| /* | 
 |  * linux/mm/percpu.c - percpu memory allocator | 
 |  * | 
 |  * Copyright (C) 2009		SUSE Linux Products GmbH | 
 |  * Copyright (C) 2009		Tejun Heo <tj@kernel.org> | 
 |  * | 
 |  * This file is released under the GPLv2. | 
 |  * | 
 |  * This is percpu allocator which can handle both static and dynamic | 
 |  * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each | 
 |  * chunk is consisted of num_possible_cpus() units and the first chunk | 
 |  * is used for static percpu variables in the kernel image (special | 
 |  * boot time alloc/init handling necessary as these areas need to be | 
 |  * brought up before allocation services are running).  Unit grows as | 
 |  * necessary and all units grow or shrink in unison.  When a chunk is | 
 |  * filled up, another chunk is allocated.  ie. in vmalloc area | 
 |  * | 
 |  *  c0                           c1                         c2 | 
 |  *  -------------------          -------------------        ------------ | 
 |  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u | 
 |  *  -------------------  ......  -------------------  ....  ------------ | 
 |  * | 
 |  * Allocation is done in offset-size areas of single unit space.  Ie, | 
 |  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | 
 |  * c1:u1, c1:u2 and c1:u3.  Percpu access can be done by configuring | 
 |  * percpu base registers UNIT_SIZE apart. | 
 |  * | 
 |  * There are usually many small percpu allocations many of them as | 
 |  * small as 4 bytes.  The allocator organizes chunks into lists | 
 |  * according to free size and tries to allocate from the fullest one. | 
 |  * Each chunk keeps the maximum contiguous area size hint which is | 
 |  * guaranteed to be eqaul to or larger than the maximum contiguous | 
 |  * area in the chunk.  This helps the allocator not to iterate the | 
 |  * chunk maps unnecessarily. | 
 |  * | 
 |  * Allocation state in each chunk is kept using an array of integers | 
 |  * on chunk->map.  A positive value in the map represents a free | 
 |  * region and negative allocated.  Allocation inside a chunk is done | 
 |  * by scanning this map sequentially and serving the first matching | 
 |  * entry.  This is mostly copied from the percpu_modalloc() allocator. | 
 |  * Chunks are also linked into a rb tree to ease address to chunk | 
 |  * mapping during free. | 
 |  * | 
 |  * To use this allocator, arch code should do the followings. | 
 |  * | 
 |  * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | 
 |  * | 
 |  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | 
 |  *   regular address to percpu pointer and back if they need to be | 
 |  *   different from the default | 
 |  * | 
 |  * - use pcpu_setup_first_chunk() during percpu area initialization to | 
 |  *   setup the first chunk containing the kernel static percpu area | 
 |  */ | 
 |  | 
 | #include <linux/bitmap.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/workqueue.h> | 
 |  | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */ | 
 | #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */ | 
 |  | 
 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ | 
 | #ifndef __addr_to_pcpu_ptr | 
 | #define __addr_to_pcpu_ptr(addr)					\ | 
 | 	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\ | 
 | 		 + (unsigned long)__per_cpu_start) | 
 | #endif | 
 | #ifndef __pcpu_ptr_to_addr | 
 | #define __pcpu_ptr_to_addr(ptr)						\ | 
 | 	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\ | 
