|  | /* | 
|  | * Memory Migration functionality - linux/mm/migration.c | 
|  | * | 
|  | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | 
|  | * | 
|  | * Page migration was first developed in the context of the memory hotplug | 
|  | * project. The main authors of the migration code are: | 
|  | * | 
|  | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | 
|  | * Hirokazu Takahashi <taka@valinux.co.jp> | 
|  | * Dave Hansen <haveblue@us.ibm.com> | 
|  | * Christoph Lameter | 
|  | */ | 
|  |  | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/syscalls.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | 
|  |  | 
|  | /* | 
|  | * migrate_prep() needs to be called before we start compiling a list of pages | 
|  | * to be migrated using isolate_lru_page(). | 
|  | */ | 
|  | int migrate_prep(void) | 
|  | { | 
|  | /* | 
|  | * Clear the LRU lists so pages can be isolated. | 
|  | * Note that pages may be moved off the LRU after we have | 
|  | * drained them. Those pages will fail to migrate like other | 
|  | * pages that may be busy. | 
|  | */ | 
|  | lru_add_drain_all(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add isolated pages on the list back to the LRU under page lock | 
|  | * to avoid leaking evictable pages back onto unevictable list. | 
|  | * | 
|  | * returns the number of pages put back. | 
|  | */ | 
|  | int putback_lru_pages(struct list_head *l) | 
|  | { | 
|  | struct page *page; | 
|  | struct page *page2; | 
|  | int count = 0; | 
|  |  | 
|  | list_for_each_entry_safe(page, page2, l, lru) { | 
|  | list_del(&page->lru); | 
|  | putback_lru_page(page); | 
|  | count++; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore a potential migration pte to a working pte entry | 
|  | */ | 
|  | static void remove_migration_pte(struct vm_area_struct *vma, | 
|  | struct page *old, struct page *new) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | swp_entry_t entry; | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  | unsigned long addr = page_address_in_vma(new, vma); | 
|  |  | 
|  | if (addr == -EFAULT) | 
|  | return; | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | if (!pgd_present(*pgd)) | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | if (!pud_present(*pud)) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (!pmd_present(*pmd)) | 
|  | return; | 
|  |  | 
|  | ptep = pte_offset_map(pmd, addr); | 
|  |  | 
|  | if (!is_swap_pte(*ptep)) { | 
|  | pte_unmap(ptep); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ptl = pte_lockptr(mm, pmd); | 
|  | spin_lock(ptl); | 
|  | pte = *ptep; | 
|  | if (!is_swap_pte(pte)) | 
|  | goto out; | 
|  |  | 
|  | entry = pte_to_swp_entry(pte); | 
|  |  | 
|  | if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) | 
|  | goto out; | 
|  |  | 
|  | get_page(new); | 
|  | pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); | 
|  | if (is_write_migration_entry(entry)) | 
|  | pte = pte_mkwrite(pte); | 
|  | flush_cache_page(vma, addr, pte_pfn(pte)); | 
|  | set_pte_at(mm, addr, ptep, pte); | 
|  |  | 
|  | if (PageAnon(new)) | 
|  | page_add_anon_rmap(new, vma, addr); | 
|  | else | 
|  | page_add_file_rmap(new); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, addr, pte); | 
|  |  | 
|  | out: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that remove_file_migration_ptes will only work on regular mappings, | 
|  | * Nonlinear mappings do not use migration entries. | 
|  | */ | 
|  | static void remove_file_migration_ptes(struct page *old, struct page *new) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct address_space *mapping = page_mapping(new); | 
|  | struct prio_tree_iter iter; | 
|  | pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
|  |  | 
|  | if (!mapping) | 
|  | return; | 
|  |  | 
|  | spin_lock(&mapping->i_mmap_lock); | 
|  |  | 
|  | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) | 
|  | remove_migration_pte(vma, old, new); | 
