| menuconfig MTD |
| tristate "Memory Technology Device (MTD) support" |
| imply NVMEM |
| help |
| Memory Technology Devices are flash, RAM and similar chips, often |
| used for solid state file systems on embedded devices. This option |
| will provide the generic support for MTD drivers to register |
| themselves with the kernel and for potential users of MTD devices |
| to enumerate the devices which are present and obtain a handle on |
| them. It will also allow you to select individual drivers for |
| particular hardware and users of MTD devices. If unsure, say N. |
| |
| if MTD |
| |
| config MTD_TESTS |
| tristate "MTD tests support (DANGEROUS)" |
| depends on m |
| help |
| This option includes various MTD tests into compilation. The tests |
| should normally be compiled as kernel modules. The modules perform |
| various checks and verifications when loaded. |
| |
| WARNING: some of the tests will ERASE entire MTD device which they |
| test. Do not use these tests unless you really know what you do. |
| |
| menu "Partition parsers" |
| source "drivers/mtd/parsers/Kconfig" |
| endmenu |
| |
| comment "User Modules And Translation Layers" |
| |
| # |
| # MTD block device support is select'ed if needed |
| # |
| config MTD_BLKDEVS |
| tristate |
| |
| config MTD_BLOCK |
| tristate "Caching block device access to MTD devices" |
| depends on BLOCK |
| select MTD_BLKDEVS |
| help |
| Although most flash chips have an erase size too large to be useful |
| as block devices, it is possible to use MTD devices which are based |
| on RAM chips in this manner. This block device is a user of MTD |
| devices performing that function. |
| |
| At the moment, it is also required for the Journalling Flash File |
| System(s) to obtain a handle on the MTD device when it's mounted |
| (although JFFS and JFFS2 don't actually use any of the functionality |
| of the mtdblock device). |
| |
| Later, it may be extended to perform read/erase/modify/write cycles |
| on flash chips to emulate a smaller block size. Needless to say, |
| this is very unsafe, but could be useful for file systems which are |
| almost never written to. |
| |
| You do not need this option for use with the DiskOnChip devices. For |
| those, enable NFTL support (CONFIG_NFTL) instead. |
| |
| config MTD_BLOCK_RO |
| tristate "Readonly block device access to MTD devices" |
| depends on MTD_BLOCK!=y && BLOCK |
| select MTD_BLKDEVS |
| help |
| This allows you to mount read-only file systems (such as cramfs) |
| from an MTD device, without the overhead (and danger) of the caching |
| driver. |
| |
| You do not need this option for use with the DiskOnChip devices. For |
| those, enable NFTL support (CONFIG_NFTL) instead. |
| |
| config FTL |
| tristate "FTL (Flash Translation Layer) support" |
| depends on BLOCK |
| select MTD_BLKDEVS |
| help |
| This provides support for the original Flash Translation Layer which |
| is part of the PCMCIA specification. It uses a kind of pseudo- |
| file system on a flash device to emulate a block device with |
| 512-byte sectors, on top of which you put a 'normal' file system. |
| |
| You may find that the algorithms used in this code are patented |
| unless you live in the Free World where software patents aren't |
| legal - in the USA you are only permitted to use this on PCMCIA |
| hardware, although under the terms of the GPL you're obviously |
| permitted to copy, modify and distribute the code as you wish. Just |
| not use it. |
| |
| config NFTL |
| tristate "NFTL (NAND Flash Translation Layer) support" |
| depends on BLOCK |
| select MTD_BLKDEVS |
| help |
| This provides support for the NAND Flash Translation Layer which is |
| used on M-Systems' DiskOnChip devices. It uses a kind of pseudo- |
| file system on a flash device to emulate a block device with |
| 512-byte sectors, on top of which you put a 'normal' file system. |
| |
| You may find that the algorithms used in this code are patented |
| unless you live in the Free World where software patents aren't |
