blob: bff46061e5c571734e9fc9fb1cbbef29a56af17b [file] [log] [blame]
/*
* intel_hdmi_audio.c - Intel HDMI audio driver
*
* Copyright (C) 2016 Intel Corp
* Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
* Ramesh Babu K V <ramesh.babu@intel.com>
* Vaibhav Agarwal <vaibhav.agarwal@intel.com>
* Jerome Anand <jerome.anand@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ALSA driver for Intel HDMI audio
*/
#define pr_fmt(fmt) "had: " fmt
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/acpi.h>
#include <asm/cacheflush.h>
#include <sound/pcm.h>
#include <sound/core.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/control.h>
#include <sound/initval.h>
#include "intel_hdmi_audio.h"
static DEFINE_MUTEX(had_mutex);
/*standard module options for ALSA. This module supports only one card*/
static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
static struct snd_intelhad *had_data;
static int underrun_count;
module_param_named(index, hdmi_card_index, int, 0444);
MODULE_PARM_DESC(index,
"Index value for INTEL Intel HDMI Audio controller.");
module_param_named(id, hdmi_card_id, charp, 0444);
MODULE_PARM_DESC(id,
"ID string for INTEL Intel HDMI Audio controller.");
/*
* ELD SA bits in the CEA Speaker Allocation data block
*/
static int eld_speaker_allocation_bits[] = {
[0] = FL | FR,
[1] = LFE,
[2] = FC,
[3] = RL | RR,
[4] = RC,
[5] = FLC | FRC,
[6] = RLC | RRC,
/* the following are not defined in ELD yet */
[7] = 0,
};
/*
* This is an ordered list!
*
* The preceding ones have better chances to be selected by
* hdmi_channel_allocation().
*/
static struct cea_channel_speaker_allocation channel_allocations[] = {
/* channel: 7 6 5 4 3 2 1 0 */
{ .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
/* 2.1 */
{ .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
/* Dolby Surround */
{ .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
/* surround40 */
{ .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
/* surround41 */
{ .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
/* surround50 */
{ .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
/* surround51 */
{ .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
/* 6.1 */
{ .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
/* surround71 */
{ .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
{ .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
{ .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
{ .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
{ .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
{ .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
{ .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
{ .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
{ .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
{ .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
{ .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
{ .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
{ .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
{ .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
{ .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
};
static struct channel_map_table map_tables[] = {
{ SNDRV_CHMAP_FL, 0x00, FL },
{ SNDRV_CHMAP_FR, 0x01, FR },
{ SNDRV_CHMAP_RL, 0x04, RL },
{ SNDRV_CHMAP_RR, 0x05, RR },
{ SNDRV_CHMAP_LFE, 0x02, LFE },
{ SNDRV_CHMAP_FC, 0x03, FC },
{ SNDRV_CHMAP_RLC, 0x06, RLC },
{ SNDRV_CHMAP_RRC, 0x07, RRC },
{} /* terminator */
};
/* hardware capability structure */
static const struct snd_pcm_hardware snd_intel_hadstream = {
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_DOUBLE |
SNDRV_PCM_INFO_MMAP|
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH),
.formats = (SNDRV_PCM_FMTBIT_S24 |
SNDRV_PCM_FMTBIT_U24),
.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 |
SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.rate_min = HAD_MIN_RATE,
.rate_max = HAD_MAX_RATE,
.channels_min = HAD_MIN_CHANNEL,
.channels_max = HAD_MAX_CHANNEL,
.buffer_bytes_max = HAD_MAX_BUFFER,
.period_bytes_min = HAD_MIN_PERIOD_BYTES,
.period_bytes_max = HAD_MAX_PERIOD_BYTES,
.periods_min = HAD_MIN_PERIODS,
.periods_max = HAD_MAX_PERIODS,
.fifo_size = HAD_FIFO_SIZE,
};
/* Register access functions */
int had_get_hwstate(struct snd_intelhad *intelhaddata)
{
/* Check for device presence -SW state */
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
pr_debug("%s:Device not connected:%d\n", __func__,
intelhaddata->drv_status);
return -ENODEV;
}
return 0;
}
int had_get_caps(enum had_caps_list query, void *caps)
{
int retval;
struct snd_intelhad *intelhaddata = had_data;
retval = had_get_hwstate(intelhaddata);
if (!retval)
retval = mid_hdmi_audio_get_caps(query, caps);
return retval;
}
int had_set_caps(enum had_caps_list set_element, void *caps)
{
int retval;
struct snd_intelhad *intelhaddata = had_data;
retval = had_get_hwstate(intelhaddata);
if (!retval)
retval = mid_hdmi_audio_set_caps(set_element, caps);
return retval;
}
int had_read_register(u32 offset, u32 *data)
{
int retval;
struct snd_intelhad *intelhaddata = had_data;
retval = had_get_hwstate(intelhaddata);
if (!retval)
retval = mid_hdmi_audio_read(offset, data);
return retval;
}
int had_write_register(u32 offset, u32 data)
{
int retval;
struct snd_intelhad *intelhaddata = had_data;
retval = had_get_hwstate(intelhaddata);
if (!retval)
retval = mid_hdmi_audio_write(offset, data);
return retval;
}
int had_read_modify(u32 offset, u32 data, u32 mask)
{
int retval;
struct snd_intelhad *intelhaddata = had_data;
retval = had_get_hwstate(intelhaddata);
if (!retval)
retval = mid_hdmi_audio_rmw(offset, data, mask);
return retval;
}
/**
* function to read-modify
* AUD_CONFIG register on VLV2.The had_read_modify() function should not
* directly be used on VLV2 for updating AUD_CONFIG register.
* This is because:
* Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
* HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
* clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
* register. This field should be 1xy binary for configuration with 6 or
* more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
* causes the "channels" field to be updated as 0xy binary resulting in
* bad audio. The fix is to always write the AUD_CONFIG[6:4] with
* appropriate value when doing read-modify of AUD_CONFIG register.
