| /* | 
 |  * Memory Migration functionality - linux/mm/migration.c | 
 |  * | 
 |  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | 
 |  * | 
 |  * Page migration was first developed in the context of the memory hotplug | 
 |  * project. The main authors of the migration code are: | 
 |  * | 
 |  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | 
 |  * Hirokazu Takahashi <taka@valinux.co.jp> | 
 |  * Dave Hansen <haveblue@us.ibm.com> | 
 |  * Christoph Lameter <clameter@sgi.com> | 
 |  */ | 
 |  | 
 | #include <linux/migrate.h> | 
 | #include <linux/module.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/buffer_head.h>	/* for try_to_release_page(), | 
 | 					buffer_heads_over_limit */ | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/topology.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/swapops.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | /* The maximum number of pages to take off the LRU for migration */ | 
 | #define MIGRATE_CHUNK_SIZE 256 | 
 |  | 
 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | 
 |  | 
 | /* | 
 |  * Isolate one page from the LRU lists. If successful put it onto | 
 |  * the indicated list with elevated page count. | 
 |  * | 
 |  * Result: | 
 |  *  -EBUSY: page not on LRU list | 
 |  *  0: page removed from LRU list and added to the specified list. | 
 |  */ | 
 | int isolate_lru_page(struct page *page, struct list_head *pagelist) | 
 | { | 
 | 	int ret = -EBUSY; | 
 |  | 
 | 	if (PageLRU(page)) { | 
 | 		struct zone *zone = page_zone(page); | 
 |  | 
 | 		spin_lock_irq(&zone->lru_lock); | 
 | 		if (PageLRU(page)) { | 
 | 			ret = 0; | 
 | 			get_page(page); | 
 | 			ClearPageLRU(page); | 
 | 			if (PageActive(page)) | 
 | 				del_page_from_active_list(zone, page); | 
 | 			else | 
 | 				del_page_from_inactive_list(zone, page); | 
 | 			list_add_tail(&page->lru, pagelist); | 
 | 		} | 
 | 		spin_unlock_irq(&zone->lru_lock); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * migrate_prep() needs to be called after we have compiled the list of pages | 
 |  * to be migrated using isolate_lru_page() but before we begin a series of calls | 
 |  * to migrate_pages(). | 
 |  */ | 
 | int migrate_prep(void) | 
 | { | 
 | 	/* Must have swap device for migration */ | 
 | 	if (nr_swap_pages <= 0) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* | 
 | 	 * Clear the LRU lists so pages can be isolated. | 
 | 	 * Note that pages may be moved off the LRU after we have | 
 | 	 * drained them. Those pages will fail to migrate like other | 
 | 	 * pages that may be busy. | 
 | 	 */ | 
 | 	lru_add_drain_all(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void move_to_lru(struct page *page) | 
 | { | 
 | 	list_del(&page->lru); | 
 | 	if (PageActive(page)) { | 
 | 		/* | 
 | 		 * lru_cache_add_active checks that | 
 | 		 * the PG_active bit is off. | 
 | 		 */ | 
 | 		ClearPageActive(page); | 
 | 		lru_cache_add_active(page); | 
 | 	} else { | 
 | 		lru_cache_add(page); | 
 | 	} | 
 | 	put_page(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Add isolated pages on the list back to the LRU. | 
 |  * | 
 |  * returns the number of pages put back. | 
 |  */ | 
 | int putback_lru_pages(struct list_head *l) | 
 | { | 
 | 	struct page *page; | 
 | 	struct page *page2; | 
 | 	int count = 0; | 
 |  | 
 | 	list_for_each_entry_safe(page, page2, l, lru) { | 
 | 		move_to_lru(page); | 
 | 		count++; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * Non migratable page | 
 |  */ | 
 | int fail_migrate_page(struct page *newpage, struct page *page) | 
 | { | 
 | 	return -EIO; | 
 | } | 
 | EXPORT_SYMBOL(fail_migrate_page); | 
 |  | 
 | /* | 
 |  * swapout a single page | 
 |  * page is locked upon entry, unlocked on exit | 
 |  */ | 