|  |  | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must hold mmap_sem lock on at least one of the vmas containing | 
|  | * the page so that the anon_vma cannot vanish. | 
|  | */ | 
|  | static void remove_anon_migration_ptes(struct page *old, struct page *new) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long mapping; | 
|  |  | 
|  | mapping = (unsigned long)new->mapping; | 
|  |  | 
|  | if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. | 
|  | */ | 
|  | anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); | 
|  | spin_lock(&anon_vma->lock); | 
|  |  | 
|  | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) | 
|  | remove_migration_pte(vma, old, new); | 
|  |  | 
|  | spin_unlock(&anon_vma->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get rid of all migration entries and replace them by | 
|  | * references to the indicated page. | 
|  | */ | 
|  | static void remove_migration_ptes(struct page *old, struct page *new) | 
|  | { | 
|  | if (PageAnon(new)) | 
|  | remove_anon_migration_ptes(old, new); | 
|  | else | 
|  | remove_file_migration_ptes(old, new); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Something used the pte of a page under migration. We need to | 
|  | * get to the page and wait until migration is finished. | 
|  | * When we return from this function the fault will be retried. | 
|  | * | 
|  | * This function is called from do_swap_page(). | 
|  | */ | 
|  | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long address) | 
|  | { | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  | swp_entry_t entry; | 
|  | struct page *page; | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | pte = *ptep; | 
|  | if (!is_swap_pte(pte)) | 
|  | goto out; | 
|  |  | 
|  | entry = pte_to_swp_entry(pte); | 
|  | if (!is_migration_entry(entry)) | 
|  | goto out; | 
|  |  | 
|  | page = migration_entry_to_page(entry); | 
|  |  | 
|  | /* | 
|  | * Once radix-tree replacement of page migration started, page_count | 
|  | * *must* be zero. And, we don't want to call wait_on_page_locked() | 
|  | * against a page without get_page(). | 
|  | * So, we use get_page_unless_zero(), here. Even failed, page fault | 
|  | * will occur again. | 
|  | */ | 
|  | if (!get_page_unless_zero(page)) | 
|  | goto out; | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | wait_on_page_locked(page); | 
|  | put_page(page); | 
|  | return; | 
|  | out: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Replace the page in the mapping. | 
|  | * | 
|  | * The number of remaining references must be: | 
|  | * 1 for anonymous pages without a mapping | 
|  | * 2 for pages with a mapping | 
|  | * 3 for pages with a mapping and PagePrivate set. | 
|  | */ | 
|  | static int migrate_page_move_mapping(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page) | 
|  | { | 
|  | int expected_count; | 
|  | void **pslot; | 
|  |  | 
|  | if (!mapping) { | 
|  | /* Anonymous page without mapping */ | 
|  | if (page_count(page) != 1) | 
|  | return -EAGAIN; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  |  | 
|  | pslot = radix_tree_lookup_slot(&mapping->page_tree, | 
|  | page_index(page)); | 
|  |  | 
|  | expected_count = 2 + !!PagePrivate(page); | 
|  | if (page_count(page) != expected_count || | 
|  | (struct page *)radix_tree_deref_slot(pslot) != page) { | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (!page_freeze_refs(page, expected_count)) { | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we know that no one else is looking at the page. | 
|  | */ | 
|  | get_page(newpage);	/* add cache reference */ | 
|  | if (PageSwapCache(page)) { | 
|  | SetPageSwapCache(newpage); | 
|  | set_page_private(newpage, page_private(page)); | 
|  | } | 
|  |  | 
|  | radix_tree_replace_slot(pslot, newpage); | 
|  |  | 
|  | page_unfreeze_refs(page, expected_count); | 
|  | /* | 
|  | * Drop cache reference from old page. | 
|  | * We know this isn't the last reference. | 
