| /* |
| * Virtual cpu timer based timer functions. |
| * |
| * Copyright IBM Corp. 2004, 2012 |
| * Author(s): Jan Glauber <jan.glauber@de.ibm.com> |
| */ |
| |
| #include <linux/kernel_stat.h> |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/timex.h> |
| #include <linux/types.h> |
| #include <linux/time.h> |
| |
| #include <asm/cputime.h> |
| #include <asm/vtimer.h> |
| #include <asm/vtime.h> |
| #include <asm/cpu_mf.h> |
| #include <asm/smp.h> |
| |
| static void virt_timer_expire(void); |
| |
| static LIST_HEAD(virt_timer_list); |
| static DEFINE_SPINLOCK(virt_timer_lock); |
| static atomic64_t virt_timer_current; |
| static atomic64_t virt_timer_elapsed; |
| |
| DEFINE_PER_CPU(u64, mt_cycles[8]); |
| static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 }; |
| static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 }; |
| static DEFINE_PER_CPU(u64, mt_scaling_jiffies); |
| |
| static inline u64 get_vtimer(void) |
| { |
| u64 timer; |
| |
| asm volatile("stpt %0" : "=m" (timer)); |
| return timer; |
| } |
| |
| static inline void set_vtimer(u64 expires) |
| { |
| u64 timer; |
| |
| asm volatile( |
| " stpt %0\n" /* Store current cpu timer value */ |
| " spt %1" /* Set new value imm. afterwards */ |
| : "=m" (timer) : "m" (expires)); |
| S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer; |
| S390_lowcore.last_update_timer = expires; |
| } |
| |
| static inline int virt_timer_forward(u64 elapsed) |
| { |
| BUG_ON(!irqs_disabled()); |
| |
| if (list_empty(&virt_timer_list)) |
| return 0; |
| elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed); |
| return elapsed >= atomic64_read(&virt_timer_current); |
| } |
| |
| static void update_mt_scaling(void) |
| { |
| u64 cycles_new[8], *cycles_old; |
| u64 delta, fac, mult, div; |
| int i; |
| |
| stcctm5(smp_cpu_mtid + 1, cycles_new); |
| cycles_old = this_cpu_ptr(mt_cycles); |
| fac = 1; |
| mult = div = 0; |
| for (i = 0; i <= smp_cpu_mtid; i++) { |
| delta = cycles_new[i] - cycles_old[i]; |
| div += delta; |
| mult *= i + 1; |
| mult += delta * fac; |
| fac *= i + 1; |
| } |
| div *= fac; |
| if (div > 0) { |
| /* Update scaling factor */ |
| __this_cpu_write(mt_scaling_mult, mult); |
| __this_cpu_write(mt_scaling_div, div); |
| memcpy(cycles_old, cycles_new, |
| sizeof(u64) * (smp_cpu_mtid + 1)); |
| } |
| __this_cpu_write(mt_scaling_jiffies, jiffies_64); |
| } |
| |
| /* |
| * Update process times based on virtual cpu times stored by entry.S |
| * to the lowcore fields user_timer, system_timer & steal_clock. |
| */ |
| static int do_account_vtime(struct task_struct *tsk, int hardirq_offset) |
| { |
| struct thread_info *ti = task_thread_info(tsk); |
| u64 timer, clock, user, system, steal; |
| u64 user_scaled, system_scaled; |
| |
| timer = S390_lowcore.last_update_timer; |
| clock = S390_lowcore.last_update_clock; |
| asm volatile( |
| " stpt %0\n" /* Store current cpu timer value */ |
| #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES |
| " stckf %1" /* Store current tod clock value */ |
| #else |
| " stck %1" /* Store current tod clock value */ |
| #endif |
| : "=m" (S390_lowcore.last_update_timer), |
| "=m" (S390_lowcore.last_update_clock)); |
| S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer; |
| S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock; |
| |
| /* Update MT utilization calculation */ |
| if (smp_cpu_mtid && |
| time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies))) |
| update_mt_scaling(); |
| |
| user = S390_lowcore.user_timer - ti->user_timer; |
| S390_lowcore.steal_timer -= user; |
| ti->user_timer = S390_lowcore.user_timer; |
| |
| system = S390_lowcore.system_timer - ti->system_timer; |
| S390_lowcore.steal_timer -= system; |
| ti->system_timer = S390_lowcore.system_timer; |
| |
| user_scaled = user; |
| system_scaled = system; |
| /* Do MT utilization scaling */ |
| if (smp_cpu_mtid) { |
| u64 mult = __this_cpu_read(mt_scaling_mult); |
