| /* |
| * Resource Director Technology(RDT) |
| * - Cache Allocation code. |
| * |
| * Copyright (C) 2016 Intel Corporation |
| * |
| * Authors: |
| * Fenghua Yu <fenghua.yu@intel.com> |
| * Tony Luck <tony.luck@intel.com> |
| * Vikas Shivappa <vikas.shivappa@intel.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * More information about RDT be found in the Intel (R) x86 Architecture |
| * Software Developer Manual June 2016, volume 3, section 17.17. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/cacheinfo.h> |
| #include <linux/cpuhotplug.h> |
| |
| #include <asm/intel-family.h> |
| #include <asm/intel_rdt_sched.h> |
| #include "intel_rdt.h" |
| |
| #define MBA_IS_LINEAR 0x4 |
| #define MBA_MAX_MBPS U32_MAX |
| |
| /* Mutex to protect rdtgroup access. */ |
| DEFINE_MUTEX(rdtgroup_mutex); |
| |
| /* |
| * The cached intel_pqr_state is strictly per CPU and can never be |
| * updated from a remote CPU. Functions which modify the state |
| * are called with interrupts disabled and no preemption, which |
| * is sufficient for the protection. |
| */ |
| DEFINE_PER_CPU(struct intel_pqr_state, pqr_state); |
| |
| /* |
| * Used to store the max resource name width and max resource data width |
| * to display the schemata in a tabular format |
| */ |
| int max_name_width, max_data_width; |
| |
| /* |
| * Global boolean for rdt_alloc which is true if any |
| * resource allocation is enabled. |
| */ |
| bool rdt_alloc_capable; |
| |
| static void |
| mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r); |
| static void |
| cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r); |
| |
| #define domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].domains) |
| |
| struct rdt_resource rdt_resources_all[] = { |
| [RDT_RESOURCE_L3] = |
| { |
| .rid = RDT_RESOURCE_L3, |
| .name = "L3", |
| .domains = domain_init(RDT_RESOURCE_L3), |
| .msr_base = IA32_L3_CBM_BASE, |
| .msr_update = cat_wrmsr, |
| .cache_level = 3, |
| .cache = { |
| .min_cbm_bits = 1, |
| .cbm_idx_mult = 1, |
| .cbm_idx_offset = 0, |
| }, |
| .parse_ctrlval = parse_cbm, |
| .format_str = "%d=%0*x", |
| .fflags = RFTYPE_RES_CACHE, |
| }, |
| [RDT_RESOURCE_L3DATA] = |
| { |
| .rid = RDT_RESOURCE_L3DATA, |
| .name = "L3DATA", |
| .domains = domain_init(RDT_RESOURCE_L3DATA), |
| .msr_base = IA32_L3_CBM_BASE, |
| .msr_update = cat_wrmsr, |
| .cache_level = 3, |
| .cache = { |
| .min_cbm_bits = 1, |
| .cbm_idx_mult = 2, |
| .cbm_idx_offset = 0, |
| }, |
| .parse_ctrlval = parse_cbm, |
| .format_str = "%d=%0*x", |
| .fflags = RFTYPE_RES_CACHE, |
| }, |
| [RDT_RESOURCE_L3CODE] = |
| { |
| .rid = RDT_RESOURCE_L3CODE, |
| .name = "L3CODE", |
| .domains = domain_init(RDT_RESOURCE_L3CODE), |
| .msr_base = IA32_L3_CBM_BASE, |
| .msr_update = cat_wrmsr, |
| .cache_level = 3, |
| .cache = { |
| .min_cbm_bits = 1, |
| .cbm_idx_mult = 2, |
| .cbm_idx_offset = 1, |
| }, |
| .parse_ctrlval = parse_cbm, |
| .format_str = "%d=%0*x", |
| .fflags = RFTYPE_RES_CACHE, |
| }, |