|  | */ | 
|  | __put_page(page); | 
|  |  | 
|  | /* | 
|  | * If moved to a different zone then also account | 
|  | * the page for that zone. Other VM counters will be | 
|  | * taken care of when we establish references to the | 
|  | * new page and drop references to the old page. | 
|  | * | 
|  | * Note that anonymous pages are accounted for | 
|  | * via NR_FILE_PAGES and NR_ANON_PAGES if they | 
|  | * are mapped to swap space. | 
|  | */ | 
|  | __dec_zone_page_state(page, NR_FILE_PAGES); | 
|  | __inc_zone_page_state(newpage, NR_FILE_PAGES); | 
|  |  | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the page to its new location | 
|  | */ | 
|  | static void migrate_page_copy(struct page *newpage, struct page *page) | 
|  | { | 
|  | int anon; | 
|  |  | 
|  | copy_highpage(newpage, page); | 
|  |  | 
|  | if (PageError(page)) | 
|  | SetPageError(newpage); | 
|  | if (PageReferenced(page)) | 
|  | SetPageReferenced(newpage); | 
|  | if (PageUptodate(page)) | 
|  | SetPageUptodate(newpage); | 
|  | if (TestClearPageActive(page)) { | 
|  | VM_BUG_ON(PageUnevictable(page)); | 
|  | SetPageActive(newpage); | 
|  | } else | 
|  | unevictable_migrate_page(newpage, page); | 
|  | if (PageChecked(page)) | 
|  | SetPageChecked(newpage); | 
|  | if (PageMappedToDisk(page)) | 
|  | SetPageMappedToDisk(newpage); | 
|  |  | 
|  | if (PageDirty(page)) { | 
|  | clear_page_dirty_for_io(page); | 
|  | /* | 
|  | * Want to mark the page and the radix tree as dirty, and | 
|  | * redo the accounting that clear_page_dirty_for_io undid, | 
|  | * but we can't use set_page_dirty because that function | 
|  | * is actually a signal that all of the page has become dirty. | 
|  | * Wheras only part of our page may be dirty. | 
|  | */ | 
|  | __set_page_dirty_nobuffers(newpage); | 
|  | } | 
|  |  | 
|  | mlock_migrate_page(newpage, page); | 
|  |  | 
|  | ClearPageSwapCache(page); | 
|  | ClearPagePrivate(page); | 
|  | set_page_private(page, 0); | 
|  | /* page->mapping contains a flag for PageAnon() */ | 
|  | anon = PageAnon(page); | 
|  | page->mapping = NULL; | 
|  |  | 
|  | /* | 
|  | * If any waiters have accumulated on the new page then | 
|  | * wake them up. | 
|  | */ | 
|  | if (PageWriteback(newpage)) | 
|  | end_page_writeback(newpage); | 
|  | } | 
|  |  | 
|  | /************************************************************ | 
|  | *                    Migration functions | 
|  | ***********************************************************/ | 
|  |  | 
|  | /* Always fail migration. Used for mappings that are not movable */ | 
|  | int fail_migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page) | 
|  | { | 
|  | return -EIO; | 
|  | } | 
|  | EXPORT_SYMBOL(fail_migrate_page); | 
|  |  | 
|  | /* | 
|  | * Common logic to directly migrate a single page suitable for | 
|  | * pages that do not use PagePrivate. | 
|  | * | 
|  | * Pages are locked upon entry and exit. | 
|  | */ | 
|  | int migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | BUG_ON(PageWriteback(page));	/* Writeback must be complete */ | 
|  |  | 
|  | rc = migrate_page_move_mapping(mapping, newpage, page); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | migrate_page_copy(newpage, page); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_page); | 
|  |  | 
|  | #ifdef CONFIG_BLOCK | 
|  | /* | 
|  | * Migration function for pages with buffers. This function can only be used | 
|  | * if the underlying filesystem guarantees that no other references to "page" | 
|  | * exist. | 
|  | */ | 
|  | int buffer_migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page) | 
|  | { | 
|  | struct buffer_head *bh, *head; | 
|  | int rc; | 
|  |  | 
|  | if (!page_has_buffers(page)) | 
|  | return migrate_page(mapping, newpage, page); | 
|  |  | 
|  | head = page_buffers(page); | 
|  |  | 
|  | rc = migrate_page_move_mapping(mapping, newpage, page); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | get_bh(bh); | 
