| /* | 
 |  * linux/mm/slab.c | 
 |  * Written by Mark Hemment, 1996/97. | 
 |  * (markhe@nextd.demon.co.uk) | 
 |  * | 
 |  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | 
 |  * | 
 |  * Major cleanup, different bufctl logic, per-cpu arrays | 
 |  *	(c) 2000 Manfred Spraul | 
 |  * | 
 |  * Cleanup, make the head arrays unconditional, preparation for NUMA | 
 |  * 	(c) 2002 Manfred Spraul | 
 |  * | 
 |  * An implementation of the Slab Allocator as described in outline in; | 
 |  *	UNIX Internals: The New Frontiers by Uresh Vahalia | 
 |  *	Pub: Prentice Hall	ISBN 0-13-101908-2 | 
 |  * or with a little more detail in; | 
 |  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator | 
 |  *	Jeff Bonwick (Sun Microsystems). | 
 |  *	Presented at: USENIX Summer 1994 Technical Conference | 
 |  * | 
 |  * The memory is organized in caches, one cache for each object type. | 
 |  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | 
 |  * Each cache consists out of many slabs (they are small (usually one | 
 |  * page long) and always contiguous), and each slab contains multiple | 
 |  * initialized objects. | 
 |  * | 
 |  * This means, that your constructor is used only for newly allocated | 
 |  * slabs and you must pass objects with the same intializations to | 
 |  * kmem_cache_free. | 
 |  * | 
 |  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | 
 |  * normal). If you need a special memory type, then must create a new | 
 |  * cache for that memory type. | 
 |  * | 
 |  * In order to reduce fragmentation, the slabs are sorted in 3 groups: | 
 |  *   full slabs with 0 free objects | 
 |  *   partial slabs | 
 |  *   empty slabs with no allocated objects | 
 |  * | 
 |  * If partial slabs exist, then new allocations come from these slabs, | 
 |  * otherwise from empty slabs or new slabs are allocated. | 
 |  * | 
 |  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | 
 |  * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | 
 |  * | 
 |  * Each cache has a short per-cpu head array, most allocs | 
 |  * and frees go into that array, and if that array overflows, then 1/2 | 
 |  * of the entries in the array are given back into the global cache. | 
 |  * The head array is strictly LIFO and should improve the cache hit rates. | 
 |  * On SMP, it additionally reduces the spinlock operations. | 
 |  * | 
 |  * The c_cpuarray may not be read with enabled local interrupts -  | 
 |  * it's changed with a smp_call_function(). | 
 |  * | 
 |  * SMP synchronization: | 
 |  *  constructors and destructors are called without any locking. | 
 |  *  Several members in kmem_cache_t and struct slab never change, they | 
 |  *	are accessed without any locking. | 
 |  *  The per-cpu arrays are never accessed from the wrong cpu, no locking, | 
 |  *  	and local interrupts are disabled so slab code is preempt-safe. | 
 |  *  The non-constant members are protected with a per-cache irq spinlock. | 
 |  * | 
 |  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | 
 |  * in 2000 - many ideas in the current implementation are derived from | 
 |  * his patch. | 
 |  * | 
 |  * Further notes from the original documentation: | 
 |  * | 
 |  * 11 April '97.  Started multi-threading - markhe | 
 |  *	The global cache-chain is protected by the semaphore 'cache_chain_sem'. | 
 |  *	The sem is only needed when accessing/extending the cache-chain, which | 
 |  *	can never happen inside an interrupt (kmem_cache_create(), | 
 |  *	kmem_cache_shrink() and kmem_cache_reap()). | 
 |  * | 
 |  *	At present, each engine can be growing a cache.  This should be blocked. | 
 |  * | 
 |  */ | 
 |  | 
 | #include	<linux/config.h> | 
 | #include	<linux/slab.h> | 
 | #include	<linux/mm.h> | 
 | #include	<linux/swap.h> | 
 | #include	<linux/cache.h> | 
 | #include	<linux/interrupt.h> | 
 | #include	<linux/init.h> | 
 | #include	<linux/compiler.h> | 
 | #include	<linux/seq_file.h> | 
 | #include	<linux/notifier.h> | 
 | #include	<linux/kallsyms.h> | 
 | #include	<linux/cpu.h> | 
 | #include	<linux/sysctl.h> | 
 | #include	<linux/module.h> | 
 | #include	<linux/rcupdate.h> | 
 | #include	<linux/string.h> | 
 |  | 
 | #include	<asm/uaccess.h> | 
 | #include	<asm/cacheflush.h> | 
 | #include	<asm/tlbflush.h> | 
 | #include	<asm/page.h> | 
 |  | 
 | /* | 
 |  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL, | 
 |  *		  SLAB_RED_ZONE & SLAB_POISON. | 
 |  *		  0 for faster, smaller code (especially in the critical paths). | 
 |  * | 
 |  * STATS	- 1 to collect stats for /proc/slabinfo. | 
 |  *		  0 for faster, smaller code (especially in the critical paths). | 
 |  * | 
 |  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_DEBUG_SLAB | 
 | #define	DEBUG		1 | 
 | #define	STATS		1 | 
 | #define	FORCED_DEBUG	1 | 
 | #else | 
 | #define	DEBUG		0 | 
 | #define	STATS		0 | 
 | #define	FORCED_DEBUG	0 | 
 | #endif | 
 |  | 
 |  | 
 | /* Shouldn't this be in a header file somewhere? */ | 
 | #define	BYTES_PER_WORD		sizeof(void *) | 
 |  | 
 | #ifndef cache_line_size | 
 | #define cache_line_size()	L1_CACHE_BYTES | 
 | #endif | 
 |  | 
 | #ifndef ARCH_KMALLOC_MINALIGN | 
 | /* | 
 |  * Enforce a minimum alignment for the kmalloc caches. | 
 |  * Usually, the kmalloc caches are cache_line_size() aligned, except when | 
 |  * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. | 
 |  * Some archs want to perform DMA into kmalloc caches and need a guaranteed | 
 |  * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that. | 
 |  * Note that this flag disables some debug features. | 
 |  */ | 
 | #define ARCH_KMALLOC_MINALIGN 0 | 
 | #endif | 
 |  | 
 | #ifndef ARCH_SLAB_MINALIGN | 
 | /* | 
 |  * Enforce a minimum alignment for all caches. | 
 |  * Intended for archs that get misalignment faults even for BYTES_PER_WORD | 
 |  * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. | 
 |  * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables | 
 |  * some debug features. | 
 |  */ | 
 | #define ARCH_SLAB_MINALIGN 0 | 
 | #endif | 
 |  | 
 | #ifndef ARCH_KMALLOC_FLAGS | 
 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | 
 | #endif | 
 |  | 
 | /* Legal flag mask for kmem_cache_create(). */ | 
 | #if DEBUG | 
 | # define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ | 
 | 			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ | 
 | 			 SLAB_NO_REAP | SLAB_CACHE_DMA | \ | 
 | 			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ | 
 | 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | 
 | 			 SLAB_DESTROY_BY_RCU) | 
 | #else | 
 | # define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \ | 
 | 			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ | 
 | 			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | 
 | 			 SLAB_DESTROY_BY_RCU) | 
 | #endif | 
 |  | 
 | /* | 
 |  * kmem_bufctl_t: | 
 |  * | 
 |  * Bufctl's are used for linking objs within a slab | 
 |  * linked offsets. | 
 |  * | 
 |  * This implementation relies on "struct page" for locating the cache & | 
 |  * slab an object belongs to. | 
 |  * This allows the bufctl structure to be small (one int), but limits | 
 |  * the number of objects a slab (not a cache) can contain when off-slab | 
 |  * bufctls are used. The limit is the size of the largest general cache | 
 |  * that does not use off-slab slabs. | 
 |  * For 32bit archs with 4 kB pages, is this 56. | 
 |  * This is not serious, as it is only for large objects, when it is unwise | 
 |  * to have too many per slab. | 
 |  * Note: This limit can be raised by introducing a general cache whose size | 
 |  * is less than 512 (PAGE_SIZE<<3), but greater than 256. | 
 |  */ | 
 |  | 
 | typedef unsigned int kmem_bufctl_t; | 
 | #define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0) | 
 | #define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1) | 
 | #define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2) | 
 |  | 
 | /* Max number of objs-per-slab for caches which use off-slab slabs. | 
 |  * Needed to avoid a possible looping condition in cache_grow(). | 
 |  */ | 
 | static unsigned long offslab_limit; | 
 |  | 
 | /* | 
 |  * struct slab | 
 |  * | 
 |  * Manages the objs in a slab. Placed either at the beginning of mem allocated | 
 |  * for a slab, or allocated from an general cache. | 
 |  * Slabs are chained into three list: fully used, partial, fully free slabs. | 
 |  */ | 
 | struct slab { | 
 | 	struct list_head	list; | 
 | 	unsigned long		colouroff; | 
 | 	void			*s_mem;		/* including colour offset */ | 
 | 	unsigned int		inuse;		/* num of objs active in slab */ | 
 | 	kmem_bufctl_t		free; | 
 | }; | 
 |  | 
 | /* | 
 |  * struct slab_rcu | 
 |  * | 
 |  * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | 
 |  * arrange for kmem_freepages to be called via RCU.  This is useful if | 
 |  * we need to approach a kernel structure obliquely, from its address | 
 |  * obtained without the usual locking.  We can lock the structure to | 
 |  * stabilize it and check it's still at the given address, only if we | 
 |  * can be sure that the memory has not been meanwhile reused for some | 
 |  * other kind of object (which our subsystem's lock might corrupt). | 
 |  * | 
 |  * rcu_read_lock before reading the address, then rcu_read_unlock after | 
 |  * taking the spinlock within the structure expected at that address. | 
 |  * | 
 |  * We assume struct slab_rcu can overlay struct slab when destroying. | 
 |  */ | 
 | struct slab_rcu { | 
 | 	struct rcu_head		head; | 
 | 	kmem_cache_t		*cachep; | 
 | 	void			*addr; | 
 | }; | 
 |  | 
 | /* | 
 |  * struct array_cache | 
 |  * | 
 |  * Per cpu structures | 
 |  * Purpose: | 
 |  * - LIFO ordering, to hand out cache-warm objects from _alloc | 
 |  * - reduce the number of linked list operations | 
 |  * - reduce spinlock operations | 
 |  * | 
 |  * The limit is stored in the per-cpu structure to reduce the data cache | 
 |  * footprint. | 
 |  * | 
 |  */ | 
 | struct array_cache { | 
 | 	unsigned int avail; | 
 | 	unsigned int limit; | 
 | 	unsigned int batchcount; | 
 | 	unsigned int touched; | 
 | }; | 
 |  | 
 | /* bootstrap: The caches do not work without cpuarrays anymore, | 
 |  * but the cpuarrays are allocated from the generic caches... | 
 |  */ | 
 | #define BOOT_CPUCACHE_ENTRIES	1 | 
 | struct arraycache_init { | 
 | 	struct array_cache cache; | 
 | 	void * entries[BOOT_CPUCACHE_ENTRIES]; | 
 | }; | 
 |  | 
 | /* | 
 |  * The slab lists of all objects. | 
 |  * Hopefully reduce the internal fragmentation | 
 |  * NUMA: The spinlock could be moved from the kmem_cache_t | 
 |  * into this structure, too. Figure out what causes | 
 |  * fewer cross-node spinlock operations. | 
 |  */ | 
 | struct kmem_list3 { | 
 | 	struct list_head	slabs_partial;	/* partial list first, better asm code */ | 
 | 	struct list_head	slabs_full; | 
 | 	struct list_head	slabs_free; | 
 | 	unsigned long	free_objects; | 
 | 	int		free_touched; | 
 | 	unsigned long	next_reap; | 
 | 	struct array_cache	*shared; | 
 | }; | 
 |  | 
 | #define LIST3_INIT(parent) \ | 
 | 	{ \ | 
 | 		.slabs_full	= LIST_HEAD_INIT(parent.slabs_full), \ | 
 | 		.slabs_partial	= LIST_HEAD_INIT(parent.slabs_partial), \ | 
 | 		.slabs_free	= LIST_HEAD_INIT(parent.slabs_free) \ | 
 | 	} | 
 | #define list3_data(cachep) \ | 
 | 	(&(cachep)->lists) | 
 |  | 
 | /* NUMA: per-node */ | 
 | #define list3_data_ptr(cachep, ptr) \ | 
 | 		list3_data(cachep) | 
 |  | 
 | /* | 
 |  * kmem_cache_t | 
 |  * | 
 |  * manages a cache. | 
 |  */ | 
 | 	 | 
 | struct kmem_cache_s { | 
 | /* 1) per-cpu data, touched during every alloc/free */ | 
 | 	struct array_cache	*array[NR_CPUS]; | 
 | 	unsigned int		batchcount; | 
 | 	unsigned int		limit; | 
 | /* 2) touched by every alloc & free from the backend */ | 
 | 	struct kmem_list3	lists; | 
 | 	/* NUMA: kmem_3list_t	*nodelists[MAX_NUMNODES] */ | 
 | 	unsigned int		objsize; | 
 | 	unsigned int	 	flags;	/* constant flags */ | 
 | 	unsigned int		num;	/* # of objs per slab */ | 
 | 	unsigned int		free_limit; /* upper limit of objects in the lists */ | 
 | 	spinlock_t		spinlock; | 
 |  | 
 | /* 3) cache_grow/shrink */ | 
 | 	/* order of pgs per slab (2^n) */ | 
 | 	unsigned int		gfporder; | 
 |  | 
 | 	/* force GFP flags, e.g. GFP_DMA */ | 
 | 	unsigned int		gfpflags; | 
 |  | 
 | 	size_t			colour;		/* cache colouring range */ | 
 | 	unsigned int		colour_off;	/* colour offset */ | 
 | 	unsigned int		colour_next;	/* cache colouring */ | 
 | 	kmem_cache_t		*slabp_cache; | 
 | 	unsigned int		slab_size; | 
 | 	unsigned int		dflags;		/* dynamic flags */ | 
 |  | 
 | 	/* constructor func */ | 
 | 	void (*ctor)(void *, kmem_cache_t *, unsigned long); | 
 |  | 
 | 	/* de-constructor func */ | 
 | 	void (*dtor)(void *, kmem_cache_t *, unsigned long); | 