| [RDT_RESOURCE_L2] = |
| { |
| .rid = RDT_RESOURCE_L2, |
| .name = "L2", |
| .domains = domain_init(RDT_RESOURCE_L2), |
| .msr_base = IA32_L2_CBM_BASE, |
| .msr_update = cat_wrmsr, |
| .cache_level = 2, |
| .cache = { |
| .min_cbm_bits = 1, |
| .cbm_idx_mult = 1, |
| .cbm_idx_offset = 0, |
| }, |
| .parse_ctrlval = parse_cbm, |
| .format_str = "%d=%0*x", |
| .fflags = RFTYPE_RES_CACHE, |
| }, |
| [RDT_RESOURCE_L2DATA] = |
| { |
| .rid = RDT_RESOURCE_L2DATA, |
| .name = "L2DATA", |
| .domains = domain_init(RDT_RESOURCE_L2DATA), |
| .msr_base = IA32_L2_CBM_BASE, |
| .msr_update = cat_wrmsr, |
| .cache_level = 2, |
| .cache = { |
| .min_cbm_bits = 1, |
| .cbm_idx_mult = 2, |
| .cbm_idx_offset = 0, |
| }, |
| .parse_ctrlval = parse_cbm, |
| .format_str = "%d=%0*x", |
| .fflags = RFTYPE_RES_CACHE, |
| }, |
| [RDT_RESOURCE_L2CODE] = |
| { |
| .rid = RDT_RESOURCE_L2CODE, |
| .name = "L2CODE", |
| .domains = domain_init(RDT_RESOURCE_L2CODE), |
| .msr_base = IA32_L2_CBM_BASE, |
| .msr_update = cat_wrmsr, |
| .cache_level = 2, |
| .cache = { |
| .min_cbm_bits = 1, |
| .cbm_idx_mult = 2, |
| .cbm_idx_offset = 1, |
| }, |
| .parse_ctrlval = parse_cbm, |
| .format_str = "%d=%0*x", |
| .fflags = RFTYPE_RES_CACHE, |
| }, |
| [RDT_RESOURCE_MBA] = |
| { |
| .rid = RDT_RESOURCE_MBA, |
| .name = "MB", |
| .domains = domain_init(RDT_RESOURCE_MBA), |
| .msr_base = IA32_MBA_THRTL_BASE, |
| .msr_update = mba_wrmsr, |
| .cache_level = 3, |
| .parse_ctrlval = parse_bw, |
| .format_str = "%d=%*u", |
| .fflags = RFTYPE_RES_MB, |
| }, |
| }; |
| |
| static unsigned int cbm_idx(struct rdt_resource *r, unsigned int closid) |
| { |
| return closid * r->cache.cbm_idx_mult + r->cache.cbm_idx_offset; |
| } |
| |
| /* |
| * cache_alloc_hsw_probe() - Have to probe for Intel haswell server CPUs |
| * as they do not have CPUID enumeration support for Cache allocation. |
| * The check for Vendor/Family/Model is not enough to guarantee that |
| * the MSRs won't #GP fault because only the following SKUs support |
| * CAT: |
| * Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz |
| * Intel(R) Xeon(R) CPU E5-2648L v3 @ 1.80GHz |
| * Intel(R) Xeon(R) CPU E5-2628L v3 @ 2.00GHz |
| * Intel(R) Xeon(R) CPU E5-2618L v3 @ 2.30GHz |
| * Intel(R) Xeon(R) CPU E5-2608L v3 @ 2.00GHz |
| * Intel(R) Xeon(R) CPU E5-2658A v3 @ 2.20GHz |
| * |
| * Probe by trying to write the first of the L3 cach mask registers |
| * and checking that the bits stick. Max CLOSids is always 4 and max cbm length |
| * is always 20 on hsw server parts. The minimum cache bitmask length |
| * allowed for HSW server is always 2 bits. Hardcode all of them. |
| */ |
| static inline void cache_alloc_hsw_probe(void) |
| { |
| struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3]; |
| u32 l, h, max_cbm = BIT_MASK(20) - 1; |
| |
| if (wrmsr_safe(IA32_L3_CBM_BASE, max_cbm, 0)) |
| return; |
| rdmsr(IA32_L3_CBM_BASE, l, h); |
| |
| /* If all the bits were set in MSR, return success */ |
| if (l != max_cbm) |