 | static int swap_page(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 |  | 
 | 	if (page_mapped(page) && mapping) | 
 | 		if (try_to_unmap(page, 1) != SWAP_SUCCESS) | 
 | 			goto unlock_retry; | 
 |  | 
 | 	if (PageDirty(page)) { | 
 | 		/* Page is dirty, try to write it out here */ | 
 | 		switch(pageout(page, mapping)) { | 
 | 		case PAGE_KEEP: | 
 | 		case PAGE_ACTIVATE: | 
 | 			goto unlock_retry; | 
 |  | 
 | 		case PAGE_SUCCESS: | 
 | 			goto retry; | 
 |  | 
 | 		case PAGE_CLEAN: | 
 | 			; /* try to free the page below */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (PagePrivate(page)) { | 
 | 		if (!try_to_release_page(page, GFP_KERNEL) || | 
 | 		    (!mapping && page_count(page) == 1)) | 
 | 			goto unlock_retry; | 
 | 	} | 
 |  | 
 | 	if (remove_mapping(mapping, page)) { | 
 | 		/* Success */ | 
 | 		unlock_page(page); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | unlock_retry: | 
 | 	unlock_page(page); | 
 |  | 
 | retry: | 
 | 	return -EAGAIN; | 
 | } | 
 | EXPORT_SYMBOL(swap_page); | 
 |  | 
 | /* | 
 |  * Remove references for a page and establish the new page with the correct | 
 |  * basic settings to be able to stop accesses to the page. | 
 |  */ | 
 | int migrate_page_remove_references(struct page *newpage, | 
 | 				struct page *page, int nr_refs) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 | 	struct page **radix_pointer; | 
 |  | 
 | 	/* | 
 | 	 * Avoid doing any of the following work if the page count | 
 | 	 * indicates that the page is in use or truncate has removed | 
 | 	 * the page. | 
 | 	 */ | 
 | 	if (!mapping || page_mapcount(page) + nr_refs != page_count(page)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* | 
 | 	 * Establish swap ptes for anonymous pages or destroy pte | 
 | 	 * maps for files. | 
 | 	 * | 
 | 	 * In order to reestablish file backed mappings the fault handlers | 
 | 	 * will take the radix tree_lock which may then be used to stop | 
 |   	 * processses from accessing this page until the new page is ready. | 
 | 	 * | 
 | 	 * A process accessing via a swap pte (an anonymous page) will take a | 
 | 	 * page_lock on the old page which will block the process until the | 
 | 	 * migration attempt is complete. At that time the PageSwapCache bit | 
 | 	 * will be examined. If the page was migrated then the PageSwapCache | 
 | 	 * bit will be clear and the operation to retrieve the page will be | 
 | 	 * retried which will find the new page in the radix tree. Then a new | 
 | 	 * direct mapping may be generated based on the radix tree contents. | 
 | 	 * | 
 | 	 * If the page was not migrated then the PageSwapCache bit | 
 | 	 * is still set and the operation may continue. | 
 | 	 */ | 
 | 	if (try_to_unmap(page, 1) == SWAP_FAIL) | 
 | 		/* A vma has VM_LOCKED set -> permanent failure */ | 
 | 		return -EPERM; | 
 |  | 
 | 	/* | 
 | 	 * Give up if we were unable to remove all mappings. | 
 | 	 */ | 
 | 	if (page_mapcount(page)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	write_lock_irq(&mapping->tree_lock); | 
 |  | 
 | 	radix_pointer = (struct page **)radix_tree_lookup_slot( | 
 | 						&mapping->page_tree, | 
 | 						page_index(page)); | 
 |  | 
 | 	if (!page_mapping(page) || page_count(page) != nr_refs || | 
 | 			*radix_pointer != page) { | 
 | 		write_unlock_irq(&mapping->tree_lock); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now we know that no one else is looking at the page. | 
 | 	 * | 
 | 	 * Certain minimal information about a page must be available | 
 | 	 * in order for other subsystems to properly handle the page if they | 
 | 	 * find it through the radix tree update before we are finished | 
 | 	 * copying the page. | 
 | 	 */ | 
 | 	get_page(newpage); | 
 | 	newpage->index = page->index; | 
 | 	newpage->mapping = page->mapping; | 