 |  | 
 | /* 4) cache creation/removal */ | 
 | 	const char		*name; | 
 | 	struct list_head	next; | 
 |  | 
 | /* 5) statistics */ | 
 | #if STATS | 
 | 	unsigned long		num_active; | 
 | 	unsigned long		num_allocations; | 
 | 	unsigned long		high_mark; | 
 | 	unsigned long		grown; | 
 | 	unsigned long		reaped; | 
 | 	unsigned long 		errors; | 
 | 	unsigned long		max_freeable; | 
 | 	unsigned long		node_allocs; | 
 | 	atomic_t		allochit; | 
 | 	atomic_t		allocmiss; | 
 | 	atomic_t		freehit; | 
 | 	atomic_t		freemiss; | 
 | #endif | 
 | #if DEBUG | 
 | 	int			dbghead; | 
 | 	int			reallen; | 
 | #endif | 
 | }; | 
 |  | 
 | #define CFLGS_OFF_SLAB		(0x80000000UL) | 
 | #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB) | 
 |  | 
 | #define BATCHREFILL_LIMIT	16 | 
 | /* Optimization question: fewer reaps means less  | 
 |  * probability for unnessary cpucache drain/refill cycles. | 
 |  * | 
 |  * OTHO the cpuarrays can contain lots of objects, | 
 |  * which could lock up otherwise freeable slabs. | 
 |  */ | 
 | #define REAPTIMEOUT_CPUC	(2*HZ) | 
 | #define REAPTIMEOUT_LIST3	(4*HZ) | 
 |  | 
 | #if STATS | 
 | #define	STATS_INC_ACTIVE(x)	((x)->num_active++) | 
 | #define	STATS_DEC_ACTIVE(x)	((x)->num_active--) | 
 | #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++) | 
 | #define	STATS_INC_GROWN(x)	((x)->grown++) | 
 | #define	STATS_INC_REAPED(x)	((x)->reaped++) | 
 | #define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \ | 
 | 					(x)->high_mark = (x)->num_active; \ | 
 | 				} while (0) | 
 | #define	STATS_INC_ERR(x)	((x)->errors++) | 
 | #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++) | 
 | #define	STATS_SET_FREEABLE(x, i) \ | 
 | 				do { if ((x)->max_freeable < i) \ | 
 | 					(x)->max_freeable = i; \ | 
 | 				} while (0) | 
 |  | 
 | #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit) | 
 | #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss) | 
 | #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit) | 
 | #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss) | 
 | #else | 
 | #define	STATS_INC_ACTIVE(x)	do { } while (0) | 
 | #define	STATS_DEC_ACTIVE(x)	do { } while (0) | 
 | #define	STATS_INC_ALLOCED(x)	do { } while (0) | 
 | #define	STATS_INC_GROWN(x)	do { } while (0) | 
 | #define	STATS_INC_REAPED(x)	do { } while (0) | 
 | #define	STATS_SET_HIGH(x)	do { } while (0) | 
 | #define	STATS_INC_ERR(x)	do { } while (0) | 
 | #define	STATS_INC_NODEALLOCS(x)	do { } while (0) | 
 | #define	STATS_SET_FREEABLE(x, i) \ | 
 | 				do { } while (0) | 
 |  | 
 | #define STATS_INC_ALLOCHIT(x)	do { } while (0) | 
 | #define STATS_INC_ALLOCMISS(x)	do { } while (0) | 
 | #define STATS_INC_FREEHIT(x)	do { } while (0) | 
 | #define STATS_INC_FREEMISS(x)	do { } while (0) | 
 | #endif | 
 |  | 
 | #if DEBUG | 
 | /* Magic nums for obj red zoning. | 
 |  * Placed in the first word before and the first word after an obj. | 
 |  */ | 
 | #define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */ | 
 | #define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */ | 
 |  | 
 | /* ...and for poisoning */ | 
 | #define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */ | 
 | #define POISON_FREE	0x6b	/* for use-after-free poisoning */ | 
 | #define	POISON_END	0xa5	/* end-byte of poisoning */ | 
 |  | 
 | /* memory layout of objects: | 
 |  * 0		: objp | 
 |  * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that | 
 |  * 		the end of an object is aligned with the end of the real | 
 |  * 		allocation. Catches writes behind the end of the allocation. | 
 |  * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1: | 
 |  * 		redzone word. | 
 |  * cachep->dbghead: The real object. | 
 |  * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | 
 |  * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] | 
 |  */ | 
 | static int obj_dbghead(kmem_cache_t *cachep) | 
 | { | 
 | 	return cachep->dbghead; | 
 | } | 
 |  | 
 | static int obj_reallen(kmem_cache_t *cachep) | 
 | { | 
 | 	return cachep->reallen; | 
 | } | 
 |  | 
 | static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp) | 
 | { | 
 | 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 
 | 	return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD); | 
 | } | 
 |  | 
 | static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp) | 
 | { | 
 | 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 
 | 	if (cachep->flags & SLAB_STORE_USER) | 
 | 		return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD); | 
 | 	return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD); | 
 | } | 
 |  | 
 | static void **dbg_userword(kmem_cache_t *cachep, void *objp) | 
 | { | 
 | 	BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | 
 | 	return (void**)(objp+cachep->objsize-BYTES_PER_WORD); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | #define obj_dbghead(x)			0 | 
 | #define obj_reallen(cachep)		(cachep->objsize) | 
 | #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;}) | 
 | #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;}) | 
 | #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;}) | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Maximum size of an obj (in 2^order pages) | 
 |  * and absolute limit for the gfp order. | 
 |  */ | 
 | #if defined(CONFIG_LARGE_ALLOCS) | 
 | #define	MAX_OBJ_ORDER	13	/* up to 32Mb */ | 
 | #define	MAX_GFP_ORDER	13	/* up to 32Mb */ | 
 | #elif defined(CONFIG_MMU) | 
 | #define	MAX_OBJ_ORDER	5	/* 32 pages */ | 
 | #define	MAX_GFP_ORDER	5	/* 32 pages */ | 
 | #else | 
 | #define	MAX_OBJ_ORDER	8	/* up to 1Mb */ | 
 | #define	MAX_GFP_ORDER	8	/* up to 1Mb */ | 
 | #endif | 
 |  | 
 | /* | 
 |  * Do not go above this order unless 0 objects fit into the slab. | 
 |  */ | 
 | #define	BREAK_GFP_ORDER_HI	1 | 
 | #define	BREAK_GFP_ORDER_LO	0 | 
 | static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; | 
 |  | 
 | /* Macros for storing/retrieving the cachep and or slab from the | 
 |  * global 'mem_map'. These are used to find the slab an obj belongs to. | 
 |  * With kfree(), these are used to find the cache which an obj belongs to. | 
 |  */ | 
 | #define	SET_PAGE_CACHE(pg,x)  ((pg)->lru.next = (struct list_head *)(x)) | 
 | #define	GET_PAGE_CACHE(pg)    ((kmem_cache_t *)(pg)->lru.next) | 
 | #define	SET_PAGE_SLAB(pg,x)   ((pg)->lru.prev = (struct list_head *)(x)) | 
 | #define	GET_PAGE_SLAB(pg)     ((struct slab *)(pg)->lru.prev) | 
 |  | 
 | /* These are the default caches for kmalloc. Custom caches can have other sizes. */ | 
 | struct cache_sizes malloc_sizes[] = { | 
 | #define CACHE(x) { .cs_size = (x) }, | 
 | #include <linux/kmalloc_sizes.h> | 
 | 	CACHE(ULONG_MAX) | 
 | #undef CACHE | 
 | }; | 
 | EXPORT_SYMBOL(malloc_sizes); | 
 |  | 
 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | 
 | struct cache_names { | 
 | 	char *name; | 
 | 	char *name_dma; | 
 | }; | 
 |  | 
 | static struct cache_names __initdata cache_names[] = { | 
 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | 
 | #include <linux/kmalloc_sizes.h> | 
 | 	{ NULL, } | 
 | #undef CACHE | 
 | }; | 
 |  | 
 | static struct arraycache_init initarray_cache __initdata = | 
 | 	{ { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | 
 | static struct arraycache_init initarray_generic = | 
 | 	{ { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | 
 |  | 
 | /* internal cache of cache description objs */ | 
 | static kmem_cache_t cache_cache = { | 
 | 	.lists		= LIST3_INIT(cache_cache.lists), | 
 | 	.batchcount	= 1, | 
 | 	.limit		= BOOT_CPUCACHE_ENTRIES, | 
 | 	.objsize	= sizeof(kmem_cache_t), | 
 | 	.flags		= SLAB_NO_REAP, | 
 | 	.spinlock	= SPIN_LOCK_UNLOCKED, | 
 | 	.name		= "kmem_cache", | 
 | #if DEBUG | 
 | 	.reallen	= sizeof(kmem_cache_t), | 
 | #endif | 
 | }; | 
 |  | 
 | /* Guard access to the cache-chain. */ | 
 | static struct semaphore	cache_chain_sem; | 
 | static struct list_head cache_chain; | 
 |  | 
 | /* | 
 |  * vm_enough_memory() looks at this to determine how many | 
 |  * slab-allocated pages are possibly freeable under pressure | 
 |  * | 
 |  * SLAB_RECLAIM_ACCOUNT turns this on per-slab | 
 |  */ | 
 | atomic_t slab_reclaim_pages; | 
 | EXPORT_SYMBOL(slab_reclaim_pages); | 
 |  | 
 | /* | 
 |  * chicken and egg problem: delay the per-cpu array allocation | 
 |  * until the general caches are up. | 
 |  */ | 
 | static enum { | 
 | 	NONE, | 
 | 	PARTIAL, | 
 | 	FULL | 
 | } g_cpucache_up; | 
 |  | 
 | static DEFINE_PER_CPU(struct work_struct, reap_work); | 
 |  | 
 | static void free_block(kmem_cache_t* cachep, void** objpp, int len); | 
 | static void enable_cpucache (kmem_cache_t *cachep); | 
 | static void cache_reap (void *unused); | 
 |  | 
 | static inline void **ac_entry(struct array_cache *ac) | 
 | { | 
 | 	return (void**)(ac+1); | 
 | } | 
 |  | 
 | static inline struct array_cache *ac_data(kmem_cache_t *cachep) | 
 | { | 
 | 	return cachep->array[smp_processor_id()]; | 
 | } | 
 |  | 
 | static inline kmem_cache_t *__find_general_cachep(size_t size, | 
 | 						unsigned int __nocast gfpflags) | 
 | { | 
 | 	struct cache_sizes *csizep = malloc_sizes; | 
 |  | 
 | #if DEBUG | 
 | 	/* This happens if someone tries to call | 
 |  	* kmem_cache_create(), or __kmalloc(), before | 
 |  	* the generic caches are initialized. | 
 |  	*/ | 
 | 	BUG_ON(csizep->cs_cachep == NULL); | 
 | #endif | 
 | 	while (size > csizep->cs_size) | 
 | 		csizep++; | 
 |  | 
 | 	/* | 
 | 	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX | 
 | 	 * has cs_{dma,}cachep==NULL. Thus no special case | 
 | 	 * for large kmalloc calls required. | 
 | 	 */ | 
 | 	if (unlikely(gfpflags & GFP_DMA)) | 
 | 		return csizep->cs_dmacachep; | 
 | 	return csizep->cs_cachep; | 
 | } | 
 |  | 
 | kmem_cache_t *kmem_find_general_cachep(size_t size, | 
 | 		unsigned int __nocast gfpflags) | 
 | { | 
 | 	return __find_general_cachep(size, gfpflags); | 
 | } | 
 | EXPORT_SYMBOL(kmem_find_general_cachep); | 
 |  | 
 | /* Cal the num objs, wastage, and bytes left over for a given slab size. */ | 
 | static void cache_estimate(unsigned long gfporder, size_t size, size_t align, | 
 | 		 int flags, size_t *left_over, unsigned int *num) | 
 | { | 
 | 	int i; | 
 | 	size_t wastage = PAGE_SIZE<<gfporder; | 
 | 	size_t extra = 0; | 
 | 	size_t base = 0; | 
 |  | 
 | 	if (!(flags & CFLGS_OFF_SLAB)) { | 
 | 		base = sizeof(struct slab); | 
 | 		extra = sizeof(kmem_bufctl_t); | 
 | 	} | 
 | 	i = 0; | 
 | 	while (i*size + ALIGN(base+i*extra, align) <= wastage) | 
 | 		i++; | 
 | 	if (i > 0) | 
 | 		i--; | 
 |  | 
 | 	if (i > SLAB_LIMIT) | 
 | 		i = SLAB_LIMIT; | 
 |  | 
 | 	*num = i; | 
 | 	wastage -= i*size; | 
 | 	wastage -= ALIGN(base+i*extra, align); | 
 | 	*left_over = wastage; | 
 | } | 
 |  | 
 | #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) | 
 |  | 
 | static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg) | 
 | { | 
 | 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | 
 | 		function, cachep->name, msg); | 
 | 	dump_stack(); | 
 | } | 
 |  | 
 | /* | 
 |  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz | 
 |  * via the workqueue/eventd. | 
 |  * Add the CPU number into the expiration time to minimize the possibility of | 
 |  * the CPUs getting into lockstep and contending for the global cache chain | 
 |  * lock. | 
 |  */ | 
 | static void __devinit start_cpu_timer(int cpu) | 
 | { | 
 | 	struct work_struct *reap_work = &per_cpu(reap_work, cpu); | 
 |  | 
 | 	/* | 
 | 	 * When this gets called from do_initcalls via cpucache_init(), | 
 | 	 * init_workqueues() has already run, so keventd will be setup | 
 | 	 * at that time. | 
 | 	 */ | 
 | 	if (keventd_up() && reap_work->func == NULL) { | 
 | 		INIT_WORK(reap_work, cache_reap, NULL); | 
 | 		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu); | 
 | 	} | 
 | } | 
 |  | 
 | static struct array_cache *alloc_arraycache(int cpu, int entries, | 
 | 						int batchcount) | 
 | { | 
 | 	int memsize = sizeof(void*)*entries+sizeof(struct array_cache); | 
 | 	struct array_cache *nc = NULL; | 
 |  | 
 | 	if (cpu == -1) | 
 | 		nc = kmalloc(memsize, GFP_KERNEL); | 
 | 	else | 
 | 		nc = kmalloc_node(memsize, GFP_KERNEL, cpu_to_node(cpu)); | 
 |  | 
 | 	if (nc) { | 
 | 		nc->avail = 0; | 
 | 		nc->limit = entries; | 
 | 		nc->batchcount = batchcount; | 
 | 		nc->touched = 0; | 
 | 	} | 
 | 	return nc; | 
 | } | 
 |  | 
 | static int __devinit cpuup_callback(struct notifier_block *nfb, | 
 | 				  unsigned long action, void *hcpu) | 
 | { | 
 | 	long cpu = (long)hcpu; | 
 | 	kmem_cache_t* cachep; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 		down(&cache_chain_sem); | 
 | 		list_for_each_entry(cachep, &cache_chain, next) { | 
 | 			struct array_cache *nc; | 
 |  | 