 | 		 - (unsigned long)__per_cpu_start) | 
 | #endif | 
 |  | 
 | struct pcpu_chunk { | 
 | 	struct list_head	list;		/* linked to pcpu_slot lists */ | 
 | 	struct rb_node		rb_node;	/* key is chunk->vm->addr */ | 
 | 	int			free_size;	/* free bytes in the chunk */ | 
 | 	int			contig_hint;	/* max contiguous size hint */ | 
 | 	struct vm_struct	*vm;		/* mapped vmalloc region */ | 
 | 	int			map_used;	/* # of map entries used */ | 
 | 	int			map_alloc;	/* # of map entries allocated */ | 
 | 	int			*map;		/* allocation map */ | 
 | 	bool			immutable;	/* no [de]population allowed */ | 
 | 	struct page		**page;		/* points to page array */ | 
 | 	struct page		*page_ar[];	/* #cpus * UNIT_PAGES */ | 
 | }; | 
 |  | 
 | static int pcpu_unit_pages __read_mostly; | 
 | static int pcpu_unit_size __read_mostly; | 
 | static int pcpu_chunk_size __read_mostly; | 
 | static int pcpu_nr_slots __read_mostly; | 
 | static size_t pcpu_chunk_struct_size __read_mostly; | 
 |  | 
 | /* the address of the first chunk which starts with the kernel static area */ | 
 | void *pcpu_base_addr __read_mostly; | 
 | EXPORT_SYMBOL_GPL(pcpu_base_addr); | 
 |  | 
 | /* optional reserved chunk, only accessible for reserved allocations */ | 
 | static struct pcpu_chunk *pcpu_reserved_chunk; | 
 | /* offset limit of the reserved chunk */ | 
 | static int pcpu_reserved_chunk_limit; | 
 |  | 
 | /* | 
 |  * Synchronization rules. | 
 |  * | 
 |  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former | 
 |  * protects allocation/reclaim paths, chunks and chunk->page arrays. | 
 |  * The latter is a spinlock and protects the index data structures - | 
 |  * chunk slots, rbtree, chunks and area maps in chunks. | 
 |  * | 
 |  * During allocation, pcpu_alloc_mutex is kept locked all the time and | 
 |  * pcpu_lock is grabbed and released as necessary.  All actual memory | 
 |  * allocations are done using GFP_KERNEL with pcpu_lock released. | 
 |  * | 
 |  * Free path accesses and alters only the index data structures, so it | 
 |  * can be safely called from atomic context.  When memory needs to be | 
 |  * returned to the system, free path schedules reclaim_work which | 
 |  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be | 
 |  * reclaimed, release both locks and frees the chunks.  Note that it's | 
 |  * necessary to grab both locks to remove a chunk from circulation as | 
 |  * allocation path might be referencing the chunk with only | 
 |  * pcpu_alloc_mutex locked. | 
 |  */ | 
 | static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */ | 
 | static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */ | 
 |  | 
 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | 
 | static struct rb_root pcpu_addr_root = RB_ROOT;	/* chunks by address */ | 
 |  | 
 | /* reclaim work to release fully free chunks, scheduled from free path */ | 
 | static void pcpu_reclaim(struct work_struct *work); | 
 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | 
 |  | 
 | static int __pcpu_size_to_slot(int size) | 
 | { | 
 | 	int highbit = fls(size);	/* size is in bytes */ | 
 | 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); | 
 | } | 
 |  | 
 | static int pcpu_size_to_slot(int size) | 
 | { | 
 | 	if (size == pcpu_unit_size) | 
 | 		return pcpu_nr_slots - 1; | 
 | 	return __pcpu_size_to_slot(size); | 
 | } | 
 |  | 
 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | 
 | { | 
 | 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | 
 | 		return 0; | 
