| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * arch/sh64/kernel/process.c |
| * |
| * Copyright (C) 2000, 2001 Paolo Alberelli |
| * Copyright (C) 2003 Paul Mundt |
| * Copyright (C) 2003, 2004 Richard Curnow |
| * |
| * Started from SH3/4 version: |
| * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima |
| * |
| * In turn started from i386 version: |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| /* Temporary flags/tests. All to be removed/undefined. BEGIN */ |
| #define IDLE_TRACE |
| #define VM_SHOW_TABLES |
| #define VM_TEST_FAULT |
| #define VM_TEST_RTLBMISS |
| #define VM_TEST_WTLBMISS |
| |
| #undef VM_SHOW_TABLES |
| #undef IDLE_TRACE |
| /* Temporary flags/tests. All to be removed/undefined. END */ |
| |
| #define __KERNEL_SYSCALLS__ |
| #include <stdarg.h> |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/rwsem.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/user.h> |
| #include <linux/a.out.h> |
| #include <linux/interrupt.h> |
| #include <linux/unistd.h> |
| #include <linux/delay.h> |
| #include <linux/reboot.h> |
| #include <linux/init.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> /* includes also <asm/registers.h> */ |
| #include <asm/mmu_context.h> |
| #include <asm/elf.h> |
| #include <asm/page.h> |
| |
| #include <linux/irq.h> |
| |
| struct task_struct *last_task_used_math = NULL; |
| |
| #ifdef IDLE_TRACE |
| #ifdef VM_SHOW_TABLES |
| /* For testing */ |
| static void print_PTE(long base) |
| { |
| int i, skip=0; |
| long long x, y, *p = (long long *) base; |
| |
| for (i=0; i< 512; i++, p++){ |
| if (*p == 0) { |
| if (!skip) { |
| skip++; |
| printk("(0s) "); |
| } |
| } else { |
| skip=0; |
| x = (*p) >> 32; |
| y = (*p) & 0xffffffff; |
| printk("%08Lx%08Lx ", x, y); |
| if (!((i+1)&0x3)) printk("\n"); |
| } |
| } |
| } |
| |
| /* For testing */ |
| static void print_DIR(long base) |
| { |
| int i, skip=0; |
| long *p = (long *) base; |
| |
| for (i=0; i< 512; i++, p++){ |
| if (*p == 0) { |
| if (!skip) { |
| skip++; |
| printk("(0s) "); |
| } |
| } else { |
| skip=0; |
| printk("%08lx ", *p); |
| if (!((i+1)&0x7)) printk("\n"); |
| } |
| } |
| } |
| |
| /* For testing */ |
| static void print_vmalloc_first_tables(void) |
| { |
| |
| #define PRESENT 0x800 /* Bit 11 */ |
| |
| /* |
| * Do it really dirty by looking at raw addresses, |
| * raw offsets, no types. If we used pgtable/pgalloc |
| * macros/definitions we could hide potential bugs. |
| * |
| * Note that pointers are 32-bit for CDC. |
| */ |
| long pgdt, pmdt, ptet; |
| |
| pgdt = (long) &swapper_pg_dir; |
| printk("-->PGD (0x%08lx):\n", pgdt); |
| print_DIR(pgdt); |
| printk("\n"); |
| |
| /* VMALLOC pool is mapped at 0xc0000000, second (pointer) entry in PGD */ |
| pgdt += 4; |
| pmdt = (long) (* (long *) pgdt); |
| if (!(pmdt & PRESENT)) { |
| printk("No PMD\n"); |
| return; |
| } else pmdt &= 0xfffff000; |
| |
| printk("-->PMD (0x%08lx):\n", pmdt); |
| print_DIR(pmdt); |
| printk("\n"); |
| |
| /* Get the pmdt displacement for 0xc0000000 */ |
| pmdt += 2048; |
| |
| /* just look at first two address ranges ... */ |
| /* ... 0xc0000000 ... */ |
| ptet = (long) (* (long *) pmdt); |
| if (!(ptet & PRESENT)) { |
| printk("No PTE0\n"); |
| return; |
| } else ptet &= 0xfffff000; |
| |
| printk("-->PTE0 (0x%08lx):\n", ptet); |
| print_PTE(ptet); |
| printk("\n"); |
| |
| /* ... 0xc0001000 ... */ |
| ptet += 4; |
| if (!(ptet & PRESENT)) { |
| printk("No PTE1\n"); |
| return; |
| } else ptet &= 0xfffff000; |
| printk("-->PTE1 (0x%08lx):\n", ptet); |