 | 			nc = alloc_arraycache(cpu, cachep->limit, cachep->batchcount); | 
 | 			if (!nc) | 
 | 				goto bad; | 
 |  | 
 | 			spin_lock_irq(&cachep->spinlock); | 
 | 			cachep->array[cpu] = nc; | 
 | 			cachep->free_limit = (1+num_online_cpus())*cachep->batchcount | 
 | 						+ cachep->num; | 
 | 			spin_unlock_irq(&cachep->spinlock); | 
 |  | 
 | 		} | 
 | 		up(&cache_chain_sem); | 
 | 		break; | 
 | 	case CPU_ONLINE: | 
 | 		start_cpu_timer(cpu); | 
 | 		break; | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	case CPU_DEAD: | 
 | 		/* fall thru */ | 
 | 	case CPU_UP_CANCELED: | 
 | 		down(&cache_chain_sem); | 
 |  | 
 | 		list_for_each_entry(cachep, &cache_chain, next) { | 
 | 			struct array_cache *nc; | 
 |  | 
 | 			spin_lock_irq(&cachep->spinlock); | 
 | 			/* cpu is dead; no one can alloc from it. */ | 
 | 			nc = cachep->array[cpu]; | 
 | 			cachep->array[cpu] = NULL; | 
 | 			cachep->free_limit -= cachep->batchcount; | 
 | 			free_block(cachep, ac_entry(nc), nc->avail); | 
 | 			spin_unlock_irq(&cachep->spinlock); | 
 | 			kfree(nc); | 
 | 		} | 
 | 		up(&cache_chain_sem); | 
 | 		break; | 
 | #endif | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | bad: | 
 | 	up(&cache_chain_sem); | 
 | 	return NOTIFY_BAD; | 
 | } | 
 |  | 
 | static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; | 
 |  | 
 | /* Initialisation. | 
 |  * Called after the gfp() functions have been enabled, and before smp_init(). | 
 |  */ | 
 | void __init kmem_cache_init(void) | 
 | { | 
 | 	size_t left_over; | 
 | 	struct cache_sizes *sizes; | 
 | 	struct cache_names *names; | 
 |  | 
 | 	/* | 
 | 	 * Fragmentation resistance on low memory - only use bigger | 
 | 	 * page orders on machines with more than 32MB of memory. | 
 | 	 */ | 
 | 	if (num_physpages > (32 << 20) >> PAGE_SHIFT) | 
 | 		slab_break_gfp_order = BREAK_GFP_ORDER_HI; | 
 |  | 
 | 	 | 
 | 	/* Bootstrap is tricky, because several objects are allocated | 
 | 	 * from caches that do not exist yet: | 
 | 	 * 1) initialize the cache_cache cache: it contains the kmem_cache_t | 
 | 	 *    structures of all caches, except cache_cache itself: cache_cache | 
 | 	 *    is statically allocated. | 
 | 	 *    Initially an __init data area is used for the head array, it's | 
 | 	 *    replaced with a kmalloc allocated array at the end of the bootstrap. | 
 | 	 * 2) Create the first kmalloc cache. | 
 | 	 *    The kmem_cache_t for the new cache is allocated normally. An __init | 
 | 	 *    data area is used for the head array. | 
 | 	 * 3) Create the remaining kmalloc caches, with minimally sized head arrays. | 
 | 	 * 4) Replace the __init data head arrays for cache_cache and the first | 
 | 	 *    kmalloc cache with kmalloc allocated arrays. | 
 | 	 * 5) Resize the head arrays of the kmalloc caches to their final sizes. | 
 | 	 */ | 
 |  | 
 | 	/* 1) create the cache_cache */ | 
 | 	init_MUTEX(&cache_chain_sem); | 
 | 	INIT_LIST_HEAD(&cache_chain); | 
 | 	list_add(&cache_cache.next, &cache_chain); | 
 | 	cache_cache.colour_off = cache_line_size(); | 
 | 	cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | 
 |  | 
 | 	cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); | 
 |  | 
 | 	cache_estimate(0, cache_cache.objsize, cache_line_size(), 0, | 
 | 				&left_over, &cache_cache.num); | 
 | 	if (!cache_cache.num) | 
 | 		BUG(); | 
 |  | 
 | 	cache_cache.colour = left_over/cache_cache.colour_off; | 
 | 	cache_cache.colour_next = 0; | 
 | 	cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) + | 
 | 				sizeof(struct slab), cache_line_size()); | 
 |  | 
 | 	/* 2+3) create the kmalloc caches */ | 
 | 	sizes = malloc_sizes; | 
 | 	names = cache_names; | 
 |  | 
 | 	while (sizes->cs_size != ULONG_MAX) { | 
 | 		/* For performance, all the general caches are L1 aligned. | 
 | 		 * This should be particularly beneficial on SMP boxes, as it | 
 | 		 * eliminates "false sharing". | 
 | 		 * Note for systems short on memory removing the alignment will | 
 | 		 * allow tighter packing of the smaller caches. */ | 
 | 		sizes->cs_cachep = kmem_cache_create(names->name, | 
 | 			sizes->cs_size, ARCH_KMALLOC_MINALIGN, | 
 | 			(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | 
 |  | 
 | 		/* Inc off-slab bufctl limit until the ceiling is hit. */ | 
 | 		if (!(OFF_SLAB(sizes->cs_cachep))) { | 
 | 			offslab_limit = sizes->cs_size-sizeof(struct slab); | 
 | 			offslab_limit /= sizeof(kmem_bufctl_t); | 
 | 		} | 
 |  | 
 | 		sizes->cs_dmacachep = kmem_cache_create(names->name_dma, | 
 | 			sizes->cs_size, ARCH_KMALLOC_MINALIGN, | 
 | 			(ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC), | 
 | 			NULL, NULL); | 
 |  | 
 | 		sizes++; | 
 | 		names++; | 
 | 	} | 
 | 	/* 4) Replace the bootstrap head arrays */ | 
 | 	{ | 
 | 		void * ptr; | 
 | 		 | 
 | 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 
 | 		local_irq_disable(); | 
 | 		BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); | 
 | 		memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init)); | 
 | 		cache_cache.array[smp_processor_id()] = ptr; | 
 | 		local_irq_enable(); | 
 | 	 | 
 | 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 
 | 		local_irq_disable(); | 
 | 		BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache); | 
 | 		memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep), | 
 | 				sizeof(struct arraycache_init)); | 
 | 		malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr; | 
 | 		local_irq_enable(); | 
 | 	} | 
 |  | 
 | 	/* 5) resize the head arrays to their final sizes */ | 
 | 	{ | 
 | 		kmem_cache_t *cachep; | 
 | 		down(&cache_chain_sem); | 
 | 		list_for_each_entry(cachep, &cache_chain, next) | 
 | 			enable_cpucache(cachep); | 
 | 		up(&cache_chain_sem); | 
 | 	} | 
 |  | 
 | 	/* Done! */ | 
 | 	g_cpucache_up = FULL; | 
 |  | 
 | 	/* Register a cpu startup notifier callback | 
 | 	 * that initializes ac_data for all new cpus | 
 | 	 */ | 
 | 	register_cpu_notifier(&cpucache_notifier); | 
 | 	 | 
 |  | 
 | 	/* The reap timers are started later, with a module init call: | 
 | 	 * That part of the kernel is not yet operational. | 
 | 	 */ | 
 | } | 
 |  | 
 | static int __init cpucache_init(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	/*  | 
 | 	 * Register the timers that return unneeded | 
 | 	 * pages to gfp. | 
 | 	 */ | 
 | 	for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
 | 		if (cpu_online(cpu)) | 
 | 			start_cpu_timer(cpu); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | __initcall(cpucache_init); | 
 |  | 
 | /* | 
 |  * Interface to system's page allocator. No need to hold the cache-lock. | 
 |  * | 
 |  * If we requested dmaable memory, we will get it. Even if we | 
 |  * did not request dmaable memory, we might get it, but that | 
 |  * would be relatively rare and ignorable. | 
 |  */ | 
 | static void *kmem_getpages(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) | 
 | { | 
 | 	struct page *page; | 
 | 	void *addr; | 
 | 	int i; | 
 |  | 
 | 	flags |= cachep->gfpflags; | 
 | 	if (likely(nodeid == -1)) { | 
 | 		page = alloc_pages(flags, cachep->gfporder); | 
 | 	} else { | 
 | 		page = alloc_pages_node(nodeid, flags, cachep->gfporder); | 
 | 	} | 
 | 	if (!page) | 
 | 		return NULL; | 
 | 	addr = page_address(page); | 
 |  | 
 | 	i = (1 << cachep->gfporder); | 
 | 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 		atomic_add(i, &slab_reclaim_pages); | 
 | 	add_page_state(nr_slab, i); | 
 | 	while (i--) { | 
 | 		SetPageSlab(page); | 
 | 		page++; | 
 | 	} | 
 | 	return addr; | 
 | } | 
 |  | 
 | /* | 
 |  * Interface to system's page release. | 
 |  */ | 
 | static void kmem_freepages(kmem_cache_t *cachep, void *addr) | 
 | { | 
 | 	unsigned long i = (1<<cachep->gfporder); | 
 | 	struct page *page = virt_to_page(addr); | 
 | 	const unsigned long nr_freed = i; | 
 |  | 
 | 	while (i--) { | 
 | 		if (!TestClearPageSlab(page)) | 
 | 			BUG(); | 
 | 		page++; | 
 | 	} | 
 | 	sub_page_state(nr_slab, nr_freed); | 
 | 	if (current->reclaim_state) | 
 | 		current->reclaim_state->reclaimed_slab += nr_freed; | 
 | 	free_pages((unsigned long)addr, cachep->gfporder); | 
 | 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)  | 
 | 		atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages); | 
 | } | 
 |  | 
 | static void kmem_rcu_free(struct rcu_head *head) | 
 | { | 
 | 	struct slab_rcu *slab_rcu = (struct slab_rcu *) head; | 
 | 	kmem_cache_t *cachep = slab_rcu->cachep; | 
 |  | 
 | 	kmem_freepages(cachep, slab_rcu->addr); | 
 | 	if (OFF_SLAB(cachep)) | 
 | 		kmem_cache_free(cachep->slabp_cache, slab_rcu); | 
 | } | 
 |  | 
 | #if DEBUG | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, | 
 | 				unsigned long caller) | 
 | { | 
 | 	int size = obj_reallen(cachep); | 
 |  | 
 | 	addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)]; | 
 |  | 
 | 	if (size < 5*sizeof(unsigned long)) | 
 | 		return; | 
 |  | 
 | 	*addr++=0x12345678; | 
 | 	*addr++=caller; | 
 | 	*addr++=smp_processor_id(); | 
 | 	size -= 3*sizeof(unsigned long); | 
 | 	{ | 
 | 		unsigned long *sptr = &caller; | 
 | 		unsigned long svalue; | 
 |  | 
 | 		while (!kstack_end(sptr)) { | 
 | 			svalue = *sptr++; | 
 | 			if (kernel_text_address(svalue)) { | 
 | 				*addr++=svalue; | 
 | 				size -= sizeof(unsigned long); | 
 | 				if (size <= sizeof(unsigned long)) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} | 
 | 	*addr++=0x87654321; | 
 | } | 
 | #endif | 
 |  | 
 | static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val) | 
 | { | 
 | 	int size = obj_reallen(cachep); | 
 | 	addr = &((char*)addr)[obj_dbghead(cachep)]; | 
 |  | 
 | 	memset(addr, val, size); | 
 | 	*(unsigned char *)(addr+size-1) = POISON_END; | 
 | } | 
 |  | 
 | static void dump_line(char *data, int offset, int limit) | 
 | { | 
 | 	int i; | 
 | 	printk(KERN_ERR "%03x:", offset); | 
 | 	for (i=0;i<limit;i++) { | 
 | 		printk(" %02x", (unsigned char)data[offset+i]); | 
 | 	} | 
 | 	printk("\n"); | 
 | } | 
 | #endif | 
 |  | 
 | #if DEBUG | 
 |  | 
 | static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) | 
 | { | 
 | 	int i, size; | 
 | 	char *realobj; | 
 |  | 
 | 	if (cachep->flags & SLAB_RED_ZONE) { | 
 | 		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n", | 
 | 			*dbg_redzone1(cachep, objp), | 
 | 			*dbg_redzone2(cachep, objp)); | 
 | 	} | 
 |  | 
 | 	if (cachep->flags & SLAB_STORE_USER) { | 
 | 		printk(KERN_ERR "Last user: [<%p>]", | 
 | 				*dbg_userword(cachep, objp)); | 
 | 		print_symbol("(%s)", | 
 | 				(unsigned long)*dbg_userword(cachep, objp)); | 
 | 		printk("\n"); | 
 | 	} | 
 | 	realobj = (char*)objp+obj_dbghead(cachep); | 
 | 	size = obj_reallen(cachep); | 
 | 	for (i=0; i<size && lines;i+=16, lines--) { | 
 | 		int limit; | 
 | 		limit = 16; | 
 | 		if (i+limit > size) | 
 | 			limit = size-i; | 
 | 		dump_line(realobj, i, limit); | 
 | 	} | 
 | } | 
 |  | 
 | static void check_poison_obj(kmem_cache_t *cachep, void *objp) | 
 | { | 
 | 	char *realobj; | 
 | 	int size, i; | 
 | 	int lines = 0; | 
 |  | 
 | 	realobj = (char*)objp+obj_dbghead(cachep); | 
 | 	size = obj_reallen(cachep); | 
 |  | 
 | 	for (i=0;i<size;i++) { | 
 | 		char exp = POISON_FREE; | 
 | 		if (i == size-1) | 
 | 			exp = POISON_END; | 
 | 		if (realobj[i] != exp) { | 
 | 			int limit; | 
 | 			/* Mismatch ! */ | 
 | 			/* Print header */ | 
 | 			if (lines == 0) { | 
 | 				printk(KERN_ERR "Slab corruption: start=%p, len=%d\n", | 
 | 						realobj, size); | 
 | 				print_objinfo(cachep, objp, 0); | 
 | 			} | 
 | 			/* Hexdump the affected line */ | 
 | 			i = (i/16)*16; | 
 | 			limit = 16; | 
 | 			if (i+limit > size) | 
 | 				limit = size-i; | 
 | 			dump_line(realobj, i, limit); | 
 | 			i += 16; | 
 | 			lines++; | 
 | 			/* Limit to 5 lines */ | 
 | 			if (lines > 5) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	if (lines != 0) { | 
 | 		/* Print some data about the neighboring objects, if they | 
 | 		 * exist: | 
 | 		 */ | 
 | 		struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp)); | 
 | 		int objnr; | 
 |  | 
 | 		objnr = (objp-slabp->s_mem)/cachep->objsize; | 
 | 		if (objnr) { | 
 | 			objp = slabp->s_mem+(objnr-1)*cachep->objsize; | 
 | 			realobj = (char*)objp+obj_dbghead(cachep); | 
 | 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n", | 
 | 						realobj, size); | 
 | 			print_objinfo(cachep, objp, 2); | 
 | 		} | 
 | 		if (objnr+1 < cachep->num) { | 
 | 			objp = slabp->s_mem+(objnr+1)*cachep->objsize; | 
 | 			realobj = (char*)objp+obj_dbghead(cachep); | 
 | 			printk(KERN_ERR "Next obj: start=%p, len=%d\n", | 
 | 						realobj, size); | 
 | 			print_objinfo(cachep, objp, 2); | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* Destroy all the objs in a slab, and release the mem back to the system. | 