*
* @substream: the current substream or NULL if no active substream
* @data : data to be written
* @mask : mask
*
*/
static int had_read_modify_aud_config_v2(struct snd_pcm_substream *substream,
u32 data, u32 mask)
{
union aud_cfg cfg_val = {.cfg_regval = 0};
u8 channels;
/*
* If substream is NULL, there is no active stream.
* In this case just set channels to 2
*/
if (substream)
channels = substream->runtime->channels;
else
channels = 2;
cfg_val.cfg_regx_v2.num_ch = channels - 2;
data = data | cfg_val.cfg_regval;
mask = mask | AUD_CONFIG_CH_MASK_V2;
pr_debug("%s : data = %x, mask =%x\n", __func__, data, mask);
return had_read_modify(AUD_CONFIG, data, mask);
}
void snd_intelhad_enable_audio(struct snd_pcm_substream *substream, u8 enable)
{
had_read_modify_aud_config_v2(substream, enable, BIT(0));
}
static void snd_intelhad_reset_audio(u8 reset)
{
had_write_register(AUD_HDMI_STATUS_v2, reset);
}
/**
* initialize audio channel status registers
* This function is called in the prepare callback
*/
static int had_prog_status_reg(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
union aud_cfg cfg_val = {.cfg_regval = 0};
union aud_ch_status_0 ch_stat0 = {.status_0_regval = 0};
union aud_ch_status_1 ch_stat1 = {.status_1_regval = 0};
int format;
pr_debug("Entry %s\n", __func__);
ch_stat0.status_0_regx.lpcm_id = (intelhaddata->aes_bits &
IEC958_AES0_NONAUDIO)>>1;
ch_stat0.status_0_regx.clk_acc = (intelhaddata->aes_bits &
IEC958_AES3_CON_CLOCK)>>4;
cfg_val.cfg_regx_v2.val_bit = ch_stat0.status_0_regx.lpcm_id;
switch (substream->runtime->rate) {
case AUD_SAMPLE_RATE_32:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_32KHZ;
break;
case AUD_SAMPLE_RATE_44_1:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_44KHZ;
break;
case AUD_SAMPLE_RATE_48:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_48KHZ;
break;
case AUD_SAMPLE_RATE_88_2:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_88KHZ;
break;
case AUD_SAMPLE_RATE_96:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_96KHZ;
break;
case AUD_SAMPLE_RATE_176_4:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_176KHZ;
break;
case AUD_SAMPLE_RATE_192:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_192KHZ;
break;
default:
/* control should never come here */
return -EINVAL;
break;
}
had_write_register(AUD_CH_STATUS_0, ch_stat0.status_0_regval);
format = substream->runtime->format;
if (format == SNDRV_PCM_FORMAT_S16_LE) {
ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_20;
ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_16BITS;
} else if (format == SNDRV_PCM_FORMAT_S24_LE) {
ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_24;
ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_24BITS;
} else {
ch_stat1.status_1_regx.max_wrd_len = 0;
ch_stat1.status_1_regx.wrd_len = 0;
}
had_write_register(AUD_CH_STATUS_1, ch_stat1.status_1_regval);
return 0;
}
/*
* function to initialize audio
* registers and buffer confgiuration registers
* This function is called in the prepare callback
*/
static int snd_intelhad_audio_ctrl(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
union aud_cfg cfg_val = {.cfg_regval = 0};
union aud_buf_config buf_cfg = {.buf_cfgval = 0};
u8 channels;
had_prog_status_reg(substream, intelhaddata);
buf_cfg.buf_cfg_regx_v2.audio_fifo_watermark = FIFO_THRESHOLD;
buf_cfg.buf_cfg_regx_v2.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
buf_cfg.buf_cfg_regx_v2.aud_delay = 0;
had_write_register(AUD_BUF_CONFIG, buf_cfg.buf_cfgval);
channels = substream->runtime->channels;
cfg_val.cfg_regx_v2.num_ch = channels - 2;
if (channels <= 2)
cfg_val.cfg_regx_v2.layout = LAYOUT0;
else
cfg_val.cfg_regx_v2.layout = LAYOUT1;
cfg_val.cfg_regx_v2.val_bit = 1;
had_write_register(AUD_CONFIG, cfg_val.cfg_regval);
return 0;
}
/*
* Compute derived values in channel_allocations[].
*/
static void init_channel_allocations(void)
{
int i, j;
struct cea_channel_speaker_allocation *p;
pr_debug("%s: Enter\n", __func__);
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
p = channel_allocations + i;
p->channels = 0;
p->spk_mask = 0;
for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
if (p->speakers[j]) {
p->channels++;
p->spk_mask |= p->speakers[j];
}
}
}
/*
* The transformation takes two steps:
*
* eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
* spk_mask => (channel_allocations[]) => ai->CA
*
* TODO: it could select the wrong CA from multiple candidates.
*/
static int snd_intelhad_channel_allocation(struct snd_intelhad *intelhaddata,
int channels)
{
int i;
int ca = 0;
int spk_mask = 0;
/*
* CA defaults to 0 for basic stereo audio
*/
if (channels <= 2)
return 0;
/*
* expand ELD's speaker allocation mask
*
* ELD tells the speaker mask in a compact(paired) form,
* expand ELD's notions to match the ones used by Audio InfoFrame.