|  | lock_buffer(bh); | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | } while (bh != head); | 
|  |  | 
|  | ClearPagePrivate(page); | 
|  | set_page_private(newpage, page_private(page)); | 
|  | set_page_private(page, 0); | 
|  | put_page(page); | 
|  | get_page(newpage); | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | set_bh_page(bh, newpage, bh_offset(bh)); | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | } while (bh != head); | 
|  |  | 
|  | SetPagePrivate(newpage); | 
|  |  | 
|  | migrate_page_copy(newpage, page); | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | unlock_buffer(bh); | 
|  | put_bh(bh); | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | } while (bh != head); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(buffer_migrate_page); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Writeback a page to clean the dirty state | 
|  | */ | 
|  | static int writeout(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_NONE, | 
|  | .nr_to_write = 1, | 
|  | .range_start = 0, | 
|  | .range_end = LLONG_MAX, | 
|  | .nonblocking = 1, | 
|  | .for_reclaim = 1 | 
|  | }; | 
|  | int rc; | 
|  |  | 
|  | if (!mapping->a_ops->writepage) | 
|  | /* No write method for the address space */ | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!clear_page_dirty_for_io(page)) | 
|  | /* Someone else already triggered a write */ | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * A dirty page may imply that the underlying filesystem has | 
|  | * the page on some queue. So the page must be clean for | 
|  | * migration. Writeout may mean we loose the lock and the | 
|  | * page state is no longer what we checked for earlier. | 
|  | * At this point we know that the migration attempt cannot | 
|  | * be successful. | 
|  | */ | 
|  | remove_migration_ptes(page, page); | 
|  |  | 
|  | rc = mapping->a_ops->writepage(page, &wbc); | 
|  |  | 
|  | if (rc != AOP_WRITEPAGE_ACTIVATE) | 
|  | /* unlocked. Relock */ | 
|  | lock_page(page); | 
|  |  | 
|  | return (rc < 0) ? -EIO : -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Default handling if a filesystem does not provide a migration function. | 
|  | */ | 
|  | static int fallback_migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page) | 
|  | { | 
|  | if (PageDirty(page)) | 
|  | return writeout(mapping, page); | 
|  |  | 
|  | /* | 
|  | * Buffers may be managed in a filesystem specific way. | 
|  | * We must have no buffers or drop them. | 
|  | */ | 
|  | if (PagePrivate(page) && | 
|  | !try_to_release_page(page, GFP_KERNEL)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | return migrate_page(mapping, newpage, page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a page to a newly allocated page | 
|  | * The page is locked and all ptes have been successfully removed. | 
|  | * | 
|  | * The new page will have replaced the old page if this function | 
|  | * is successful. | 
|  | * | 
|  | * Return value: | 
|  | *   < 0 - error code | 
|  | *  == 0 - success | 
|  | */ | 
|  | static int move_to_new_page(struct page *newpage, struct page *page) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | int rc; | 
|  |  | 
|  | /* | 
|  | * Block others from accessing the page when we get around to | 
|  | * establishing additional references. We are the only one | 
|  | * holding a reference to the new page at this point. | 
|  | */ | 
|  | if (!trylock_page(newpage)) | 
|  | BUG(); | 
|  |  | 
|  | /* Prepare mapping for the new page.*/ | 
|  | newpage->index = page->index; | 
|  | newpage->mapping = page->mapping; | 
|  | if (PageSwapBacked(page)) | 
|  | SetPageSwapBacked(newpage); | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  | if (!mapping) | 
|  | rc = migrate_page(mapping, newpage, page); | 
|  | else if (mapping->a_ops->migratepage) | 
|  | /* | 
|  | * Most pages have a mapping and most filesystems | 
|  | * should provide a migration function. Anonymous | 