 |  | 
 | 	return pcpu_size_to_slot(chunk->free_size); | 
 | } | 
 |  | 
 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | 
 | { | 
 | 	return cpu * pcpu_unit_pages + page_idx; | 
 | } | 
 |  | 
 | static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, | 
 | 				      unsigned int cpu, int page_idx) | 
 | { | 
 | 	return &chunk->page[pcpu_page_idx(cpu, page_idx)]; | 
 | } | 
 |  | 
 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | 
 | 				     unsigned int cpu, int page_idx) | 
 | { | 
 | 	return (unsigned long)chunk->vm->addr + | 
 | 		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); | 
 | } | 
 |  | 
 | static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, | 
 | 				     int page_idx) | 
 | { | 
 | 	return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_mem_alloc - allocate memory | 
 |  * @size: bytes to allocate | 
 |  * | 
 |  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE, | 
 |  * kzalloc() is used; otherwise, vmalloc() is used.  The returned | 
 |  * memory is always zeroed. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Does GFP_KERNEL allocation. | 
 |  * | 
 |  * RETURNS: | 
 |  * Pointer to the allocated area on success, NULL on failure. | 
 |  */ | 
 | static void *pcpu_mem_alloc(size_t size) | 
 | { | 
 | 	if (size <= PAGE_SIZE) | 
 | 		return kzalloc(size, GFP_KERNEL); | 
 | 	else { | 
 | 		void *ptr = vmalloc(size); | 
 | 		if (ptr) | 
 | 			memset(ptr, 0, size); | 
 | 		return ptr; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_mem_free - free memory | 
 |  * @ptr: memory to free | 
 |  * @size: size of the area | 
 |  * | 
 |  * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc(). | 
 |  */ | 
 | static void pcpu_mem_free(void *ptr, size_t size) | 
 | { | 
 | 	if (size <= PAGE_SIZE) | 
 | 		kfree(ptr); | 
 | 	else | 
 | 		vfree(ptr); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | 
 |  * @chunk: chunk of interest | 
 |  * @oslot: the previous slot it was on | 
 |  * | 
 |  * This function is called after an allocation or free changed @chunk. | 
 |  * New slot according to the changed state is determined and @chunk is | 
 |  * moved to the slot.  Note that the reserved chunk is never put on | 
 |  * chunk slots. | 
 |  * | 
 |  * CONTEXT: | 
 |  * pcpu_lock. | 
 |  */ | 
 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | 
 | { | 
 | 	int nslot = pcpu_chunk_slot(chunk); | 
 |  | 
 | 	if (chunk != pcpu_reserved_chunk && oslot != nslot) { | 
 | 		if (oslot < nslot) | 
 | 			list_move(&chunk->list, &pcpu_slot[nslot]); | 
 | 		else | 
 | 			list_move_tail(&chunk->list, &pcpu_slot[nslot]); | 
 | 	} | 
 | } | 
 |  | 
 | static struct rb_node **pcpu_chunk_rb_search(void *addr, | 
 | 					     struct rb_node **parentp) | 
 | { | 
 | 	struct rb_node **p = &pcpu_addr_root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct pcpu_chunk *chunk; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		chunk = rb_entry(parent, struct pcpu_chunk, rb_node); | 
 |  | 
 | 		if (addr < chunk->vm->addr) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (addr > chunk->vm->addr) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (parentp) | 
 | 		*parentp = parent; | 
 | 	return p; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_chunk_addr_search - search for chunk containing specified address | 
 |  * @addr: address to search for | 
 |  * | 
 |  * Look for chunk which might contain @addr.  More specifically, it | 