*/
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
if (intelhaddata->eeld.speaker_allocation_block & (1 << i))
spk_mask |= eld_speaker_allocation_bits[i];
}
/* search for the first working match in the CA table */
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
if (channels == channel_allocations[i].channels &&
(spk_mask & channel_allocations[i].spk_mask) ==
channel_allocations[i].spk_mask) {
ca = channel_allocations[i].ca_index;
break;
}
}
pr_debug("HDMI: select CA 0x%x for %d\n", ca, channels);
return ca;
}
/* from speaker bit mask to ALSA API channel position */
static int spk_to_chmap(int spk)
{
struct channel_map_table *t = map_tables;
for (; t->map; t++) {
if (t->spk_mask == spk)
return t->map;
}
return 0;
}
void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
{
int i = 0, c = 0;
int spk_mask = 0;
struct snd_pcm_chmap_elem *chmap;
u8 eld_high, eld_high_mask = 0xF0;
u8 high_msb;
chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
if (chmap == NULL) {
intelhaddata->chmap->chmap = NULL;
return;
}
had_get_caps(HAD_GET_ELD, &intelhaddata->eeld);
had_get_caps(HAD_GET_DP_OUTPUT, &intelhaddata->dp_output);
pr_debug("eeld.speaker_allocation_block = %x\n",
intelhaddata->eeld.speaker_allocation_block);
/* WA: Fix the max channel supported to 8 */
/*
* Sink may support more than 8 channels, if eld_high has more than
* one bit set. SOC supports max 8 channels.
* Refer eld_speaker_allocation_bits, for sink speaker allocation
*/
/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
eld_high = intelhaddata->eeld.speaker_allocation_block & eld_high_mask;
if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
/* eld_high & (eld_high-1): if more than 1 bit set */
/* 0x1F: 7 channels */
for (i = 1; i < 4; i++) {
high_msb = eld_high & (0x80 >> i);
if (high_msb) {
intelhaddata->eeld.speaker_allocation_block &=
high_msb | 0xF;
break;
}
}
}
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
if (intelhaddata->eeld.speaker_allocation_block & (1 << i))
spk_mask |= eld_speaker_allocation_bits[i];
}
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
if (spk_mask == channel_allocations[i].spk_mask) {
for (c = 0; c < channel_allocations[i].channels; c++) {
chmap->map[c] = spk_to_chmap(
channel_allocations[i].speakers[
(MAX_SPEAKERS - 1)-c]);
}
chmap->channels = channel_allocations[i].channels;
intelhaddata->chmap->chmap = chmap;
break;
}
}
if (i >= ARRAY_SIZE(channel_allocations)) {
intelhaddata->chmap->chmap = NULL;
kfree(chmap);
}
}
/*
* ALSA API channel-map control callbacks
*/
static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
struct snd_intelhad *intelhaddata = info->private_data;
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = HAD_MAX_CHANNEL;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = SNDRV_CHMAP_LAST;
return 0;
}
static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
struct snd_intelhad *intelhaddata = info->private_data;
int i = 0;
const struct snd_pcm_chmap_elem *chmap;
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
if (intelhaddata->chmap->chmap == NULL)
return -ENODATA;
chmap = intelhaddata->chmap->chmap;
for (i = 0; i < chmap->channels; i++) {
ucontrol->value.integer.value[i] = chmap->map[i];
pr_debug("chmap->map[%d] = %d\n", i, chmap->map[i]);
}
return 0;
}
static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
struct snd_pcm *pcm)
{
int err = 0;
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
NULL, 0, (unsigned long)intelhaddata,
&intelhaddata->chmap);
if (err < 0)
return err;
intelhaddata->chmap->private_data = intelhaddata;
intelhaddata->kctl = intelhaddata->chmap->kctl;
intelhaddata->kctl->info = had_chmap_ctl_info;
intelhaddata->kctl->get = had_chmap_ctl_get;
intelhaddata->chmap->chmap = NULL;
return 0;
}
/*
* snd_intelhad_prog_dip - to initialize Data Island Packets registers
*
* @substream:substream for which the prepare function is called
* @intelhaddata:substream private data
*
* This function is called in the prepare callback
*/
static void snd_intelhad_prog_dip(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int i;
union aud_ctrl_st ctrl_state = {.ctrl_val = 0};
union aud_info_frame2 frame2 = {.fr2_val = 0};
union aud_info_frame3 frame3 = {.fr3_val = 0};
u8 checksum = 0;
u32 info_frame;
int channels;
channels = substream->runtime->channels;
had_write_register(AUD_CNTL_ST, ctrl_state.ctrl_val);
if (intelhaddata->dp_output) {
info_frame = DP_INFO_FRAME_WORD1;
frame2.fr2_val = 1;
} else {
info_frame = HDMI_INFO_FRAME_WORD1;
frame2.fr2_regx.chnl_cnt = substream->runtime->channels - 1;
frame3.fr3_regx.chnl_alloc = snd_intelhad_channel_allocation(
intelhaddata, channels);
/*Calculte the byte wide checksum for all valid DIP words*/
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (info_frame >> i*BITS_PER_BYTE) & MASK_BYTE0;
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (frame2.fr2_val >> i*BITS_PER_BYTE) & MASK_BYTE0;
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (frame3.fr3_val >> i*BITS_PER_BYTE) & MASK_BYTE0;
frame2.fr2_regx.chksum = -(checksum);
}
had_write_register(AUD_HDMIW_INFOFR_v2, info_frame);
had_write_register(AUD_HDMIW_INFOFR_v2, frame2.fr2_val);
had_write_register(AUD_HDMIW_INFOFR_v2, frame3.fr3_val);
/* program remaining DIP words with zero */
for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
had_write_register(AUD_HDMIW_INFOFR_v2, 0x0);
ctrl_state.ctrl_regx.dip_freq = 1;
ctrl_state.ctrl_regx.dip_en_sta = 1;
had_write_register(AUD_CNTL_ST, ctrl_state.ctrl_val);
}
/**
* snd_intelhad_prog_buffer - programs buffer
* address and length registers
*
* @substream:substream for which the prepare function is called
* @intelhaddata:substream private data
*
* This function programs ring buffer address and length into registers.