|  | * pages are part of swap space which also has its | 
|  | * own migration function. This is the most common | 
|  | * path for page migration. | 
|  | */ | 
|  | rc = mapping->a_ops->migratepage(mapping, | 
|  | newpage, page); | 
|  | else | 
|  | rc = fallback_migrate_page(mapping, newpage, page); | 
|  |  | 
|  | if (!rc) { | 
|  | remove_migration_ptes(page, newpage); | 
|  | } else | 
|  | newpage->mapping = NULL; | 
|  |  | 
|  | unlock_page(newpage); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain the lock on page, remove all ptes and migrate the page | 
|  | * to the newly allocated page in newpage. | 
|  | */ | 
|  | static int unmap_and_move(new_page_t get_new_page, unsigned long private, | 
|  | struct page *page, int force) | 
|  | { | 
|  | int rc = 0; | 
|  | int *result = NULL; | 
|  | struct page *newpage = get_new_page(page, private, &result); | 
|  | int rcu_locked = 0; | 
|  | int charge = 0; | 
|  | struct mem_cgroup *mem; | 
|  |  | 
|  | if (!newpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (page_count(page) == 1) { | 
|  | /* page was freed from under us. So we are done. */ | 
|  | goto move_newpage; | 
|  | } | 
|  |  | 
|  | /* prepare cgroup just returns 0 or -ENOMEM */ | 
|  | rc = -EAGAIN; | 
|  |  | 
|  | if (!trylock_page(page)) { | 
|  | if (!force) | 
|  | goto move_newpage; | 
|  | lock_page(page); | 
|  | } | 
|  |  | 
|  | /* charge against new page */ | 
|  | charge = mem_cgroup_prepare_migration(page, &mem); | 
|  | if (charge == -ENOMEM) { | 
|  | rc = -ENOMEM; | 
|  | goto unlock; | 
|  | } | 
|  | BUG_ON(charge); | 
|  |  | 
|  | if (PageWriteback(page)) { | 
|  | if (!force) | 
|  | goto uncharge; | 
|  | wait_on_page_writeback(page); | 
|  | } | 
|  | /* | 
|  | * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, | 
|  | * we cannot notice that anon_vma is freed while we migrates a page. | 
|  | * This rcu_read_lock() delays freeing anon_vma pointer until the end | 
|  | * of migration. File cache pages are no problem because of page_lock() | 
|  | * File Caches may use write_page() or lock_page() in migration, then, | 
|  | * just care Anon page here. | 
|  | */ | 
|  | if (PageAnon(page)) { | 
|  | rcu_read_lock(); | 
|  | rcu_locked = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Corner case handling: | 
|  | * 1. When a new swap-cache page is read into, it is added to the LRU | 
|  | * and treated as swapcache but it has no rmap yet. | 
|  | * Calling try_to_unmap() against a page->mapping==NULL page will | 
|  | * trigger a BUG.  So handle it here. | 
|  | * 2. An orphaned page (see truncate_complete_page) might have | 
|  | * fs-private metadata. The page can be picked up due to memory | 
|  | * offlining.  Everywhere else except page reclaim, the page is | 
|  | * invisible to the vm, so the page can not be migrated.  So try to | 
|  | * free the metadata, so the page can be freed. | 
|  | */ | 
|  | if (!page->mapping) { | 
|  | if (!PageAnon(page) && PagePrivate(page)) { | 
|  | /* | 
|  | * Go direct to try_to_free_buffers() here because | 
|  | * a) that's what try_to_release_page() would do anyway | 
|  | * b) we may be under rcu_read_lock() here, so we can't | 
|  | *    use GFP_KERNEL which is what try_to_release_page() | 
|  | *    needs to be effective. | 
|  | */ | 
|  | try_to_free_buffers(page); | 
|  | } | 
|  | goto rcu_unlock; | 
|  | } | 
|  |  | 
|  | /* Establish migration ptes or remove ptes */ | 
|  | try_to_unmap(page, 1); | 
|  |  | 
|  | if (!page_mapped(page)) | 
|  | rc = move_to_new_page(newpage, page); | 
|  |  | 
|  | if (rc) | 
|  | remove_migration_ptes(page, page); | 
|  | rcu_unlock: | 
|  | if (rcu_locked) | 
|  | rcu_read_unlock(); | 
|  | uncharge: | 
|  | if (!charge) | 
|  | mem_cgroup_end_migration(mem, page, newpage); | 
|  | unlock: | 
|  | unlock_page(page); | 
|  |  | 
|  | if (rc != -EAGAIN) { | 
|  | /* | 
|  | * A page that has been migrated has all references | 