| u64 div = __this_cpu_read(mt_scaling_div); |
| |
| user_scaled = (user_scaled * mult) / div; |
| system_scaled = (system_scaled * mult) / div; |
| } |
| account_user_time(tsk, user, user_scaled); |
| account_system_time(tsk, hardirq_offset, system, system_scaled); |
| |
| steal = S390_lowcore.steal_timer; |
| if ((s64) steal > 0) { |
| S390_lowcore.steal_timer = 0; |
| account_steal_time(steal); |
| } |
| |
| return virt_timer_forward(user + system); |
| } |
| |
| void vtime_task_switch(struct task_struct *prev) |
| { |
| struct thread_info *ti; |
| |
| do_account_vtime(prev, 0); |
| ti = task_thread_info(prev); |
| ti->user_timer = S390_lowcore.user_timer; |
| ti->system_timer = S390_lowcore.system_timer; |
| ti = task_thread_info(current); |
| S390_lowcore.user_timer = ti->user_timer; |
| S390_lowcore.system_timer = ti->system_timer; |
| } |
| |
| /* |
| * In s390, accounting pending user time also implies |
| * accounting system time in order to correctly compute |
| * the stolen time accounting. |
| */ |
| void vtime_account_user(struct task_struct *tsk) |
| { |
| if (do_account_vtime(tsk, HARDIRQ_OFFSET)) |
| virt_timer_expire(); |
| } |
| |
| /* |
| * Update process times based on virtual cpu times stored by entry.S |
| * to the lowcore fields user_timer, system_timer & steal_clock. |
| */ |
| void vtime_account_irq_enter(struct task_struct *tsk) |
| { |
| struct thread_info *ti = task_thread_info(tsk); |
| u64 timer, system, system_scaled; |
| |
| timer = S390_lowcore.last_update_timer; |
| S390_lowcore.last_update_timer = get_vtimer(); |
| S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer; |
| |
| /* Update MT utilization calculation */ |
| if (smp_cpu_mtid && |
| time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies))) |
| update_mt_scaling(); |
| |
| system = S390_lowcore.system_timer - ti->system_timer; |
| S390_lowcore.steal_timer -= system; |
| ti->system_timer = S390_lowcore.system_timer; |
| system_scaled = system; |
| /* Do MT utilization scaling */ |
| if (smp_cpu_mtid) { |
| u64 mult = __this_cpu_read(mt_scaling_mult); |
| u64 div = __this_cpu_read(mt_scaling_div); |
| |
| system_scaled = (system_scaled * mult) / div; |
| } |
| account_system_time(tsk, 0, system, system_scaled); |
| |
| virt_timer_forward(system); |
| } |
| EXPORT_SYMBOL_GPL(vtime_account_irq_enter); |
| |
| void vtime_account_system(struct task_struct *tsk) |
| __attribute__((alias("vtime_account_irq_enter"))); |
| EXPORT_SYMBOL_GPL(vtime_account_system); |
| |
| /* |
| * Sorted add to a list. List is linear searched until first bigger |
| * element is found. |
| */ |
| static void list_add_sorted(struct vtimer_list *timer, struct list_head *head) |
| { |
| struct vtimer_list *tmp; |
| |
| list_for_each_entry(tmp, head, entry) { |
| if (tmp->expires > timer->expires) { |
| list_add_tail(&timer->entry, &tmp->entry); |
| return; |
| } |
| } |
| list_add_tail(&timer->entry, head); |
| } |
| |
| /* |
| * Handler for expired virtual CPU timer. |
| */ |
| static void virt_timer_expire(void) |
| { |
| struct vtimer_list *timer, *tmp; |
| unsigned long elapsed; |
| LIST_HEAD(cb_list); |
| |
| /* walk timer list, fire all expired timers */ |
| spin_lock(&virt_timer_lock); |
| elapsed = atomic64_read(&virt_timer_elapsed); |
| list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) { |
| if (timer->expires < elapsed) |
| /* move expired timer to the callback queue */ |
| list_move_tail(&timer->entry, &cb_list); |
| else |
| timer->expires -= elapsed; |
| } |
| if (!list_empty(&virt_timer_list)) { |
| timer = list_first_entry(&virt_timer_list, |
| struct vtimer_list, entry); |
| atomic64_set(&virt_timer_current, timer->expires); |
| } |
| atomic64_sub(elapsed, &virt_timer_elapsed); |
| spin_unlock(&virt_timer_lock); |
| |
| /* Do callbacks and recharge periodic timers */ |
| list_for_each_entry_safe(timer, tmp, &cb_list, entry) { |
| list_del_init(&timer->entry); |