 |  * Before calling the slab must have been unlinked from the cache. | 
 |  * The cache-lock is not held/needed. | 
 |  */ | 
 | static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) | 
 | { | 
 | 	void *addr = slabp->s_mem - slabp->colouroff; | 
 |  | 
 | #if DEBUG | 
 | 	int i; | 
 | 	for (i = 0; i < cachep->num; i++) { | 
 | 		void *objp = slabp->s_mem + cachep->objsize * i; | 
 |  | 
 | 		if (cachep->flags & SLAB_POISON) { | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 			if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep)) | 
 | 				kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1); | 
 | 			else | 
 | 				check_poison_obj(cachep, objp); | 
 | #else | 
 | 			check_poison_obj(cachep, objp); | 
 | #endif | 
 | 		} | 
 | 		if (cachep->flags & SLAB_RED_ZONE) { | 
 | 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | 
 | 				slab_error(cachep, "start of a freed object " | 
 | 							"was overwritten"); | 
 | 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 
 | 				slab_error(cachep, "end of a freed object " | 
 | 							"was overwritten"); | 
 | 		} | 
 | 		if (cachep->dtor && !(cachep->flags & SLAB_POISON)) | 
 | 			(cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0); | 
 | 	} | 
 | #else | 
 | 	if (cachep->dtor) { | 
 | 		int i; | 
 | 		for (i = 0; i < cachep->num; i++) { | 
 | 			void* objp = slabp->s_mem+cachep->objsize*i; | 
 | 			(cachep->dtor)(objp, cachep, 0); | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { | 
 | 		struct slab_rcu *slab_rcu; | 
 |  | 
 | 		slab_rcu = (struct slab_rcu *) slabp; | 
 | 		slab_rcu->cachep = cachep; | 
 | 		slab_rcu->addr = addr; | 
 | 		call_rcu(&slab_rcu->head, kmem_rcu_free); | 
 | 	} else { | 
 | 		kmem_freepages(cachep, addr); | 
 | 		if (OFF_SLAB(cachep)) | 
 | 			kmem_cache_free(cachep->slabp_cache, slabp); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * kmem_cache_create - Create a cache. | 
 |  * @name: A string which is used in /proc/slabinfo to identify this cache. | 
 |  * @size: The size of objects to be created in this cache. | 
 |  * @align: The required alignment for the objects. | 
 |  * @flags: SLAB flags | 
 |  * @ctor: A constructor for the objects. | 
 |  * @dtor: A destructor for the objects. | 
 |  * | 
 |  * Returns a ptr to the cache on success, NULL on failure. | 
 |  * Cannot be called within a int, but can be interrupted. | 
 |  * The @ctor is run when new pages are allocated by the cache | 
 |  * and the @dtor is run before the pages are handed back. | 
 |  * | 
 |  * @name must be valid until the cache is destroyed. This implies that | 
 |  * the module calling this has to destroy the cache before getting  | 
 |  * unloaded. | 
 |  *  | 
 |  * The flags are | 
 |  * | 
 |  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
 |  * to catch references to uninitialised memory. | 
 |  * | 
 |  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | 
 |  * for buffer overruns. | 
 |  * | 
 |  * %SLAB_NO_REAP - Don't automatically reap this cache when we're under | 
 |  * memory pressure. | 
 |  * | 
 |  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
 |  * cacheline.  This can be beneficial if you're counting cycles as closely | 
 |  * as davem. | 
 |  */ | 
 | kmem_cache_t * | 
 | kmem_cache_create (const char *name, size_t size, size_t align, | 
 | 	unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long), | 
 | 	void (*dtor)(void*, kmem_cache_t *, unsigned long)) | 
 | { | 
 | 	size_t left_over, slab_size, ralign; | 
 | 	kmem_cache_t *cachep = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Sanity checks... these are all serious usage bugs. | 
 | 	 */ | 
 | 	if ((!name) || | 
 | 		in_interrupt() || | 
 | 		(size < BYTES_PER_WORD) || | 
 | 		(size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) || | 
 | 		(dtor && !ctor)) { | 
 | 			printk(KERN_ERR "%s: Early error in slab %s\n", | 
 | 					__FUNCTION__, name); | 
 | 			BUG(); | 
 | 		} | 
 |  | 
 | #if DEBUG | 
 | 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */ | 
 | 	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { | 
 | 		/* No constructor, but inital state check requested */ | 
 | 		printk(KERN_ERR "%s: No con, but init state check " | 
 | 				"requested - %s\n", __FUNCTION__, name); | 
 | 		flags &= ~SLAB_DEBUG_INITIAL; | 
 | 	} | 
 |  | 
 | #if FORCED_DEBUG | 
 | 	/* | 
 | 	 * Enable redzoning and last user accounting, except for caches with | 
 | 	 * large objects, if the increased size would increase the object size | 
 | 	 * above the next power of two: caches with object sizes just above a | 
 | 	 * power of two have a significant amount of internal fragmentation. | 
 | 	 */ | 
 | 	if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD))) | 
 | 		flags |= SLAB_RED_ZONE|SLAB_STORE_USER; | 
 | 	if (!(flags & SLAB_DESTROY_BY_RCU)) | 
 | 		flags |= SLAB_POISON; | 
 | #endif | 
 | 	if (flags & SLAB_DESTROY_BY_RCU) | 
 | 		BUG_ON(flags & SLAB_POISON); | 
 | #endif | 
 | 	if (flags & SLAB_DESTROY_BY_RCU) | 
 | 		BUG_ON(dtor); | 
 |  | 
 | 	/* | 
 | 	 * Always checks flags, a caller might be expecting debug | 
 | 	 * support which isn't available. | 
 | 	 */ | 
 | 	if (flags & ~CREATE_MASK) | 
 | 		BUG(); | 
 |  | 
 | 	/* Check that size is in terms of words.  This is needed to avoid | 
 | 	 * unaligned accesses for some archs when redzoning is used, and makes | 
 | 	 * sure any on-slab bufctl's are also correctly aligned. | 
 | 	 */ | 
 | 	if (size & (BYTES_PER_WORD-1)) { | 
 | 		size += (BYTES_PER_WORD-1); | 
 | 		size &= ~(BYTES_PER_WORD-1); | 
 | 	} | 
 |  | 
 | 	/* calculate out the final buffer alignment: */ | 
 | 	/* 1) arch recommendation: can be overridden for debug */ | 
 | 	if (flags & SLAB_HWCACHE_ALIGN) { | 
 | 		/* Default alignment: as specified by the arch code. | 
 | 		 * Except if an object is really small, then squeeze multiple | 
 | 		 * objects into one cacheline. | 
 | 		 */ | 
 | 		ralign = cache_line_size(); | 
 | 		while (size <= ralign/2) | 
 | 			ralign /= 2; | 
 | 	} else { | 
 | 		ralign = BYTES_PER_WORD; | 
 | 	} | 
 | 	/* 2) arch mandated alignment: disables debug if necessary */ | 
 | 	if (ralign < ARCH_SLAB_MINALIGN) { | 
 | 		ralign = ARCH_SLAB_MINALIGN; | 
 | 		if (ralign > BYTES_PER_WORD) | 
 | 			flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); | 
 | 	} | 
 | 	/* 3) caller mandated alignment: disables debug if necessary */ | 
 | 	if (ralign < align) { | 
 | 		ralign = align; | 
 | 		if (ralign > BYTES_PER_WORD) | 
 | 			flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); | 
 | 	} | 
 | 	/* 4) Store it. Note that the debug code below can reduce | 
 | 	 *    the alignment to BYTES_PER_WORD. | 
 | 	 */ | 
 | 	align = ralign; | 
 |  | 
 | 	/* Get cache's description obj. */ | 
 | 	cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL); | 
 | 	if (!cachep) | 
 | 		goto opps; | 
 | 	memset(cachep, 0, sizeof(kmem_cache_t)); | 
 |  | 
 | #if DEBUG | 
 | 	cachep->reallen = size; | 
 |  | 
 | 	if (flags & SLAB_RED_ZONE) { | 
 | 		/* redzoning only works with word aligned caches */ | 
 | 		align = BYTES_PER_WORD; | 
 |  | 
 | 		/* add space for red zone words */ | 
 | 		cachep->dbghead += BYTES_PER_WORD; | 
 | 		size += 2*BYTES_PER_WORD; | 
 | 	} | 
 | 	if (flags & SLAB_STORE_USER) { | 
 | 		/* user store requires word alignment and | 
 | 		 * one word storage behind the end of the real | 
 | 		 * object. | 
 | 		 */ | 
 | 		align = BYTES_PER_WORD; | 
 | 		size += BYTES_PER_WORD; | 
 | 	} | 
 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 
 | 	if (size > 128 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { | 
 | 		cachep->dbghead += PAGE_SIZE - size; | 
 | 		size = PAGE_SIZE; | 
 | 	} | 
 | #endif | 
 | #endif | 
 |  | 
 | 	/* Determine if the slab management is 'on' or 'off' slab. */ | 
 | 	if (size >= (PAGE_SIZE>>3)) | 
 | 		/* | 
 | 		 * Size is large, assume best to place the slab management obj | 
 | 		 * off-slab (should allow better packing of objs). | 
 | 		 */ | 
 | 		flags |= CFLGS_OFF_SLAB; | 
 |  | 
 | 	size = ALIGN(size, align); | 
 |  | 
 | 	if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) { | 
 | 		/* | 
 | 		 * A VFS-reclaimable slab tends to have most allocations | 
 | 		 * as GFP_NOFS and we really don't want to have to be allocating | 
 | 		 * higher-order pages when we are unable to shrink dcache. | 
 | 		 */ | 
 | 		cachep->gfporder = 0; | 
 | 		cache_estimate(cachep->gfporder, size, align, flags, | 
 | 					&left_over, &cachep->num); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Calculate size (in pages) of slabs, and the num of objs per | 
 | 		 * slab.  This could be made much more intelligent.  For now, | 
 | 		 * try to avoid using high page-orders for slabs.  When the | 
 | 		 * gfp() funcs are more friendly towards high-order requests, | 
 | 		 * this should be changed. | 
 | 		 */ | 
 | 		do { | 
 | 			unsigned int break_flag = 0; | 
 | cal_wastage: | 
 | 			cache_estimate(cachep->gfporder, size, align, flags, | 
 | 						&left_over, &cachep->num); | 
 | 			if (break_flag) | 
 | 				break; | 
 | 			if (cachep->gfporder >= MAX_GFP_ORDER) | 
 | 				break; | 
 | 			if (!cachep->num) | 
 | 				goto next; | 
 | 			if (flags & CFLGS_OFF_SLAB && | 
 | 					cachep->num > offslab_limit) { | 
 | 				/* This num of objs will cause problems. */ | 
 | 				cachep->gfporder--; | 
 | 				break_flag++; | 
 | 				goto cal_wastage; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Large num of objs is good, but v. large slabs are | 
 | 			 * currently bad for the gfp()s. | 
 | 			 */ | 
 | 			if (cachep->gfporder >= slab_break_gfp_order) | 
 | 				break; | 
 |  | 
 | 			if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder)) | 
 | 				break;	/* Acceptable internal fragmentation. */ | 
 | next: | 
 | 			cachep->gfporder++; | 
 | 		} while (1); | 
 | 	} | 
 |  | 
 | 	if (!cachep->num) { | 
 | 		printk("kmem_cache_create: couldn't create cache %s.\n", name); | 
 | 		kmem_cache_free(&cache_cache, cachep); | 
 | 		cachep = NULL; | 
 | 		goto opps; | 
 | 	} | 
 | 	slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t) | 
 | 				+ sizeof(struct slab), align); | 
 |  | 
 | 	/* | 
 | 	 * If the slab has been placed off-slab, and we have enough space then | 
 | 	 * move it on-slab. This is at the expense of any extra colouring. | 
 | 	 */ | 
 | 	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | 
 | 		flags &= ~CFLGS_OFF_SLAB; | 
 | 		left_over -= slab_size; | 
 | 	} | 
 |  | 
 | 	if (flags & CFLGS_OFF_SLAB) { | 
 | 		/* really off slab. No need for manual alignment */ | 
 | 		slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab); | 
 | 	} | 
 |  | 
 | 	cachep->colour_off = cache_line_size(); | 
 | 	/* Offset must be a multiple of the alignment. */ | 
 | 	if (cachep->colour_off < align) | 
 | 		cachep->colour_off = align; | 
 | 	cachep->colour = left_over/cachep->colour_off; | 
 | 	cachep->slab_size = slab_size; | 
 | 	cachep->flags = flags; | 
 | 	cachep->gfpflags = 0; | 
 | 	if (flags & SLAB_CACHE_DMA) | 
 | 		cachep->gfpflags |= GFP_DMA; | 
 | 	spin_lock_init(&cachep->spinlock); | 
 | 	cachep->objsize = size; | 
 | 	/* NUMA */ | 
 | 	INIT_LIST_HEAD(&cachep->lists.slabs_full); | 
 | 	INIT_LIST_HEAD(&cachep->lists.slabs_partial); | 
 | 	INIT_LIST_HEAD(&cachep->lists.slabs_free); | 
 |  | 
 | 	if (flags & CFLGS_OFF_SLAB) | 
 | 		cachep->slabp_cache = kmem_find_general_cachep(slab_size,0); | 
 | 	cachep->ctor = ctor; | 
 | 	cachep->dtor = dtor; | 
 | 	cachep->name = name; | 
 |  | 
 | 	/* Don't let CPUs to come and go */ | 
 | 	lock_cpu_hotplug(); | 
 |  | 
 | 	if (g_cpucache_up == FULL) { | 
 | 		enable_cpucache(cachep); | 
 | 	} else { | 
 | 		if (g_cpucache_up == NONE) { | 
 | 			/* Note: the first kmem_cache_create must create | 
 | 			 * the cache that's used by kmalloc(24), otherwise | 
 | 			 * the creation of further caches will BUG(). | 
 | 			 */ | 
 | 			cachep->array[smp_processor_id()] = &initarray_generic.cache; | 
 | 			g_cpucache_up = PARTIAL; | 
 | 		} else { | 
 | 			cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL); | 
 | 		} | 
 | 		BUG_ON(!ac_data(cachep)); | 
 | 		ac_data(cachep)->avail = 0; | 
 | 		ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | 
 | 		ac_data(cachep)->batchcount = 1; | 
 | 		ac_data(cachep)->touched = 0; | 
 | 		cachep->batchcount = 1; | 
 | 		cachep->limit = BOOT_CPUCACHE_ENTRIES; | 
 | 		cachep->free_limit = (1+num_online_cpus())*cachep->batchcount | 
 | 					+ cachep->num; | 
 | 	}  | 
 |  | 
 | 	cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 + | 
 | 					((unsigned long)cachep)%REAPTIMEOUT_LIST3; | 
 |  | 
 | 	/* Need the semaphore to access the chain. */ | 
 | 	down(&cache_chain_sem); | 
 | 	{ | 
 | 		struct list_head *p; | 