|  | * removed and will be freed. A page that has not been | 
|  | * migrated will have kepts its references and be | 
|  | * restored. | 
|  | */ | 
|  | list_del(&page->lru); | 
|  | putback_lru_page(page); | 
|  | } | 
|  |  | 
|  | move_newpage: | 
|  |  | 
|  | /* | 
|  | * Move the new page to the LRU. If migration was not successful | 
|  | * then this will free the page. | 
|  | */ | 
|  | putback_lru_page(newpage); | 
|  |  | 
|  | if (result) { | 
|  | if (rc) | 
|  | *result = rc; | 
|  | else | 
|  | *result = page_to_nid(newpage); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migrate_pages | 
|  | * | 
|  | * The function takes one list of pages to migrate and a function | 
|  | * that determines from the page to be migrated and the private data | 
|  | * the target of the move and allocates the page. | 
|  | * | 
|  | * The function returns after 10 attempts or if no pages | 
|  | * are movable anymore because to has become empty | 
|  | * or no retryable pages exist anymore. All pages will be | 
|  | * returned to the LRU or freed. | 
|  | * | 
|  | * Return: Number of pages not migrated or error code. | 
|  | */ | 
|  | int migrate_pages(struct list_head *from, | 
|  | new_page_t get_new_page, unsigned long private) | 
|  | { | 
|  | int retry = 1; | 
|  | int nr_failed = 0; | 
|  | int pass = 0; | 
|  | struct page *page; | 
|  | struct page *page2; | 
|  | int swapwrite = current->flags & PF_SWAPWRITE; | 
|  | int rc; | 
|  |  | 
|  | if (!swapwrite) | 
|  | current->flags |= PF_SWAPWRITE; | 
|  |  | 
|  | for(pass = 0; pass < 10 && retry; pass++) { | 
|  | retry = 0; | 
|  |  | 
|  | list_for_each_entry_safe(page, page2, from, lru) { | 
|  | cond_resched(); | 
|  |  | 
|  | rc = unmap_and_move(get_new_page, private, | 
|  | page, pass > 2); | 
|  |  | 
|  | switch(rc) { | 
|  | case -ENOMEM: | 
|  | goto out; | 
|  | case -EAGAIN: | 
|  | retry++; | 
|  | break; | 
|  | case 0: | 
|  | break; | 
|  | default: | 
|  | /* Permanent failure */ | 
|  | nr_failed++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | rc = 0; | 
|  | out: | 
|  | if (!swapwrite) | 
|  | current->flags &= ~PF_SWAPWRITE; | 
|  |  | 
|  | putback_lru_pages(from); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | return nr_failed + retry; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Move a list of individual pages | 
|  | */ | 
|  | struct page_to_node { | 
|  | unsigned long addr; | 
|  | struct page *page; | 
|  | int node; | 
|  | int status; | 
|  | }; | 
|  |  | 
|  | static struct page *new_page_node(struct page *p, unsigned long private, | 
|  | int **result) | 
|  | { | 
|  | struct page_to_node *pm = (struct page_to_node *)private; | 
|  |  | 
|  | while (pm->node != MAX_NUMNODES && pm->page != p) | 
|  | pm++; | 
|  |  | 
|  | if (pm->node == MAX_NUMNODES) | 
|  | return NULL; | 
|  |  | 
|  | *result = &pm->status; | 
|  |  | 
|  | return alloc_pages_node(pm->node, | 
|  | GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a set of pages as indicated in the pm array. The addr | 
|  | * field must be set to the virtual address of the page to be moved | 
|  | * and the node number must contain a valid target node. | 
|  | * The pm array ends with node = MAX_NUMNODES. | 
|  | */ | 
|  | static int do_move_page_to_node_array(struct mm_struct *mm, | 
|  | struct page_to_node *pm, | 
|  | int migrate_all) | 
|  | { | 
|  | int err; | 
|  | struct page_to_node *pp; | 
|  | LIST_HEAD(pagelist); | 
|  |  | 
|  | migrate_prep(); | 
|  | down_read(&mm->mmap_sem); | 
|  |  | 
|  | /* | 
|  | * Build a list of pages to migrate | 
|  | */ | 
|  | for (pp = pm; pp->node != MAX_NUMNODES; pp++) { | 
|  | struct vm_area_struct *vma; | 
|  | struct page *page; | 
|  |  | 
|  | err = -EFAULT; | 
|  | vma = find_vma(mm, pp->addr); | 
|  | if (!vma || !vma_migratable(vma)) | 
|  | goto set_status; | 
|  |  | 
|  | page = follow_page(vma, pp->addr, FOLL_GET); | 
|  |  | 
|  | err = PTR_ERR(page); | 
|  | if (IS_ERR(page)) | 