*/
int snd_intelhad_prog_buffer(struct snd_intelhad *intelhaddata,
int start, int end)
{
u32 ring_buf_addr, ring_buf_size, period_bytes;
u8 i, num_periods;
struct snd_pcm_substream *substream;
substream = intelhaddata->stream_info.had_substream;
if (!substream) {
pr_err("substream is NULL\n");
dump_stack();
return 0;
}
ring_buf_addr = substream->runtime->dma_addr;
ring_buf_size = snd_pcm_lib_buffer_bytes(substream);
intelhaddata->stream_info.ring_buf_size = ring_buf_size;
period_bytes = frames_to_bytes(substream->runtime,
substream->runtime->period_size);
num_periods = substream->runtime->periods;
/*
* buffer addr should be 64 byte aligned, period bytes
* will be used to calculate addr offset
*/
period_bytes &= ~0x3F;
/* Hardware supports MAX_PERIODS buffers */
if (end >= HAD_MAX_PERIODS)
return -EINVAL;
for (i = start; i <= end; i++) {
/* Program the buf registers with addr and len */
intelhaddata->buf_info[i].buf_addr = ring_buf_addr +
(i * period_bytes);
if (i < num_periods-1)
intelhaddata->buf_info[i].buf_size = period_bytes;
else
intelhaddata->buf_info[i].buf_size = ring_buf_size -
(period_bytes*i);
had_write_register(AUD_BUF_A_ADDR + (i * HAD_REG_WIDTH),
intelhaddata->buf_info[i].buf_addr |
BIT(0) | BIT(1));
had_write_register(AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH),
period_bytes);
intelhaddata->buf_info[i].is_valid = true;
}
pr_debug("%s:buf[%d-%d] addr=%#x and size=%d\n", __func__, start, end,
intelhaddata->buf_info[start].buf_addr,
intelhaddata->buf_info[start].buf_size);
intelhaddata->valid_buf_cnt = num_periods;
return 0;
}
int snd_intelhad_read_len(struct snd_intelhad *intelhaddata)
{
int i, retval = 0;
u32 len[4];
for (i = 0; i < 4 ; i++) {
had_read_register(AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH),
&len[i]);
if (!len[i])
retval++;
}
if (retval != 1) {
for (i = 0; i < 4 ; i++)
pr_debug("buf[%d] size=%d\n", i, len[i]);
}
return retval;
}
static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
{
u32 maud_val;
/* Select maud according to DP 1.2 spec*/
if (link_rate == DP_2_7_GHZ) {
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_44_1:
maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_48:
maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_88_2:
maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_96:
maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_176_4:
maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
break;
case HAD_MAX_RATE:
maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
break;
default:
maud_val = -EINVAL;
break;
}
} else if (link_rate == DP_1_62_GHZ) {
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_44_1:
maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_48:
maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_88_2:
maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_96:
maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_176_4:
maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
break;
case HAD_MAX_RATE:
maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
break;
default:
maud_val = -EINVAL;
break;
}
} else
maud_val = -EINVAL;
return maud_val;
}
/*
* snd_intelhad_prog_cts - Program HDMI audio CTS value
*
* @aud_samp_freq: sampling frequency of audio data
* @tmds: sampling frequency of the display data
* @n_param: N value, depends on aud_samp_freq
* @intelhaddata:substream private data
*
* Program CTS register based on the audio and display sampling frequency
*/
static void snd_intelhad_prog_cts(u32 aud_samp_freq, u32 tmds,
u32 link_rate, u32 n_param,
struct snd_intelhad *intelhaddata)
{
u32 cts_val;
u64 dividend, divisor;
if (intelhaddata->dp_output) {
/* Substitute cts_val with Maud according to DP 1.2 spec*/
cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
} else {
/* Calculate CTS according to HDMI 1.3a spec*/
dividend = (u64)tmds * n_param*1000;
divisor = 128 * aud_samp_freq;
cts_val = div64_u64(dividend, divisor);
}
pr_debug("TMDS value=%d, N value=%d, CTS Value=%d\n",
tmds, n_param, cts_val);
had_write_register(AUD_HDMI_CTS, (BIT(24) | cts_val));
}
static int had_calculate_n_value(u32 aud_samp_freq)
{
s32 n_val;
/* Select N according to HDMI 1.3a spec*/
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
n_val = 4096;
break;
case AUD_SAMPLE_RATE_44_1:
n_val = 6272;
break;
case AUD_SAMPLE_RATE_48:
n_val = 6144;
break;
case AUD_SAMPLE_RATE_88_2:
n_val = 12544;
break;
case AUD_SAMPLE_RATE_96:
n_val = 12288;
break;
case AUD_SAMPLE_RATE_176_4:
n_val = 25088;
break;
case HAD_MAX_RATE:
n_val = 24576;
break;
default:
n_val = -EINVAL;
break;
}
return n_val;
}
/*
* snd_intelhad_prog_n - Program HDMI audio N value
*
* @aud_samp_freq: sampling frequency of audio data
* @n_param: N value, depends on aud_samp_freq
* @intelhaddata:substream private data
*
* This function is called in the prepare callback.
* It programs based on the audio and display sampling frequency
*/
static int snd_intelhad_prog_n(u32 aud_samp_freq, u32 *n_param,
struct snd_intelhad *intelhaddata)
{
s32 n_val;
if (intelhaddata->dp_output) {
/*
* According to DP specs, Maud and Naud values hold
* a relationship, which is stated as:
* Maud/Naud = 512 * fs / f_LS_Clk
* where, fs is the sampling frequency of the audio stream
* and Naud is 32768 for Async clock.