 | 		mm_segment_t old_fs; | 
 |  | 
 | 		old_fs = get_fs(); | 
 | 		set_fs(KERNEL_DS); | 
 | 		list_for_each(p, &cache_chain) { | 
 | 			kmem_cache_t *pc = list_entry(p, kmem_cache_t, next); | 
 | 			char tmp; | 
 | 			/* This happens when the module gets unloaded and doesn't | 
 | 			   destroy its slab cache and noone else reuses the vmalloc | 
 | 			   area of the module. Print a warning. */ | 
 | 			if (__get_user(tmp,pc->name)) {  | 
 | 				printk("SLAB: cache with size %d has lost its name\n",  | 
 | 					pc->objsize);  | 
 | 				continue;  | 
 | 			} 	 | 
 | 			if (!strcmp(pc->name,name)) {  | 
 | 				printk("kmem_cache_create: duplicate cache %s\n",name);  | 
 | 				up(&cache_chain_sem);  | 
 | 				unlock_cpu_hotplug(); | 
 | 				BUG();  | 
 | 			}	 | 
 | 		} | 
 | 		set_fs(old_fs); | 
 | 	} | 
 |  | 
 | 	/* cache setup completed, link it into the list */ | 
 | 	list_add(&cachep->next, &cache_chain); | 
 | 	up(&cache_chain_sem); | 
 | 	unlock_cpu_hotplug(); | 
 | opps: | 
 | 	if (!cachep && (flags & SLAB_PANIC)) | 
 | 		panic("kmem_cache_create(): failed to create slab `%s'\n", | 
 | 			name); | 
 | 	return cachep; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_create); | 
 |  | 
 | #if DEBUG | 
 | static void check_irq_off(void) | 
 | { | 
 | 	BUG_ON(!irqs_disabled()); | 
 | } | 
 |  | 
 | static void check_irq_on(void) | 
 | { | 
 | 	BUG_ON(irqs_disabled()); | 
 | } | 
 |  | 
 | static void check_spinlock_acquired(kmem_cache_t *cachep) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	check_irq_off(); | 
 | 	BUG_ON(spin_trylock(&cachep->spinlock)); | 
 | #endif | 
 | } | 
 | #else | 
 | #define check_irq_off()	do { } while(0) | 
 | #define check_irq_on()	do { } while(0) | 
 | #define check_spinlock_acquired(x) do { } while(0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Waits for all CPUs to execute func(). | 
 |  */ | 
 | static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) | 
 | { | 
 | 	check_irq_on(); | 
 | 	preempt_disable(); | 
 |  | 
 | 	local_irq_disable(); | 
 | 	func(arg); | 
 | 	local_irq_enable(); | 
 |  | 
 | 	if (smp_call_function(func, arg, 1, 1)) | 
 | 		BUG(); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void drain_array_locked(kmem_cache_t* cachep, | 
 | 				struct array_cache *ac, int force); | 
 |  | 
 | static void do_drain(void *arg) | 
 | { | 
 | 	kmem_cache_t *cachep = (kmem_cache_t*)arg; | 
 | 	struct array_cache *ac; | 
 |  | 
 | 	check_irq_off(); | 
 | 	ac = ac_data(cachep); | 
 | 	spin_lock(&cachep->spinlock); | 
 | 	free_block(cachep, &ac_entry(ac)[0], ac->avail); | 
 | 	spin_unlock(&cachep->spinlock); | 
 | 	ac->avail = 0; | 
 | } | 
 |  | 
 | static void drain_cpu_caches(kmem_cache_t *cachep) | 
 | { | 
 | 	smp_call_function_all_cpus(do_drain, cachep); | 
 | 	check_irq_on(); | 
 | 	spin_lock_irq(&cachep->spinlock); | 
 | 	if (cachep->lists.shared) | 
 | 		drain_array_locked(cachep, cachep->lists.shared, 1); | 
 | 	spin_unlock_irq(&cachep->spinlock); | 
 | } | 
 |  | 
 |  | 
 | /* NUMA shrink all list3s */ | 
 | static int __cache_shrink(kmem_cache_t *cachep) | 
 | { | 
 | 	struct slab *slabp; | 
 | 	int ret; | 
 |  | 
 | 	drain_cpu_caches(cachep); | 
 |  | 
 | 	check_irq_on(); | 
 | 	spin_lock_irq(&cachep->spinlock); | 
 |  | 
 | 	for(;;) { | 
 | 		struct list_head *p; | 
 |  | 
 | 		p = cachep->lists.slabs_free.prev; | 
 | 		if (p == &cachep->lists.slabs_free) | 
 | 			break; | 
 |  | 
 | 		slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list); | 
 | #if DEBUG | 
 | 		if (slabp->inuse) | 
 | 			BUG(); | 
 | #endif | 
 | 		list_del(&slabp->list); | 
 |  | 
 | 		cachep->lists.free_objects -= cachep->num; | 
 | 		spin_unlock_irq(&cachep->spinlock); | 
 | 		slab_destroy(cachep, slabp); | 
 | 		spin_lock_irq(&cachep->spinlock); | 
 | 	} | 
 | 	ret = !list_empty(&cachep->lists.slabs_full) || | 
 | 		!list_empty(&cachep->lists.slabs_partial); | 
 | 	spin_unlock_irq(&cachep->spinlock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * kmem_cache_shrink - Shrink a cache. | 
 |  * @cachep: The cache to shrink. | 
 |  * | 
 |  * Releases as many slabs as possible for a cache. | 
 |  * To help debugging, a zero exit status indicates all slabs were released. | 
 |  */ | 
 | int kmem_cache_shrink(kmem_cache_t *cachep) | 
 | { | 
 | 	if (!cachep || in_interrupt()) | 
 | 		BUG(); | 
 |  | 
 | 	return __cache_shrink(cachep); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_shrink); | 
 |  | 
 | /** | 
 |  * kmem_cache_destroy - delete a cache | 
 |  * @cachep: the cache to destroy | 
 |  * | 
 |  * Remove a kmem_cache_t object from the slab cache. | 
 |  * Returns 0 on success. | 
 |  * | 
 |  * It is expected this function will be called by a module when it is | 
 |  * unloaded.  This will remove the cache completely, and avoid a duplicate | 
 |  * cache being allocated each time a module is loaded and unloaded, if the | 
 |  * module doesn't have persistent in-kernel storage across loads and unloads. | 
 |  * | 
 |  * The cache must be empty before calling this function. | 
 |  * | 
 |  * The caller must guarantee that noone will allocate memory from the cache | 
 |  * during the kmem_cache_destroy(). | 
 |  */ | 
 | int kmem_cache_destroy(kmem_cache_t * cachep) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!cachep || in_interrupt()) | 
 | 		BUG(); | 
 |  | 
 | 	/* Don't let CPUs to come and go */ | 
 | 	lock_cpu_hotplug(); | 
 |  | 
 | 	/* Find the cache in the chain of caches. */ | 
 | 	down(&cache_chain_sem); | 
 | 	/* | 
 | 	 * the chain is never empty, cache_cache is never destroyed | 
 | 	 */ | 
 | 	list_del(&cachep->next); | 
 | 	up(&cache_chain_sem); | 
 |  | 
 | 	if (__cache_shrink(cachep)) { | 
 | 		slab_error(cachep, "Can't free all objects"); | 
 | 		down(&cache_chain_sem); | 
 | 		list_add(&cachep->next,&cache_chain); | 
 | 		up(&cache_chain_sem); | 
 | 		unlock_cpu_hotplug(); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | 
 | 		synchronize_rcu(); | 
 |  | 
 | 	/* no cpu_online check required here since we clear the percpu | 
 | 	 * array on cpu offline and set this to NULL. | 
 | 	 */ | 
 | 	for (i = 0; i < NR_CPUS; i++) | 
 | 		kfree(cachep->array[i]); | 
 |  | 
 | 	/* NUMA: free the list3 structures */ | 
 | 	kfree(cachep->lists.shared); | 
 | 	cachep->lists.shared = NULL; | 
 | 	kmem_cache_free(&cache_cache, cachep); | 
 |  | 
 | 	unlock_cpu_hotplug(); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_destroy); | 
 |  | 
 | /* Get the memory for a slab management obj. */ | 
 | static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, | 
 | 			void *objp, int colour_off, unsigned int __nocast local_flags) | 
 | { | 
 | 	struct slab *slabp; | 
 | 	 | 
 | 	if (OFF_SLAB(cachep)) { | 
 | 		/* Slab management obj is off-slab. */ | 
 | 		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags); | 
 | 		if (!slabp) | 
 | 			return NULL; | 
 | 	} else { | 
 | 		slabp = objp+colour_off; | 
 | 		colour_off += cachep->slab_size; | 
 | 	} | 
 | 	slabp->inuse = 0; | 
 | 	slabp->colouroff = colour_off; | 
 | 	slabp->s_mem = objp+colour_off; | 
 |  | 
 | 	return slabp; | 
 | } | 
 |  | 
 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | 
 | { | 
 | 	return (kmem_bufctl_t *)(slabp+1); | 
 | } | 
 |  | 
 | static void cache_init_objs(kmem_cache_t *cachep, | 
 | 			struct slab *slabp, unsigned long ctor_flags) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < cachep->num; i++) { | 
 | 		void* objp = slabp->s_mem+cachep->objsize*i; | 
 | #if DEBUG | 
 | 		/* need to poison the objs? */ | 
 | 		if (cachep->flags & SLAB_POISON) | 
 | 			poison_obj(cachep, objp, POISON_FREE); | 
 | 		if (cachep->flags & SLAB_STORE_USER) | 
 | 			*dbg_userword(cachep, objp) = NULL; | 
 |  | 
 | 		if (cachep->flags & SLAB_RED_ZONE) { | 
 | 			*dbg_redzone1(cachep, objp) = RED_INACTIVE; | 
 | 			*dbg_redzone2(cachep, objp) = RED_INACTIVE; | 
 | 		} | 
 | 		/* | 
 | 		 * Constructors are not allowed to allocate memory from | 
 | 		 * the same cache which they are a constructor for. | 
 | 		 * Otherwise, deadlock. They must also be threaded. | 
 | 		 */ | 
 | 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | 
 | 			cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags); | 
 |  | 
 | 		if (cachep->flags & SLAB_RED_ZONE) { | 
 | 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 
 | 				slab_error(cachep, "constructor overwrote the" | 
 | 							" end of an object"); | 
 | 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | 
 | 				slab_error(cachep, "constructor overwrote the" | 
 | 							" start of an object"); | 
 | 		} | 
 | 		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | 
 | 	       		kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); | 
 | #else | 
 | 		if (cachep->ctor) | 
 | 			cachep->ctor(objp, cachep, ctor_flags); | 
 | #endif | 
 | 		slab_bufctl(slabp)[i] = i+1; | 
 | 	} | 
 | 	slab_bufctl(slabp)[i-1] = BUFCTL_END; | 
 | 	slabp->free = 0; | 
 | } | 
 |  | 
 | static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags) | 
 | { | 
 | 	if (flags & SLAB_DMA) { | 
 | 		if (!(cachep->gfpflags & GFP_DMA)) | 
 | 			BUG(); | 
 | 	} else { | 
 | 		if (cachep->gfpflags & GFP_DMA) | 
 | 			BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) | 
 | { | 
 | 	int i; | 
 | 	struct page *page; | 
 |  | 
 | 	/* Nasty!!!!!! I hope this is OK. */ | 
 | 	i = 1 << cachep->gfporder; | 
 | 	page = virt_to_page(objp); | 
 | 	do { | 
 | 		SET_PAGE_CACHE(page, cachep); | 
 | 		SET_PAGE_SLAB(page, slabp); | 
 | 		page++; | 
 | 	} while (--i); | 
 | } | 
 |  | 
 | /* | 
 |  * Grow (by 1) the number of slabs within a cache.  This is called by | 
 |  * kmem_cache_alloc() when there are no active objs left in a cache. | 
 |  */ | 
 | static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) | 
 | { | 
 | 	struct slab	*slabp; | 
 | 	void		*objp; | 
 | 	size_t		 offset; | 
 | 	unsigned int	 local_flags; | 
 | 	unsigned long	 ctor_flags; | 
 |  | 
 | 	/* Be lazy and only check for valid flags here, | 
 |  	 * keeping it out of the critical path in kmem_cache_alloc(). | 
 | 	 */ | 
 | 	if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) | 
 | 		BUG(); | 
 | 	if (flags & SLAB_NO_GROW) | 
 | 		return 0; | 
 |  | 
 | 	ctor_flags = SLAB_CTOR_CONSTRUCTOR; | 
 | 	local_flags = (flags & SLAB_LEVEL_MASK); | 
 | 	if (!(local_flags & __GFP_WAIT)) | 
 | 		/* | 
 | 		 * Not allowed to sleep.  Need to tell a constructor about | 
 | 		 * this - it might need to know... | 
 | 		 */ | 
 | 		ctor_flags |= SLAB_CTOR_ATOMIC; | 
 |  | 
 | 	/* About to mess with non-constant members - lock. */ | 
 | 	check_irq_off(); | 
 | 	spin_lock(&cachep->spinlock); | 
 |  | 
 | 	/* Get colour for the slab, and cal the next value. */ | 
 | 	offset = cachep->colour_next; | 
 | 	cachep->colour_next++; | 
 | 	if (cachep->colour_next >= cachep->colour) | 
 | 		cachep->colour_next = 0; | 
 | 	offset *= cachep->colour_off; | 
 |  | 
 | 	spin_unlock(&cachep->spinlock); | 
 |  | 
 | 	if (local_flags & __GFP_WAIT) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	/* | 
 | 	 * The test for missing atomic flag is performed here, rather than | 
 | 	 * the more obvious place, simply to reduce the critical path length | 
 | 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | 
 | 	 * will eventually be caught here (where it matters). | 
 | 	 */ | 
 | 	kmem_flagcheck(cachep, flags); | 
 |  | 
 |  | 
 | 	/* Get mem for the objs. */ | 
 | 	if (!(objp = kmem_getpages(cachep, flags, nodeid))) | 
 | 		goto failed; | 
 |  | 
 | 	/* Get slab management. */ | 
 | 	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) | 
 | 		goto opps1; | 
 |  | 
 | 	set_slab_attr(cachep, slabp, objp); | 
 |  | 
 | 	cache_init_objs(cachep, slabp, ctor_flags); | 
 |  | 
 | 	if (local_flags & __GFP_WAIT) | 
 | 		local_irq_disable(); | 
 | 	check_irq_off(); | 
 | 	spin_lock(&cachep->spinlock); | 
 |  | 
 | 	/* Make slab active. */ | 
 | 	list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free)); | 
 | 	STATS_INC_GROWN(cachep); | 
 | 	list3_data(cachep)->free_objects += cachep->num; | 
 | 	spin_unlock(&cachep->spinlock); | 
 | 	return 1; | 
 | opps1: | 
 | 	kmem_freepages(cachep, objp); | 
 | failed: | 
 | 	if (local_flags & __GFP_WAIT) | 
 | 		local_irq_disable(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if DEBUG | 
 |  | 
 | /* | 
 |  * Perform extra freeing checks: | 
 |  * - detect bad pointers. | 
 |  * - POISON/RED_ZONE checking | 
 |  * - destructor calls, for caches with POISON+dtor | 
 |  */ | 
 | static void kfree_debugcheck(const void *objp) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (!virt_addr_valid(objp)) { | 
 | 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | 
 | 			(unsigned long)objp);	 | 
 | 		BUG();	 | 
 | 	} | 
 | 	page = virt_to_page(objp); | 
