  | for (j = 0; j < vl_engines[i]; j++) | 
|  | newmap->engine_to_vl[first_engine + j] = i; | 
|  | } else { | 
|  | /* just re-use entry without allocating */ | 
|  | newmap->map[i] = newmap->map[i % num_vls]; | 
|  | } | 
|  | engine = first_engine + vl_engines[i]; | 
|  | } | 
|  | /* newmap in hand, save old map */ | 
|  | spin_lock_irq(&dd->sde_map_lock); | 
|  | oldmap = rcu_dereference_protected(dd->sdma_map, | 
|  | lockdep_is_held(&dd->sde_map_lock)); | 
|  |  | 
|  | /* publish newmap */ | 
|  | rcu_assign_pointer(dd->sdma_map, newmap); | 
|  |  | 
|  | spin_unlock_irq(&dd->sde_map_lock); | 
|  | /* success, free any old map after grace period */ | 
|  | if (oldmap) | 
|  | call_rcu(&oldmap->list, sdma_map_rcu_callback); | 
|  | return 0; | 
|  | bail: | 
|  | /* free any partial allocation */ | 
|  | sdma_map_free(newmap); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up allocated memory. | 
|  | * | 
|  | * This routine is can be called regardless of the success of sdma_init() | 
|  | * | 
|  | */ | 
|  | static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines) | 
|  | { | 
|  | size_t i; | 
|  | struct sdma_engine *sde; | 
|  |  | 
|  | if (dd->sdma_pad_dma) { | 
|  | dma_free_coherent(&dd->pcidev->dev, 4, | 
|  | (void *)dd->sdma_pad_dma, | 
|  | dd->sdma_pad_phys); | 
|  | dd->sdma_pad_dma = NULL; | 
|  | dd->sdma_pad_phys = 0; | 
|  | } | 
|  | if (dd->sdma_heads_dma) { | 
|  | dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size, | 
|  | (void *)dd->sdma_heads_dma, | 
|  | dd->sdma_heads_phys); | 
|  | dd->sdma_heads_dma = NULL; | 
|  | dd->sdma_heads_phys = 0; | 
|  | } | 
|  | for (i = 0; dd->per_sdma && i < num_engines; ++i) { | 
|  | sde = &dd->per_sdma[i]; | 
|  |  | 
|  | sde->head_dma = NULL; | 
|  | sde->head_phys = 0; | 
|  |  | 
|  | if (sde->descq) { | 
|  | dma_free_coherent( | 
|  | &dd->pcidev->dev, | 
|  | sde->descq_cnt * sizeof(u64[2]), | 
|  | sde->descq, | 
|  | sde->descq_phys | 
|  | ); | 
|  | sde->descq = NULL; | 
|  | sde->descq_phys = 0; | 
|  | } | 
|  | kvfree(sde->tx_ring); | 
|  | sde->tx_ring = NULL; | 
|  | } | 
|  | spin_lock_irq(&dd->sde_map_lock); | 
|  | sdma_map_free(rcu_access_pointer(dd->sdma_map)); | 
|  | RCU_INIT_POINTER(dd->sdma_map, NULL); | 
|  | spin_unlock_irq(&dd->sde_map_lock); | 
|  | synchronize_rcu(); | 
|  | kfree(dd->per_sdma); | 
|  | dd->per_sdma = NULL; | 
|  |  | 
|  | if (dd->sdma_rht) { | 
|  | rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL); | 
|  | kfree(dd->sdma_rht); | 
|  | dd->sdma_rht = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_init() - called when device probed | 
|  | * @dd: hfi1_devdata | 
|  | * @port: port number (currently only zero) | 
|  | * | 
|  | * Initializes each sde and its csrs. | 
|  | * Interrupts are not required to be enabled. | 
|  | * | 
|  | * Returns: | 
|  | * 0 - success, -errno on failure | 
|  | */ | 
|  | int sdma_init(struct hfi1_devdata *dd, u8 port) | 
|  | { | 
|  | unsigned this_idx; | 
|  | struct sdma_engine *sde; | 
|  | struct rhashtable *tmp_sdma_rht; | 
|  | u16 descq_cnt; | 
|  | void *curr_head; | 
|  | struct hfi1_pportdata *ppd = dd->pport + port; | 
|  | u32 per_sdma_credits; | 
|  | uint idle_cnt = sdma_idle_cnt; | 
|  | size_t num_engines = dd->chip_sdma_engines; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | if (!HFI1_CAP_IS_KSET(SDMA)) { | 
|  | HFI1_CAP_CLEAR(SDMA_AHG); | 
|  | return 0; | 
|  | } | 
|  | if (mod_num_sdma && | 
|  | /* can't exceed chip support */ | 
|  | mod_num_sdma <= dd->chip_sdma_engines && | 
|  | /* count must be >= vls */ | 
|  | mod_num_sdma >= num_vls) | 
|  | num_engines = mod_num_sdma; | 
|  |  | 
|  | dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma); | 
|  | dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines); | 
|  | dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n", | 
|  | dd->chip_sdma_mem_size); | 
|  |  | 
|  | per_sdma_credits = | 
|  | dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE); | 
|  |  | 
|  | /* set up freeze waitqueue */ | 
|  | init_waitqueue_head(&dd->sdma_unfreeze_wq); | 
|  | atomic_set(&dd->sdma_unfreeze_count, 0); | 
|  |  | 
|  | descq_cnt = sdma_get_descq_cnt(); | 
|  | dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n", | 
|  | num_engines, descq_cnt); | 
|  |  | 
|  | /* alloc memory for array of send engines */ | 
|  | dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL); | 
|  | if (!dd->per_sdma) | 
|  | return ret; | 
|  |  | 
|  | idle_cnt = ns_to_cclock(dd, idle_cnt); | 
|  | if (!sdma_desct_intr) | 
|  | sdma_desct_intr = SDMA_DESC_INTR; | 
|  |  | 
|  | /* Allocate memory for SendDMA descriptor FIFOs */ | 
|  | for (this_idx = 0; this_idx < num_engines; ++this_idx) { | 
|  | sde = &dd->per_sdma[this_idx]; | 
|  | sde->dd = dd; | 
|  | sde->ppd = ppd; | 
|  | sde->this_idx = this_idx; | 
|  | sde->descq_cnt = descq_cnt; | 
|  | sde->desc_avail = sdma_descq_freecnt(sde); | 
|  | sde->sdma_shift = ilog2(descq_cnt); | 
|  | sde->sdma_mask = (1 << sde->sdma_shift) - 1; | 
|  |  | 
|  | /* Create a mask specifically for each interrupt source */ | 
|  | sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES + | 
|  | this_idx); | 
|  | sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES + | 
|  | this_idx); | 
|  | sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES + | 
|  | this_idx); | 
|  | /* Create a combined mask to cover all 3 interrupt sources */ | 
|  | sde->imask = sde->int_mask | sde->progress_mask | | 
|  | sde->idle_mask; | 
|  |  | 
|  | spin_lock_init(&sde->tail_lock); | 
|  | seqlock_init(&sde->head_lock); | 
|  | spin_lock_init(&sde->senddmactrl_lock); | 
|  | spin_lock_init(&sde->flushlist_lock); | 
|  | /* insure there is always a zero bit */ | 
|  | sde->ahg_bits = 0xfffffffe00000000ULL; | 
|  |  | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  |  | 
|  | /* set up reference counting */ | 
|  | kref_init(&sde->state.kref); | 
|  | init_completion(&sde->state.comp); | 
|  |  | 
|  | INIT_LIST_HEAD(&sde->flushlist); | 
|  | INIT_LIST_HEAD(&sde->dmawait); | 
|  |  | 
|  | sde->tail_csr = | 
|  | get_kctxt_csr_addr(dd, this_idx, SD(TAIL)); | 
|  |  | 
|  | if (idle_cnt) | 
|  | dd->default_desc1 = | 
|  | SDMA_DESC1_HEAD_TO_HOST_FLAG; | 
|  | else | 
|  | dd->default_desc1 = | 
|  | SDMA_DESC1_INT_REQ_FLAG; | 
|  |  | 
|  | tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task, | 
|  | (unsigned long)sde); | 
|  |  | 
|  | tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task, | 
|  | (unsigned long)sde); | 
|  | INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait); | 
|  | INIT_WORK(&sde->flush_worker, sdma_field_flush); | 
|  |  | 
|  | sde->progress_check_head = 0; | 
|  |  | 
|  | setup_timer(&sde->err_progress_check_timer, | 
|  | sdma_err_progress_check, (unsigned long)sde); | 
|  |  | 
|  | sde->descq = dma_zalloc_coherent( | 
|  | &dd->pcidev->dev, | 
|  | descq_cnt * sizeof(u64[2]), | 
|  | &sde->descq_phys, | 
|  | GFP_KERNEL | 
|  | ); | 
|  | if (!sde->descq) | 
|  | goto bail; | 
|  | sde->tx_ring = | 
|  | kcalloc(descq_cnt, sizeof(struct sdma_txreq *), | 
|  | GFP_KERNEL); | 
|  | if (!sde->tx_ring) | 
|  | sde->tx_ring = | 
|  | vzalloc( | 
|  | sizeof(struct sdma_txreq *) * | 
|  | descq_cnt); | 
|  | if (!sde->tx_ring) | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | dd->sdma_heads_size = L1_CACHE_BYTES * num_engines; | 
|  | /* Allocate memory for DMA of head registers to memory */ | 
|  | dd->sdma_heads_dma = dma_zalloc_coherent( | 
|  | &dd->pcidev->dev, | 
|  | dd->sdma_heads_size, | 
|  | &dd->sdma_heads_phys, | 
|  | GFP_KERNEL | 
|  | ); | 
|  | if (!dd->sdma_heads_dma) { | 
|  | dd_dev_err(dd, "failed to allocate SendDMA head memory\n"); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | /* Allocate memory for pad */ | 
|  | dd->sdma_pad_dma = dma_zalloc_coherent( | 
|  | &dd->pcidev->dev, | 
|  | sizeof(u32), | 
|  | &dd->sdma_pad_phys, | 
|  | GFP_KERNEL | 
|  | ); | 
|  | if (!dd->sdma_pad_dma) { | 
|  | dd_dev_err(dd, "failed to allocate SendDMA pad memory\n"); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | /* assign each engine to different cacheline and init registers */ | 