| return; |
| |
| r->num_closid = 4; |
| r->default_ctrl = max_cbm; |
| r->cache.cbm_len = 20; |
| r->cache.shareable_bits = 0xc0000; |
| r->cache.min_cbm_bits = 2; |
| r->alloc_capable = true; |
| r->alloc_enabled = true; |
| |
| rdt_alloc_capable = true; |
| } |
| |
| bool is_mba_sc(struct rdt_resource *r) |
| { |
| if (!r) |
| return rdt_resources_all[RDT_RESOURCE_MBA].membw.mba_sc; |
| |
| return r->membw.mba_sc; |
| } |
| |
| /* |
| * rdt_get_mb_table() - get a mapping of bandwidth(b/w) percentage values |
| * exposed to user interface and the h/w understandable delay values. |
| * |
| * The non-linear delay values have the granularity of power of two |
| * and also the h/w does not guarantee a curve for configured delay |
| * values vs. actual b/w enforced. |
| * Hence we need a mapping that is pre calibrated so the user can |
| * express the memory b/w as a percentage value. |
| */ |
| static inline bool rdt_get_mb_table(struct rdt_resource *r) |
| { |
| /* |
| * There are no Intel SKUs as of now to support non-linear delay. |
| */ |
| pr_info("MBA b/w map not implemented for cpu:%d, model:%d", |
| boot_cpu_data.x86, boot_cpu_data.x86_model); |
| |
| return false; |
| } |
| |
| static bool rdt_get_mem_config(struct rdt_resource *r) |
| { |
| union cpuid_0x10_3_eax eax; |
| union cpuid_0x10_x_edx edx; |
| u32 ebx, ecx; |
| |
| cpuid_count(0x00000010, 3, &eax.full, &ebx, &ecx, &edx.full); |
| r->num_closid = edx.split.cos_max + 1; |
| r->membw.max_delay = eax.split.max_delay + 1; |
| r->default_ctrl = MAX_MBA_BW; |
| if (ecx & MBA_IS_LINEAR) { |
| r->membw.delay_linear = true; |
| r->membw.min_bw = MAX_MBA_BW - r->membw.max_delay; |
| r->membw.bw_gran = MAX_MBA_BW - r->membw.max_delay; |
| } else { |
| if (!rdt_get_mb_table(r)) |
| return false; |
| } |
| r->data_width = 3; |
| |
| r->alloc_capable = true; |
| r->alloc_enabled = true; |
| |
| return true; |
| } |
| |
| static void rdt_get_cache_alloc_cfg(int idx, struct rdt_resource *r) |
| { |
| union cpuid_0x10_1_eax eax; |
| union cpuid_0x10_x_edx edx; |
| u32 ebx, ecx; |
| |
| cpuid_count(0x00000010, idx, &eax.full, &ebx, &ecx, &edx.full); |
| r->num_closid = edx.split.cos_max + 1; |
| r->cache.cbm_len = eax.split.cbm_len + 1; |
| r->default_ctrl = BIT_MASK(eax.split.cbm_len + 1) - 1; |
| r->cache.shareable_bits = ebx & r->default_ctrl; |
| r->data_width = (r->cache.cbm_len + 3) / 4; |
| r->alloc_capable = true; |
| r->alloc_enabled = true; |
| } |
| |
| static void rdt_get_cdp_config(int level, int type) |
| { |
| struct rdt_resource *r_l = &rdt_resources_all[level]; |
| struct rdt_resource *r = &rdt_resources_all[type]; |
| |
| r->num_closid = r_l->num_closid / 2; |
| r->cache.cbm_len = r_l->cache.cbm_len; |
| r->default_ctrl = r_l->default_ctrl; |
| r->cache.shareable_bits = r_l->cache.shareable_bits; |
| r->data_width = (r->cache.cbm_len + 3) / 4; |
| r->alloc_capable = true; |
| /* |
| * By default, CDP is disabled. CDP can be enabled by mount parameter |