 | 	if (PageSwapCache(page)) { | 
 | 		SetPageSwapCache(newpage); | 
 | 		set_page_private(newpage, page_private(page)); | 
 | 	} | 
 |  | 
 | 	*radix_pointer = newpage; | 
 | 	__put_page(page); | 
 | 	write_unlock_irq(&mapping->tree_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(migrate_page_remove_references); | 
 |  | 
 | /* | 
 |  * Copy the page to its new location | 
 |  */ | 
 | void migrate_page_copy(struct page *newpage, struct page *page) | 
 | { | 
 | 	copy_highpage(newpage, page); | 
 |  | 
 | 	if (PageError(page)) | 
 | 		SetPageError(newpage); | 
 | 	if (PageReferenced(page)) | 
 | 		SetPageReferenced(newpage); | 
 | 	if (PageUptodate(page)) | 
 | 		SetPageUptodate(newpage); | 
 | 	if (PageActive(page)) | 
 | 		SetPageActive(newpage); | 
 | 	if (PageChecked(page)) | 
 | 		SetPageChecked(newpage); | 
 | 	if (PageMappedToDisk(page)) | 
 | 		SetPageMappedToDisk(newpage); | 
 |  | 
 | 	if (PageDirty(page)) { | 
 | 		clear_page_dirty_for_io(page); | 
 | 		set_page_dirty(newpage); | 
 |  	} | 
 |  | 
 | 	ClearPageSwapCache(page); | 
 | 	ClearPageActive(page); | 
 | 	ClearPagePrivate(page); | 
 | 	set_page_private(page, 0); | 
 | 	page->mapping = NULL; | 
 |  | 
 | 	/* | 
 | 	 * If any waiters have accumulated on the new page then | 
 | 	 * wake them up. | 
 | 	 */ | 
 | 	if (PageWriteback(newpage)) | 
 | 		end_page_writeback(newpage); | 
 | } | 
 | EXPORT_SYMBOL(migrate_page_copy); | 
 |  | 
 | /* | 
 |  * Common logic to directly migrate a single page suitable for | 
 |  * pages that do not use PagePrivate. | 
 |  * | 
 |  * Pages are locked upon entry and exit. | 
 |  */ | 
 | int migrate_page(struct page *newpage, struct page *page) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */ | 
 |  | 
 | 	rc = migrate_page_remove_references(newpage, page, 2); | 
 |  | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	migrate_page_copy(newpage, page); | 
 |  | 
 | 	/* | 
 | 	 * Remove auxiliary swap entries and replace | 
 | 	 * them with real ptes. | 
 | 	 * | 
 | 	 * Note that a real pte entry will allow processes that are not | 
 | 	 * waiting on the page lock to use the new page via the page tables | 
 | 	 * before the new page is unlocked. | 
 | 	 */ | 
 | 	remove_from_swap(newpage); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(migrate_page); | 
 |  | 
 | /* | 
 |  * migrate_pages | 
 |  * | 
 |  * Two lists are passed to this function. The first list | 
 |  * contains the pages isolated from the LRU to be migrated. | 
 |  * The second list contains new pages that the pages isolated | 
 |  * can be moved to. If the second list is NULL then all | 
 |  * pages are swapped out. | 
 |  * | 
 |  * The function returns after 10 attempts or if no pages | 
 |  * are movable anymore because to has become empty | 
 |  * or no retryable pages exist anymore. | 
 |  * | 
 |  * Return: Number of pages not migrated when "to" ran empty. | 
 |  */ | 
 | int migrate_pages(struct list_head *from, struct list_head *to, | 
 | 		  struct list_head *moved, struct list_head *failed) | 
 | { | 
 | 	int retry; | 
 | 	int nr_failed = 0; | 
 | 	int pass = 0; | 
 | 	struct page *page; | 
 | 	struct page *page2; | 
 | 	int swapwrite = current->flags & PF_SWAPWRITE; | 
 | 	int rc; | 
 |  | 
 | 	if (!swapwrite) | 
 | 		current->flags |= PF_SWAPWRITE; | 
 |  | 
 | redo: | 
 | 	retry = 0; | 
 |  | 
 | 	list_for_each_entry_safe(page, page2, from, lru) { | 
 | 		struct page *newpage = NULL; | 
 | 		struct address_space *mapping; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		rc = 0; | 
 | 		if (page_count(page) == 1) | 
 | 			/* page was freed from under us. So we are done. */ | 
 | 			goto next; | 
 |  | 
 | 		if (to && list_empty(to)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Skip locked pages during the first two passes to give the | 