*/
n_val = DP_NAUD_VAL;
} else
n_val = had_calculate_n_value(aud_samp_freq);
if (n_val < 0)
return n_val;
had_write_register(AUD_N_ENABLE, (BIT(24) | n_val));
*n_param = n_val;
return 0;
}
void snd_intelhad_handle_underrun(struct snd_intelhad *intelhaddata)
{
u32 hdmi_status, i = 0;
/* Handle Underrun interrupt within Audio Unit */
had_write_register(AUD_CONFIG, 0);
/* Reset buffer pointers */
had_write_register(AUD_HDMI_STATUS_v2, 1);
had_write_register(AUD_HDMI_STATUS_v2, 0);
/**
* The interrupt status 'sticky' bits might not be cleared by
* setting '1' to that bit once...
*/
do { /* clear bit30, 31 AUD_HDMI_STATUS */
had_read_register(AUD_HDMI_STATUS_v2, &hdmi_status);
pr_debug("HDMI status =0x%x\n", hdmi_status);
if (hdmi_status & AUD_CONFIG_MASK_UNDERRUN) {
i++;
had_write_register(AUD_HDMI_STATUS_v2, hdmi_status);
} else
break;
} while (i < MAX_CNT);
if (i >= MAX_CNT)
pr_err("Unable to clear UNDERRUN bits\n");
}
/**
* snd_intelhad_open - stream initializations are done here
* @substream:substream for which the stream function is called
*
* This function is called whenever a PCM stream is opened
*/
static int snd_intelhad_open(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
struct snd_pcm_runtime *runtime;
struct had_stream_pvt *stream;
struct had_pvt_data *had_stream;
int retval;
pr_debug("snd_intelhad_open called\n");
intelhaddata = snd_pcm_substream_chip(substream);
had_stream = intelhaddata->private_data;
runtime = substream->runtime;
underrun_count = 0;
pm_runtime_get(intelhaddata->dev);
if (had_get_hwstate(intelhaddata)) {
pr_err("%s: HDMI cable plugged-out\n", __func__);
retval = -ENODEV;
goto exit_put_handle;
}
/* Check, if device already in use */
if (runtime->private_data) {
pr_err("Device already in use\n");
retval = -EBUSY;
goto exit_put_handle;
}
/* set the runtime hw parameter with local snd_pcm_hardware struct */
runtime->hw = snd_intel_hadstream;
stream = kzalloc(sizeof(*stream), GFP_KERNEL);
if (!stream) {
retval = -ENOMEM;
goto exit_put_handle;
}
stream->stream_status = STREAM_INIT;
runtime->private_data = stream;
retval = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (retval < 0)
goto exit_err;
/* Make sure, that the period size is always aligned
* 64byte boundary
*/
retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
if (retval < 0) {
pr_err("%s:step_size=64 failed,err=%d\n", __func__, retval);
goto exit_err;
}
return retval;
exit_err:
kfree(stream);
exit_put_handle:
pm_runtime_put(intelhaddata->dev);
runtime->private_data = NULL;
return retval;
}
/**
* had_period_elapsed - updates the hardware pointer status
* @had_substream:substream for which the stream function is called
*
*/
static void had_period_elapsed(void *had_substream)
{
struct snd_pcm_substream *substream = had_substream;
struct had_stream_pvt *stream;
/* pr_debug("had_period_elapsed called\n"); */
if (!substream || !substream->runtime)
return;
stream = substream->runtime->private_data;
if (!stream)
return;
if (stream->stream_status != STREAM_RUNNING)
return;
snd_pcm_period_elapsed(substream);
}
/**
* snd_intelhad_init_stream - internal function to initialize stream info
* @substream:substream for which the stream function is called
*
*/
static int snd_intelhad_init_stream(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
pr_debug("snd_intelhad_init_stream called\n");
pr_debug("setting buffer ptr param\n");
intelhaddata->stream_info.period_elapsed = had_period_elapsed;
intelhaddata->stream_info.had_substream = substream;
intelhaddata->stream_info.buffer_ptr = 0;
intelhaddata->stream_info.buffer_rendered = 0;
intelhaddata->stream_info.sfreq = substream->runtime->rate;
return 0;
}
/**
* snd_intelhad_close- to free parameteres when stream is stopped
*
* @substream: substream for which the function is called
*
* This function is called by ALSA framework when stream is stopped
*/
static int snd_intelhad_close(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
struct snd_pcm_runtime *runtime;
pr_debug("snd_intelhad_close called\n");
intelhaddata = snd_pcm_substream_chip(substream);
runtime = substream->runtime;
if (!runtime->private_data) {
pr_debug("close() might have called after failed open");
return 0;
}
intelhaddata->stream_info.buffer_rendered = 0;
intelhaddata->stream_info.buffer_ptr = 0;
intelhaddata->stream_info.str_id = 0;
intelhaddata->stream_info.had_substream = NULL;
/* Check if following drv_status modification is required - VA */
if (intelhaddata->drv_status != HAD_DRV_DISCONNECTED) {
intelhaddata->drv_status = HAD_DRV_CONNECTED;
pr_debug("%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
__func__, __LINE__);
}
kfree(runtime->private_data);
runtime->private_data = NULL;
pm_runtime_put(intelhaddata->dev);
return 0;
}
/**
* snd_intelhad_hw_params- to setup the hardware parameters
* like allocating the buffers
*
* @substream: substream for which the function is called
* @hw_params: hardware parameters
*
* This function is called by ALSA framework when hardware params are set
*/
static int snd_intelhad_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
unsigned long addr;
int pages, buf_size, retval;
pr_debug("snd_intelhad_hw_params called\n");
if (!hw_params)
return -EINVAL;
buf_size = params_buffer_bytes(hw_params);
retval = snd_pcm_lib_malloc_pages(substream, buf_size);
if (retval < 0)
return retval;
pr_debug("%s:allocated memory = %d\n", __func__, buf_size);
/* mark the pages as uncached region */
addr = (unsigned long) substream->runtime->dma_area;
pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
retval = set_memory_uc(addr, pages);
if (retval) {
pr_err("set_memory_uc failed.Error:%d\n", retval);
return retval;
}
memset(substream->runtime->dma_area, 0, buf_size);
return retval;
}
/**
* snd_intelhad_hw_free- to release the resources allocated during
* hardware params setup
*
* @substream: substream for which the function is called
*
* This function is called by ALSA framework before close callback.