| * "cdp" during resctrl file system mount time. |
| */ |
| r->alloc_enabled = false; |
| } |
| |
| static void rdt_get_cdp_l3_config(void) |
| { |
| rdt_get_cdp_config(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA); |
| rdt_get_cdp_config(RDT_RESOURCE_L3, RDT_RESOURCE_L3CODE); |
| } |
| |
| static void rdt_get_cdp_l2_config(void) |
| { |
| rdt_get_cdp_config(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA); |
| rdt_get_cdp_config(RDT_RESOURCE_L2, RDT_RESOURCE_L2CODE); |
| } |
| |
| static int get_cache_id(int cpu, int level) |
| { |
| struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu); |
| int i; |
| |
| for (i = 0; i < ci->num_leaves; i++) { |
| if (ci->info_list[i].level == level) |
| return ci->info_list[i].id; |
| } |
| |
| return -1; |
| } |
| |
| /* |
| * Map the memory b/w percentage value to delay values |
| * that can be written to QOS_MSRs. |
| * There are currently no SKUs which support non linear delay values. |
| */ |
| u32 delay_bw_map(unsigned long bw, struct rdt_resource *r) |
| { |
| if (r->membw.delay_linear) |
| return MAX_MBA_BW - bw; |
| |
| pr_warn_once("Non Linear delay-bw map not supported but queried\n"); |
| return r->default_ctrl; |
| } |
| |
| static void |
| mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r) |
| { |
| unsigned int i; |
| |
| /* Write the delay values for mba. */ |
| for (i = m->low; i < m->high; i++) |
| wrmsrl(r->msr_base + i, delay_bw_map(d->ctrl_val[i], r)); |
| } |
| |
| static void |
| cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r) |
| { |
| unsigned int i; |
| |
| for (i = m->low; i < m->high; i++) |
| wrmsrl(r->msr_base + cbm_idx(r, i), d->ctrl_val[i]); |
| } |
| |
| struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r) |
| { |
| struct rdt_domain *d; |
| |
| list_for_each_entry(d, &r->domains, list) { |
| /* Find the domain that contains this CPU */ |
| if (cpumask_test_cpu(cpu, &d->cpu_mask)) |
| return d; |
| } |
| |
| return NULL; |
| } |
| |
| void rdt_ctrl_update(void *arg) |
| { |
| struct msr_param *m = arg; |
| struct rdt_resource *r = m->res; |
| int cpu = smp_processor_id(); |
| struct rdt_domain *d; |
| |
| d = get_domain_from_cpu(cpu, r); |
| if (d) { |
| r->msr_update(d, m, r); |
| return; |
| } |
| pr_warn_once("cpu %d not found in any domain for resource %s\n", |
| cpu, r->name); |
| } |
| |
| /* |
| * rdt_find_domain - Find a domain in a resource that matches input resource id |
| * |
| * Search resource r's domain list to find the resource id. If the resource |
| * id is found in a domain, return the domain. Otherwise, if requested by |
| * caller, return the first domain whose id is bigger than the input id. |
| * The domain list is sorted by id in ascending order. |
| */ |
| struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id, |
| struct list_head **pos) |
| { |
| struct rdt_domain *d; |
| struct list_head *l; |
| |
| if (id < 0) |
| return ERR_PTR(id); |
| |
| list_for_each(l, &r->domains) { |