|  | goto set_status; | 
|  |  | 
|  | err = -ENOENT; | 
|  | if (!page) | 
|  | goto set_status; | 
|  |  | 
|  | if (PageReserved(page))		/* Check for zero page */ | 
|  | goto put_and_set; | 
|  |  | 
|  | pp->page = page; | 
|  | err = page_to_nid(page); | 
|  |  | 
|  | if (err == pp->node) | 
|  | /* | 
|  | * Node already in the right place | 
|  | */ | 
|  | goto put_and_set; | 
|  |  | 
|  | err = -EACCES; | 
|  | if (page_mapcount(page) > 1 && | 
|  | !migrate_all) | 
|  | goto put_and_set; | 
|  |  | 
|  | err = isolate_lru_page(page); | 
|  | if (!err) | 
|  | list_add_tail(&page->lru, &pagelist); | 
|  | put_and_set: | 
|  | /* | 
|  | * Either remove the duplicate refcount from | 
|  | * isolate_lru_page() or drop the page ref if it was | 
|  | * not isolated. | 
|  | */ | 
|  | put_page(page); | 
|  | set_status: | 
|  | pp->status = err; | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | if (!list_empty(&pagelist)) | 
|  | err = migrate_pages(&pagelist, new_page_node, | 
|  | (unsigned long)pm); | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Migrate an array of page address onto an array of nodes and fill | 
|  | * the corresponding array of status. | 
|  | */ | 
|  | static int do_pages_move(struct mm_struct *mm, struct task_struct *task, | 
|  | unsigned long nr_pages, | 
|  | const void __user * __user *pages, | 
|  | const int __user *nodes, | 
|  | int __user *status, int flags) | 
|  | { | 
|  | struct page_to_node *pm; | 
|  | nodemask_t task_nodes; | 
|  | unsigned long chunk_nr_pages; | 
|  | unsigned long chunk_start; | 
|  | int err; | 
|  |  | 
|  | task_nodes = cpuset_mems_allowed(task); | 
|  |  | 
|  | err = -ENOMEM; | 
|  | pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); | 
|  | if (!pm) | 
|  | goto out; | 
|  | /* | 
|  | * Store a chunk of page_to_node array in a page, | 
|  | * but keep the last one as a marker | 
|  | */ | 
|  | chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; | 
|  |  | 
|  | for (chunk_start = 0; | 
|  | chunk_start < nr_pages; | 
|  | chunk_start += chunk_nr_pages) { | 
|  | int j; | 
|  |  | 
|  | if (chunk_start + chunk_nr_pages > nr_pages) | 
|  | chunk_nr_pages = nr_pages - chunk_start; | 
|  |  | 
|  | /* fill the chunk pm with addrs and nodes from user-space */ | 
|  | for (j = 0; j < chunk_nr_pages; j++) { | 
|  | const void __user *p; | 
|  | int node; | 
|  |  | 
|  | err = -EFAULT; | 
|  | if (get_user(p, pages + j + chunk_start)) | 
|  | goto out_pm; | 
|  | pm[j].addr = (unsigned long) p; | 
|  |  | 
|  | if (get_user(node, nodes + j + chunk_start)) | 
|  | goto out_pm; | 
|  |  | 
|  | err = -ENODEV; | 
|  | if (!node_state(node, N_HIGH_MEMORY)) | 
|  | goto out_pm; | 
|  |  | 
|  | err = -EACCES; | 
|  | if (!node_isset(node, task_nodes)) | 
|  | goto out_pm; | 
|  |  | 
|  | pm[j].node = node; | 
|  | } | 
|  |  | 
|  | /* End marker for this chunk */ | 
|  | pm[chunk_nr_pages].node = MAX_NUMNODES; | 
|  |  | 
|  | /* Migrate this chunk */ | 
|  | err = do_move_page_to_node_array(mm, pm, | 
|  | flags & MPOL_MF_MOVE_ALL); | 
|  | if (err < 0) | 
|  | goto out_pm; | 
|  |  | 
|  | /* Return status information */ | 
|  | for (j = 0; j < chunk_nr_pages; j++) | 
|  | if (put_user(pm[j].status, status + j + chunk_start)) { | 
|  | err = -EFAULT; | 
|  | goto out_pm; | 
|  | } | 
|  | } | 
|  | err = 0; | 
|  |  | 
|  | out_pm: | 
|  | free_page((unsigned long)pm); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the nodes of an array of pages and store it in an array of status. | 
|  | */ | 
|  | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, | 
|  | const void __user **pages, int *status) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | unsigned long addr = (unsigned long)(*pages); | 
|  | struct vm_area_struct *vma; | 
|  | struct page *page; | 
|  | int err = -EFAULT; | 
|  |  | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma) | 
|  | goto set_status; | 
|  |  | 