 | 	if (!PageSlab(page)) { | 
 | 		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, | 
 | 					void *caller) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned int objnr; | 
 | 	struct slab *slabp; | 
 |  | 
 | 	objp -= obj_dbghead(cachep); | 
 | 	kfree_debugcheck(objp); | 
 | 	page = virt_to_page(objp); | 
 |  | 
 | 	if (GET_PAGE_CACHE(page) != cachep) { | 
 | 		printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n", | 
 | 				GET_PAGE_CACHE(page),cachep); | 
 | 		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name); | 
 | 		printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name); | 
 | 		WARN_ON(1); | 
 | 	} | 
 | 	slabp = GET_PAGE_SLAB(page); | 
 |  | 
 | 	if (cachep->flags & SLAB_RED_ZONE) { | 
 | 		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) { | 
 | 			slab_error(cachep, "double free, or memory outside" | 
 | 						" object was overwritten"); | 
 | 			printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", | 
 | 					objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); | 
 | 		} | 
 | 		*dbg_redzone1(cachep, objp) = RED_INACTIVE; | 
 | 		*dbg_redzone2(cachep, objp) = RED_INACTIVE; | 
 | 	} | 
 | 	if (cachep->flags & SLAB_STORE_USER) | 
 | 		*dbg_userword(cachep, objp) = caller; | 
 |  | 
 | 	objnr = (objp-slabp->s_mem)/cachep->objsize; | 
 |  | 
 | 	BUG_ON(objnr >= cachep->num); | 
 | 	BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize); | 
 |  | 
 | 	if (cachep->flags & SLAB_DEBUG_INITIAL) { | 
 | 		/* Need to call the slab's constructor so the | 
 | 		 * caller can perform a verify of its state (debugging). | 
 | 		 * Called without the cache-lock held. | 
 | 		 */ | 
 | 		cachep->ctor(objp+obj_dbghead(cachep), | 
 | 					cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY); | 
 | 	} | 
 | 	if (cachep->flags & SLAB_POISON && cachep->dtor) { | 
 | 		/* we want to cache poison the object, | 
 | 		 * call the destruction callback | 
 | 		 */ | 
 | 		cachep->dtor(objp+obj_dbghead(cachep), cachep, 0); | 
 | 	} | 
 | 	if (cachep->flags & SLAB_POISON) { | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { | 
 | 			store_stackinfo(cachep, objp, (unsigned long)caller); | 
 | 	       		kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); | 
 | 		} else { | 
 | 			poison_obj(cachep, objp, POISON_FREE); | 
 | 		} | 
 | #else | 
 | 		poison_obj(cachep, objp, POISON_FREE); | 
 | #endif | 
 | 	} | 
 | 	return objp; | 
 | } | 
 |  | 
 | static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) | 
 | { | 
 | 	kmem_bufctl_t i; | 
 | 	int entries = 0; | 
 | 	 | 
 | 	check_spinlock_acquired(cachep); | 
 | 	/* Check slab's freelist to see if this obj is there. */ | 
 | 	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | 
 | 		entries++; | 
 | 		if (entries > cachep->num || i >= cachep->num) | 
 | 			goto bad; | 
 | 	} | 
 | 	if (entries != cachep->num - slabp->inuse) { | 
 | bad: | 
 | 		printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n", | 
 | 				cachep->name, cachep->num, slabp, slabp->inuse); | 
 | 		for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) { | 
 | 			if ((i%16)==0) | 
 | 				printk("\n%03x:", i); | 
 | 			printk(" %02x", ((unsigned char*)slabp)[i]); | 
 | 		} | 
 | 		printk("\n"); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 | #else | 
 | #define kfree_debugcheck(x) do { } while(0) | 
 | #define cache_free_debugcheck(x,objp,z) (objp) | 
 | #define check_slabp(x,y) do { } while(0) | 
 | #endif | 
 |  | 
 | static void *cache_alloc_refill(kmem_cache_t *cachep, unsigned int __nocast flags) | 
 | { | 
 | 	int batchcount; | 
 | 	struct kmem_list3 *l3; | 
 | 	struct array_cache *ac; | 
 |  | 
 | 	check_irq_off(); | 
 | 	ac = ac_data(cachep); | 
 | retry: | 
 | 	batchcount = ac->batchcount; | 
 | 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | 
 | 		/* if there was little recent activity on this | 
 | 		 * cache, then perform only a partial refill. | 
 | 		 * Otherwise we could generate refill bouncing. | 
 | 		 */ | 
 | 		batchcount = BATCHREFILL_LIMIT; | 
 | 	} | 
 | 	l3 = list3_data(cachep); | 
 |  | 
 | 	BUG_ON(ac->avail > 0); | 
 | 	spin_lock(&cachep->spinlock); | 
 | 	if (l3->shared) { | 
 | 		struct array_cache *shared_array = l3->shared; | 
 | 		if (shared_array->avail) { | 
 | 			if (batchcount > shared_array->avail) | 
 | 				batchcount = shared_array->avail; | 
 | 			shared_array->avail -= batchcount; | 
 | 			ac->avail = batchcount; | 
 | 			memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail], | 
 | 					sizeof(void*)*batchcount); | 
 | 			shared_array->touched = 1; | 
 | 			goto alloc_done; | 
 | 		} | 
 | 	} | 
 | 	while (batchcount > 0) { | 
 | 		struct list_head *entry; | 
 | 		struct slab *slabp; | 
 | 		/* Get slab alloc is to come from. */ | 
 | 		entry = l3->slabs_partial.next; | 
 | 		if (entry == &l3->slabs_partial) { | 
 | 			l3->free_touched = 1; | 
 | 			entry = l3->slabs_free.next; | 
 | 			if (entry == &l3->slabs_free) | 
 | 				goto must_grow; | 
 | 		} | 
 |  | 
 | 		slabp = list_entry(entry, struct slab, list); | 
 | 		check_slabp(cachep, slabp); | 
 | 		check_spinlock_acquired(cachep); | 
 | 		while (slabp->inuse < cachep->num && batchcount--) { | 
 | 			kmem_bufctl_t next; | 
 | 			STATS_INC_ALLOCED(cachep); | 
 | 			STATS_INC_ACTIVE(cachep); | 
 | 			STATS_SET_HIGH(cachep); | 
 |  | 
 | 			/* get obj pointer */ | 
 | 			ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize; | 
 |  | 
 | 			slabp->inuse++; | 
 | 			next = slab_bufctl(slabp)[slabp->free]; | 
 | #if DEBUG | 
 | 			slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | 
 | #endif | 
 | 		       	slabp->free = next; | 
 | 		} | 
 | 		check_slabp(cachep, slabp); | 
 |  | 
 | 		/* move slabp to correct slabp list: */ | 
 | 		list_del(&slabp->list); | 
 | 		if (slabp->free == BUFCTL_END) | 
 | 			list_add(&slabp->list, &l3->slabs_full); | 
 | 		else | 
 | 			list_add(&slabp->list, &l3->slabs_partial); | 
 | 	} | 
 |  | 
 | must_grow: | 
 | 	l3->free_objects -= ac->avail; | 
 | alloc_done: | 
 | 	spin_unlock(&cachep->spinlock); | 
 |  | 
 | 	if (unlikely(!ac->avail)) { | 
 | 		int x; | 
 | 		x = cache_grow(cachep, flags, -1); | 
 | 		 | 
 | 		// cache_grow can reenable interrupts, then ac could change. | 
 | 		ac = ac_data(cachep); | 
 | 		if (!x && ac->avail == 0)	// no objects in sight? abort | 
 | 			return NULL; | 
 |  | 
 | 		if (!ac->avail)		// objects refilled by interrupt? | 
 | 			goto retry; | 
 | 	} | 
 | 	ac->touched = 1; | 
 | 	return ac_entry(ac)[--ac->avail]; | 
 | } | 
 |  | 
 | static inline void | 
 | cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags) | 
 | { | 
 | 	might_sleep_if(flags & __GFP_WAIT); | 
 | #if DEBUG | 
 | 	kmem_flagcheck(cachep, flags); | 
 | #endif | 
 | } | 
 |  | 
 | #if DEBUG | 
 | static void * | 
 | cache_alloc_debugcheck_after(kmem_cache_t *cachep, | 
 | 			unsigned int __nocast flags, void *objp, void *caller) | 
 | { | 
 | 	if (!objp)	 | 
 | 		return objp; | 
 |  	if (cachep->flags & SLAB_POISON) { | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) | 
 | 			kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1); | 
 | 		else | 
 | 			check_poison_obj(cachep, objp); | 
 | #else | 
 | 		check_poison_obj(cachep, objp); | 
 | #endif | 
 | 		poison_obj(cachep, objp, POISON_INUSE); | 
 | 	} | 
 | 	if (cachep->flags & SLAB_STORE_USER) | 
 | 		*dbg_userword(cachep, objp) = caller; | 
 |  | 
 | 	if (cachep->flags & SLAB_RED_ZONE) { | 
 | 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | 
 | 			slab_error(cachep, "double free, or memory outside" | 
 | 						" object was overwritten"); | 
 | 			printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", | 
 | 					objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); | 
 | 		} | 
 | 		*dbg_redzone1(cachep, objp) = RED_ACTIVE; | 
 | 		*dbg_redzone2(cachep, objp) = RED_ACTIVE; | 
 | 	} | 
 | 	objp += obj_dbghead(cachep); | 
 | 	if (cachep->ctor && cachep->flags & SLAB_POISON) { | 
 | 		unsigned long	ctor_flags = SLAB_CTOR_CONSTRUCTOR; | 
 |  | 
 | 		if (!(flags & __GFP_WAIT)) | 
 | 			ctor_flags |= SLAB_CTOR_ATOMIC; | 
 |  | 
 | 		cachep->ctor(objp, cachep, ctor_flags); | 
 | 	}	 | 
 | 	return objp; | 
 | } | 
 | #else | 
 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | 
 | #endif | 
 |  | 
 |  | 
 | static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags) | 
 | { | 
 | 	unsigned long save_flags; | 
 | 	void* objp; | 
 | 	struct array_cache *ac; | 
 |  | 
 | 	cache_alloc_debugcheck_before(cachep, flags); | 
 |  | 
 | 	local_irq_save(save_flags); | 
 | 	ac = ac_data(cachep); | 
 | 	if (likely(ac->avail)) { | 
 | 		STATS_INC_ALLOCHIT(cachep); | 
 | 		ac->touched = 1; | 
 | 		objp = ac_entry(ac)[--ac->avail]; | 
 | 	} else { | 
 | 		STATS_INC_ALLOCMISS(cachep); | 
 | 		objp = cache_alloc_refill(cachep, flags); | 
 | 	} | 
 | 	local_irq_restore(save_flags); | 
 | 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, | 
 | 					__builtin_return_address(0)); | 
 | 	prefetchw(objp); | 
 | 	return objp; | 
 | } | 
 |  | 
 | /*  | 
 |  * NUMA: different approach needed if the spinlock is moved into | 
 |  * the l3 structure | 
 |  */ | 
 |  | 
 | static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	check_spinlock_acquired(cachep); | 
 |  | 
 | 	/* NUMA: move add into loop */ | 
 | 	cachep->lists.free_objects += nr_objects; | 
 |  | 
 | 	for (i = 0; i < nr_objects; i++) { | 
 | 		void *objp = objpp[i]; | 
 | 		struct slab *slabp; | 
 | 		unsigned int objnr; | 
 |  | 
 | 		slabp = GET_PAGE_SLAB(virt_to_page(objp)); | 
 | 		list_del(&slabp->list); | 
 | 		objnr = (objp - slabp->s_mem) / cachep->objsize; | 
 | 		check_slabp(cachep, slabp); | 
 | #if DEBUG | 
 | 		if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { | 
 | 			printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n", | 
 | 						cachep->name, objp); | 
 | 			BUG(); | 
 | 		} | 
 | #endif | 
 | 		slab_bufctl(slabp)[objnr] = slabp->free; | 
 | 		slabp->free = objnr; | 
 | 		STATS_DEC_ACTIVE(cachep); | 
 | 		slabp->inuse--; | 
 | 		check_slabp(cachep, slabp); | 
 |  | 
 | 		/* fixup slab chains */ | 
 | 		if (slabp->inuse == 0) { | 
 | 			if (cachep->lists.free_objects > cachep->free_limit) { | 
 | 				cachep->lists.free_objects -= cachep->num; | 
 | 				slab_destroy(cachep, slabp); | 
 | 			} else { | 
 | 				list_add(&slabp->list, | 
 | 				&list3_data_ptr(cachep, objp)->slabs_free); | 
 | 			} | 
 | 		} else { | 
 | 			/* Unconditionally move a slab to the end of the | 
 | 			 * partial list on free - maximum time for the | 
 | 			 * other objects to be freed, too. | 
 | 			 */ | 
 | 			list_add_tail(&slabp->list, | 
 | 				&list3_data_ptr(cachep, objp)->slabs_partial); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) | 
 | { | 
 | 	int batchcount; | 
 |  | 
 | 	batchcount = ac->batchcount; | 
 | #if DEBUG | 
 | 	BUG_ON(!batchcount || batchcount > ac->avail); | 
 | #endif | 
 | 	check_irq_off(); | 
 | 	spin_lock(&cachep->spinlock); | 
 | 	if (cachep->lists.shared) { | 
 | 		struct array_cache *shared_array = cachep->lists.shared; | 
 | 		int max = shared_array->limit-shared_array->avail; | 
 | 		if (max) { | 
 | 			if (batchcount > max) | 
 | 				batchcount = max; | 
 | 			memcpy(&ac_entry(shared_array)[shared_array->avail], | 
 | 					&ac_entry(ac)[0], | 
 | 					sizeof(void*)*batchcount); | 
 | 			shared_array->avail += batchcount; | 
 | 			goto free_done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	free_block(cachep, &ac_entry(ac)[0], batchcount); | 
 | free_done: | 
 | #if STATS | 
 | 	{ | 
 | 		int i = 0; | 
 | 		struct list_head *p; | 
 |  | 
 | 		p = list3_data(cachep)->slabs_free.next; | 
 | 		while (p != &(list3_data(cachep)->slabs_free)) { | 
 | 			struct slab *slabp; | 
 |  | 
 | 			slabp = list_entry(p, struct slab, list); | 
 | 			BUG_ON(slabp->inuse); | 
 |  | 
 | 			i++; | 
 | 			p = p->next; | 
 | 		} | 
 | 		STATS_SET_FREEABLE(cachep, i); | 
 | 	} | 
 | #endif | 
 | 	spin_unlock(&cachep->spinlock); | 
 | 	ac->avail -= batchcount; | 
 | 	memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount], | 
 | 			sizeof(void*)*ac->avail); | 
 | } | 
 |  | 
 | /* | 
 |  * __cache_free | 
 |  * Release an obj back to its cache. If the obj has a constructed | 
 |  * state, it must be in this state _before_ it is released. | 
 |  * | 
 |  * Called with disabled ints. | 
 |  */ | 
 | static inline void __cache_free(kmem_cache_t *cachep, void *objp) | 
 | { | 
 | 	struct array_cache *ac = ac_data(cachep); | 
 |  | 
 | 	check_irq_off(); | 
 | 	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); | 
 |  | 
 | 	if (likely(ac->avail < ac->limit)) { | 
 | 		STATS_INC_FREEHIT(cachep); | 
 | 		ac_entry(ac)[ac->avail++] = objp; | 
 | 		return; | 
 | 	} else { | 