 |  * searchs for the chunk with the highest start address which isn't | 
 |  * beyond @addr. | 
 |  * | 
 |  * CONTEXT: | 
 |  * pcpu_lock. | 
 |  * | 
 |  * RETURNS: | 
 |  * The address of the found chunk. | 
 |  */ | 
 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | 
 | { | 
 | 	struct rb_node *n, *parent; | 
 | 	struct pcpu_chunk *chunk; | 
 |  | 
 | 	/* is it in the reserved chunk? */ | 
 | 	if (pcpu_reserved_chunk) { | 
 | 		void *start = pcpu_reserved_chunk->vm->addr; | 
 |  | 
 | 		if (addr >= start && addr < start + pcpu_reserved_chunk_limit) | 
 | 			return pcpu_reserved_chunk; | 
 | 	} | 
 |  | 
 | 	/* nah... search the regular ones */ | 
 | 	n = *pcpu_chunk_rb_search(addr, &parent); | 
 | 	if (!n) { | 
 | 		/* no exactly matching chunk, the parent is the closest */ | 
 | 		n = parent; | 
 | 		BUG_ON(!n); | 
 | 	} | 
 | 	chunk = rb_entry(n, struct pcpu_chunk, rb_node); | 
 |  | 
 | 	if (addr < chunk->vm->addr) { | 
 | 		/* the parent was the next one, look for the previous one */ | 
 | 		n = rb_prev(n); | 
 | 		BUG_ON(!n); | 
 | 		chunk = rb_entry(n, struct pcpu_chunk, rb_node); | 
 | 	} | 
 |  | 
 | 	return chunk; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_chunk_addr_insert - insert chunk into address rb tree | 
 |  * @new: chunk to insert | 
 |  * | 
 |  * Insert @new into address rb tree. | 
 |  * | 
 |  * CONTEXT: | 
 |  * pcpu_lock. | 
 |  */ | 
 | static void pcpu_chunk_addr_insert(struct pcpu_chunk *new) | 
 | { | 
 | 	struct rb_node **p, *parent; | 
 |  | 
 | 	p = pcpu_chunk_rb_search(new->vm->addr, &parent); | 
 | 	BUG_ON(*p); | 
 | 	rb_link_node(&new->rb_node, parent, p); | 
 | 	rb_insert_color(&new->rb_node, &pcpu_addr_root); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_extend_area_map - extend area map for allocation | 
 |  * @chunk: target chunk | 
 |  * | 
 |  * Extend area map of @chunk so that it can accomodate an allocation. | 
 |  * A single allocation can split an area into three areas, so this | 
 |  * function makes sure that @chunk->map has at least two extra slots. | 
 |  * | 
 |  * CONTEXT: | 
 |  * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired | 
 |  * if area map is extended. | 
 |  * | 
 |  * RETURNS: | 
 |  * 0 if noop, 1 if successfully extended, -errno on failure. | 
 |  */ | 
 | static int pcpu_extend_area_map(struct pcpu_chunk *chunk) | 
 | { | 
 | 	int new_alloc; | 
 | 	int *new; | 
 | 	size_t size; | 
 |  | 
 | 	/* has enough? */ | 
 | 	if (chunk->map_alloc >= chunk->map_used + 2) | 
 | 		return 0; | 
 |  | 
 | 	spin_unlock_irq(&pcpu_lock); | 
 |  | 
 | 	new_alloc = PCPU_DFL_MAP_ALLOC; | 
 | 	while (new_alloc < chunk->map_used + 2) | 
 | 		new_alloc *= 2; | 
 |  | 
 | 	new = pcpu_mem_alloc(new_alloc * sizeof(new[0])); | 
 | 	if (!new) { | 
 | 		spin_lock_irq(&pcpu_lock); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Acquire pcpu_lock and switch to new area map.  Only free | 
 | 	 * could have happened inbetween, so map_used couldn't have | 
 | 	 * grown. | 
 | 	 */ | 
 | 	spin_lock_irq(&pcpu_lock); | 
 | 	BUG_ON(new_alloc < chunk->map_used + 2); | 
 |  | 
 | 	size = chunk->map_alloc * sizeof(chunk->map[0]); | 
 | 	memcpy(new, chunk->map, size); | 
 |  | 
 | 	/* | 
 | 	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is | 
 | 	 * one of the first chunks and still using static map. | 
 | 	 */ | 
 | 	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) | 
 | 		pcpu_mem_free(chunk->map, size); | 
 |  | 
 | 	chunk->map_alloc = new_alloc; | 