|  | curr_head = (void *)dd->sdma_heads_dma; | 
|  | for (this_idx = 0; this_idx < num_engines; ++this_idx) { | 
|  | unsigned long phys_offset; | 
|  |  | 
|  | sde = &dd->per_sdma[this_idx]; | 
|  |  | 
|  | sde->head_dma = curr_head; | 
|  | curr_head += L1_CACHE_BYTES; | 
|  | phys_offset = (unsigned long)sde->head_dma - | 
|  | (unsigned long)dd->sdma_heads_dma; | 
|  | sde->head_phys = dd->sdma_heads_phys + phys_offset; | 
|  | init_sdma_regs(sde, per_sdma_credits, idle_cnt); | 
|  | } | 
|  | dd->flags |= HFI1_HAS_SEND_DMA; | 
|  | dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0; | 
|  | dd->num_sdma = num_engines; | 
|  | ret = sdma_map_init(dd, port, ppd->vls_operational, NULL); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  |  | 
|  | tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL); | 
|  | if (!tmp_sdma_rht) { | 
|  | ret = -ENOMEM; | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  | dd->sdma_rht = tmp_sdma_rht; | 
|  |  | 
|  | dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma); | 
|  | return 0; | 
|  |  | 
|  | bail: | 
|  | sdma_clean(dd, num_engines); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_all_running() - called when the link goes up | 
|  | * @dd: hfi1_devdata | 
|  | * | 
|  | * This routine moves all engines to the running state. | 
|  | */ | 
|  | void sdma_all_running(struct hfi1_devdata *dd) | 
|  | { | 
|  | struct sdma_engine *sde; | 
|  | unsigned int i; | 
|  |  | 
|  | /* move all engines to running */ | 
|  | for (i = 0; i < dd->num_sdma; ++i) { | 
|  | sde = &dd->per_sdma[i]; | 
|  | sdma_process_event(sde, sdma_event_e30_go_running); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_all_idle() - called when the link goes down | 
|  | * @dd: hfi1_devdata | 
|  | * | 
|  | * This routine moves all engines to the idle state. | 
|  | */ | 
|  | void sdma_all_idle(struct hfi1_devdata *dd) | 
|  | { | 
|  | struct sdma_engine *sde; | 
|  | unsigned int i; | 
|  |  | 
|  | /* idle all engines */ | 
|  | for (i = 0; i < dd->num_sdma; ++i) { | 
|  | sde = &dd->per_sdma[i]; | 
|  | sdma_process_event(sde, sdma_event_e70_go_idle); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_start() - called to kick off state processing for all engines | 
|  | * @dd: hfi1_devdata | 
|  | * | 
|  | * This routine is for kicking off the state processing for all required | 
|  | * sdma engines.  Interrupts need to be working at this point. | 
|  | * | 
|  | */ | 
|  | void sdma_start(struct hfi1_devdata *dd) | 
|  | { | 
|  | unsigned i; | 
|  | struct sdma_engine *sde; | 
|  |  | 
|  | /* kick off the engines state processing */ | 
|  | for (i = 0; i < dd->num_sdma; ++i) { | 
|  | sde = &dd->per_sdma[i]; | 
|  | sdma_process_event(sde, sdma_event_e10_go_hw_start); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_exit() - used when module is removed | 
|  | * @dd: hfi1_devdata | 
|  | */ | 
|  | void sdma_exit(struct hfi1_devdata *dd) | 
|  | { | 
|  | unsigned this_idx; | 
|  | struct sdma_engine *sde; | 
|  |  | 
|  | for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma; | 
|  | ++this_idx) { | 
|  | sde = &dd->per_sdma[this_idx]; | 
|  | if (!list_empty(&sde->dmawait)) | 
|  | dd_dev_err(dd, "sde %u: dmawait list not empty!\n", | 
|  | sde->this_idx); | 
|  | sdma_process_event(sde, sdma_event_e00_go_hw_down); | 
|  |  | 
|  | del_timer_sync(&sde->err_progress_check_timer); | 
|  |  | 
|  | /* | 
|  | * This waits for the state machine to exit so it is not | 
|  | * necessary to kill the sdma_sw_clean_up_task to make sure | 
|  | * it is not running. | 
|  | */ | 
|  | sdma_finalput(&sde->state); | 
|  | } | 
|  | sdma_clean(dd, dd->num_sdma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unmap the indicated descriptor | 
|  | */ | 
|  | static inline void sdma_unmap_desc( | 
|  | struct hfi1_devdata *dd, | 
|  | struct sdma_desc *descp) | 
|  | { | 
|  | switch (sdma_mapping_type(descp)) { | 
|  | case SDMA_MAP_SINGLE: | 
|  | dma_unmap_single( | 
|  | &dd->pcidev->dev, | 
|  | sdma_mapping_addr(descp), | 
|  | sdma_mapping_len(descp), | 
|  | DMA_TO_DEVICE); | 
|  | break; | 
|  | case SDMA_MAP_PAGE: | 
|  | dma_unmap_page( | 
|  | &dd->pcidev->dev, | 
|  | sdma_mapping_addr(descp), | 
|  | sdma_mapping_len(descp), | 
|  | DMA_TO_DEVICE); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return the mode as indicated by the first | 
|  | * descriptor in the tx. | 
|  | */ | 
|  | static inline u8 ahg_mode(struct sdma_txreq *tx) | 
|  | { | 
|  | return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK) | 
|  | >> SDMA_DESC1_HEADER_MODE_SHIFT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __sdma_txclean() - clean tx of mappings, descp *kmalloc's | 
|  | * @dd: hfi1_devdata for unmapping | 
|  | * @tx: tx request to clean | 
|  | * | 
|  | * This is used in the progress routine to clean the tx or | 
|  | * by the ULP to toss an in-process tx build. | 
|  | * | 
|  | * The code can be called multiple times without issue. | 
|  | * | 
|  | */ | 
|  | void __sdma_txclean( | 
|  | struct hfi1_devdata *dd, | 
|  | struct sdma_txreq *tx) | 
|  | { | 
|  | u16 i; | 
|  |  | 
|  | if (tx->num_desc) { | 
|  | u8 skip = 0, mode = ahg_mode(tx); | 
|  |  | 
|  | /* unmap first */ | 
|  | sdma_unmap_desc(dd, &tx->descp[0]); | 
|  | /* determine number of AHG descriptors to skip */ | 
|  | if (mode > SDMA_AHG_APPLY_UPDATE1) | 
|  | skip = mode >> 1; | 
|  | for (i = 1 + skip; i < tx->num_desc; i++) | 
|  | sdma_unmap_desc(dd, &tx->descp[i]); | 
|  | tx->num_desc = 0; | 
|  | } | 
|  | kfree(tx->coalesce_buf); | 
|  | tx->coalesce_buf = NULL; | 
|  | /* kmalloc'ed descp */ | 
|  | if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) { | 
|  | tx->desc_limit = ARRAY_SIZE(tx->descs); | 
|  | kfree(tx->descp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline u16 sdma_gethead(struct sdma_engine *sde) | 
|  | { | 
|  | struct hfi1_devdata *dd = sde->dd; | 
|  | int use_dmahead; | 
|  | u16 hwhead; | 
|  |  | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", | 
|  | sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); | 
|  | #endif | 
|  |  | 
|  | retry: | 
|  | use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) && | 
|  | (dd->flags & HFI1_HAS_SDMA_TIMEOUT); | 
|  | hwhead = use_dmahead ? | 
|  | (u16)le64_to_cpu(*sde->head_dma) : | 
|  | (u16)read_sde_csr(sde, SD(HEAD)); | 
|  |  | 
|  | if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) { | 
|  | u16 cnt; | 
|  | u16 swtail; | 
|  | u16 swhead; | 
|  | int sane; | 
|  |  | 
|  | swhead = sde->descq_head & sde->sdma_mask; | 
|  | /* this code is really bad for cache line trading */ | 
|  | swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask; | 
|  | cnt = sde->descq_cnt; | 
|  |  | 
|  | if (swhead < swtail) | 
|  | /* not wrapped */ | 
|  | sane = (hwhead >= swhead) & (hwhead <= swtail); | 
|  | else if (swhead > swtail) | 
|  | /* wrapped around */ | 
|  | sane = ((hwhead >= swhead) && (hwhead < cnt)) || | 
|  | (hwhead <= swtail); | 
|  | else | 
|  | /* empty */ | 
|  | sane = (hwhead == swhead); | 
|  |  | 
|  | if (unlikely(!sane)) { | 
|  | dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n", | 
|  | sde->this_idx, | 
|  | use_dmahead ? "dma" : "kreg", | 
|  | hwhead, swhead, swtail, cnt); | 
|  | if (use_dmahead) { | 
|  | /* try one more time, using csr */ | 
|  | use_dmahead = 0; | 
|  | goto retry; | 
|  | } | 
|  | /* proceed as if no progress */ | 
|  | hwhead = swhead; | 
|  | } | 
|  | } | 
|  | return hwhead; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when there are send DMA descriptors that might be | 
|  | * available. | 
|  | * | 
|  | * This is called with head_lock held. | 
|  | */ | 
|  | static void sdma_desc_avail(struct sdma_engine *sde, uint avail) | 
|  | { | 
|  | struct iowait *wait, *nw; | 
|  | struct iowait *waits[SDMA_WAIT_BATCH_SIZE]; | 
|  | uint i, n = 0, seq, max_idx = 0; | 
|  | struct sdma_txreq *stx; | 
|  | struct hfi1_ibdev *dev = &sde->dd->verbs_dev; | 
|  | u8 max_starved_cnt = 0; | 
|  |  | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, | 
|  | slashstrip(__FILE__), __LINE__, __func__); | 
|  | dd_dev_err(sde->dd, "avail: %u\n", avail); | 