 | 		 * functions holding the lock time to release the page. Later we | 
 | 		 * use lock_page() to have a higher chance of acquiring the | 
 | 		 * lock. | 
 | 		 */ | 
 | 		rc = -EAGAIN; | 
 | 		if (pass > 2) | 
 | 			lock_page(page); | 
 | 		else | 
 | 			if (TestSetPageLocked(page)) | 
 | 				goto next; | 
 |  | 
 | 		/* | 
 | 		 * Only wait on writeback if we have already done a pass where | 
 | 		 * we we may have triggered writeouts for lots of pages. | 
 | 		 */ | 
 | 		if (pass > 0) { | 
 | 			wait_on_page_writeback(page); | 
 | 		} else { | 
 | 			if (PageWriteback(page)) | 
 | 				goto unlock_page; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Anonymous pages must have swap cache references otherwise | 
 | 		 * the information contained in the page maps cannot be | 
 | 		 * preserved. | 
 | 		 */ | 
 | 		if (PageAnon(page) && !PageSwapCache(page)) { | 
 | 			if (!add_to_swap(page, GFP_KERNEL)) { | 
 | 				rc = -ENOMEM; | 
 | 				goto unlock_page; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!to) { | 
 | 			rc = swap_page(page); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		newpage = lru_to_page(to); | 
 | 		lock_page(newpage); | 
 |  | 
 | 		/* | 
 | 		 * Pages are properly locked and writeback is complete. | 
 | 		 * Try to migrate the page. | 
 | 		 */ | 
 | 		mapping = page_mapping(page); | 
 | 		if (!mapping) | 
 | 			goto unlock_both; | 
 |  | 
 | 		if (mapping->a_ops->migratepage) { | 
 | 			/* | 
 | 			 * Most pages have a mapping and most filesystems | 
 | 			 * should provide a migration function. Anonymous | 
 | 			 * pages are part of swap space which also has its | 
 | 			 * own migration function. This is the most common | 
 | 			 * path for page migration. | 
 | 			 */ | 
 | 			rc = mapping->a_ops->migratepage(newpage, page); | 
 | 			goto unlock_both; | 
 |                 } | 
 |  | 
 | 		/* | 
 | 		 * Default handling if a filesystem does not provide | 
 | 		 * a migration function. We can only migrate clean | 
 | 		 * pages so try to write out any dirty pages first. | 
 | 		 */ | 
 | 		if (PageDirty(page)) { | 
 | 			switch (pageout(page, mapping)) { | 
 | 			case PAGE_KEEP: | 
 | 			case PAGE_ACTIVATE: | 
 | 				goto unlock_both; | 
 |  | 
 | 			case PAGE_SUCCESS: | 
 | 				unlock_page(newpage); | 
 | 				goto next; | 
 |  | 
 | 			case PAGE_CLEAN: | 
 | 				; /* try to migrate the page below */ | 
 | 			} | 
 |                 } | 
 |  | 
 | 		/* | 
 | 		 * Buffers are managed in a filesystem specific way. | 
 | 		 * We must have no buffers or drop them. | 
 | 		 */ | 
 | 		if (!page_has_buffers(page) || | 
 | 		    try_to_release_page(page, GFP_KERNEL)) { | 
 | 			rc = migrate_page(newpage, page); | 
 | 			goto unlock_both; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * On early passes with mapped pages simply | 
 | 		 * retry. There may be a lock held for some | 
 | 		 * buffers that may go away. Later | 
 | 		 * swap them out. | 
 | 		 */ | 
 | 		if (pass > 4) { | 
 | 			/* | 
 | 			 * Persistently unable to drop buffers..... As a | 
 | 			 * measure of last resort we fall back to | 
 | 			 * swap_page(). | 
 | 			 */ | 
 | 			unlock_page(newpage); | 
 | 			newpage = NULL; | 
 | 			rc = swap_page(page); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | unlock_both: | 
 | 		unlock_page(newpage); | 
 |  | 
 | unlock_page: | 
 | 		unlock_page(page); | 
 |  | 
 | next: | 
 | 		if (rc == -EAGAIN) { | 
 | 			retry++; | 
 | 		} else if (rc) { | 
 | 			/* Permanent failure */ | 
 | 			list_move(&page->lru, failed); | 
 | 			nr_failed++; | 
 | 		} else { | 
 | 			if (newpage) { | 
 | 				/* Successful migration. Return page to LRU */ | 
 | 				move_to_lru(newpage); | 
 | 			} | 
 | 			list_move(&page->lru, moved); | 
 | 		} | 
 | 	} | 