 | 	chunk->map = new; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_split_block - split a map block | 
 |  * @chunk: chunk of interest | 
 |  * @i: index of map block to split | 
 |  * @head: head size in bytes (can be 0) | 
 |  * @tail: tail size in bytes (can be 0) | 
 |  * | 
 |  * Split the @i'th map block into two or three blocks.  If @head is | 
 |  * non-zero, @head bytes block is inserted before block @i moving it | 
 |  * to @i+1 and reducing its size by @head bytes. | 
 |  * | 
 |  * If @tail is non-zero, the target block, which can be @i or @i+1 | 
 |  * depending on @head, is reduced by @tail bytes and @tail byte block | 
 |  * is inserted after the target block. | 
 |  * | 
 |  * @chunk->map must have enough free slots to accomodate the split. | 
 |  * | 
 |  * CONTEXT: | 
 |  * pcpu_lock. | 
 |  */ | 
 | static void pcpu_split_block(struct pcpu_chunk *chunk, int i, | 
 | 			     int head, int tail) | 
 | { | 
 | 	int nr_extra = !!head + !!tail; | 
 |  | 
 | 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); | 
 |  | 
 | 	/* insert new subblocks */ | 
 | 	memmove(&chunk->map[i + nr_extra], &chunk->map[i], | 
 | 		sizeof(chunk->map[0]) * (chunk->map_used - i)); | 
 | 	chunk->map_used += nr_extra; | 
 |  | 
 | 	if (head) { | 
 | 		chunk->map[i + 1] = chunk->map[i] - head; | 
 | 		chunk->map[i++] = head; | 
 | 	} | 
 | 	if (tail) { | 
 | 		chunk->map[i++] -= tail; | 
 | 		chunk->map[i] = tail; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_alloc_area - allocate area from a pcpu_chunk | 
 |  * @chunk: chunk of interest | 
 |  * @size: wanted size in bytes | 
 |  * @align: wanted align | 
 |  * | 
 |  * Try to allocate @size bytes area aligned at @align from @chunk. | 
 |  * Note that this function only allocates the offset.  It doesn't | 
 |  * populate or map the area. | 
 |  * | 
 |  * @chunk->map must have at least two free slots. | 
 |  * | 
 |  * CONTEXT: | 
 |  * pcpu_lock. | 
 |  * | 
 |  * RETURNS: | 
 |  * Allocated offset in @chunk on success, -1 if no matching area is | 
 |  * found. | 
 |  */ | 
 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) | 
 | { | 
 | 	int oslot = pcpu_chunk_slot(chunk); | 
 | 	int max_contig = 0; | 
 | 	int i, off; | 
 |  | 
 | 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { | 
 | 		bool is_last = i + 1 == chunk->map_used; | 
 | 		int head, tail; | 
 |  | 
 | 		/* extra for alignment requirement */ | 
 | 		head = ALIGN(off, align) - off; | 
 | 		BUG_ON(i == 0 && head != 0); | 
 |  | 
 | 		if (chunk->map[i] < 0) | 
 | 			continue; | 
 | 		if (chunk->map[i] < head + size) { | 
 | 			max_contig = max(chunk->map[i], max_contig); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If head is small or the previous block is free, | 
 | 		 * merge'em.  Note that 'small' is defined as smaller | 
 | 		 * than sizeof(int), which is very small but isn't too | 
 | 		 * uncommon for percpu allocations. | 
 | 		 */ | 
 | 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { | 
 | 			if (chunk->map[i - 1] > 0) | 
 | 				chunk->map[i - 1] += head; | 
 | 			else { | 
 | 				chunk->map[i - 1] -= head; | 
 | 				chunk->free_size -= head; | 
 | 			} | 
 | 			chunk->map[i] -= head; | 
 | 			off += head; | 
 | 			head = 0; | 
 | 		} | 
 |  | 
 | 		/* if tail is small, just keep it around */ | 
 | 		tail = chunk->map[i] - head - size; | 
 | 		if (tail < sizeof(int)) | 
 | 			tail = 0; | 
 |  | 
 | 		/* split if warranted */ | 
 | 		if (head || tail) { | 
 | 			pcpu_split_block(chunk, i, head, tail); | 