|  | #endif | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&dev->iowait_lock); | 
|  | if (!list_empty(&sde->dmawait)) { | 
|  | /* at least one item */ | 
|  | write_seqlock(&dev->iowait_lock); | 
|  | /* Harvest waiters wanting DMA descriptors */ | 
|  | list_for_each_entry_safe( | 
|  | wait, | 
|  | nw, | 
|  | &sde->dmawait, | 
|  | list) { | 
|  | u16 num_desc = 0; | 
|  |  | 
|  | if (!wait->wakeup) | 
|  | continue; | 
|  | if (n == ARRAY_SIZE(waits)) | 
|  | break; | 
|  | if (!list_empty(&wait->tx_head)) { | 
|  | stx = list_first_entry( | 
|  | &wait->tx_head, | 
|  | struct sdma_txreq, | 
|  | list); | 
|  | num_desc = stx->num_desc; | 
|  | } | 
|  | if (num_desc > avail) | 
|  | break; | 
|  | avail -= num_desc; | 
|  | /* Find the most starved wait memeber */ | 
|  | iowait_starve_find_max(wait, &max_starved_cnt, | 
|  | n, &max_idx); | 
|  | list_del_init(&wait->list); | 
|  | waits[n++] = wait; | 
|  | } | 
|  | write_sequnlock(&dev->iowait_lock); | 
|  | break; | 
|  | } | 
|  | } while (read_seqretry(&dev->iowait_lock, seq)); | 
|  |  | 
|  | /* Schedule the most starved one first */ | 
|  | if (n) | 
|  | waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON); | 
|  |  | 
|  | for (i = 0; i < n; i++) | 
|  | if (i != max_idx) | 
|  | waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON); | 
|  | } | 
|  |  | 
|  | /* head_lock must be held */ | 
|  | static void sdma_make_progress(struct sdma_engine *sde, u64 status) | 
|  | { | 
|  | struct sdma_txreq *txp = NULL; | 
|  | int progress = 0; | 
|  | u16 hwhead, swhead; | 
|  | int idle_check_done = 0; | 
|  |  | 
|  | hwhead = sdma_gethead(sde); | 
|  |  | 
|  | /* The reason for some of the complexity of this code is that | 
|  | * not all descriptors have corresponding txps.  So, we have to | 
|  | * be able to skip over descs until we wander into the range of | 
|  | * the next txp on the list. | 
|  | */ | 
|  |  | 
|  | retry: | 
|  | txp = get_txhead(sde); | 
|  | swhead = sde->descq_head & sde->sdma_mask; | 
|  | trace_hfi1_sdma_progress(sde, hwhead, swhead, txp); | 
|  | while (swhead != hwhead) { | 
|  | /* advance head, wrap if needed */ | 
|  | swhead = ++sde->descq_head & sde->sdma_mask; | 
|  |  | 
|  | /* if now past this txp's descs, do the callback */ | 
|  | if (txp && txp->next_descq_idx == swhead) { | 
|  | /* remove from list */ | 
|  | sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL; | 
|  | complete_tx(sde, txp, SDMA_TXREQ_S_OK); | 
|  | /* see if there is another txp */ | 
|  | txp = get_txhead(sde); | 
|  | } | 
|  | trace_hfi1_sdma_progress(sde, hwhead, swhead, txp); | 
|  | progress++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The SDMA idle interrupt is not guaranteed to be ordered with respect | 
|  | * to updates to the the dma_head location in host memory. The head | 
|  | * value read might not be fully up to date. If there are pending | 
|  | * descriptors and the SDMA idle interrupt fired then read from the | 
|  | * CSR SDMA head instead to get the latest value from the hardware. | 
|  | * The hardware SDMA head should be read at most once in this invocation | 
|  | * of sdma_make_progress(..) which is ensured by idle_check_done flag | 
|  | */ | 
|  | if ((status & sde->idle_mask) && !idle_check_done) { | 
|  | u16 swtail; | 
|  |  | 
|  | swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask; | 
|  | if (swtail != hwhead) { | 
|  | hwhead = (u16)read_sde_csr(sde, SD(HEAD)); | 
|  | idle_check_done = 1; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | sde->last_status = status; | 
|  | if (progress) | 
|  | sdma_desc_avail(sde, sdma_descq_freecnt(sde)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sdma_engine_interrupt() - interrupt handler for engine | 
|  | * @sde: sdma engine | 
|  | * @status: sdma interrupt reason | 
|  | * | 
|  | * Status is a mask of the 3 possible interrupts for this engine.  It will | 
|  | * contain bits _only_ for this SDMA engine.  It will contain at least one | 
|  | * bit, it may contain more. | 
|  | */ | 
|  | void sdma_engine_interrupt(struct sdma_engine *sde, u64 status) | 
|  | { | 
|  | trace_hfi1_sdma_engine_interrupt(sde, status); | 
|  | write_seqlock(&sde->head_lock); | 
|  | sdma_set_desc_cnt(sde, sdma_desct_intr); | 
|  | if (status & sde->idle_mask) | 
|  | sde->idle_int_cnt++; | 
|  | else if (status & sde->progress_mask) | 
|  | sde->progress_int_cnt++; | 
|  | else if (status & sde->int_mask) | 
|  | sde->sdma_int_cnt++; | 
|  | sdma_make_progress(sde, status); | 
|  | write_sequnlock(&sde->head_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_engine_error() - error handler for engine | 
|  | * @sde: sdma engine | 
|  | * @status: sdma interrupt reason | 
|  | */ | 
|  | void sdma_engine_error(struct sdma_engine *sde, u64 status) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n", | 
|  | sde->this_idx, | 
|  | (unsigned long long)status, | 
|  | sdma_state_names[sde->state.current_state]); | 
|  | #endif | 
|  | spin_lock_irqsave(&sde->tail_lock, flags); | 
|  | write_seqlock(&sde->head_lock); | 
|  | if (status & ALL_SDMA_ENG_HALT_ERRS) | 
|  | __sdma_process_event(sde, sdma_event_e60_hw_halted); | 
|  | if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) { | 
|  | dd_dev_err(sde->dd, | 
|  | "SDMA (%u) engine error: 0x%llx state %s\n", | 
|  | sde->this_idx, | 
|  | (unsigned long long)status, | 
|  | sdma_state_names[sde->state.current_state]); | 
|  | dump_sdma_state(sde); | 
|  | } | 
|  | write_sequnlock(&sde->head_lock); | 
|  | spin_unlock_irqrestore(&sde->tail_lock, flags); | 
|  | } | 
|  |  | 
|  | static void sdma_sendctrl(struct sdma_engine *sde, unsigned op) | 
|  | { | 
|  | u64 set_senddmactrl = 0; | 
|  | u64 clr_senddmactrl = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n", | 
|  | sde->this_idx, | 
|  | (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0, | 
|  | (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0, | 
|  | (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0, | 
|  | (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0); | 
|  | #endif | 
|  |  | 
|  | if (op & SDMA_SENDCTRL_OP_ENABLE) | 
|  | set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK); | 
|  | else | 
|  | clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK); | 
|  |  | 
|  | if (op & SDMA_SENDCTRL_OP_INTENABLE) | 
|  | set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK); | 
|  | else | 
|  | clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK); | 
|  |  | 
|  | if (op & SDMA_SENDCTRL_OP_HALT) | 
|  | set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK); | 
|  | else | 
|  | clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK); | 
|  |  | 
|  | spin_lock_irqsave(&sde->senddmactrl_lock, flags); | 
|  |  | 
|  | sde->p_senddmactrl |= set_senddmactrl; | 
|  | sde->p_senddmactrl &= ~clr_senddmactrl; | 
|  |  | 
|  | if (op & SDMA_SENDCTRL_OP_CLEANUP) | 
|  | write_sde_csr(sde, SD(CTRL), | 
|  | sde->p_senddmactrl | | 
|  | SD(CTRL_SDMA_CLEANUP_SMASK)); | 
|  | else | 
|  | write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl); | 
|  |  | 
|  | spin_unlock_irqrestore(&sde->senddmactrl_lock, flags); | 
|  |  | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | sdma_dumpstate(sde); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void sdma_setlengen(struct sdma_engine *sde) | 
|  | { | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", | 
|  | sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Set SendDmaLenGen and clear-then-set the MSB of the generation | 
|  | * count to enable generation checking and load the internal | 
|  | * generation counter. | 
|  | */ | 
|  | write_sde_csr(sde, SD(LEN_GEN), | 
|  | (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)); | 
|  | write_sde_csr(sde, SD(LEN_GEN), | 
|  | ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) | | 
|  | (4ULL << SD(LEN_GEN_GENERATION_SHIFT))); | 
|  | } | 
|  |  | 
|  | static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail) | 
|  | { | 
|  | /* Commit writes to memory and advance the tail on the chip */ | 
|  | smp_wmb(); /* see get_txhead() */ | 