| d = list_entry(l, struct rdt_domain, list); |
| /* When id is found, return its domain. */ |
| if (id == d->id) |
| return d; |
| /* Stop searching when finding id's position in sorted list. */ |
| if (id < d->id) |
| break; |
| } |
| |
| if (pos) |
| *pos = l; |
| |
| return NULL; |
| } |
| |
| void setup_default_ctrlval(struct rdt_resource *r, u32 *dc, u32 *dm) |
| { |
| int i; |
| |
| /* |
| * Initialize the Control MSRs to having no control. |
| * For Cache Allocation: Set all bits in cbm |
| * For Memory Allocation: Set b/w requested to 100% |
| * and the bandwidth in MBps to U32_MAX |
| */ |
| for (i = 0; i < r->num_closid; i++, dc++, dm++) { |
| *dc = r->default_ctrl; |
| *dm = MBA_MAX_MBPS; |
| } |
| } |
| |
| static int domain_setup_ctrlval(struct rdt_resource *r, struct rdt_domain *d) |
| { |
| struct msr_param m; |
| u32 *dc, *dm; |
| |
| dc = kmalloc_array(r->num_closid, sizeof(*d->ctrl_val), GFP_KERNEL); |
| if (!dc) |
| return -ENOMEM; |
| |
| dm = kmalloc_array(r->num_closid, sizeof(*d->mbps_val), GFP_KERNEL); |
| if (!dm) { |
| kfree(dc); |
| return -ENOMEM; |
| } |
| |
| d->ctrl_val = dc; |
| d->mbps_val = dm; |
| setup_default_ctrlval(r, dc, dm); |
| |
| m.low = 0; |
| m.high = r->num_closid; |
| r->msr_update(d, &m, r); |
| return 0; |
| } |
| |
| static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d) |
| { |
| size_t tsize; |
| |
| if (is_llc_occupancy_enabled()) { |
| d->rmid_busy_llc = kcalloc(BITS_TO_LONGS(r->num_rmid), |
| sizeof(unsigned long), |
| GFP_KERNEL); |
| if (!d->rmid_busy_llc) |
| return -ENOMEM; |
| INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); |
| } |
| if (is_mbm_total_enabled()) { |
| tsize = sizeof(*d->mbm_total); |
| d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL); |
| if (!d->mbm_total) { |
| kfree(d->rmid_busy_llc); |
| return -ENOMEM; |
| } |
| } |
| if (is_mbm_local_enabled()) { |
| tsize = sizeof(*d->mbm_local); |
| d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL); |
| if (!d->mbm_local) { |
| kfree(d->rmid_busy_llc); |
| kfree(d->mbm_total); |
| return -ENOMEM; |
| } |
| } |
| |
| if (is_mbm_enabled()) { |
| INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); |
| mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * domain_add_cpu - Add a cpu to a resource's domain list. |
| * |
| * If an existing domain in the resource r's domain list matches the cpu's |
| * resource id, add the cpu in the domain. |
| * |
| * Otherwise, a new domain is allocated and inserted into the right position |
| * in the domain list sorted by id in ascending order. |
| * |
| * The order in the domain list is visible to users when we print entries |
| * in the schemata file and schemata input is validated to have the same order |
| * as this list. |
| */ |
| static void domain_add_cpu(int cpu, struct rdt_resource *r) |
| { |
| int id = get_cache_id(cpu, r->cache_level); |
| struct list_head *add_pos = NULL; |
| struct rdt_domain *d; |
| |