| print_PTE(ptet); |
| printk("\n"); |
| } |
| #else |
| #define print_vmalloc_first_tables() |
| #endif /* VM_SHOW_TABLES */ |
| |
| static void test_VM(void) |
| { |
| void *a, *b, *c; |
| |
| #ifdef VM_SHOW_TABLES |
| printk("Initial PGD/PMD/PTE\n"); |
| #endif |
| print_vmalloc_first_tables(); |
| |
| printk("Allocating 2 bytes\n"); |
| a = vmalloc(2); |
| print_vmalloc_first_tables(); |
| |
| printk("Allocating 4100 bytes\n"); |
| b = vmalloc(4100); |
| print_vmalloc_first_tables(); |
| |
| printk("Allocating 20234 bytes\n"); |
| c = vmalloc(20234); |
| print_vmalloc_first_tables(); |
| |
| #ifdef VM_TEST_FAULT |
| /* Here you may want to fault ! */ |
| |
| #ifdef VM_TEST_RTLBMISS |
| printk("Ready to fault upon read.\n"); |
| if (* (char *) a) { |
| printk("RTLBMISSed on area a !\n"); |
| } |
| printk("RTLBMISSed on area a !\n"); |
| #endif |
| |
| #ifdef VM_TEST_WTLBMISS |
| printk("Ready to fault upon write.\n"); |
| *((char *) b) = 'L'; |
| printk("WTLBMISSed on area b !\n"); |
| #endif |
| |
| #endif /* VM_TEST_FAULT */ |
| |
| printk("Deallocating the 4100 byte chunk\n"); |
| vfree(b); |
| print_vmalloc_first_tables(); |
| |
| printk("Deallocating the 2 byte chunk\n"); |
| vfree(a); |
| print_vmalloc_first_tables(); |
| |
| printk("Deallocating the last chunk\n"); |
| vfree(c); |
| print_vmalloc_first_tables(); |
| } |
| |
| extern unsigned long volatile jiffies; |
| int once = 0; |
| unsigned long old_jiffies; |
| int pid = -1, pgid = -1; |
| |
| void idle_trace(void) |
| { |
| |
| _syscall0(int, getpid) |
| _syscall1(int, getpgid, int, pid) |
| |
| if (!once) { |
| /* VM allocation/deallocation simple test */ |
| test_VM(); |
| pid = getpid(); |
| |
| printk("Got all through to Idle !!\n"); |
| printk("I'm now going to loop forever ...\n"); |
| printk("Any ! below is a timer tick.\n"); |
| printk("Any . below is a getpgid system call from pid = %d.\n", pid); |
| |
| |
| old_jiffies = jiffies; |
| once++; |
| } |
| |
| if (old_jiffies != jiffies) { |
| old_jiffies = jiffies - old_jiffies; |
| switch (old_jiffies) { |
| case 1: |
| printk("!"); |
| break; |
| case 2: |
| printk("!!"); |
| break; |
| case 3: |
| printk("!!!"); |
| break; |
| case 4: |
| printk("!!!!"); |
| break; |
| default: |
| printk("(%d!)", (int) old_jiffies); |
| } |
| old_jiffies = jiffies; |
| } |
| pgid = getpgid(pid); |
| printk("."); |
| } |
| #else |
| #define idle_trace() do { } while (0) |
| #endif /* IDLE_TRACE */ |
| |
| static int hlt_counter = 1; |
| |
| #define HARD_IDLE_TIMEOUT (HZ / 3) |
| |
| void disable_hlt(void) |
| { |
| hlt_counter++; |
| } |
| |
| void enable_hlt(void) |
| { |
| hlt_counter--; |
| } |
| |
| static int __init nohlt_setup(char *__unused) |
| { |
| hlt_counter = 1; |
| return 1; |
| } |
| |
| static int __init hlt_setup(char *__unused) |
| { |
| hlt_counter = 0; |
| return 1; |
| } |
| |
| __setup("nohlt", nohlt_setup); |
| __setup("hlt", hlt_setup); |
| |
| static inline void hlt(void) |
| { |
| if (hlt_counter) |
| return; |
| |
| __asm__ __volatile__ ("sleep" : : : "memory"); |
| } |
| |
| /* |
| * The idle loop on a uniprocessor SH.. |
| */ |
| void default_idle(void) |
| { |
| /* endless idle loop with no priority at all */ |
| while (1) { |
| if (hlt_counter) { |
| while (1) |
| if (need_resched()) |
| break; |
| } else { |
| local_irq_disable(); |
| while (!need_resched()) { |
| local_irq_enable(); |
| idle_trace(); |
| hlt(); |
| local_irq_disable(); |
| } |
| local_irq_enable(); |
| } |
| schedule(); |