 | 		STATS_INC_FREEMISS(cachep); | 
 | 		cache_flusharray(cachep, ac); | 
 | 		ac_entry(ac)[ac->avail++] = objp; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * kmem_cache_alloc - Allocate an object | 
 |  * @cachep: The cache to allocate from. | 
 |  * @flags: See kmalloc(). | 
 |  * | 
 |  * Allocate an object from this cache.  The flags are only relevant | 
 |  * if the cache has no available objects. | 
 |  */ | 
 | void *kmem_cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags) | 
 | { | 
 | 	return __cache_alloc(cachep, flags); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc); | 
 |  | 
 | /** | 
 |  * kmem_ptr_validate - check if an untrusted pointer might | 
 |  *	be a slab entry. | 
 |  * @cachep: the cache we're checking against | 
 |  * @ptr: pointer to validate | 
 |  * | 
 |  * This verifies that the untrusted pointer looks sane: | 
 |  * it is _not_ a guarantee that the pointer is actually | 
 |  * part of the slab cache in question, but it at least | 
 |  * validates that the pointer can be dereferenced and | 
 |  * looks half-way sane. | 
 |  * | 
 |  * Currently only used for dentry validation. | 
 |  */ | 
 | int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) | 
 | { | 
 | 	unsigned long addr = (unsigned long) ptr; | 
 | 	unsigned long min_addr = PAGE_OFFSET; | 
 | 	unsigned long align_mask = BYTES_PER_WORD-1; | 
 | 	unsigned long size = cachep->objsize; | 
 | 	struct page *page; | 
 |  | 
 | 	if (unlikely(addr < min_addr)) | 
 | 		goto out; | 
 | 	if (unlikely(addr > (unsigned long)high_memory - size)) | 
 | 		goto out; | 
 | 	if (unlikely(addr & align_mask)) | 
 | 		goto out; | 
 | 	if (unlikely(!kern_addr_valid(addr))) | 
 | 		goto out; | 
 | 	if (unlikely(!kern_addr_valid(addr + size - 1))) | 
 | 		goto out; | 
 | 	page = virt_to_page(ptr); | 
 | 	if (unlikely(!PageSlab(page))) | 
 | 		goto out; | 
 | 	if (unlikely(GET_PAGE_CACHE(page) != cachep)) | 
 | 		goto out; | 
 | 	return 1; | 
 | out: | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /** | 
 |  * kmem_cache_alloc_node - Allocate an object on the specified node | 
 |  * @cachep: The cache to allocate from. | 
 |  * @flags: See kmalloc(). | 
 |  * @nodeid: node number of the target node. | 
 |  * | 
 |  * Identical to kmem_cache_alloc, except that this function is slow | 
 |  * and can sleep. And it will allocate memory on the given node, which | 
 |  * can improve the performance for cpu bound structures. | 
 |  */ | 
 | void *kmem_cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid) | 
 | { | 
 | 	int loop; | 
 | 	void *objp; | 
 | 	struct slab *slabp; | 
 | 	kmem_bufctl_t next; | 
 |  | 
 | 	if (nodeid == -1) | 
 | 		return kmem_cache_alloc(cachep, flags); | 
 |  | 
 | 	for (loop = 0;;loop++) { | 
 | 		struct list_head *q; | 
 |  | 
 | 		objp = NULL; | 
 | 		check_irq_on(); | 
 | 		spin_lock_irq(&cachep->spinlock); | 
 | 		/* walk through all partial and empty slab and find one | 
 | 		 * from the right node */ | 
 | 		list_for_each(q,&cachep->lists.slabs_partial) { | 
 | 			slabp = list_entry(q, struct slab, list); | 
 |  | 
 | 			if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || | 
 | 					loop > 2) | 
 | 				goto got_slabp; | 
 | 		} | 
 | 		list_for_each(q, &cachep->lists.slabs_free) { | 
 | 			slabp = list_entry(q, struct slab, list); | 
 |  | 
 | 			if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || | 
 | 					loop > 2) | 
 | 				goto got_slabp; | 
 | 		} | 
 | 		spin_unlock_irq(&cachep->spinlock); | 
 |  | 
 | 		local_irq_disable(); | 
 | 		if (!cache_grow(cachep, flags, nodeid)) { | 
 | 			local_irq_enable(); | 
 | 			return NULL; | 
 | 		} | 
 | 		local_irq_enable(); | 
 | 	} | 
 | got_slabp: | 
 | 	/* found one: allocate object */ | 
 | 	check_slabp(cachep, slabp); | 
 | 	check_spinlock_acquired(cachep); | 
 |  | 
 | 	STATS_INC_ALLOCED(cachep); | 
 | 	STATS_INC_ACTIVE(cachep); | 
 | 	STATS_SET_HIGH(cachep); | 
 | 	STATS_INC_NODEALLOCS(cachep); | 
 |  | 
 | 	objp = slabp->s_mem + slabp->free*cachep->objsize; | 
 |  | 
 | 	slabp->inuse++; | 
 | 	next = slab_bufctl(slabp)[slabp->free]; | 
 | #if DEBUG | 
 | 	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | 
 | #endif | 
 | 	slabp->free = next; | 
 | 	check_slabp(cachep, slabp); | 
 |  | 
 | 	/* move slabp to correct slabp list: */ | 
 | 	list_del(&slabp->list); | 
 | 	if (slabp->free == BUFCTL_END) | 
 | 		list_add(&slabp->list, &cachep->lists.slabs_full); | 
 | 	else | 
 | 		list_add(&slabp->list, &cachep->lists.slabs_partial); | 
 |  | 
 | 	list3_data(cachep)->free_objects--; | 
 | 	spin_unlock_irq(&cachep->spinlock); | 
 |  | 
 | 	objp = cache_alloc_debugcheck_after(cachep, GFP_KERNEL, objp, | 
 | 					__builtin_return_address(0)); | 
 | 	return objp; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
 |  | 
 | void *kmalloc_node(size_t size, unsigned int __nocast flags, int node) | 
 | { | 
 | 	kmem_cache_t *cachep; | 
 |  | 
 | 	cachep = kmem_find_general_cachep(size, flags); | 
 | 	if (unlikely(cachep == NULL)) | 
 | 		return NULL; | 
 | 	return kmem_cache_alloc_node(cachep, flags, node); | 
 | } | 
 | EXPORT_SYMBOL(kmalloc_node); | 
 | #endif | 
 |  | 
 | /** | 
 |  * kmalloc - allocate memory | 
 |  * @size: how many bytes of memory are required. | 
 |  * @flags: the type of memory to allocate. | 
 |  * | 
 |  * kmalloc is the normal method of allocating memory | 
 |  * in the kernel. | 
 |  * | 
 |  * The @flags argument may be one of: | 
 |  * | 
 |  * %GFP_USER - Allocate memory on behalf of user.  May sleep. | 
 |  * | 
 |  * %GFP_KERNEL - Allocate normal kernel ram.  May sleep. | 
 |  * | 
 |  * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers. | 
 |  * | 
 |  * Additionally, the %GFP_DMA flag may be set to indicate the memory | 
 |  * must be suitable for DMA.  This can mean different things on different | 
 |  * platforms.  For example, on i386, it means that the memory must come | 
 |  * from the first 16MB. | 
 |  */ | 
 | void *__kmalloc(size_t size, unsigned int __nocast flags) | 
 | { | 
 | 	kmem_cache_t *cachep; | 
 |  | 
 | 	/* If you want to save a few bytes .text space: replace | 
 | 	 * __ with kmem_. | 
 | 	 * Then kmalloc uses the uninlined functions instead of the inline | 
 | 	 * functions. | 
 | 	 */ | 
 | 	cachep = __find_general_cachep(size, flags); | 
 | 	if (unlikely(cachep == NULL)) | 
 | 		return NULL; | 
 | 	return __cache_alloc(cachep, flags); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /** | 
 |  * __alloc_percpu - allocate one copy of the object for every present | 
 |  * cpu in the system, zeroing them. | 
 |  * Objects should be dereferenced using the per_cpu_ptr macro only. | 
 |  * | 
 |  * @size: how many bytes of memory are required. | 
 |  * @align: the alignment, which can't be greater than SMP_CACHE_BYTES. | 
 |  */ | 
 | void *__alloc_percpu(size_t size, size_t align) | 
 | { | 
 | 	int i; | 
 | 	struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); | 
 |  | 
 | 	if (!pdata) | 
 | 		return NULL; | 
 |  | 
 | 	for (i = 0; i < NR_CPUS; i++) { | 
 | 		if (!cpu_possible(i)) | 
 | 			continue; | 
 | 		pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, | 
 | 						cpu_to_node(i)); | 
 |  | 
 | 		if (!pdata->ptrs[i]) | 
 | 			goto unwind_oom; | 
 | 		memset(pdata->ptrs[i], 0, size); | 
 | 	} | 
 |  | 
 | 	/* Catch derefs w/o wrappers */ | 
 | 	return (void *) (~(unsigned long) pdata); | 
 |  | 
 | unwind_oom: | 
 | 	while (--i >= 0) { | 
 | 		if (!cpu_possible(i)) | 
 | 			continue; | 
 | 		kfree(pdata->ptrs[i]); | 
 | 	} | 
 | 	kfree(pdata); | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(__alloc_percpu); | 
 | #endif | 
 |  | 
 | /** | 
 |  * kmem_cache_free - Deallocate an object | 
 |  * @cachep: The cache the allocation was from. | 
 |  * @objp: The previously allocated object. | 
 |  * | 
 |  * Free an object which was previously allocated from this | 
 |  * cache. | 
 |  */ | 
 | void kmem_cache_free(kmem_cache_t *cachep, void *objp) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	__cache_free(cachep, objp); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_free); | 
 |  | 
 | /** | 
 |  * kcalloc - allocate memory for an array. The memory is set to zero. | 
 |  * @n: number of elements. | 
 |  * @size: element size. | 
 |  * @flags: the type of memory to allocate. | 
 |  */ | 
 | void *kcalloc(size_t n, size_t size, unsigned int __nocast flags) | 
 | { | 
 | 	void *ret = NULL; | 
 |  | 
 | 	if (n != 0 && size > INT_MAX / n) | 
 | 		return ret; | 
 |  | 
 | 	ret = kmalloc(n * size, flags); | 
 | 	if (ret) | 
 | 		memset(ret, 0, n * size); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kcalloc); | 
 |  | 
 | /** | 
 |  * kfree - free previously allocated memory | 
 |  * @objp: pointer returned by kmalloc. | 
 |  * | 
 |  * Don't free memory not originally allocated by kmalloc() | 
 |  * or you will run into trouble. | 
 |  */ | 
 | void kfree(const void *objp) | 
 | { | 
 | 	kmem_cache_t *c; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (unlikely(!objp)) | 
 | 		return; | 
 | 	local_irq_save(flags); | 
 | 	kfree_debugcheck(objp); | 
 | 	c = GET_PAGE_CACHE(virt_to_page(objp)); | 
 | 	__cache_free(c, (void*)objp); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL(kfree); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /** | 
 |  * free_percpu - free previously allocated percpu memory | 
 |  * @objp: pointer returned by alloc_percpu. | 
 |  * | 
 |  * Don't free memory not originally allocated by alloc_percpu() | 
 |  * The complemented objp is to check for that. | 
 |  */ | 
 | void | 
 | free_percpu(const void *objp) | 
 | { | 
 | 	int i; | 
 | 	struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); | 
 |  | 
 | 	for (i = 0; i < NR_CPUS; i++) { | 
 | 		if (!cpu_possible(i)) | 
 | 			continue; | 
 | 		kfree(p->ptrs[i]); | 
 | 	} | 
 | 	kfree(p); | 
 | } | 
 | EXPORT_SYMBOL(free_percpu); | 
 | #endif | 
 |  | 
 | unsigned int kmem_cache_size(kmem_cache_t *cachep) | 
 | { | 
 | 	return obj_reallen(cachep); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_size); | 
 |  | 
 | const char *kmem_cache_name(kmem_cache_t *cachep) | 
 | { | 
 | 	return cachep->name; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kmem_cache_name); | 
 |  | 
 | struct ccupdate_struct { | 
 | 	kmem_cache_t *cachep; | 
 | 	struct array_cache *new[NR_CPUS]; | 
 | }; | 
 |  | 
 | static void do_ccupdate_local(void *info) | 
 | { | 
 | 	struct ccupdate_struct *new = (struct ccupdate_struct *)info; | 
 | 	struct array_cache *old; | 
 |  | 
 | 	check_irq_off(); | 
 | 	old = ac_data(new->cachep); | 
 | 	 | 
 | 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; | 
 | 	new->new[smp_processor_id()] = old; | 
 | } | 
 |  | 
 |  | 
 | static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, | 
 | 				int shared) | 
 | { | 
 | 	struct ccupdate_struct new; | 
 | 	struct array_cache *new_shared; | 
 | 	int i; | 
 |  | 
 | 	memset(&new.new,0,sizeof(new.new)); | 
 | 	for (i = 0; i < NR_CPUS; i++) { | 
 | 		if (cpu_online(i)) { | 
 | 			new.new[i] = alloc_arraycache(i, limit, batchcount); | 
 | 			if (!new.new[i]) { | 
 | 				for (i--; i >= 0; i--) kfree(new.new[i]); | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 		} else { | 
 | 			new.new[i] = NULL; | 
 | 		} | 
 | 	} | 
 | 	new.cachep = cachep; | 
 |  | 
 | 	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); | 
 | 	 | 
 | 	check_irq_on(); | 
 | 	spin_lock_irq(&cachep->spinlock); | 
 | 	cachep->batchcount = batchcount; | 
 | 	cachep->limit = limit; | 
 | 	cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num; | 
 | 	spin_unlock_irq(&cachep->spinlock); | 
 |  | 
 | 	for (i = 0; i < NR_CPUS; i++) { | 
 | 		struct array_cache *ccold = new.new[i]; | 
 | 		if (!ccold) | 
 | 			continue; | 
 | 		spin_lock_irq(&cachep->spinlock); | 
 | 		free_block(cachep, ac_entry(ccold), ccold->avail); | 
 | 		spin_unlock_irq(&cachep->spinlock); | 
 | 		kfree(ccold); | 
 | 	} | 
 | 	new_shared = alloc_arraycache(-1, batchcount*shared, 0xbaadf00d); | 
 | 	if (new_shared) { | 
 | 		struct array_cache *old; | 
 |  | 
 | 		spin_lock_irq(&cachep->spinlock); | 
 | 		old = cachep->lists.shared; | 
 | 		cachep->lists.shared = new_shared; | 
 | 		if (old) | 
 | 			free_block(cachep, ac_entry(old), old->avail); | 
 | 		spin_unlock_irq(&cachep->spinlock); | 
 | 		kfree(old); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void enable_cpucache(kmem_cache_t *cachep) | 
 | { | 
 | 	int err; | 
 | 	int limit, shared; | 
 |  | 
 | 	/* The head array serves three purposes: | 
 | 	 * - create a LIFO ordering, i.e. return objects that are cache-warm | 
 | 	 * - reduce the number of spinlock operations. | 
 | 	 * - reduce the number of linked list operations on the slab and  | 
 | 	 *   bufctl chains: array operations are cheaper. | 