|  | page = follow_page(vma, addr, 0); | 
|  |  | 
|  | err = PTR_ERR(page); | 
|  | if (IS_ERR(page)) | 
|  | goto set_status; | 
|  |  | 
|  | err = -ENOENT; | 
|  | /* Use PageReserved to check for zero page */ | 
|  | if (!page || PageReserved(page)) | 
|  | goto set_status; | 
|  |  | 
|  | err = page_to_nid(page); | 
|  | set_status: | 
|  | *status = err; | 
|  |  | 
|  | pages++; | 
|  | status++; | 
|  | } | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the nodes of a user array of pages and store it in | 
|  | * a user array of status. | 
|  | */ | 
|  | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | 
|  | const void __user * __user *pages, | 
|  | int __user *status) | 
|  | { | 
|  | #define DO_PAGES_STAT_CHUNK_NR 16 | 
|  | const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; | 
|  | int chunk_status[DO_PAGES_STAT_CHUNK_NR]; | 
|  | unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR; | 
|  | int err; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i += chunk_nr) { | 
|  | if (chunk_nr + i > nr_pages) | 
|  | chunk_nr = nr_pages - i; | 
|  |  | 
|  | err = copy_from_user(chunk_pages, &pages[i], | 
|  | chunk_nr * sizeof(*chunk_pages)); | 
|  | if (err) { | 
|  | err = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); | 
|  |  | 
|  | err = copy_to_user(&status[i], chunk_status, | 
|  | chunk_nr * sizeof(*chunk_status)); | 
|  | if (err) { | 
|  | err = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a list of pages in the address space of the currently executing | 
|  | * process. | 
|  | */ | 
|  | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, | 
|  | const void __user * __user *, pages, | 
|  | const int __user *, nodes, | 
|  | int __user *, status, int, flags) | 
|  | { | 
|  | const struct cred *cred = current_cred(), *tcred; | 
|  | struct task_struct *task; | 
|  | struct mm_struct *mm; | 
|  | int err; | 
|  |  | 
|  | /* Check flags */ | 
|  | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Find the mm_struct */ | 
|  | read_lock(&tasklist_lock); | 
|  | task = pid ? find_task_by_vpid(pid) : current; | 
|  | if (!task) { | 
|  | read_unlock(&tasklist_lock); | 
|  | return -ESRCH; | 
|  | } | 
|  | mm = get_task_mm(task); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | if (!mm) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Check if this process has the right to modify the specified | 
|  | * process. The right exists if the process has administrative | 
|  | * capabilities, superuser privileges or the same | 
|  | * userid as the target process. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | tcred = __task_cred(task); | 
|  | if (cred->euid != tcred->suid && cred->euid != tcred->uid && | 
|  | cred->uid  != tcred->suid && cred->uid  != tcred->uid && | 
|  | !capable(CAP_SYS_NICE)) { | 
|  | rcu_read_unlock(); | 
|  | err = -EPERM; | 
|  | goto out; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | err = security_task_movememory(task); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (nodes) { | 
|  | err = do_pages_move(mm, task, nr_pages, pages, nodes, status, | 
|  | flags); | 
|  | } else { | 
|  | err = do_pages_stat(mm, nr_pages, pages, status); | 
|  | } | 
|  |  | 
|  | out: | 
|  | mmput(mm); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call migration functions in the vma_ops that may prepare | 
|  | * memory in a vm for migration. migration functions may perform | 
|  | * the migration for vmas that do not have an underlying page struct. | 
|  | */ | 
|  | int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, | 
|  | const nodemask_t *from, unsigned long flags) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | int err = 0; | 
|  |  | 
|  | for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) { | 
|  | if (vma->vm_ops && vma->vm_ops->migrate) { | 
|  | err = vma->vm_ops->migrate(vma, to, from, flags); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return err; | 
|  | } | 
|  | #endif |