 | 	if (retry && pass++ < 10) | 
 | 		goto redo; | 
 |  | 
 | 	if (!swapwrite) | 
 | 		current->flags &= ~PF_SWAPWRITE; | 
 |  | 
 | 	return nr_failed + retry; | 
 | } | 
 |  | 
 | /* | 
 |  * Migration function for pages with buffers. This function can only be used | 
 |  * if the underlying filesystem guarantees that no other references to "page" | 
 |  * exist. | 
 |  */ | 
 | int buffer_migrate_page(struct page *newpage, struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	struct buffer_head *bh, *head; | 
 | 	int rc; | 
 |  | 
 | 	if (!mapping) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	if (!page_has_buffers(page)) | 
 | 		return migrate_page(newpage, page); | 
 |  | 
 | 	head = page_buffers(page); | 
 |  | 
 | 	rc = migrate_page_remove_references(newpage, page, 3); | 
 |  | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	bh = head; | 
 | 	do { | 
 | 		get_bh(bh); | 
 | 		lock_buffer(bh); | 
 | 		bh = bh->b_this_page; | 
 |  | 
 | 	} while (bh != head); | 
 |  | 
 | 	ClearPagePrivate(page); | 
 | 	set_page_private(newpage, page_private(page)); | 
 | 	set_page_private(page, 0); | 
 | 	put_page(page); | 
 | 	get_page(newpage); | 
 |  | 
 | 	bh = head; | 
 | 	do { | 
 | 		set_bh_page(bh, newpage, bh_offset(bh)); | 
 | 		bh = bh->b_this_page; | 
 |  | 
 | 	} while (bh != head); | 
 |  | 
 | 	SetPagePrivate(newpage); | 
 |  | 
 | 	migrate_page_copy(newpage, page); | 
 |  | 
 | 	bh = head; | 
 | 	do { | 
 | 		unlock_buffer(bh); | 
 |  		put_bh(bh); | 
 | 		bh = bh->b_this_page; | 
 |  | 
 | 	} while (bh != head); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(buffer_migrate_page); | 
 |  | 
 | /* | 
 |  * Migrate the list 'pagelist' of pages to a certain destination. | 
 |  * | 
 |  * Specify destination with either non-NULL vma or dest_node >= 0 | 
 |  * Return the number of pages not migrated or error code | 
 |  */ | 
 | int migrate_pages_to(struct list_head *pagelist, | 
 | 			struct vm_area_struct *vma, int dest) | 
 | { | 
 | 	LIST_HEAD(newlist); | 
 | 	LIST_HEAD(moved); | 
 | 	LIST_HEAD(failed); | 
 | 	int err = 0; | 
 | 	unsigned long offset = 0; | 
 | 	int nr_pages; | 
 | 	struct page *page; | 
 | 	struct list_head *p; | 
 |  | 
 | redo: | 
 | 	nr_pages = 0; | 
 | 	list_for_each(p, pagelist) { | 
 | 		if (vma) { | 
 | 			/* | 
 | 			 * The address passed to alloc_page_vma is used to | 
 | 			 * generate the proper interleave behavior. We fake | 
 | 			 * the address here by an increasing offset in order | 
 | 			 * to get the proper distribution of pages. | 
 | 			 * | 
 | 			 * No decision has been made as to which page | 
 | 			 * a certain old page is moved to so we cannot | 
 | 			 * specify the correct address. | 
 | 			 */ | 
 | 			page = alloc_page_vma(GFP_HIGHUSER, vma, | 
 | 					offset + vma->vm_start); | 
 | 			offset += PAGE_SIZE; | 
 | 		} | 
 | 		else | 
 | 			page = alloc_pages_node(dest, GFP_HIGHUSER, 0); | 
 |  | 
 | 		if (!page) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		list_add_tail(&page->lru, &newlist); | 
 | 		nr_pages++; | 
 | 		if (nr_pages > MIGRATE_CHUNK_SIZE) | 
 | 			break; | 
 | 	} | 
 | 	err = migrate_pages(pagelist, &newlist, &moved, &failed); | 
 |  | 
 | 	putback_lru_pages(&moved);	/* Call release pages instead ?? */ | 
 |  | 
 | 	if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist)) | 
 | 		goto redo; | 
 | out: | 
 | 	/* Return leftover allocated pages */ | 
 | 	while (!list_empty(&newlist)) { | 
 | 		page = list_entry(newlist.next, struct page, lru); | 
 | 		list_del(&page->lru); | 
 | 		__free_page(page); | 
 | 	} | 
 | 	list_splice(&failed, pagelist); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	/* Calculate number of leftover pages */ | 
 | 	nr_pages = 0; | 
 | 	list_for_each(p, pagelist) | 
 | 		nr_pages++; | 
 | 	return nr_pages; | 
 | } |