*
*/
static int snd_intelhad_hw_free(struct snd_pcm_substream *substream)
{
unsigned long addr;
u32 pages;
pr_debug("snd_intelhad_hw_free called\n");
/* mark back the pages as cached/writeback region before the free */
if (substream->runtime->dma_area != NULL) {
addr = (unsigned long) substream->runtime->dma_area;
pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
PAGE_SIZE;
set_memory_wb(addr, pages);
return snd_pcm_lib_free_pages(substream);
}
return 0;
}
/**
* snd_intelhad_pcm_trigger - stream activities are handled here
* @substream:substream for which the stream function is called
* @cmd:the stream commamd thats requested from upper layer
* This function is called whenever an a stream activity is invoked
*/
static int snd_intelhad_pcm_trigger(struct snd_pcm_substream *substream,
int cmd)
{
int caps, retval = 0;
unsigned long flag_irq;
struct snd_intelhad *intelhaddata;
struct had_stream_pvt *stream;
struct had_pvt_data *had_stream;
pr_debug("snd_intelhad_pcm_trigger called\n");
intelhaddata = snd_pcm_substream_chip(substream);
stream = substream->runtime->private_data;
had_stream = intelhaddata->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
pr_debug("Trigger Start\n");
/* Disable local INTRs till register prgmng is done */
if (had_get_hwstate(intelhaddata)) {
pr_err("_START: HDMI cable plugged-out\n");
retval = -ENODEV;
break;
}
stream->stream_status = STREAM_RUNNING;
had_stream->stream_type = HAD_RUNNING_STREAM;
/* Enable Audio */
/*
* ToDo: Need to enable UNDERRUN interrupts as well
* caps = HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE;
*/
caps = HDMI_AUDIO_BUFFER_DONE;
retval = had_set_caps(HAD_SET_ENABLE_AUDIO_INT, &caps);
retval = had_set_caps(HAD_SET_ENABLE_AUDIO, NULL);
snd_intelhad_enable_audio(substream, 1);
pr_debug("Processed _Start\n");
break;
case SNDRV_PCM_TRIGGER_STOP:
pr_debug("Trigger Stop\n");
spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irq);
intelhaddata->stream_info.str_id = 0;
intelhaddata->curr_buf = 0;
/* Stop reporting BUFFER_DONE/UNDERRUN to above layers*/
had_stream->stream_type = HAD_INIT;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irq);
/* Disable Audio */
/*
* ToDo: Need to disable UNDERRUN interrupts as well
* caps = HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE;
*/
caps = HDMI_AUDIO_BUFFER_DONE;
had_set_caps(HAD_SET_DISABLE_AUDIO_INT, &caps);
snd_intelhad_enable_audio(substream, 0);
/* Reset buffer pointers */
snd_intelhad_reset_audio(1);
snd_intelhad_reset_audio(0);
stream->stream_status = STREAM_DROPPED;
had_set_caps(HAD_SET_DISABLE_AUDIO, NULL);
break;
default:
retval = -EINVAL;
}
return retval;
}
/**
* snd_intelhad_pcm_prepare- internal preparation before starting a stream
*
* @substream: substream for which the function is called
*
* This function is called when a stream is started for internal preparation.
*/
static int snd_intelhad_pcm_prepare(struct snd_pcm_substream *substream)
{
int retval;
u32 disp_samp_freq, n_param;
u32 link_rate = 0;
struct snd_intelhad *intelhaddata;
struct snd_pcm_runtime *runtime;
struct had_pvt_data *had_stream;
pr_debug("snd_intelhad_pcm_prepare called\n");
intelhaddata = snd_pcm_substream_chip(substream);
runtime = substream->runtime;
had_stream = intelhaddata->private_data;
if (had_get_hwstate(intelhaddata)) {
pr_err("%s: HDMI cable plugged-out\n", __func__);
retval = -ENODEV;
goto prep_end;
}
pr_debug("period_size=%d\n",
(int)frames_to_bytes(runtime, runtime->period_size));
pr_debug("periods=%d\n", runtime->periods);
pr_debug("buffer_size=%d\n", (int)snd_pcm_lib_buffer_bytes(substream));
pr_debug("rate=%d\n", runtime->rate);
pr_debug("channels=%d\n", runtime->channels);
if (intelhaddata->stream_info.str_id) {
pr_debug("_prepare is called for existing str_id#%d\n",
intelhaddata->stream_info.str_id);
retval = snd_intelhad_pcm_trigger(substream,
SNDRV_PCM_TRIGGER_STOP);
return retval;
}
retval = snd_intelhad_init_stream(substream);
if (retval)
goto prep_end;
/* Get N value in KHz */
retval = had_get_caps(HAD_GET_DISPLAY_RATE, &disp_samp_freq);
if (retval) {
pr_err("querying display sampling freq failed %#x\n", retval);
goto prep_end;
}
had_get_caps(HAD_GET_ELD, &intelhaddata->eeld);
had_get_caps(HAD_GET_DP_OUTPUT, &intelhaddata->dp_output);
retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param,
intelhaddata);
if (retval) {
pr_err("programming N value failed %#x\n", retval);
goto prep_end;
}
if (intelhaddata->dp_output)
had_get_caps(HAD_GET_LINK_RATE, &link_rate);
snd_intelhad_prog_cts(substream->runtime->rate,
disp_samp_freq, link_rate,
n_param, intelhaddata);
snd_intelhad_prog_dip(substream, intelhaddata);
retval = snd_intelhad_audio_ctrl(substream, intelhaddata);
/* Prog buffer address */
retval = snd_intelhad_prog_buffer(intelhaddata,
HAD_BUF_TYPE_A, HAD_BUF_TYPE_D);
/*
* Program channel mapping in following order:
* FL, FR, C, LFE, RL, RR
*/
had_write_register(AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
prep_end:
return retval;
}
/**
* snd_intelhad_pcm_pointer- to send the current buffer pointerprocessed by hw
*
* @substream: substream for which the function is called
*
* This function is called by ALSA framework to get the current hw buffer ptr
* when a period is elapsed
*/
static snd_pcm_uframes_t snd_intelhad_pcm_pointer(
struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
u32 bytes_rendered = 0;
u32 t;
int buf_id;
/* pr_debug("snd_intelhad_pcm_pointer called\n"); */
intelhaddata = snd_pcm_substream_chip(substream);
if (intelhaddata->flag_underrun) {
intelhaddata->flag_underrun = 0;
return SNDRV_PCM_POS_XRUN;
}
/* Use a hw register to calculate sub-period position reports.