| timer->function(timer->data); |
| if (timer->interval) { |
| /* Recharge interval timer */ |
| timer->expires = timer->interval + |
| atomic64_read(&virt_timer_elapsed); |
| spin_lock(&virt_timer_lock); |
| list_add_sorted(timer, &virt_timer_list); |
| spin_unlock(&virt_timer_lock); |
| } |
| } |
| } |
| |
| void init_virt_timer(struct vtimer_list *timer) |
| { |
| timer->function = NULL; |
| INIT_LIST_HEAD(&timer->entry); |
| } |
| EXPORT_SYMBOL(init_virt_timer); |
| |
| static inline int vtimer_pending(struct vtimer_list *timer) |
| { |
| return !list_empty(&timer->entry); |
| } |
| |
| static void internal_add_vtimer(struct vtimer_list *timer) |
| { |
| if (list_empty(&virt_timer_list)) { |
| /* First timer, just program it. */ |
| atomic64_set(&virt_timer_current, timer->expires); |
| atomic64_set(&virt_timer_elapsed, 0); |
| list_add(&timer->entry, &virt_timer_list); |
| } else { |
| /* Update timer against current base. */ |
| timer->expires += atomic64_read(&virt_timer_elapsed); |
| if (likely((s64) timer->expires < |
| (s64) atomic64_read(&virt_timer_current))) |
| /* The new timer expires before the current timer. */ |
| atomic64_set(&virt_timer_current, timer->expires); |
| /* Insert new timer into the list. */ |
| list_add_sorted(timer, &virt_timer_list); |
| } |
| } |
| |
| static void __add_vtimer(struct vtimer_list *timer, int periodic) |
| { |
| unsigned long flags; |
| |
| timer->interval = periodic ? timer->expires : 0; |
| spin_lock_irqsave(&virt_timer_lock, flags); |
| internal_add_vtimer(timer); |
| spin_unlock_irqrestore(&virt_timer_lock, flags); |
| } |
| |
| /* |
| * add_virt_timer - add an oneshot virtual CPU timer |
| */ |
| void add_virt_timer(struct vtimer_list *timer) |
| { |
| __add_vtimer(timer, 0); |
| } |
| EXPORT_SYMBOL(add_virt_timer); |
| |
| /* |
| * add_virt_timer_int - add an interval virtual CPU timer |
| */ |
| void add_virt_timer_periodic(struct vtimer_list *timer) |
| { |
| __add_vtimer(timer, 1); |
| } |
| EXPORT_SYMBOL(add_virt_timer_periodic); |
| |
| static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic) |
| { |
| unsigned long flags; |
| int rc; |
| |
| BUG_ON(!timer->function); |
| |
| if (timer->expires == expires && vtimer_pending(timer)) |
| return 1; |
| spin_lock_irqsave(&virt_timer_lock, flags); |
| rc = vtimer_pending(timer); |
| if (rc) |
| list_del_init(&timer->entry); |
| timer->interval = periodic ? expires : 0; |
| timer->expires = expires; |
| internal_add_vtimer(timer); |
| spin_unlock_irqrestore(&virt_timer_lock, flags); |
| return rc; |
| } |
| |
| /* |
| * returns whether it has modified a pending timer (1) or not (0) |
| */ |
| int mod_virt_timer(struct vtimer_list *timer, u64 expires) |
| { |
| return __mod_vtimer(timer, expires, 0); |
| } |
| EXPORT_SYMBOL(mod_virt_timer); |
| |
| /* |
| * returns whether it has modified a pending timer (1) or not (0) |
| */ |
| int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires) |
| { |
| return __mod_vtimer(timer, expires, 1); |
| } |
| EXPORT_SYMBOL(mod_virt_timer_periodic); |
| |
| /* |
| * Delete a virtual timer. |
| * |
| * returns whether the deleted timer was pending (1) or not (0) |
| */ |
| int del_virt_timer(struct vtimer_list *timer) |
| { |
| unsigned long flags; |
| |
| if (!vtimer_pending(timer)) |
| return 0; |
| spin_lock_irqsave(&virt_timer_lock, flags); |
| list_del_init(&timer->entry); |
| spin_unlock_irqrestore(&virt_timer_lock, flags); |
| return 1; |
| } |
| EXPORT_SYMBOL(del_virt_timer); |
| |
| /* |
| * Start the virtual CPU timer on the current CPU. |
| */ |
| void vtime_init(void) |
| { |
| /* set initial cpu timer */ |
| set_vtimer(VTIMER_MAX_SLICE); |
| /* Setup initial MT scaling values */ |
| if (smp_cpu_mtid) { |
| __this_cpu_write(mt_scaling_jiffies, jiffies); |
| __this_cpu_write(mt_scaling_mult, 1); |
| __this_cpu_write(mt_scaling_div, 1); |
| stcctm5(smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles)); |
| } |
| } |