| d = rdt_find_domain(r, id, &add_pos); |
| if (IS_ERR(d)) { |
| pr_warn("Could't find cache id for cpu %d\n", cpu); |
| return; |
| } |
| |
| if (d) { |
| cpumask_set_cpu(cpu, &d->cpu_mask); |
| return; |
| } |
| |
| d = kzalloc_node(sizeof(*d), GFP_KERNEL, cpu_to_node(cpu)); |
| if (!d) |
| return; |
| |
| d->id = id; |
| cpumask_set_cpu(cpu, &d->cpu_mask); |
| |
| if (r->alloc_capable && domain_setup_ctrlval(r, d)) { |
| kfree(d); |
| return; |
| } |
| |
| if (r->mon_capable && domain_setup_mon_state(r, d)) { |
| kfree(d); |
| return; |
| } |
| |
| list_add_tail(&d->list, add_pos); |
| |
| /* |
| * If resctrl is mounted, add |
| * per domain monitor data directories. |
| */ |
| if (static_branch_unlikely(&rdt_mon_enable_key)) |
| mkdir_mondata_subdir_allrdtgrp(r, d); |
| } |
| |
| static void domain_remove_cpu(int cpu, struct rdt_resource *r) |
| { |
| int id = get_cache_id(cpu, r->cache_level); |
| struct rdt_domain *d; |
| |
| d = rdt_find_domain(r, id, NULL); |
| if (IS_ERR_OR_NULL(d)) { |
| pr_warn("Could't find cache id for cpu %d\n", cpu); |
| return; |
| } |
| |
| cpumask_clear_cpu(cpu, &d->cpu_mask); |
| if (cpumask_empty(&d->cpu_mask)) { |
| /* |
| * If resctrl is mounted, remove all the |
| * per domain monitor data directories. |
| */ |
| if (static_branch_unlikely(&rdt_mon_enable_key)) |
| rmdir_mondata_subdir_allrdtgrp(r, d->id); |
| list_del(&d->list); |
| if (is_mbm_enabled()) |
| cancel_delayed_work(&d->mbm_over); |
| if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) { |
| /* |
| * When a package is going down, forcefully |
| * decrement rmid->ebusy. There is no way to know |
| * that the L3 was flushed and hence may lead to |
| * incorrect counts in rare scenarios, but leaving |
| * the RMID as busy creates RMID leaks if the |
| * package never comes back. |
| */ |
| __check_limbo(d, true); |
| cancel_delayed_work(&d->cqm_limbo); |
| } |
| |
| kfree(d->ctrl_val); |
| kfree(d->mbps_val); |
| kfree(d->rmid_busy_llc); |
| kfree(d->mbm_total); |
| kfree(d->mbm_local); |
| kfree(d); |
| return; |
| } |
| |
| if (r == &rdt_resources_all[RDT_RESOURCE_L3]) { |
| if (is_mbm_enabled() && cpu == d->mbm_work_cpu) { |
| cancel_delayed_work(&d->mbm_over); |
| mbm_setup_overflow_handler(d, 0); |
| } |
| if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu && |
| has_busy_rmid(r, d)) { |
| cancel_delayed_work(&d->cqm_limbo); |
| cqm_setup_limbo_handler(d, 0); |
| } |
| } |
| } |
| |
| static void clear_closid_rmid(int cpu) |
| { |
| struct intel_pqr_state *state = this_cpu_ptr(&pqr_state); |
| |
| state->default_closid = 0; |
| state->default_rmid = 0; |
| state->cur_closid = 0; |
| state->cur_rmid = 0; |
| wrmsr(IA32_PQR_ASSOC, 0, 0); |
| } |
| |
| static int intel_rdt_online_cpu(unsigned int cpu) |
| { |
| struct rdt_resource *r; |
| |
| mutex_lock(&rdtgroup_mutex); |
| for_each_capable_rdt_resource(r) |
| domain_add_cpu(cpu, r); |
| /* The cpu is set in default rdtgroup after online. */ |
| cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask); |