|  | writeq(tail, sde->tail_csr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when changing to state s10_hw_start_up_halt_wait as | 
|  | * a result of send buffer errors or send DMA descriptor errors. | 
|  | */ | 
|  | static void sdma_hw_start_up(struct sdma_engine *sde) | 
|  | { | 
|  | u64 reg; | 
|  |  | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", | 
|  | sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); | 
|  | #endif | 
|  |  | 
|  | sdma_setlengen(sde); | 
|  | sdma_update_tail(sde, 0); /* Set SendDmaTail */ | 
|  | *sde->head_dma = 0; | 
|  |  | 
|  | reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) << | 
|  | SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT); | 
|  | write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set_sdma_integrity | 
|  | * | 
|  | * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'. | 
|  | */ | 
|  | static void set_sdma_integrity(struct sdma_engine *sde) | 
|  | { | 
|  | struct hfi1_devdata *dd = sde->dd; | 
|  |  | 
|  | write_sde_csr(sde, SD(CHECK_ENABLE), | 
|  | hfi1_pkt_base_sdma_integrity(dd)); | 
|  | } | 
|  |  | 
|  | static void init_sdma_regs( | 
|  | struct sdma_engine *sde, | 
|  | u32 credits, | 
|  | uint idle_cnt) | 
|  | { | 
|  | u8 opval, opmask; | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | struct hfi1_devdata *dd = sde->dd; | 
|  |  | 
|  | dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", | 
|  | sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); | 
|  | #endif | 
|  |  | 
|  | write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys); | 
|  | sdma_setlengen(sde); | 
|  | sdma_update_tail(sde, 0); /* Set SendDmaTail */ | 
|  | write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt); | 
|  | write_sde_csr(sde, SD(DESC_CNT), 0); | 
|  | write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys); | 
|  | write_sde_csr(sde, SD(MEMORY), | 
|  | ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) | | 
|  | ((u64)(credits * sde->this_idx) << | 
|  | SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT))); | 
|  | write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull); | 
|  | set_sdma_integrity(sde); | 
|  | opmask = OPCODE_CHECK_MASK_DISABLED; | 
|  | opval = OPCODE_CHECK_VAL_DISABLED; | 
|  | write_sde_csr(sde, SD(CHECK_OPCODE), | 
|  | (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) | | 
|  | (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  |  | 
|  | #define sdma_dumpstate_helper0(reg) do { \ | 
|  | csr = read_csr(sde->dd, reg); \ | 
|  | dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \ | 
|  | } while (0) | 
|  |  | 
|  | #define sdma_dumpstate_helper(reg) do { \ | 
|  | csr = read_sde_csr(sde, reg); \ | 
|  | dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \ | 
|  | #reg, sde->this_idx, csr); \ | 
|  | } while (0) | 
|  |  | 
|  | #define sdma_dumpstate_helper2(reg) do { \ | 
|  | csr = read_csr(sde->dd, reg + (8 * i)); \ | 
|  | dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \ | 
|  | #reg, i, csr); \ | 
|  | } while (0) | 
|  |  | 
|  | void sdma_dumpstate(struct sdma_engine *sde) | 
|  | { | 
|  | u64 csr; | 
|  | unsigned i; | 
|  |  | 
|  | sdma_dumpstate_helper(SD(CTRL)); | 
|  | sdma_dumpstate_helper(SD(STATUS)); | 
|  | sdma_dumpstate_helper0(SD(ERR_STATUS)); | 
|  | sdma_dumpstate_helper0(SD(ERR_MASK)); | 
|  | sdma_dumpstate_helper(SD(ENG_ERR_STATUS)); | 
|  | sdma_dumpstate_helper(SD(ENG_ERR_MASK)); | 
|  |  | 
|  | for (i = 0; i < CCE_NUM_INT_CSRS; ++i) { | 
|  | sdma_dumpstate_helper2(CCE_INT_STATUS); | 
|  | sdma_dumpstate_helper2(CCE_INT_MASK); | 
|  | sdma_dumpstate_helper2(CCE_INT_BLOCKED); | 
|  | } | 
|  |  | 
|  | sdma_dumpstate_helper(SD(TAIL)); | 
|  | sdma_dumpstate_helper(SD(HEAD)); | 
|  | sdma_dumpstate_helper(SD(PRIORITY_THLD)); | 
|  | sdma_dumpstate_helper(SD(IDLE_CNT)); | 
|  | sdma_dumpstate_helper(SD(RELOAD_CNT)); | 
|  | sdma_dumpstate_helper(SD(DESC_CNT)); | 
|  | sdma_dumpstate_helper(SD(DESC_FETCHED_CNT)); | 
|  | sdma_dumpstate_helper(SD(MEMORY)); | 
|  | sdma_dumpstate_helper0(SD(ENGINES)); | 
|  | sdma_dumpstate_helper0(SD(MEM_SIZE)); | 
|  | /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */ | 
|  | sdma_dumpstate_helper(SD(BASE_ADDR)); | 
|  | sdma_dumpstate_helper(SD(LEN_GEN)); | 
|  | sdma_dumpstate_helper(SD(HEAD_ADDR)); | 
|  | sdma_dumpstate_helper(SD(CHECK_ENABLE)); | 
|  | sdma_dumpstate_helper(SD(CHECK_VL)); | 
|  | sdma_dumpstate_helper(SD(CHECK_JOB_KEY)); | 
|  | sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY)); | 
|  | sdma_dumpstate_helper(SD(CHECK_SLID)); | 
|  | sdma_dumpstate_helper(SD(CHECK_OPCODE)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void dump_sdma_state(struct sdma_engine *sde) | 
|  | { | 
|  | struct hw_sdma_desc *descq; | 
|  | struct hw_sdma_desc *descqp; | 
|  | u64 desc[2]; | 
|  | u64 addr; | 
|  | u8 gen; | 
|  | u16 len; | 
|  | u16 head, tail, cnt; | 
|  |  | 
|  | head = sde->descq_head & sde->sdma_mask; | 
|  | tail = sde->descq_tail & sde->sdma_mask; | 
|  | cnt = sdma_descq_freecnt(sde); | 
|  | descq = sde->descq; | 
|  |  | 
|  | dd_dev_err(sde->dd, | 
|  | "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n", | 
|  | sde->this_idx, head, tail, cnt, | 
|  | !list_empty(&sde->flushlist)); | 
|  |  | 
|  | /* print info for each entry in the descriptor queue */ | 
|  | while (head != tail) { | 
|  | char flags[6] = { 'x', 'x', 'x', 'x', 0 }; | 
|  |  | 
|  | descqp = &sde->descq[head]; | 
|  | desc[0] = le64_to_cpu(descqp->qw[0]); | 
|  | desc[1] = le64_to_cpu(descqp->qw[1]); | 
|  | flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-'; | 
|  | flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ? | 
|  | 'H' : '-'; | 
|  | flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-'; | 
|  | flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-'; | 
|  | addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT) | 
|  | & SDMA_DESC0_PHY_ADDR_MASK; | 
|  | gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT) | 
|  | & SDMA_DESC1_GENERATION_MASK; | 
|  | len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT) | 
|  | & SDMA_DESC0_BYTE_COUNT_MASK; | 
|  | dd_dev_err(sde->dd, | 
|  | "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n", | 
|  | head, flags, addr, gen, len); | 
|  | dd_dev_err(sde->dd, | 
|  | "\tdesc0:0x%016llx desc1 0x%016llx\n", | 
|  | desc[0], desc[1]); | 
|  | if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) | 
|  | dd_dev_err(sde->dd, | 
|  | "\taidx: %u amode: %u alen: %u\n", | 
|  | (u8)((desc[1] & | 
|  | SDMA_DESC1_HEADER_INDEX_SMASK) >> | 
|  | SDMA_DESC1_HEADER_INDEX_SHIFT), | 
|  | (u8)((desc[1] & | 
|  | SDMA_DESC1_HEADER_MODE_SMASK) >> | 
|  | SDMA_DESC1_HEADER_MODE_SHIFT), | 
|  | (u8)((desc[1] & | 
|  | SDMA_DESC1_HEADER_DWS_SMASK) >> | 
|  | SDMA_DESC1_HEADER_DWS_SHIFT)); | 
|  | head++; | 
|  | head &= sde->sdma_mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define SDE_FMT \ | 
|  | "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n" | 
|  | /** | 
|  | * sdma_seqfile_dump_sde() - debugfs dump of sde | 
|  | * @s: seq file | 
|  | * @sde: send dma engine to dump | 
|  | * | 
|  | * This routine dumps the sde to the indicated seq file. | 
|  | */ | 
|  | void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde) | 
|  | { | 
|  | u16 head, tail; | 
|  | struct hw_sdma_desc *descqp; | 
|  | u64 desc[2]; | 
|  | u64 addr; | 
|  | u8 gen; | 
|  | u16 len; | 
|  |  | 
|  | head = sde->descq_head & sde->sdma_mask; | 
|  | tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask; | 
|  | seq_printf(s, SDE_FMT, sde->this_idx, | 
|  | sde->cpu, | 
|  | sdma_state_name(sde->state.current_state), | 
|  | (unsigned long long)read_sde_csr(sde, SD(CTRL)), | 
|  | (unsigned long long)read_sde_csr(sde, SD(STATUS)), | 
|  | (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)), | 
|  | (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail, | 
|  | (unsigned long long)read_sde_csr(sde, SD(HEAD)), head, | 
|  | (unsigned long long)le64_to_cpu(*sde->head_dma), | 
|  | (unsigned long long)read_sde_csr(sde, SD(MEMORY)), | 
|  | (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)), | 
|  | (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)), | 