| } |
| } |
| |
| void cpu_idle(void) |
| { |
| default_idle(); |
| } |
| |
| void machine_restart(char * __unused) |
| { |
| extern void phys_stext(void); |
| |
| phys_stext(); |
| } |
| |
| void machine_halt(void) |
| { |
| for (;;); |
| } |
| |
| void machine_power_off(void) |
| { |
| extern void enter_deep_standby(void); |
| |
| enter_deep_standby(); |
| } |
| |
| void show_regs(struct pt_regs * regs) |
| { |
| unsigned long long ah, al, bh, bl, ch, cl; |
| |
| printk("\n"); |
| |
| ah = (regs->pc) >> 32; |
| al = (regs->pc) & 0xffffffff; |
| bh = (regs->regs[18]) >> 32; |
| bl = (regs->regs[18]) & 0xffffffff; |
| ch = (regs->regs[15]) >> 32; |
| cl = (regs->regs[15]) & 0xffffffff; |
| printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->sr) >> 32; |
| al = (regs->sr) & 0xffffffff; |
| asm volatile ("getcon " __TEA ", %0" : "=r" (bh)); |
| asm volatile ("getcon " __TEA ", %0" : "=r" (bl)); |
| bh = (bh) >> 32; |
| bl = (bl) & 0xffffffff; |
| asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch)); |
| asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl)); |
| ch = (ch) >> 32; |
| cl = (cl) & 0xffffffff; |
| printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[0]) >> 32; |
| al = (regs->regs[0]) & 0xffffffff; |
| bh = (regs->regs[1]) >> 32; |
| bl = (regs->regs[1]) & 0xffffffff; |
| ch = (regs->regs[2]) >> 32; |
| cl = (regs->regs[2]) & 0xffffffff; |
| printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[3]) >> 32; |
| al = (regs->regs[3]) & 0xffffffff; |
| bh = (regs->regs[4]) >> 32; |
| bl = (regs->regs[4]) & 0xffffffff; |
| ch = (regs->regs[5]) >> 32; |
| cl = (regs->regs[5]) & 0xffffffff; |
| printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[6]) >> 32; |
| al = (regs->regs[6]) & 0xffffffff; |
| bh = (regs->regs[7]) >> 32; |
| bl = (regs->regs[7]) & 0xffffffff; |
| ch = (regs->regs[8]) >> 32; |
| cl = (regs->regs[8]) & 0xffffffff; |
| printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[9]) >> 32; |
| al = (regs->regs[9]) & 0xffffffff; |
| bh = (regs->regs[10]) >> 32; |
| bl = (regs->regs[10]) & 0xffffffff; |
| ch = (regs->regs[11]) >> 32; |
| cl = (regs->regs[11]) & 0xffffffff; |
| printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[12]) >> 32; |
| al = (regs->regs[12]) & 0xffffffff; |
| bh = (regs->regs[13]) >> 32; |
| bl = (regs->regs[13]) & 0xffffffff; |
| ch = (regs->regs[14]) >> 32; |
| cl = (regs->regs[14]) & 0xffffffff; |
| printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[16]) >> 32; |
| al = (regs->regs[16]) & 0xffffffff; |
| bh = (regs->regs[17]) >> 32; |
| bl = (regs->regs[17]) & 0xffffffff; |
| ch = (regs->regs[19]) >> 32; |
| cl = (regs->regs[19]) & 0xffffffff; |
| printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[20]) >> 32; |
| al = (regs->regs[20]) & 0xffffffff; |
| bh = (regs->regs[21]) >> 32; |
| bl = (regs->regs[21]) & 0xffffffff; |
| ch = (regs->regs[22]) >> 32; |
| cl = (regs->regs[22]) & 0xffffffff; |
| printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[23]) >> 32; |
| al = (regs->regs[23]) & 0xffffffff; |
| bh = (regs->regs[24]) >> 32; |
| bl = (regs->regs[24]) & 0xffffffff; |
| ch = (regs->regs[25]) >> 32; |
| cl = (regs->regs[25]) & 0xffffffff; |
| printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[26]) >> 32; |
| al = (regs->regs[26]) & 0xffffffff; |
| bh = (regs->regs[27]) >> 32; |
| bl = (regs->regs[27]) & 0xffffffff; |
| ch = (regs->regs[28]) >> 32; |
| cl = (regs->regs[28]) & 0xffffffff; |
| printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[29]) >> 32; |
| al = (regs->regs[29]) & 0xffffffff; |
| bh = (regs->regs[30]) >> 32; |
| bl = (regs->regs[30]) & 0xffffffff; |
| ch = (regs->regs[31]) >> 32; |
| cl = (regs->regs[31]) & 0xffffffff; |
| printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[32]) >> 32; |
| al = (regs->regs[32]) & 0xffffffff; |
| bh = (regs->regs[33]) >> 32; |
| bl = (regs->regs[33]) & 0xffffffff; |
| ch = (regs->regs[34]) >> 32; |
| cl = (regs->regs[34]) & 0xffffffff; |
| printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[35]) >> 32; |
| al = (regs->regs[35]) & 0xffffffff; |
| bh = (regs->regs[36]) >> 32; |
| bl = (regs->regs[36]) & 0xffffffff; |
| ch = (regs->regs[37]) >> 32; |
| cl = (regs->regs[37]) & 0xffffffff; |
| printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[38]) >> 32; |
| al = (regs->regs[38]) & 0xffffffff; |
| bh = (regs->regs[39]) >> 32; |
| bl = (regs->regs[39]) & 0xffffffff; |
| ch = (regs->regs[40]) >> 32; |
| cl = (regs->regs[40]) & 0xffffffff; |
| printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[41]) >> 32; |
| al = (regs->regs[41]) & 0xffffffff; |
| bh = (regs->regs[42]) >> 32; |
| bl = (regs->regs[42]) & 0xffffffff; |
| ch = (regs->regs[43]) >> 32; |
| cl = (regs->regs[43]) & 0xffffffff; |
| printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[44]) >> 32; |
| al = (regs->regs[44]) & 0xffffffff; |
| bh = (regs->regs[45]) >> 32; |
| bl = (regs->regs[45]) & 0xffffffff; |
| ch = (regs->regs[46]) >> 32; |
| cl = (regs->regs[46]) & 0xffffffff; |
| printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[47]) >> 32; |
| al = (regs->regs[47]) & 0xffffffff; |
| bh = (regs->regs[48]) >> 32; |
| bl = (regs->regs[48]) & 0xffffffff; |
| ch = (regs->regs[49]) >> 32; |
| cl = (regs->regs[49]) & 0xffffffff; |
| printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[50]) >> 32; |
| al = (regs->regs[50]) & 0xffffffff; |
| bh = (regs->regs[51]) >> 32; |
| bl = (regs->regs[51]) & 0xffffffff; |
| ch = (regs->regs[52]) >> 32; |
| cl = (regs->regs[52]) & 0xffffffff; |
| printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[53]) >> 32; |
| al = (regs->regs[53]) & 0xffffffff; |
| bh = (regs->regs[54]) >> 32; |
| bl = (regs->regs[54]) & 0xffffffff; |
| ch = (regs->regs[55]) >> 32; |
| cl = (regs->regs[55]) & 0xffffffff; |
| printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[56]) >> 32; |
| al = (regs->regs[56]) & 0xffffffff; |
| bh = (regs->regs[57]) >> 32; |
| bl = (regs->regs[57]) & 0xffffffff; |
| ch = (regs->regs[58]) >> 32; |
| cl = (regs->regs[58]) & 0xffffffff; |
| printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[59]) >> 32; |
| al = (regs->regs[59]) & 0xffffffff; |
| bh = (regs->regs[60]) >> 32; |
| bl = (regs->regs[60]) & 0xffffffff; |
| ch = (regs->regs[61]) >> 32; |
| cl = (regs->regs[61]) & 0xffffffff; |
| printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->regs[62]) >> 32; |
| al = (regs->regs[62]) & 0xffffffff; |
| bh = (regs->tregs[0]) >> 32; |
| bl = (regs->tregs[0]) & 0xffffffff; |
| ch = (regs->tregs[1]) >> 32; |
| cl = (regs->tregs[1]) & 0xffffffff; |
| printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->tregs[2]) >> 32; |
| al = (regs->tregs[2]) & 0xffffffff; |
| bh = (regs->tregs[3]) >> 32; |
| bl = (regs->tregs[3]) & 0xffffffff; |
| ch = (regs->tregs[4]) >> 32; |
| cl = (regs->tregs[4]) & 0xffffffff; |
| printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| ah = (regs->tregs[5]) >> 32; |
| al = (regs->tregs[5]) & 0xffffffff; |