| clear_closid_rmid(cpu); |
| mutex_unlock(&rdtgroup_mutex); |
| |
| return 0; |
| } |
| |
| static void clear_childcpus(struct rdtgroup *r, unsigned int cpu) |
| { |
| struct rdtgroup *cr; |
| |
| list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) { |
| if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask)) { |
| break; |
| } |
| } |
| } |
| |
| static int intel_rdt_offline_cpu(unsigned int cpu) |
| { |
| struct rdtgroup *rdtgrp; |
| struct rdt_resource *r; |
| |
| mutex_lock(&rdtgroup_mutex); |
| for_each_capable_rdt_resource(r) |
| domain_remove_cpu(cpu, r); |
| list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { |
| if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) { |
| clear_childcpus(rdtgrp, cpu); |
| break; |
| } |
| } |
| clear_closid_rmid(cpu); |
| mutex_unlock(&rdtgroup_mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * Choose a width for the resource name and resource data based on the |
| * resource that has widest name and cbm. |
| */ |
| static __init void rdt_init_padding(void) |
| { |
| struct rdt_resource *r; |
| int cl; |
| |
| for_each_alloc_capable_rdt_resource(r) { |
| cl = strlen(r->name); |
| if (cl > max_name_width) |
| max_name_width = cl; |
| |
| if (r->data_width > max_data_width) |
| max_data_width = r->data_width; |
| } |
| } |
| |
| enum { |
| RDT_FLAG_CMT, |
| RDT_FLAG_MBM_TOTAL, |
| RDT_FLAG_MBM_LOCAL, |
| RDT_FLAG_L3_CAT, |
| RDT_FLAG_L3_CDP, |
| RDT_FLAG_L2_CAT, |
| RDT_FLAG_L2_CDP, |
| RDT_FLAG_MBA, |
| }; |
| |
| #define RDT_OPT(idx, n, f) \ |
| [idx] = { \ |
| .name = n, \ |
| .flag = f \ |
| } |
| |
| struct rdt_options { |
| char *name; |
| int flag; |
| bool force_off, force_on; |
| }; |
| |
| static struct rdt_options rdt_options[] __initdata = { |
| RDT_OPT(RDT_FLAG_CMT, "cmt", X86_FEATURE_CQM_OCCUP_LLC), |
| RDT_OPT(RDT_FLAG_MBM_TOTAL, "mbmtotal", X86_FEATURE_CQM_MBM_TOTAL), |
| RDT_OPT(RDT_FLAG_MBM_LOCAL, "mbmlocal", X86_FEATURE_CQM_MBM_LOCAL), |
| RDT_OPT(RDT_FLAG_L3_CAT, "l3cat", X86_FEATURE_CAT_L3), |
| RDT_OPT(RDT_FLAG_L3_CDP, "l3cdp", X86_FEATURE_CDP_L3), |
| RDT_OPT(RDT_FLAG_L2_CAT, "l2cat", X86_FEATURE_CAT_L2), |
| RDT_OPT(RDT_FLAG_L2_CDP, "l2cdp", X86_FEATURE_CDP_L2), |
| RDT_OPT(RDT_FLAG_MBA, "mba", X86_FEATURE_MBA), |
| }; |
| #define NUM_RDT_OPTIONS ARRAY_SIZE(rdt_options) |
| |
| static int __init set_rdt_options(char *str) |
| { |
| struct rdt_options *o; |
| bool force_off; |
| char *tok; |
| |
| if (*str == '=') |
| str++; |
| while ((tok = strsep(&str, ",")) != NULL) { |
| force_off = *tok == '!'; |
| if (force_off) |
| tok++; |
| for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) { |
| if (strcmp(tok, o->name) == 0) { |
| if (force_off) |
| o->force_off = true; |
| else |
| o->force_on = true; |
| break; |
| } |
| } |
| } |
| return 1; |
| } |
| __setup("rdt", set_rdt_options); |
| |
| static bool __init rdt_cpu_has(int flag) |
| { |
| bool ret = boot_cpu_has(flag); |
| struct rdt_options *o; |