|  | (unsigned long long)sde->last_status, | 
|  | (unsigned long long)sde->ahg_bits, | 
|  | sde->tx_tail, | 
|  | sde->tx_head, | 
|  | sde->descq_tail, | 
|  | sde->descq_head, | 
|  | !list_empty(&sde->flushlist), | 
|  | sde->descq_full_count, | 
|  | (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID)); | 
|  |  | 
|  | /* print info for each entry in the descriptor queue */ | 
|  | while (head != tail) { | 
|  | char flags[6] = { 'x', 'x', 'x', 'x', 0 }; | 
|  |  | 
|  | descqp = &sde->descq[head]; | 
|  | desc[0] = le64_to_cpu(descqp->qw[0]); | 
|  | desc[1] = le64_to_cpu(descqp->qw[1]); | 
|  | flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-'; | 
|  | flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ? | 
|  | 'H' : '-'; | 
|  | flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-'; | 
|  | flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-'; | 
|  | addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT) | 
|  | & SDMA_DESC0_PHY_ADDR_MASK; | 
|  | gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT) | 
|  | & SDMA_DESC1_GENERATION_MASK; | 
|  | len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT) | 
|  | & SDMA_DESC0_BYTE_COUNT_MASK; | 
|  | seq_printf(s, | 
|  | "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n", | 
|  | head, flags, addr, gen, len); | 
|  | if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) | 
|  | seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n", | 
|  | (u8)((desc[1] & | 
|  | SDMA_DESC1_HEADER_INDEX_SMASK) >> | 
|  | SDMA_DESC1_HEADER_INDEX_SHIFT), | 
|  | (u8)((desc[1] & | 
|  | SDMA_DESC1_HEADER_MODE_SMASK) >> | 
|  | SDMA_DESC1_HEADER_MODE_SHIFT)); | 
|  | head = (head + 1) & sde->sdma_mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add the generation number into | 
|  | * the qw1 and return | 
|  | */ | 
|  | static inline u64 add_gen(struct sdma_engine *sde, u64 qw1) | 
|  | { | 
|  | u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3; | 
|  |  | 
|  | qw1 &= ~SDMA_DESC1_GENERATION_SMASK; | 
|  | qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK) | 
|  | << SDMA_DESC1_GENERATION_SHIFT; | 
|  | return qw1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine submits the indicated tx | 
|  | * | 
|  | * Space has already been guaranteed and | 
|  | * tail side of ring is locked. | 
|  | * | 
|  | * The hardware tail update is done | 
|  | * in the caller and that is facilitated | 
|  | * by returning the new tail. | 
|  | * | 
|  | * There is special case logic for ahg | 
|  | * to not add the generation number for | 
|  | * up to 2 descriptors that follow the | 
|  | * first descriptor. | 
|  | * | 
|  | */ | 
|  | static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx) | 
|  | { | 
|  | int i; | 
|  | u16 tail; | 
|  | struct sdma_desc *descp = tx->descp; | 
|  | u8 skip = 0, mode = ahg_mode(tx); | 
|  |  | 
|  | tail = sde->descq_tail & sde->sdma_mask; | 
|  | sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]); | 
|  | sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1])); | 
|  | trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1], | 
|  | tail, &sde->descq[tail]); | 
|  | tail = ++sde->descq_tail & sde->sdma_mask; | 
|  | descp++; | 
|  | if (mode > SDMA_AHG_APPLY_UPDATE1) | 
|  | skip = mode >> 1; | 
|  | for (i = 1; i < tx->num_desc; i++, descp++) { | 
|  | u64 qw1; | 
|  |  | 
|  | sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]); | 
|  | if (skip) { | 
|  | /* edits don't have generation */ | 
|  | qw1 = descp->qw[1]; | 
|  | skip--; | 
|  | } else { | 
|  | /* replace generation with real one for non-edits */ | 
|  | qw1 = add_gen(sde, descp->qw[1]); | 
|  | } | 
|  | sde->descq[tail].qw[1] = cpu_to_le64(qw1); | 
|  | trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1, | 
|  | tail, &sde->descq[tail]); | 
|  | tail = ++sde->descq_tail & sde->sdma_mask; | 
|  | } | 
|  | tx->next_descq_idx = tail; | 
|  | #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER | 
|  | tx->sn = sde->tail_sn++; | 
|  | trace_hfi1_sdma_in_sn(sde, tx->sn); | 
|  | WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]); | 
|  | #endif | 
|  | sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx; | 
|  | sde->desc_avail -= tx->num_desc; | 
|  | return tail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for progress | 
|  | */ | 
|  | static int sdma_check_progress( | 
|  | struct sdma_engine *sde, | 
|  | struct iowait *wait, | 
|  | struct sdma_txreq *tx, | 
|  | bool pkts_sent) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | sde->desc_avail = sdma_descq_freecnt(sde); | 
|  | if (tx->num_desc <= sde->desc_avail) | 
|  | return -EAGAIN; | 
|  | /* pulse the head_lock */ | 
|  | if (wait && wait->sleep) { | 
|  | unsigned seq; | 
|  |  | 
|  | seq = raw_seqcount_begin( | 
|  | (const seqcount_t *)&sde->head_lock.seqcount); | 
|  | ret = wait->sleep(sde, wait, tx, seq, pkts_sent); | 
|  | if (ret == -EAGAIN) | 
|  | sde->desc_avail = sdma_descq_freecnt(sde); | 
|  | } else { | 
|  | ret = -EBUSY; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_send_txreq() - submit a tx req to ring | 
|  | * @sde: sdma engine to use | 
|  | * @wait: wait structure to use when full (may be NULL) | 
|  | * @tx: sdma_txreq to submit | 
|  | * @pkts_sent: has any packet been sent yet? | 
|  | * | 
|  | * The call submits the tx into the ring.  If a iowait structure is non-NULL | 
|  | * the packet will be queued to the list in wait. | 
|  | * | 
|  | * Return: | 
|  | * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in | 
|  | * ring (wait == NULL) | 
|  | * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state | 
|  | */ | 
|  | int sdma_send_txreq(struct sdma_engine *sde, | 
|  | struct iowait *wait, | 
|  | struct sdma_txreq *tx, | 
|  | bool pkts_sent) | 
|  | { | 
|  | int ret = 0; | 
|  | u16 tail; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* user should have supplied entire packet */ | 
|  | if (unlikely(tx->tlen)) | 
|  | return -EINVAL; | 
|  | tx->wait = wait; | 
|  | spin_lock_irqsave(&sde->tail_lock, flags); | 
|  | retry: | 
|  | if (unlikely(!__sdma_running(sde))) | 
|  | goto unlock_noconn; | 
|  | if (unlikely(tx->num_desc > sde->desc_avail)) | 
|  | goto nodesc; | 
|  | tail = submit_tx(sde, tx); | 
|  | if (wait) | 
|  | iowait_sdma_inc(wait); | 
|  | sdma_update_tail(sde, tail); | 
|  | unlock: | 
|  | spin_unlock_irqrestore(&sde->tail_lock, flags); | 
|  | return ret; | 
|  | unlock_noconn: | 
|  | if (wait) | 
|  | iowait_sdma_inc(wait); | 
|  | tx->next_descq_idx = 0; | 
|  | #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER | 
|  | tx->sn = sde->tail_sn++; | 
|  | trace_hfi1_sdma_in_sn(sde, tx->sn); | 
|  | #endif | 
|  | spin_lock(&sde->flushlist_lock); | 
|  | list_add_tail(&tx->list, &sde->flushlist); | 
|  | spin_unlock(&sde->flushlist_lock); | 
|  | if (wait) { | 
|  | wait->tx_count++; | 
|  | wait->count += tx->num_desc; | 
|  | } | 
|  | schedule_work(&sde->flush_worker); | 
|  | ret = -ECOMM; | 
|  | goto unlock; | 
|  | nodesc: | 
|  | ret = sdma_check_progress(sde, wait, tx, pkts_sent); | 
|  | if (ret == -EAGAIN) { | 
|  | ret = 0; | 
|  | goto retry; | 
|  | } | 
|  | sde->descq_full_count++; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_send_txlist() - submit a list of tx req to ring | 
|  | * @sde: sdma engine to use | 
|  | * @wait: wait structure to use when full (may be NULL) | 
|  | * @tx_list: list of sdma_txreqs to submit | 
|  | * @count: pointer to a u32 which, after return will contain the total number of | 
|  | *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs | 
|  | *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs | 
|  | *         which are added to SDMA engine flush list if the SDMA engine state is | 
|  | *         not running. | 
|  | * | 
|  | * The call submits the list into the ring. | 
|  | * | 
|  | * If the iowait structure is non-NULL and not equal to the iowait list | 
|  | * the unprocessed part of the list  will be appended to the list in wait. | 
|  | * | 
|  | * In all cases, the tx_list will be updated so the head of the tx_list is | 
|  | * the list of descriptors that have yet to be transmitted. | 