 | 			if (head) { | 
 | 				i++; | 
 | 				off += head; | 
 | 				max_contig = max(chunk->map[i - 1], max_contig); | 
 | 			} | 
 | 			if (tail) | 
 | 				max_contig = max(chunk->map[i + 1], max_contig); | 
 | 		} | 
 |  | 
 | 		/* update hint and mark allocated */ | 
 | 		if (is_last) | 
 | 			chunk->contig_hint = max_contig; /* fully scanned */ | 
 | 		else | 
 | 			chunk->contig_hint = max(chunk->contig_hint, | 
 | 						 max_contig); | 
 |  | 
 | 		chunk->free_size -= chunk->map[i]; | 
 | 		chunk->map[i] = -chunk->map[i]; | 
 |  | 
 | 		pcpu_chunk_relocate(chunk, oslot); | 
 | 		return off; | 
 | 	} | 
 |  | 
 | 	chunk->contig_hint = max_contig;	/* fully scanned */ | 
 | 	pcpu_chunk_relocate(chunk, oslot); | 
 |  | 
 | 	/* tell the upper layer that this chunk has no matching area */ | 
 | 	return -1; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_free_area - free area to a pcpu_chunk | 
 |  * @chunk: chunk of interest | 
 |  * @freeme: offset of area to free | 
 |  * | 
 |  * Free area starting from @freeme to @chunk.  Note that this function | 
 |  * only modifies the allocation map.  It doesn't depopulate or unmap | 
 |  * the area. | 
 |  * | 
 |  * CONTEXT: | 
 |  * pcpu_lock. | 
 |  */ | 
 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | 
 | { | 
 | 	int oslot = pcpu_chunk_slot(chunk); | 
 | 	int i, off; | 
 |  | 
 | 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) | 
 | 		if (off == freeme) | 
 | 			break; | 
 | 	BUG_ON(off != freeme); | 
 | 	BUG_ON(chunk->map[i] > 0); | 
 |  | 
 | 	chunk->map[i] = -chunk->map[i]; | 
 | 	chunk->free_size += chunk->map[i]; | 
 |  | 
 | 	/* merge with previous? */ | 
 | 	if (i > 0 && chunk->map[i - 1] >= 0) { | 
 | 		chunk->map[i - 1] += chunk->map[i]; | 
 | 		chunk->map_used--; | 
 | 		memmove(&chunk->map[i], &chunk->map[i + 1], | 
 | 			(chunk->map_used - i) * sizeof(chunk->map[0])); | 
 | 		i--; | 
 | 	} | 
 | 	/* merge with next? */ | 
 | 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { | 
 | 		chunk->map[i] += chunk->map[i + 1]; | 
 | 		chunk->map_used--; | 
 | 		memmove(&chunk->map[i + 1], &chunk->map[i + 2], | 
 | 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); | 
 | 	} | 
 |  | 
 | 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); | 
 | 	pcpu_chunk_relocate(chunk, oslot); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_unmap - unmap pages out of a pcpu_chunk | 
 |  * @chunk: chunk of interest | 
 |  * @page_start: page index of the first page to unmap | 
 |  * @page_end: page index of the last page to unmap + 1 | 
 |  * @flush: whether to flush cache and tlb or not | 
 |  * | 
 |  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | 
 |  * If @flush is true, vcache is flushed before unmapping and tlb | 
 |  * after. | 
 |  */ | 
 | static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, | 
 | 		       bool flush) | 
 | { | 
 | 	unsigned int last = num_possible_cpus() - 1; | 
 | 	unsigned int cpu; | 
 |  | 
 | 	/* unmap must not be done on immutable chunk */ | 
 | 	WARN_ON(chunk->immutable); | 
 |  | 
 | 	/* | 
 | 	 * Each flushing trial can be very expensive, issue flush on | 
 | 	 * the whole region at once rather than doing it for each cpu. | 
 | 	 * This could be an overkill but is more scalable. | 
 | 	 */ | 
 | 	if (flush) | 
 | 		flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), | 
 | 				   pcpu_chunk_addr(chunk, last, page_end)); | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		unmap_kernel_range_noflush( | 