| bh = (regs->tregs[6]) >> 32; |
| bl = (regs->tregs[6]) & 0xffffffff; |
| ch = (regs->tregs[7]) >> 32; |
| cl = (regs->tregs[7]) & 0xffffffff; |
| printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n", |
| ah, al, bh, bl, ch, cl); |
| |
| /* |
| * If we're in kernel mode, dump the stack too.. |
| */ |
| if (!user_mode(regs)) { |
| void show_stack(struct task_struct *tsk, unsigned long *sp); |
| unsigned long sp = regs->regs[15] & 0xffffffff; |
| struct task_struct *tsk = get_current(); |
| |
| tsk->thread.kregs = regs; |
| |
| show_stack(tsk, (unsigned long *)sp); |
| } |
| } |
| |
| struct task_struct * alloc_task_struct(void) |
| { |
| /* Get task descriptor pages */ |
| return (struct task_struct *) |
| __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE)); |
| } |
| |
| void free_task_struct(struct task_struct *p) |
| { |
| free_pages((unsigned long) p, get_order(THREAD_SIZE)); |
| } |
| |
| /* |
| * Create a kernel thread |
| */ |
| |
| /* |
| * This is the mechanism for creating a new kernel thread. |
| * |
| * NOTE! Only a kernel-only process(ie the swapper or direct descendants |
| * who haven't done an "execve()") should use this: it will work within |
| * a system call from a "real" process, but the process memory space will |
| * not be free'd until both the parent and the child have exited. |
| */ |
| int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) |
| { |
| /* A bit less processor dependent than older sh ... */ |
| unsigned int reply; |
| |
| static __inline__ _syscall2(int,clone,unsigned long,flags,unsigned long,newsp) |
| static __inline__ _syscall1(int,exit,int,ret) |
| |
| reply = clone(flags | CLONE_VM, 0); |
| if (!reply) { |
| /* Child */ |
| reply = exit(fn(arg)); |
| } |
| |
| return reply; |
| } |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| /* See arch/sparc/kernel/process.c for the precedent for doing this -- RPC. |
| |
| The SH-5 FPU save/restore approach relies on last_task_used_math |
| pointing to a live task_struct. When another task tries to use the |
| FPU for the 1st time, the FPUDIS trap handling (see |
| arch/sh64/kernel/fpu.c) will save the existing FPU state to the |
| FP regs field within last_task_used_math before re-loading the new |
| task's FPU state (or initialising it if the FPU has been used |
| before). So if last_task_used_math is stale, and its page has already been |
| re-allocated for another use, the consequences are rather grim. Unless we |
| null it here, there is no other path through which it would get safely |
| nulled. */ |
| |
| #ifdef CONFIG_SH_FPU |
| if (last_task_used_math == current) { |
| last_task_used_math = NULL; |
| } |
| #endif |
| } |
| |
| void flush_thread(void) |
| { |
| |
| /* Called by fs/exec.c (flush_old_exec) to remove traces of a |
| * previously running executable. */ |
| #ifdef CONFIG_SH_FPU |
| if (last_task_used_math == current) { |
| last_task_used_math = NULL; |
| } |
| /* Force FPU state to be reinitialised after exec */ |
| clear_used_math(); |
| #endif |
| |
| /* if we are a kernel thread, about to change to user thread, |
| * update kreg |
| */ |
| if(current->thread.kregs==&fake_swapper_regs) { |
| current->thread.kregs = |
| ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1); |
| current->thread.uregs = current->thread.kregs; |
| } |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| /* do nothing */ |
| } |
| |
| /* Fill in the fpu structure for a core dump.. */ |
| int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu) |