|  | * | 
|  | * The intent of this call is to provide a more efficient | 
|  | * way of submitting multiple packets to SDMA while holding the tail | 
|  | * side locking. | 
|  | * | 
|  | * Return: | 
|  | * 0 - Success, | 
|  | * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL) | 
|  | * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state | 
|  | */ | 
|  | int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait, | 
|  | struct list_head *tx_list, u32 *count_out) | 
|  | { | 
|  | struct sdma_txreq *tx, *tx_next; | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  | u16 tail = INVALID_TAIL; | 
|  | u32 submit_count = 0, flush_count = 0, total_count; | 
|  |  | 
|  | spin_lock_irqsave(&sde->tail_lock, flags); | 
|  | retry: | 
|  | list_for_each_entry_safe(tx, tx_next, tx_list, list) { | 
|  | tx->wait = wait; | 
|  | if (unlikely(!__sdma_running(sde))) | 
|  | goto unlock_noconn; | 
|  | if (unlikely(tx->num_desc > sde->desc_avail)) | 
|  | goto nodesc; | 
|  | if (unlikely(tx->tlen)) { | 
|  | ret = -EINVAL; | 
|  | goto update_tail; | 
|  | } | 
|  | list_del_init(&tx->list); | 
|  | tail = submit_tx(sde, tx); | 
|  | submit_count++; | 
|  | if (tail != INVALID_TAIL && | 
|  | (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) { | 
|  | sdma_update_tail(sde, tail); | 
|  | tail = INVALID_TAIL; | 
|  | } | 
|  | } | 
|  | update_tail: | 
|  | total_count = submit_count + flush_count; | 
|  | if (wait) { | 
|  | iowait_sdma_add(wait, total_count); | 
|  | iowait_starve_clear(submit_count > 0, wait); | 
|  | } | 
|  | if (tail != INVALID_TAIL) | 
|  | sdma_update_tail(sde, tail); | 
|  | spin_unlock_irqrestore(&sde->tail_lock, flags); | 
|  | *count_out = total_count; | 
|  | return ret; | 
|  | unlock_noconn: | 
|  | spin_lock(&sde->flushlist_lock); | 
|  | list_for_each_entry_safe(tx, tx_next, tx_list, list) { | 
|  | tx->wait = wait; | 
|  | list_del_init(&tx->list); | 
|  | tx->next_descq_idx = 0; | 
|  | #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER | 
|  | tx->sn = sde->tail_sn++; | 
|  | trace_hfi1_sdma_in_sn(sde, tx->sn); | 
|  | #endif | 
|  | list_add_tail(&tx->list, &sde->flushlist); | 
|  | flush_count++; | 
|  | if (wait) { | 
|  | wait->tx_count++; | 
|  | wait->count += tx->num_desc; | 
|  | } | 
|  | } | 
|  | spin_unlock(&sde->flushlist_lock); | 
|  | schedule_work(&sde->flush_worker); | 
|  | ret = -ECOMM; | 
|  | goto update_tail; | 
|  | nodesc: | 
|  | ret = sdma_check_progress(sde, wait, tx, submit_count > 0); | 
|  | if (ret == -EAGAIN) { | 
|  | ret = 0; | 
|  | goto retry; | 
|  | } | 
|  | sde->descq_full_count++; | 
|  | goto update_tail; | 
|  | } | 
|  |  | 
|  | static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&sde->tail_lock, flags); | 
|  | write_seqlock(&sde->head_lock); | 
|  |  | 
|  | __sdma_process_event(sde, event); | 
|  |  | 
|  | if (sde->state.current_state == sdma_state_s99_running) | 
|  | sdma_desc_avail(sde, sdma_descq_freecnt(sde)); | 
|  |  | 
|  | write_sequnlock(&sde->head_lock); | 
|  | spin_unlock_irqrestore(&sde->tail_lock, flags); | 
|  | } | 
|  |  | 
|  | static void __sdma_process_event(struct sdma_engine *sde, | 
|  | enum sdma_events event) | 
|  | { | 
|  | struct sdma_state *ss = &sde->state; | 
|  | int need_progress = 0; | 
|  |  | 
|  | /* CONFIG SDMA temporary */ | 
|  | #ifdef CONFIG_SDMA_VERBOSITY | 
|  | dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx, | 
|  | sdma_state_names[ss->current_state], | 
|  | sdma_event_names[event]); | 
|  | #endif | 
|  |  | 
|  | switch (ss->current_state) { | 
|  | case sdma_state_s00_hw_down: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | /* | 
|  | * If down, but running requested (usually result | 
|  | * of link up, then we need to start up. | 
|  | * This can happen when hw down is requested while | 
|  | * bringing the link up with traffic active on | 
|  | * 7220, e.g. | 
|  | */ | 
|  | ss->go_s99_running = 1; | 
|  | /* fall through and start dma engine */ | 
|  | case sdma_event_e10_go_hw_start: | 
|  | /* This reference means the state machine is started */ | 
|  | sdma_get(&sde->state); | 
|  | sdma_set_state(sde, | 
|  | sdma_state_s10_hw_start_up_halt_wait); | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | sdma_sw_tear_down(sde); | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | break; | 
|  | case sdma_event_e80_hw_freeze: | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | break; | 
|  | case sdma_event_e90_sw_halted: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case sdma_state_s10_hw_start_up_halt_wait: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  | sdma_sw_tear_down(sde); | 
|  | break; | 
|  | case sdma_event_e10_go_hw_start: | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | sdma_set_state(sde, | 
|  | sdma_state_s15_hw_start_up_clean_wait); | 
|  | sdma_start_hw_clean_up(sde); | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | ss->go_s99_running = 1; | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | schedule_work(&sde->err_halt_worker); | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e80_hw_freeze: | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | break; | 
|  | case sdma_event_e90_sw_halted: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case sdma_state_s15_hw_start_up_clean_wait: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  | sdma_sw_tear_down(sde); | 
|  | break; | 
|  | case sdma_event_e10_go_hw_start: | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | sdma_hw_start_up(sde); | 
|  | sdma_set_state(sde, ss->go_s99_running ? | 
|  | sdma_state_s99_running : | 
|  | sdma_state_s20_idle); | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | ss->go_s99_running = 1; | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e80_hw_freeze: | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | break; | 
|  | case sdma_event_e90_sw_halted: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case sdma_state_s20_idle: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  | sdma_sw_tear_down(sde); | 
|  | break; | 
|  | case sdma_event_e10_go_hw_start: | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | sdma_set_state(sde, sdma_state_s99_running); | 
|  | ss->go_s99_running = 1; | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | sdma_set_state(sde, sdma_state_s50_hw_halt_wait); | 
|  | schedule_work(&sde->err_halt_worker); | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | /* fall through */ | 
|  | case sdma_event_e80_hw_freeze: | 
|  | sdma_set_state(sde, sdma_state_s80_hw_freeze); | 
|  | atomic_dec(&sde->dd->sdma_unfreeze_count); | 
|  | wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | break; | 
|  | case sdma_event_e90_sw_halted: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case sdma_state_s30_sw_clean_up_wait: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  | break; | 
|  | case sdma_event_e10_go_hw_start: | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | ss->go_s99_running = 1; | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait); | 
|  | sdma_start_hw_clean_up(sde); | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e80_hw_freeze: | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e90_sw_halted: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case sdma_state_s40_hw_clean_up_wait: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  | tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); | 
|  | break; | 
|  | case sdma_event_e10_go_hw_start: | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | sdma_hw_start_up(sde); | 
|  | sdma_set_state(sde, ss->go_s99_running ? | 
|  | sdma_state_s99_running : | 
|  | sdma_state_s20_idle); | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | ss->go_s99_running = 1; | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e80_hw_freeze: | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e90_sw_halted: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case sdma_state_s50_hw_halt_wait: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  | tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); | 
|  | break; | 
|  | case sdma_event_e10_go_hw_start: | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait); | 