* This makes PulseAudio happier.
*/
buf_id = intelhaddata->curr_buf % 4;
had_read_register(AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH), &t);
if ((t == 0) || (t == ((u32)-1L))) {
underrun_count++;
pr_debug("discovered buffer done for buf %d, count = %d\n",
buf_id, underrun_count);
if (underrun_count > (HAD_MIN_PERIODS/2)) {
pr_debug("assume audio_codec_reset, underrun = %d - do xrun\n",
underrun_count);
underrun_count = 0;
return SNDRV_PCM_POS_XRUN;
}
} else {
/* Reset Counter */
underrun_count = 0;
}
t = intelhaddata->buf_info[buf_id].buf_size - t;
if (intelhaddata->stream_info.buffer_rendered)
div_u64_rem(intelhaddata->stream_info.buffer_rendered,
intelhaddata->stream_info.ring_buf_size,
&(bytes_rendered));
intelhaddata->stream_info.buffer_ptr = bytes_to_frames(
substream->runtime,
bytes_rendered + t);
return intelhaddata->stream_info.buffer_ptr;
}
/**
* snd_intelhad_pcm_mmap- mmaps a kernel buffer to user space for copying data
*
* @substream: substream for which the function is called
* @vma: struct instance of memory VMM memory area
*
* This function is called by OS when a user space component
* tries to get mmap memory from driver
*/
static int snd_intelhad_pcm_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *vma)
{
pr_debug("snd_intelhad_pcm_mmap called\n");
pr_debug("entry with prot:%s\n", __func__);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
return remap_pfn_range(vma, vma->vm_start,
substream->dma_buffer.addr >> PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot);
}
int hdmi_audio_mode_change(struct snd_pcm_substream *substream)
{
int retval = 0;
u32 disp_samp_freq, n_param;
u32 link_rate = 0;
struct snd_intelhad *intelhaddata;
intelhaddata = snd_pcm_substream_chip(substream);
/* Disable Audio */
snd_intelhad_enable_audio(substream, 0);
/* Update CTS value */
retval = had_get_caps(HAD_GET_DISPLAY_RATE, &disp_samp_freq);
if (retval) {
pr_err("querying display sampling freq failed %#x\n", retval);
goto out;
}
retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param,
intelhaddata);
if (retval) {
pr_err("programming N value failed %#x\n", retval);
goto out;
}
if (intelhaddata->dp_output)
had_get_caps(HAD_GET_LINK_RATE, &link_rate);
snd_intelhad_prog_cts(substream->runtime->rate,
disp_samp_freq, link_rate,
n_param, intelhaddata);
/* Enable Audio */
snd_intelhad_enable_audio(substream, 1);
out:
return retval;
}
/*PCM operations structure and the calls back for the same */
struct snd_pcm_ops snd_intelhad_playback_ops = {
.open = snd_intelhad_open,
.close = snd_intelhad_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_intelhad_hw_params,
.hw_free = snd_intelhad_hw_free,
.prepare = snd_intelhad_pcm_prepare,
.trigger = snd_intelhad_pcm_trigger,
.pointer = snd_intelhad_pcm_pointer,
.mmap = snd_intelhad_pcm_mmap,
};
/**
* snd_intelhad_create - to crete alsa card instance
*
* @intelhaddata: pointer to internal context
* @card: pointer to card
*
* This function is called when the hdmi cable is plugged in
*/
static int snd_intelhad_create(
struct snd_intelhad *intelhaddata,
struct snd_card *card)
{
int retval;
static struct snd_device_ops ops = {
};
pr_debug("snd_intelhad_create called\n");
if (!intelhaddata)
return -EINVAL;
/* ALSA api to register the device */
retval = snd_device_new(card, SNDRV_DEV_LOWLEVEL, intelhaddata, &ops);
return retval;
}
/**
* snd_intelhad_pcm_free - to free the memory allocated
*
* @pcm: pointer to pcm instance
* This function is called when the device is removed
*/
static void snd_intelhad_pcm_free(struct snd_pcm *pcm)
{
pr_debug("Freeing PCM preallocated pages\n");
snd_pcm_lib_preallocate_free_for_all(pcm);
}
static int had_iec958_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int had_iec958_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
ucontrol->value.iec958.status[2] =
(intelhaddata->aes_bits >> 16) & 0xff;
ucontrol->value.iec958.status[3] =
(intelhaddata->aes_bits >> 24) & 0xff;
return 0;
}
static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0xff;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0xff;
ucontrol->value.iec958.status[3] = 0xff;
return 0;
}
static int had_iec958_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
unsigned int val;
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
pr_debug("entered had_iec958_put\n");
val = (ucontrol->value.iec958.status[0] << 0) |
(ucontrol->value.iec958.status[1] << 8) |
(ucontrol->value.iec958.status[2] << 16) |
(ucontrol->value.iec958.status[3] << 24);
if (intelhaddata->aes_bits != val) {
intelhaddata->aes_bits = val;
return 1;
}
return 1;
}
static struct snd_kcontrol_new had_control_iec958_mask = {
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
.info = had_iec958_info, /* shared */
.get = had_iec958_mask_get,
};
static struct snd_kcontrol_new had_control_iec958 = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = had_iec958_info,
.get = had_iec958_get,
.put = had_iec958_put
};
/**
* hdmi_audio_probe - to create sound card instance for HDMI audio playabck