 | 	 * The numbers are guessed, we should auto-tune as described by | 
 | 	 * Bonwick. | 
 | 	 */ | 
 | 	if (cachep->objsize > 131072) | 
 | 		limit = 1; | 
 | 	else if (cachep->objsize > PAGE_SIZE) | 
 | 		limit = 8; | 
 | 	else if (cachep->objsize > 1024) | 
 | 		limit = 24; | 
 | 	else if (cachep->objsize > 256) | 
 | 		limit = 54; | 
 | 	else | 
 | 		limit = 120; | 
 |  | 
 | 	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound | 
 | 	 * allocation behaviour: Most allocs on one cpu, most free operations | 
 | 	 * on another cpu. For these cases, an efficient object passing between | 
 | 	 * cpus is necessary. This is provided by a shared array. The array | 
 | 	 * replaces Bonwick's magazine layer. | 
 | 	 * On uniprocessor, it's functionally equivalent (but less efficient) | 
 | 	 * to a larger limit. Thus disabled by default. | 
 | 	 */ | 
 | 	shared = 0; | 
 | #ifdef CONFIG_SMP | 
 | 	if (cachep->objsize <= PAGE_SIZE) | 
 | 		shared = 8; | 
 | #endif | 
 |  | 
 | #if DEBUG | 
 | 	/* With debugging enabled, large batchcount lead to excessively | 
 | 	 * long periods with disabled local interrupts. Limit the  | 
 | 	 * batchcount | 
 | 	 */ | 
 | 	if (limit > 32) | 
 | 		limit = 32; | 
 | #endif | 
 | 	err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared); | 
 | 	if (err) | 
 | 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | 
 | 					cachep->name, -err); | 
 | } | 
 |  | 
 | static void drain_array_locked(kmem_cache_t *cachep, | 
 | 				struct array_cache *ac, int force) | 
 | { | 
 | 	int tofree; | 
 |  | 
 | 	check_spinlock_acquired(cachep); | 
 | 	if (ac->touched && !force) { | 
 | 		ac->touched = 0; | 
 | 	} else if (ac->avail) { | 
 | 		tofree = force ? ac->avail : (ac->limit+4)/5; | 
 | 		if (tofree > ac->avail) { | 
 | 			tofree = (ac->avail+1)/2; | 
 | 		} | 
 | 		free_block(cachep, ac_entry(ac), tofree); | 
 | 		ac->avail -= tofree; | 
 | 		memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree], | 
 | 					sizeof(void*)*ac->avail); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cache_reap - Reclaim memory from caches. | 
 |  * | 
 |  * Called from workqueue/eventd every few seconds. | 
 |  * Purpose: | 
 |  * - clear the per-cpu caches for this CPU. | 
 |  * - return freeable pages to the main free memory pool. | 
 |  * | 
 |  * If we cannot acquire the cache chain semaphore then just give up - we'll | 
 |  * try again on the next iteration. | 
 |  */ | 
 | static void cache_reap(void *unused) | 
 | { | 
 | 	struct list_head *walk; | 
 |  | 
 | 	if (down_trylock(&cache_chain_sem)) { | 
 | 		/* Give up. Setup the next iteration. */ | 
 | 		schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id()); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	list_for_each(walk, &cache_chain) { | 
 | 		kmem_cache_t *searchp; | 
 | 		struct list_head* p; | 
 | 		int tofree; | 
 | 		struct slab *slabp; | 
 |  | 
 | 		searchp = list_entry(walk, kmem_cache_t, next); | 
 |  | 
 | 		if (searchp->flags & SLAB_NO_REAP) | 
 | 			goto next; | 
 |  | 
 | 		check_irq_on(); | 
 |  | 
 | 		spin_lock_irq(&searchp->spinlock); | 
 |  | 
 | 		drain_array_locked(searchp, ac_data(searchp), 0); | 
 |  | 
 | 		if(time_after(searchp->lists.next_reap, jiffies)) | 
 | 			goto next_unlock; | 
 |  | 
 | 		searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3; | 
 |  | 
 | 		if (searchp->lists.shared) | 
 | 			drain_array_locked(searchp, searchp->lists.shared, 0); | 
 |  | 
 | 		if (searchp->lists.free_touched) { | 
 | 			searchp->lists.free_touched = 0; | 
 | 			goto next_unlock; | 
 | 		} | 
 |  | 
 | 		tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num); | 
 | 		do { | 
 | 			p = list3_data(searchp)->slabs_free.next; | 
 | 			if (p == &(list3_data(searchp)->slabs_free)) | 
 | 				break; | 
 |  | 
 | 			slabp = list_entry(p, struct slab, list); | 
 | 			BUG_ON(slabp->inuse); | 
 | 			list_del(&slabp->list); | 
 | 			STATS_INC_REAPED(searchp); | 
 |  | 
 | 			/* Safe to drop the lock. The slab is no longer | 
 | 			 * linked to the cache. | 
 | 			 * searchp cannot disappear, we hold | 
 | 			 * cache_chain_lock | 
 | 			 */ | 
 | 			searchp->lists.free_objects -= searchp->num; | 
 | 			spin_unlock_irq(&searchp->spinlock); | 
 | 			slab_destroy(searchp, slabp); | 
 | 			spin_lock_irq(&searchp->spinlock); | 
 | 		} while(--tofree > 0); | 
 | next_unlock: | 
 | 		spin_unlock_irq(&searchp->spinlock); | 
 | next: | 
 | 		cond_resched(); | 
 | 	} | 
 | 	check_irq_on(); | 
 | 	up(&cache_chain_sem); | 
 | 	drain_remote_pages(); | 
 | 	/* Setup the next iteration */ | 
 | 	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id()); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 |  | 
 | static void *s_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	loff_t n = *pos; | 
 | 	struct list_head *p; | 
 |  | 
 | 	down(&cache_chain_sem); | 
 | 	if (!n) { | 
 | 		/* | 
 | 		 * Output format version, so at least we can change it | 
 | 		 * without _too_ many complaints. | 
 | 		 */ | 
 | #if STATS | 
 | 		seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | 
 | #else | 
 | 		seq_puts(m, "slabinfo - version: 2.1\n"); | 
 | #endif | 
 | 		seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); | 
 | 		seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
 | 		seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
 | #if STATS | 
 | 		seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>" | 
 | 				" <error> <maxfreeable> <freelimit> <nodeallocs>"); | 
 | 		seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | 
 | #endif | 
 | 		seq_putc(m, '\n'); | 
 | 	} | 
 | 	p = cache_chain.next; | 
 | 	while (n--) { | 
 | 		p = p->next; | 
 | 		if (p == &cache_chain) | 
 | 			return NULL; | 
 | 	} | 
 | 	return list_entry(p, kmem_cache_t, next); | 
 | } | 
 |  | 
 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 
 | { | 
 | 	kmem_cache_t *cachep = p; | 
 | 	++*pos; | 
 | 	return cachep->next.next == &cache_chain ? NULL | 
 | 		: list_entry(cachep->next.next, kmem_cache_t, next); | 
 | } | 
 |  | 
 | static void s_stop(struct seq_file *m, void *p) | 
 | { | 
 | 	up(&cache_chain_sem); | 
 | } | 
 |  | 
 | static int s_show(struct seq_file *m, void *p) | 
 | { | 
 | 	kmem_cache_t *cachep = p; | 
 | 	struct list_head *q; | 
 | 	struct slab	*slabp; | 
 | 	unsigned long	active_objs; | 
 | 	unsigned long	num_objs; | 
 | 	unsigned long	active_slabs = 0; | 
 | 	unsigned long	num_slabs; | 
 | 	const char *name;  | 
 | 	char *error = NULL; | 
 |  | 
 | 	check_irq_on(); | 
 | 	spin_lock_irq(&cachep->spinlock); | 
 | 	active_objs = 0; | 
 | 	num_slabs = 0; | 
 | 	list_for_each(q,&cachep->lists.slabs_full) { | 
 | 		slabp = list_entry(q, struct slab, list); | 
 | 		if (slabp->inuse != cachep->num && !error) | 
 | 			error = "slabs_full accounting error"; | 
 | 		active_objs += cachep->num; | 
 | 		active_slabs++; | 
 | 	} | 
 | 	list_for_each(q,&cachep->lists.slabs_partial) { | 
 | 		slabp = list_entry(q, struct slab, list); | 
 | 		if (slabp->inuse == cachep->num && !error) | 
 | 			error = "slabs_partial inuse accounting error"; | 
 | 		if (!slabp->inuse && !error) | 
 | 			error = "slabs_partial/inuse accounting error"; | 
 | 		active_objs += slabp->inuse; | 
 | 		active_slabs++; | 
 | 	} | 
 | 	list_for_each(q,&cachep->lists.slabs_free) { | 
 | 		slabp = list_entry(q, struct slab, list); | 
 | 		if (slabp->inuse && !error) | 
 | 			error = "slabs_free/inuse accounting error"; | 
 | 		num_slabs++; | 
 | 	} | 
 | 	num_slabs+=active_slabs; | 
 | 	num_objs = num_slabs*cachep->num; | 
 | 	if (num_objs - active_objs != cachep->lists.free_objects && !error) | 
 | 		error = "free_objects accounting error"; | 
 |  | 
 | 	name = cachep->name;  | 
 | 	if (error) | 
 | 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | 
 |  | 
 | 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | 
 | 		name, active_objs, num_objs, cachep->objsize, | 
 | 		cachep->num, (1<<cachep->gfporder)); | 
 | 	seq_printf(m, " : tunables %4u %4u %4u", | 
 | 			cachep->limit, cachep->batchcount, | 
 | 			cachep->lists.shared->limit/cachep->batchcount); | 
 | 	seq_printf(m, " : slabdata %6lu %6lu %6u", | 
 | 			active_slabs, num_slabs, cachep->lists.shared->avail); | 
 | #if STATS | 
 | 	{	/* list3 stats */ | 
 | 		unsigned long high = cachep->high_mark; | 
 | 		unsigned long allocs = cachep->num_allocations; | 
 | 		unsigned long grown = cachep->grown; | 
 | 		unsigned long reaped = cachep->reaped; | 
 | 		unsigned long errors = cachep->errors; | 
 | 		unsigned long max_freeable = cachep->max_freeable; | 
 | 		unsigned long free_limit = cachep->free_limit; | 
 | 		unsigned long node_allocs = cachep->node_allocs; | 
 |  | 
 | 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu", | 
 | 				allocs, high, grown, reaped, errors,  | 
 | 				max_freeable, free_limit, node_allocs); | 
 | 	} | 
 | 	/* cpu stats */ | 
 | 	{ | 
 | 		unsigned long allochit = atomic_read(&cachep->allochit); | 
 | 		unsigned long allocmiss = atomic_read(&cachep->allocmiss); | 
 | 		unsigned long freehit = atomic_read(&cachep->freehit); | 
 | 		unsigned long freemiss = atomic_read(&cachep->freemiss); | 
 |  | 
 | 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | 
 | 			allochit, allocmiss, freehit, freemiss); | 
 | 	} | 
 | #endif | 
 | 	seq_putc(m, '\n'); | 
 | 	spin_unlock_irq(&cachep->spinlock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * slabinfo_op - iterator that generates /proc/slabinfo | 
 |  * | 
 |  * Output layout: | 
 |  * cache-name | 
 |  * num-active-objs | 
 |  * total-objs | 
 |  * object size | 
 |  * num-active-slabs | 
 |  * total-slabs | 
 |  * num-pages-per-slab | 
 |  * + further values on SMP and with statistics enabled | 
 |  */ | 
 |  | 
 | struct seq_operations slabinfo_op = { | 
 | 	.start	= s_start, | 
 | 	.next	= s_next, | 
 | 	.stop	= s_stop, | 
 | 	.show	= s_show, | 
 | }; | 
 |  | 
 | #define MAX_SLABINFO_WRITE 128 | 
 | /** | 
 |  * slabinfo_write - Tuning for the slab allocator | 
 |  * @file: unused | 
 |  * @buffer: user buffer | 
 |  * @count: data length | 
 |  * @ppos: unused | 
 |  */ | 
 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | 
 | 				size_t count, loff_t *ppos) | 
 | { | 
 | 	char kbuf[MAX_SLABINFO_WRITE+1], *tmp; | 
 | 	int limit, batchcount, shared, res; | 
 | 	struct list_head *p; | 
 | 	 | 
 | 	if (count > MAX_SLABINFO_WRITE) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(&kbuf, buffer, count)) | 
 | 		return -EFAULT; | 
 | 	kbuf[MAX_SLABINFO_WRITE] = '\0';  | 
 |  | 
 | 	tmp = strchr(kbuf, ' '); | 
 | 	if (!tmp) | 
 | 		return -EINVAL; | 
 | 	*tmp = '\0'; | 
 | 	tmp++; | 
 | 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Find the cache in the chain of caches. */ | 
 | 	down(&cache_chain_sem); | 
 | 	res = -EINVAL; | 
 | 	list_for_each(p,&cache_chain) { | 
 | 		kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next); | 
 |  | 
 | 		if (!strcmp(cachep->name, kbuf)) { | 
 | 			if (limit < 1 || | 
 | 			    batchcount < 1 || | 
 | 			    batchcount > limit || | 
 | 			    shared < 0) { | 
 | 				res = -EINVAL; | 
 | 			} else { | 
 | 				res = do_tune_cpucache(cachep, limit, batchcount, shared); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	up(&cache_chain_sem); | 
 | 	if (res >= 0) | 
 | 		res = count; | 
 | 	return res; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * ksize - get the actual amount of memory allocated for a given object | 
 |  * @objp: Pointer to the object | 
 |  * | 
 |  * kmalloc may internally round up allocations and return more memory | 
 |  * than requested. ksize() can be used to determine the actual amount of | 
 |  * memory allocated. The caller may use this additional memory, even though | 
 |  * a smaller amount of memory was initially specified with the kmalloc call. | 
 |  * The caller must guarantee that objp points to a valid object previously | 
 |  * allocated with either kmalloc() or kmem_cache_alloc(). The object | 
 |  * must not be freed during the duration of the call. | 
 |  */ | 
 | unsigned int ksize(const void *objp) | 
 | { | 
 | 	if (unlikely(objp == NULL)) | 
 | 		return 0; | 
 |  | 
 | 	return obj_reallen(GET_PAGE_CACHE(virt_to_page(objp))); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * kstrdup - allocate space for and copy an existing string | 
 |  * | 
 |  * @s: the string to duplicate | 
 |  * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
 |  */ | 
 | char *kstrdup(const char *s, unsigned int __nocast gfp) | 
 | { | 
 | 	size_t len; | 
 | 	char *buf; | 
 |  | 
 | 	if (!s) | 
 | 		return NULL; | 
 |  | 
 | 	len = strlen(s) + 1; | 
 | 	buf = kmalloc(len, gfp); | 
 | 	if (buf) | 
 | 		memcpy(buf, s, len); | 
 | 	return buf; | 
 | } | 
 | EXPORT_SYMBOL(kstrdup); |