|  | tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | ss->go_s99_running = 1; | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | schedule_work(&sde->err_halt_worker); | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e80_hw_freeze: | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e90_sw_halted: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case sdma_state_s60_idle_halt_wait: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  | tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); | 
|  | break; | 
|  | case sdma_event_e10_go_hw_start: | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait); | 
|  | tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | ss->go_s99_running = 1; | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | schedule_work(&sde->err_halt_worker); | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e80_hw_freeze: | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | break; | 
|  | case sdma_event_e90_sw_halted: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case sdma_state_s80_hw_freeze: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  | tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); | 
|  | break; | 
|  | case sdma_event_e10_go_hw_start: | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | ss->go_s99_running = 1; | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e80_hw_freeze: | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | sdma_set_state(sde, sdma_state_s82_freeze_sw_clean); | 
|  | tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | break; | 
|  | case sdma_event_e90_sw_halted: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case sdma_state_s82_freeze_sw_clean: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  | tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); | 
|  | break; | 
|  | case sdma_event_e10_go_hw_start: | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | ss->go_s99_running = 1; | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | /* notify caller this engine is done cleaning */ | 
|  | atomic_dec(&sde->dd->sdma_unfreeze_count); | 
|  | wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | ss->go_s99_running = 0; | 
|  | break; | 
|  | case sdma_event_e80_hw_freeze: | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | sdma_hw_start_up(sde); | 
|  | sdma_set_state(sde, ss->go_s99_running ? | 
|  | sdma_state_s99_running : | 
|  | sdma_state_s20_idle); | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | break; | 
|  | case sdma_event_e90_sw_halted: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case sdma_state_s99_running: | 
|  | switch (event) { | 
|  | case sdma_event_e00_go_hw_down: | 
|  | sdma_set_state(sde, sdma_state_s00_hw_down); | 
|  | tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); | 
|  | break; | 
|  | case sdma_event_e10_go_hw_start: | 
|  | break; | 
|  | case sdma_event_e15_hw_halt_done: | 
|  | break; | 
|  | case sdma_event_e25_hw_clean_up_done: | 
|  | break; | 
|  | case sdma_event_e30_go_running: | 
|  | break; | 
|  | case sdma_event_e40_sw_cleaned: | 
|  | break; | 
|  | case sdma_event_e50_hw_cleaned: | 
|  | break; | 
|  | case sdma_event_e60_hw_halted: | 
|  | need_progress = 1; | 
|  | sdma_err_progress_check_schedule(sde); | 
|  | case sdma_event_e90_sw_halted: | 
|  | /* | 
|  | * SW initiated halt does not perform engines | 
|  | * progress check | 
|  | */ | 
|  | sdma_set_state(sde, sdma_state_s50_hw_halt_wait); | 
|  | schedule_work(&sde->err_halt_worker); | 
|  | break; | 
|  | case sdma_event_e70_go_idle: | 
|  | sdma_set_state(sde, sdma_state_s60_idle_halt_wait); | 
|  | break; | 
|  | case sdma_event_e85_link_down: | 
|  | ss->go_s99_running = 0; | 
|  | /* fall through */ | 
|  | case sdma_event_e80_hw_freeze: | 
|  | sdma_set_state(sde, sdma_state_s80_hw_freeze); | 
|  | atomic_dec(&sde->dd->sdma_unfreeze_count); | 
|  | wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); | 
|  | break; | 
|  | case sdma_event_e81_hw_frozen: | 
|  | break; | 
|  | case sdma_event_e82_hw_unfreeze: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | ss->last_event = event; | 
|  | if (need_progress) | 
|  | sdma_make_progress(sde, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * _extend_sdma_tx_descs() - helper to extend txreq | 
|  | * | 
|  | * This is called once the initial nominal allocation | 
|  | * of descriptors in the sdma_txreq is exhausted. | 
|  | * | 
|  | * The code will bump the allocation up to the max | 
|  | * of MAX_DESC (64) descriptors. There doesn't seem | 
|  | * much point in an interim step. The last descriptor | 
|  | * is reserved for coalesce buffer in order to support | 
|  | * cases where input packet has >MAX_DESC iovecs. | 
|  | * | 
|  | */ | 
|  | static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Handle last descriptor */ | 
|  | if (unlikely((tx->num_desc == (MAX_DESC - 1)))) { | 
|  | /* if tlen is 0, it is for padding, release last descriptor */ | 
|  | if (!tx->tlen) { | 
|  | tx->desc_limit = MAX_DESC; | 
|  | } else if (!tx->coalesce_buf) { | 
|  | /* allocate coalesce buffer with space for padding */ | 
|  | tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32), | 
|  | GFP_ATOMIC); | 
|  | if (!tx->coalesce_buf) | 
|  | goto enomem; | 
|  | tx->coalesce_idx = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(tx->num_desc == MAX_DESC)) | 
|  | goto enomem; | 
|  |  | 
|  | tx->descp = kmalloc_array( | 
|  | MAX_DESC, | 
|  | sizeof(struct sdma_desc), | 
|  | GFP_ATOMIC); | 
|  | if (!tx->descp) | 
|  | goto enomem; | 
|  |  | 
|  | /* reserve last descriptor for coalescing */ | 
|  | tx->desc_limit = MAX_DESC - 1; | 
|  | /* copy ones already built */ | 
|  | for (i = 0; i < tx->num_desc; i++) | 
|  | tx->descp[i] = tx->descs[i]; | 
|  | return 0; | 
|  | enomem: | 
|  | __sdma_txclean(dd, tx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors | 
|  | * | 
|  | * This is called once the initial nominal allocation of descriptors | 
|  | * in the sdma_txreq is exhausted. | 
|  | * | 
|  | * This function calls _extend_sdma_tx_descs to extend or allocate | 
|  | * coalesce buffer. If there is a allocated coalesce buffer, it will | 
|  | * copy the input packet data into the coalesce buffer. It also adds | 
|  | * coalesce buffer descriptor once when whole packet is received. | 
|  | * | 
|  | * Return: | 
|  | * <0 - error | 
|  | * 0 - coalescing, don't populate descriptor | 
|  | * 1 - continue with populating descriptor | 
|  | */ | 
|  | int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx, | 
|  | int type, void *kvaddr, struct page *page, | 
|  | unsigned long offset, u16 len) | 
|  | { | 
|  | int pad_len, rval; | 
|  | dma_addr_t addr; | 
|  |  | 
|  | rval = _extend_sdma_tx_descs(dd, tx); | 
|  | if (rval) { | 
|  | __sdma_txclean(dd, tx); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | /* If coalesce buffer is allocated, copy data into it */ | 
|  | if (tx->coalesce_buf) { | 
|  | if (type == SDMA_MAP_NONE) { | 
|  | __sdma_txclean(dd, tx); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (type == SDMA_MAP_PAGE) { | 
|  | kvaddr = kmap(page); | 
|  | kvaddr += offset; | 
|  | } else if (WARN_ON(!kvaddr)) { | 
|  | __sdma_txclean(dd, tx); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len); | 
|  | tx->coalesce_idx += len; | 
|  | if (type == SDMA_MAP_PAGE) | 
|  | kunmap(page); | 
|  |  | 
|  | /* If there is more data, return */ | 
|  | if (tx->tlen - tx->coalesce_idx) | 
|  | return 0; | 
|  |  | 
|  | /* Whole packet is received; add any padding */ | 
|  | pad_len = tx->packet_len & (sizeof(u32) - 1); | 
|  | if (pad_len) { | 
|  | pad_len = sizeof(u32) - pad_len; | 
|  | memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len); | 
|  | /* padding is taken care of for coalescing case */ | 
|  | tx->packet_len += pad_len; | 
|  | tx->tlen += pad_len; | 
|  | } | 
|  |  | 
|  | /* dma map the coalesce buffer */ | 
|  | addr = dma_map_single(&dd->pcidev->dev, | 
|  | tx->coalesce_buf, | 
|  | tx->tlen, | 
|  | DMA_TO_DEVICE); | 
|  |  | 
|  | if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) { | 