| { |
| #ifdef CONFIG_SH_FPU |
| int fpvalid; |
| struct task_struct *tsk = current; |
| |
| fpvalid = !!tsk_used_math(tsk); |
| if (fpvalid) { |
| if (current == last_task_used_math) { |
| grab_fpu(); |
| fpsave(&tsk->thread.fpu.hard); |
| release_fpu(); |
| last_task_used_math = 0; |
| regs->sr |= SR_FD; |
| } |
| |
| memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu)); |
| } |
| |
| return fpvalid; |
| #else |
| return 0; /* Task didn't use the fpu at all. */ |
| #endif |
| } |
| |
| asmlinkage void ret_from_fork(void); |
| |
| int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, |
| unsigned long unused, |
| struct task_struct *p, struct pt_regs *regs) |
| { |
| struct pt_regs *childregs; |
| unsigned long long se; /* Sign extension */ |
| |
| #ifdef CONFIG_SH_FPU |
| if(last_task_used_math == current) { |
| grab_fpu(); |
| fpsave(¤t->thread.fpu.hard); |
| release_fpu(); |
| last_task_used_math = NULL; |
| regs->sr |= SR_FD; |
| } |
| #endif |
| /* Copy from sh version */ |
| childregs = ((struct pt_regs *)(THREAD_SIZE + (unsigned long) p->thread_info )) - 1; |
| |
| *childregs = *regs; |
| |
| if (user_mode(regs)) { |
| childregs->regs[15] = usp; |
| p->thread.uregs = childregs; |
| } else { |
| childregs->regs[15] = (unsigned long)p->thread_info + THREAD_SIZE; |
| } |
| |
| childregs->regs[9] = 0; /* Set return value for child */ |
| childregs->sr |= SR_FD; /* Invalidate FPU flag */ |
| |
| p->thread.sp = (unsigned long) childregs; |
| p->thread.pc = (unsigned long) ret_from_fork; |
| |
| /* |
| * Sign extend the edited stack. |
| * Note that thread.pc and thread.pc will stay |
| * 32-bit wide and context switch must take care |
| * of NEFF sign extension. |
| */ |
| |
| se = childregs->regs[15]; |
| se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se; |
| childregs->regs[15] = se; |
| |
| return 0; |
| } |
| |
| /* |
| * fill in the user structure for a core dump.. |
| */ |
| void dump_thread(struct pt_regs * regs, struct user * dump) |
| { |
| dump->magic = CMAGIC; |
| dump->start_code = current->mm->start_code; |
| dump->start_data = current->mm->start_data; |
| dump->start_stack = regs->regs[15] & ~(PAGE_SIZE - 1); |
| dump->u_tsize = (current->mm->end_code - dump->start_code) >> PAGE_SHIFT; |
| dump->u_dsize = (current->mm->brk + (PAGE_SIZE-1) - dump->start_data) >> PAGE_SHIFT; |
| dump->u_ssize = (current->mm->start_stack - dump->start_stack + |
| PAGE_SIZE - 1) >> PAGE_SHIFT; |
| /* Debug registers will come here. */ |
| |
| dump->regs = *regs; |
| |
| dump->u_fpvalid = dump_fpu(regs, &dump->fpu); |
| } |
| |
| asmlinkage int sys_fork(unsigned long r2, unsigned long r3, |
| unsigned long r4, unsigned long r5, |
| unsigned long r6, unsigned long r7, |
| struct pt_regs *pregs) |
| { |
| return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0); |
| } |
| |
| asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp, |
| unsigned long r4, unsigned long r5, |
| unsigned long r6, unsigned long r7, |
| struct pt_regs *pregs) |
| { |
| if (!newsp) |
| newsp = pregs->regs[15]; |
| return do_fork(clone_flags, newsp, pregs, 0, 0, 0); |
| } |
| |
| /* |
| * This is trivial, and on the face of it looks like it |
| * could equally well be done in user mode. |
| * |
| * Not so, for quite unobvious reasons - register pressure. |
| * In user mode vfork() cannot have a stack frame, and if |
| * done by calling the "clone()" system call directly, you |
| * do not have enough call-clobbered registers to hold all |
| * the information you need. |