| legal - in the USA you are only permitted to use this on DiskOnChip |
| hardware, although under the terms of the GPL you're obviously |
| permitted to copy, modify and distribute the code as you wish. Just |
| not use it. |
| |
| config NFTL_RW |
| bool "Write support for NFTL" |
| depends on NFTL |
| help |
| Support for writing to the NAND Flash Translation Layer, as used |
| on the DiskOnChip. |
| |
| config INFTL |
| tristate "INFTL (Inverse NAND Flash Translation Layer) support" |
| depends on BLOCK |
| select MTD_BLKDEVS |
| help |
| This provides support for the Inverse NAND Flash Translation |
| Layer which is used on M-Systems' newer DiskOnChip devices. It |
| uses a kind of pseudo-file system on a flash device to emulate |
| a block device with 512-byte sectors, on top of which you put |
| a 'normal' file system. |
| |
| You may find that the algorithms used in this code are patented |
| unless you live in the Free World where software patents aren't |
| legal - in the USA you are only permitted to use this on DiskOnChip |
| hardware, although under the terms of the GPL you're obviously |
| permitted to copy, modify and distribute the code as you wish. Just |
| not use it. |
| |
| config RFD_FTL |
| tristate "Resident Flash Disk (Flash Translation Layer) support" |
| depends on BLOCK |
| select MTD_BLKDEVS |
| help |
| This provides support for the flash translation layer known |
| as the Resident Flash Disk (RFD), as used by the Embedded BIOS |
| of General Software. There is a blurb at: |
| |
| http://www.gensw.com/pages/prod/bios/rfd.htm |
| |
| config SSFDC |
| tristate "NAND SSFDC (SmartMedia) read only translation layer" |
| depends on BLOCK |
| select MTD_BLKDEVS |
| help |
| This enables read only access to SmartMedia formatted NAND |
| flash. You can mount it with FAT file system. |
| |
| config SM_FTL |
| tristate "SmartMedia/xD new translation layer" |
| depends on BLOCK |
| select MTD_BLKDEVS |
| select MTD_NAND_ECC_SW_HAMMING |
| help |
| This enables EXPERIMENTAL R/W support for SmartMedia/xD |
| FTL (Flash translation layer). |
| Write support is only lightly tested, therefore this driver |
| isn't recommended to use with valuable data (anyway if you have |
| valuable data, do backups regardless of software/hardware you |
| use, because you never know what will eat your data...) |
| If you only need R/O access, you can use older R/O driver |
| (CONFIG_SSFDC) |
| |
| config MTD_OOPS |
| tristate "Log panic/oops to an MTD buffer" |
| help |
| This enables panic and oops messages to be logged to a circular |
| buffer in a flash partition where it can be read back at some |
| later point. |
| |
| config MTD_SWAP |
| tristate "Swap on MTD device support" |
| depends on MTD && SWAP |
| select MTD_BLKDEVS |
| help |
| Provides volatile block device driver on top of mtd partition |
| suitable for swapping. The mapping of written blocks is not saved. |
| The driver provides wear leveling by storing erase counter into the |
| OOB. |
| |
| config MTD_PARTITIONED_MASTER |
| bool "Retain master device when partitioned" |
| default n |
| depends on MTD |
| help |
| For historical reasons, by default, either a master is present or |
| several partitions are present, but not both. The concern was that |
| data listed in multiple partitions was dangerous; however, SCSI does |
| this and it is frequently useful for applications. This config option |
| leaves the master in even if the device is partitioned. It also makes |
| the parent of the partition device be the master device, rather than |
| what lies behind the master. |
| |
| source "drivers/mtd/chips/Kconfig" |
| |
| source "drivers/mtd/maps/Kconfig" |
| |
| source "drivers/mtd/devices/Kconfig" |
| |
| source "drivers/mtd/nand/Kconfig" |
| |
| source "drivers/mtd/lpddr/Kconfig" |
| |
| source "drivers/mtd/spi-nor/Kconfig" |
| |
| source "drivers/mtd/ubi/Kconfig" |
| |
| source "drivers/mtd/hyperbus/Kconfig" |
| |
| endif # MTD |