|  | __sdma_txclean(dd, tx); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* Add descriptor for coalesce buffer */ | 
|  | tx->desc_limit = MAX_DESC; | 
|  | return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx, | 
|  | addr, tx->tlen); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Update sdes when the lmc changes */ | 
|  | void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid) | 
|  | { | 
|  | struct sdma_engine *sde; | 
|  | int i; | 
|  | u64 sreg; | 
|  |  | 
|  | sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) << | 
|  | SD(CHECK_SLID_MASK_SHIFT)) | | 
|  | (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) << | 
|  | SD(CHECK_SLID_VALUE_SHIFT)); | 
|  |  | 
|  | for (i = 0; i < dd->num_sdma; i++) { | 
|  | hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x", | 
|  | i, (u32)sreg); | 
|  | sde = &dd->per_sdma[i]; | 
|  | write_sde_csr(sde, SD(CHECK_SLID), sreg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* tx not dword sized - pad */ | 
|  | int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx) | 
|  | { | 
|  | int rval = 0; | 
|  |  | 
|  | tx->num_desc++; | 
|  | if ((unlikely(tx->num_desc == tx->desc_limit))) { | 
|  | rval = _extend_sdma_tx_descs(dd, tx); | 
|  | if (rval) { | 
|  | __sdma_txclean(dd, tx); | 
|  | return rval; | 
|  | } | 
|  | } | 
|  | /* finish the one just added */ | 
|  | make_tx_sdma_desc( | 
|  | tx, | 
|  | SDMA_MAP_NONE, | 
|  | dd->sdma_pad_phys, | 
|  | sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1))); | 
|  | _sdma_close_tx(dd, tx); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add ahg to the sdma_txreq | 
|  | * | 
|  | * The logic will consume up to 3 | 
|  | * descriptors at the beginning of | 
|  | * sdma_txreq. | 
|  | */ | 
|  | void _sdma_txreq_ahgadd( | 
|  | struct sdma_txreq *tx, | 
|  | u8 num_ahg, | 
|  | u8 ahg_entry, | 
|  | u32 *ahg, | 
|  | u8 ahg_hlen) | 
|  | { | 
|  | u32 i, shift = 0, desc = 0; | 
|  | u8 mode; | 
|  |  | 
|  | WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4); | 
|  | /* compute mode */ | 
|  | if (num_ahg == 1) | 
|  | mode = SDMA_AHG_APPLY_UPDATE1; | 
|  | else if (num_ahg <= 5) | 
|  | mode = SDMA_AHG_APPLY_UPDATE2; | 
|  | else | 
|  | mode = SDMA_AHG_APPLY_UPDATE3; | 
|  | tx->num_desc++; | 
|  | /* initialize to consumed descriptors to zero */ | 
|  | switch (mode) { | 
|  | case SDMA_AHG_APPLY_UPDATE3: | 
|  | tx->num_desc++; | 
|  | tx->descs[2].qw[0] = 0; | 
|  | tx->descs[2].qw[1] = 0; | 
|  | /* FALLTHROUGH */ | 
|  | case SDMA_AHG_APPLY_UPDATE2: | 
|  | tx->num_desc++; | 
|  | tx->descs[1].qw[0] = 0; | 
|  | tx->descs[1].qw[1] = 0; | 
|  | break; | 
|  | } | 
|  | ahg_hlen >>= 2; | 
|  | tx->descs[0].qw[1] |= | 
|  | (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK) | 
|  | << SDMA_DESC1_HEADER_INDEX_SHIFT) | | 
|  | (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK) | 
|  | << SDMA_DESC1_HEADER_DWS_SHIFT) | | 
|  | (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK) | 
|  | << SDMA_DESC1_HEADER_MODE_SHIFT) | | 
|  | (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK) | 
|  | << SDMA_DESC1_HEADER_UPDATE1_SHIFT); | 
|  | for (i = 0; i < (num_ahg - 1); i++) { | 
|  | if (!shift && !(i & 2)) | 
|  | desc++; | 
|  | tx->descs[desc].qw[!!(i & 2)] |= | 
|  | (((u64)ahg[i + 1]) | 
|  | << shift); | 
|  | shift = (shift + 32) & 63; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_ahg_alloc - allocate an AHG entry | 
|  | * @sde: engine to allocate from | 
|  | * | 
|  | * Return: | 
|  | * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled, | 
|  | * -ENOSPC if an entry is not available | 
|  | */ | 
|  | int sdma_ahg_alloc(struct sdma_engine *sde) | 
|  | { | 
|  | int nr; | 
|  | int oldbit; | 
|  |  | 
|  | if (!sde) { | 
|  | trace_hfi1_ahg_allocate(sde, -EINVAL); | 
|  | return -EINVAL; | 
|  | } | 
|  | while (1) { | 
|  | nr = ffz(ACCESS_ONCE(sde->ahg_bits)); | 
|  | if (nr > 31) { | 
|  | trace_hfi1_ahg_allocate(sde, -ENOSPC); | 
|  | return -ENOSPC; | 
|  | } | 
|  | oldbit = test_and_set_bit(nr, &sde->ahg_bits); | 
|  | if (!oldbit) | 
|  | break; | 
|  | cpu_relax(); | 
|  | } | 
|  | trace_hfi1_ahg_allocate(sde, nr); | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sdma_ahg_free - free an AHG entry | 
|  | * @sde: engine to return AHG entry | 
|  | * @ahg_index: index to free | 
|  | * | 
|  | * This routine frees the indicate AHG entry. | 
|  | */ | 
|  | void sdma_ahg_free(struct sdma_engine *sde, int ahg_index) | 
|  | { | 
|  | if (!sde) | 
|  | return; | 
|  | trace_hfi1_ahg_deallocate(sde, ahg_index); | 
|  | if (ahg_index < 0 || ahg_index > 31) | 
|  | return; | 
|  | clear_bit(ahg_index, &sde->ahg_bits); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SPC freeze handling for SDMA engines.  Called when the driver knows | 
|  | * the SPC is going into a freeze but before the freeze is fully | 
|  | * settled.  Generally an error interrupt. | 
|  | * | 
|  | * This event will pull the engine out of running so no more entries can be | 
|  | * added to the engine's queue. | 
|  | */ | 
|  | void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down) | 
|  | { | 
|  | int i; | 
|  | enum sdma_events event = link_down ? sdma_event_e85_link_down : | 
|  | sdma_event_e80_hw_freeze; | 
|  |  | 
|  | /* set up the wait but do not wait here */ | 
|  | atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma); | 
|  |  | 
|  | /* tell all engines to stop running and wait */ | 
|  | for (i = 0; i < dd->num_sdma; i++) | 
|  | sdma_process_event(&dd->per_sdma[i], event); | 
|  |  | 
|  | /* sdma_freeze() will wait for all engines to have stopped */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SPC freeze handling for SDMA engines.  Called when the driver knows | 
|  | * the SPC is fully frozen. | 
|  | */ | 
|  | void sdma_freeze(struct hfi1_devdata *dd) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Make sure all engines have moved out of the running state before | 
|  | * continuing. | 
|  | */ | 
|  | ret = wait_event_interruptible(dd->sdma_unfreeze_wq, | 
|  | atomic_read(&dd->sdma_unfreeze_count) <= | 
|  | 0); | 
|  | /* interrupted or count is negative, then unloading - just exit */ | 
|  | if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0) | 
|  | return; | 
|  |  | 
|  | /* set up the count for the next wait */ | 
|  | atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma); | 
|  |  | 
|  | /* tell all engines that the SPC is frozen, they can start cleaning */ | 
|  | for (i = 0; i < dd->num_sdma; i++) | 
|  | sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen); | 
|  |  | 
|  | /* | 
|  | * Wait for everyone to finish software clean before exiting.  The | 
|  | * software clean will read engine CSRs, so must be completed before | 
|  | * the next step, which will clear the engine CSRs. | 
|  | */ | 
|  | (void)wait_event_interruptible(dd->sdma_unfreeze_wq, | 
|  | atomic_read(&dd->sdma_unfreeze_count) <= 0); | 
|  | /* no need to check results - done no matter what */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen. | 
|  | * | 
|  | * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All | 
|  | * that is left is a software clean.  We could do it after the SPC is fully | 
|  | * frozen, but then we'd have to add another state to wait for the unfreeze. | 
|  | * Instead, just defer the software clean until the unfreeze step. | 
|  | */ | 
|  | void sdma_unfreeze(struct hfi1_devdata *dd) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* tell all engines start freeze clean up */ | 
|  | for (i = 0; i < dd->num_sdma; i++) | 
|  | sdma_process_event(&dd->per_sdma[i], | 
|  | sdma_event_e82_hw_unfreeze); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _sdma_engine_progress_schedule() - schedule progress on engine | 
|  | * @sde: sdma_engine to schedule progress | 
|  | * | 
|  | */ | 
|  | void _sdma_engine_progress_schedule( | 
|  | struct sdma_engine *sde) | 
|  | { | 
|  | trace_hfi1_sdma_engine_progress(sde, sde->progress_mask); | 
|  | /* assume we have selected a good cpu */ | 
|  | write_csr(sde->dd, | 
|  | CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)), | 
|  | sde->progress_mask); | 
|  | } |