| |
| if (!ret) |
| return ret; |
| |
| for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) { |
| if (flag == o->flag) { |
| if (o->force_off) |
| ret = false; |
| if (o->force_on) |
| ret = true; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| static __init bool get_rdt_alloc_resources(void) |
| { |
| bool ret = false; |
| |
| if (rdt_alloc_capable) |
| return true; |
| |
| if (!boot_cpu_has(X86_FEATURE_RDT_A)) |
| return false; |
| |
| if (rdt_cpu_has(X86_FEATURE_CAT_L3)) { |
| rdt_get_cache_alloc_cfg(1, &rdt_resources_all[RDT_RESOURCE_L3]); |
| if (rdt_cpu_has(X86_FEATURE_CDP_L3)) |
| rdt_get_cdp_l3_config(); |
| ret = true; |
| } |
| if (rdt_cpu_has(X86_FEATURE_CAT_L2)) { |
| /* CPUID 0x10.2 fields are same format at 0x10.1 */ |
| rdt_get_cache_alloc_cfg(2, &rdt_resources_all[RDT_RESOURCE_L2]); |
| if (rdt_cpu_has(X86_FEATURE_CDP_L2)) |
| rdt_get_cdp_l2_config(); |
| ret = true; |
| } |
| |
| if (rdt_cpu_has(X86_FEATURE_MBA)) { |
| if (rdt_get_mem_config(&rdt_resources_all[RDT_RESOURCE_MBA])) |
| ret = true; |
| } |
| return ret; |
| } |
| |
| static __init bool get_rdt_mon_resources(void) |
| { |
| if (rdt_cpu_has(X86_FEATURE_CQM_OCCUP_LLC)) |
| rdt_mon_features |= (1 << QOS_L3_OCCUP_EVENT_ID); |
| if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) |
| rdt_mon_features |= (1 << QOS_L3_MBM_TOTAL_EVENT_ID); |
| if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) |
| rdt_mon_features |= (1 << QOS_L3_MBM_LOCAL_EVENT_ID); |
| |
| if (!rdt_mon_features) |
| return false; |
| |
| return !rdt_get_mon_l3_config(&rdt_resources_all[RDT_RESOURCE_L3]); |
| } |
| |
| static __init void rdt_quirks(void) |
| { |
| switch (boot_cpu_data.x86_model) { |
| case INTEL_FAM6_HASWELL_X: |
| if (!rdt_options[RDT_FLAG_L3_CAT].force_off) |
| cache_alloc_hsw_probe(); |
| break; |
| case INTEL_FAM6_SKYLAKE_X: |
| if (boot_cpu_data.x86_stepping <= 4) |
| set_rdt_options("!cmt,!mbmtotal,!mbmlocal,!l3cat"); |
| else |
| set_rdt_options("!l3cat"); |
| } |
| } |
| |
| static __init bool get_rdt_resources(void) |
| { |
| rdt_quirks(); |
| rdt_alloc_capable = get_rdt_alloc_resources(); |
| rdt_mon_capable = get_rdt_mon_resources(); |
| |
| return (rdt_mon_capable || rdt_alloc_capable); |
| } |
| |
| static int __init intel_rdt_late_init(void) |
| { |
| struct rdt_resource *r; |
| int state, ret; |
| |
| if (!get_rdt_resources()) |
| return -ENODEV; |
| |
| rdt_init_padding(); |
| |
| state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, |
| "x86/rdt/cat:online:", |
| intel_rdt_online_cpu, intel_rdt_offline_cpu); |
| if (state < 0) |
| return state; |
| |
| ret = rdtgroup_init(); |
| if (ret) { |
| cpuhp_remove_state(state); |
| return ret; |
| } |
| |
| for_each_alloc_capable_rdt_resource(r) |
| pr_info("Intel RDT %s allocation detected\n", r->name); |
| |
| for_each_mon_capable_rdt_resource(r) |
| pr_info("Intel RDT %s monitoring detected\n", r->name); |
| |
| return 0; |
| } |
| |
| late_initcall(intel_rdt_late_init); |