*
*@haddata: pointer to HAD private data
*@card_id: card for which probe is called
*
* This function is called when the hdmi cable is plugged in. This function
* creates and registers the sound card with ALSA
*/
int hdmi_audio_probe(void *deviceptr)
{
int retval;
struct snd_pcm *pcm;
struct snd_card *card;
struct had_callback_ops ops_cb;
struct snd_intelhad *intelhaddata;
struct had_pvt_data *had_stream;
struct platform_device *devptr = deviceptr;
pr_debug("Enter %s\n", __func__);
pr_debug("hdmi_audio_probe dma_mask: %p\n", devptr->dev.dma_mask);
/* allocate memory for saving internal context and working */
intelhaddata = kzalloc(sizeof(*intelhaddata), GFP_KERNEL);
if (!intelhaddata)
return -ENOMEM;
had_stream = kzalloc(sizeof(*had_stream), GFP_KERNEL);
if (!had_stream) {
retval = -ENOMEM;
goto free_haddata;
}
had_data = intelhaddata;
ops_cb.intel_had_event_call_back = had_event_handler;
/* registering with display driver to get access to display APIs */
retval = mid_hdmi_audio_setup(ops_cb.intel_had_event_call_back);
if (retval) {
pr_err("querying display driver APIs failed %#x\n", retval);
goto free_hadstream;
}
mutex_lock(&had_mutex);
spin_lock_init(&intelhaddata->had_spinlock);
intelhaddata->drv_status = HAD_DRV_DISCONNECTED;
pr_debug("%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
__func__, __LINE__);
/* create a card instance with ALSA framework */
retval = snd_card_new(&devptr->dev, hdmi_card_index, hdmi_card_id,
THIS_MODULE, 0, &card);
if (retval)
goto unlock_mutex;
intelhaddata->card = card;
intelhaddata->card_id = hdmi_card_id;
intelhaddata->card_index = card->number;
intelhaddata->private_data = had_stream;
intelhaddata->flag_underrun = 0;
intelhaddata->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
strncpy(card->driver, INTEL_HAD, strlen(INTEL_HAD));
strncpy(card->shortname, INTEL_HAD, strlen(INTEL_HAD));
retval = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS,
MAX_CAP_STREAMS, &pcm);
if (retval)
goto err;
/* setup private data which can be retrieved when required */
pcm->private_data = intelhaddata;
pcm->private_free = snd_intelhad_pcm_free;
pcm->info_flags = 0;
strncpy(pcm->name, card->shortname, strlen(card->shortname));
/* setup the ops for palyabck */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_intelhad_playback_ops);
/* allocate dma pages for ALSA stream operations
* memory allocated is based on size, not max value
* thus using same argument for max & size
*/
retval = snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_DEV, NULL,
HAD_MAX_BUFFER, HAD_MAX_BUFFER);
if (card->dev == NULL)
pr_debug("card->dev is NULL!!!!! Should not be this case\n");
else if (card->dev->dma_mask == NULL)
pr_debug("hdmi_audio_probe dma_mask is NULL!!!!!\n");
else
pr_debug("hdmi_audio_probe dma_mask is : %p\n",
card->dev->dma_mask);
if (retval)
goto err;
/* internal function call to register device with ALSA */
retval = snd_intelhad_create(intelhaddata, card);
if (retval)
goto err;
card->private_data = &intelhaddata;
retval = snd_card_register(card);
if (retval)
goto err;
/* IEC958 controls */
retval = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958_mask,
intelhaddata));
if (retval < 0)
goto err;
retval = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958,
intelhaddata));
if (retval < 0)
goto err;
init_channel_allocations();
/* Register channel map controls */
retval = had_register_chmap_ctls(intelhaddata, pcm);
if (retval < 0)
goto err;
intelhaddata->dev = &devptr->dev;
pm_runtime_set_active(intelhaddata->dev);
pm_runtime_enable(intelhaddata->dev);
mutex_unlock(&had_mutex);
retval = mid_hdmi_audio_register(intelhaddata);
if (retval) {
pr_err("registering with display driver failed %#x\n", retval);
snd_card_free(card);
goto free_hadstream;
}
intelhaddata->hw_silence = 1;
return retval;
err:
snd_card_free(card);
unlock_mutex:
mutex_unlock(&had_mutex);
free_hadstream:
kfree(had_stream);
pm_runtime_disable(intelhaddata->dev);
intelhaddata->dev = NULL;
free_haddata:
kfree(intelhaddata);
intelhaddata = NULL;
pr_err("Error returned from %s api %#x\n", __func__, retval);
return retval;
}
/**
* hdmi_audio_remove - removes the alsa card
*
*@haddata: pointer to HAD private data
*
* This function is called when the hdmi cable is un-plugged. This function
* free the sound card.
*/
int hdmi_audio_remove(void *pdevptr)
{
struct snd_intelhad *intelhaddata = had_data;
int caps;
pr_debug("Enter %s\n", __func__);
if (!intelhaddata)
return 0;
if (intelhaddata->drv_status != HAD_DRV_DISCONNECTED) {
caps = HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE;
had_set_caps(HAD_SET_DISABLE_AUDIO_INT, &caps);
had_set_caps(HAD_SET_DISABLE_AUDIO, NULL);
}
snd_card_free(intelhaddata->card);
kfree(intelhaddata->private_data);
kfree(intelhaddata);
return 0;
}
MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
MODULE_DESCRIPTION("Intel HDMI Audio driver");
MODULE_LICENSE("GPL v2");
MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");