| */ |
| asmlinkage int sys_vfork(unsigned long r2, unsigned long r3, |
| unsigned long r4, unsigned long r5, |
| unsigned long r6, unsigned long r7, |
| struct pt_regs *pregs) |
| { |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0); |
| } |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| asmlinkage int sys_execve(char *ufilename, char **uargv, |
| char **uenvp, unsigned long r5, |
| unsigned long r6, unsigned long r7, |
| struct pt_regs *pregs) |
| { |
| int error; |
| char *filename; |
| |
| lock_kernel(); |
| filename = getname((char __user *)ufilename); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| |
| error = do_execve(filename, |
| (char __user * __user *)uargv, |
| (char __user * __user *)uenvp, |
| pregs); |
| if (error == 0) { |
| task_lock(current); |
| current->ptrace &= ~PT_DTRACE; |
| task_unlock(current); |
| } |
| putname(filename); |
| out: |
| unlock_kernel(); |
| return error; |
| } |
| |
| /* |
| * These bracket the sleeping functions.. |
| */ |
| extern void interruptible_sleep_on(wait_queue_head_t *q); |
| |
| #define mid_sched ((unsigned long) interruptible_sleep_on) |
| |
| static int in_sh64_switch_to(unsigned long pc) |
| { |
| extern char __sh64_switch_to_end; |
| /* For a sleeping task, the PC is somewhere in the middle of the function, |
| so we don't have to worry about masking the LSB off */ |
| return (pc >= (unsigned long) sh64_switch_to) && |
| (pc < (unsigned long) &__sh64_switch_to_end); |
| } |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long schedule_fp; |
| unsigned long sh64_switch_to_fp; |
| unsigned long schedule_caller_pc; |
| unsigned long pc; |
| |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| |
| /* |
| * The same comment as on the Alpha applies here, too ... |
| */ |
| pc = thread_saved_pc(p); |
| |
| #ifdef CONFIG_FRAME_POINTER |
| if (in_sh64_switch_to(pc)) { |
| sh64_switch_to_fp = (long) p->thread.sp; |
| /* r14 is saved at offset 4 in the sh64_switch_to frame */ |
| schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4); |
| |
| /* and the caller of 'schedule' is (currently!) saved at offset 24 |
| in the frame of schedule (from disasm) */ |
| schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24); |
| return schedule_caller_pc; |
| } |
| #endif |
| return pc; |
| } |
| |
| /* Provide a /proc/asids file that lists out the |
| ASIDs currently associated with the processes. (If the DM.PC register is |
| examined through the debug link, this shows ASID + PC. To make use of this, |
| the PID->ASID relationship needs to be known. This is primarily for |
| debugging.) |
| */ |
| |
| #if defined(CONFIG_SH64_PROC_ASIDS) |
| #include <linux/init.h> |
| #include <linux/proc_fs.h> |
| |
| static int |
| asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data) |
| { |
| int len=0; |
| struct task_struct *p; |
| read_lock(&tasklist_lock); |
| for_each_process(p) { |
| int pid = p->pid; |
| struct mm_struct *mm; |
| if (!pid) continue; |
| mm = p->mm; |
| if (mm) { |
| unsigned long asid, context; |
| context = mm->context; |
| asid = (context & 0xff); |
| len += sprintf(buf+len, "%5d : %02lx\n", pid, asid); |
| } else { |
| len += sprintf(buf+len, "%5d : (none)\n", pid); |
| } |
| } |
| read_unlock(&tasklist_lock); |
| *eof = 1; |
| return len; |
| } |
| |
| static int __init register_proc_asids(void) |
| { |
| create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL); |
| return 0; |
| } |
| |
| __initcall(register_proc_asids); |
| #endif |
| |