 | 				pcpu_chunk_addr(chunk, cpu, page_start), | 
 | 				(page_end - page_start) << PAGE_SHIFT); | 
 |  | 
 | 	/* ditto as flush_cache_vunmap() */ | 
 | 	if (flush) | 
 | 		flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), | 
 | 				       pcpu_chunk_addr(chunk, last, page_end)); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | 
 |  * @chunk: chunk to depopulate | 
 |  * @off: offset to the area to depopulate | 
 |  * @size: size of the area to depopulate in bytes | 
 |  * @flush: whether to flush cache and tlb or not | 
 |  * | 
 |  * For each cpu, depopulate and unmap pages [@page_start,@page_end) | 
 |  * from @chunk.  If @flush is true, vcache is flushed before unmapping | 
 |  * and tlb after. | 
 |  * | 
 |  * CONTEXT: | 
 |  * pcpu_alloc_mutex. | 
 |  */ | 
 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, | 
 | 				  bool flush) | 
 | { | 
 | 	int page_start = PFN_DOWN(off); | 
 | 	int page_end = PFN_UP(off + size); | 
 | 	int unmap_start = -1; | 
 | 	int uninitialized_var(unmap_end); | 
 | 	unsigned int cpu; | 
 | 	int i; | 
 |  | 
 | 	for (i = page_start; i < page_end; i++) { | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | 
 |  | 
 | 			if (!*pagep) | 
 | 				continue; | 
 |  | 
 | 			__free_page(*pagep); | 
 |  | 
 | 			/* | 
 | 			 * If it's partial depopulation, it might get | 
 | 			 * populated or depopulated again.  Mark the | 
 | 			 * page gone. | 
 | 			 */ | 
 | 			*pagep = NULL; | 
 |  | 
 | 			unmap_start = unmap_start < 0 ? i : unmap_start; | 
 | 			unmap_end = i + 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unmap_start >= 0) | 
 | 		pcpu_unmap(chunk, unmap_start, unmap_end, flush); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_map - map pages into a pcpu_chunk | 
 |  * @chunk: chunk of interest | 
 |  * @page_start: page index of the first page to map | 
 |  * @page_end: page index of the last page to map + 1 | 
 |  * | 
 |  * For each cpu, map pages [@page_start,@page_end) into @chunk. | 
 |  * vcache is flushed afterwards. | 
 |  */ | 
 | static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | 
 | { | 
 | 	unsigned int last = num_possible_cpus() - 1; | 
 | 	unsigned int cpu; | 
 | 	int err; | 
 |  | 
 | 	/* map must not be done on immutable chunk */ | 
 | 	WARN_ON(chunk->immutable); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		err = map_kernel_range_noflush( | 
 | 				pcpu_chunk_addr(chunk, cpu, page_start), | 
 | 				(page_end - page_start) << PAGE_SHIFT, | 
 | 				PAGE_KERNEL, | 
 | 				pcpu_chunk_pagep(chunk, cpu, page_start)); | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	/* flush at once, please read comments in pcpu_unmap() */ | 
 | 	flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), | 
 | 			 pcpu_chunk_addr(chunk, last, page_end)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | 
 |  * @chunk: chunk of interest | 
 |  * @off: offset to the area to populate | 
 |  * @size: size of the area to populate in bytes | 
 |  * | 
 |  * For each cpu, populate and map pages [@page_start,@page_end) into | 
 |  * @chunk.  The area is cleared on return. | 
 |  * | 
 |  * CONTEXT: | 
 |  * pcpu_alloc_mutex, does GFP_KERNEL allocation. | 
 |  */ | 
 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | 
 | { | 
 | 	const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | 
 | 	int page_start = PFN_DOWN(off); | 
 | 	int page_end = PFN_UP(off + size); | 
 | 	int map_start = -1; | 
 | 	int uninitialized_var(map_end); | 
 | 	unsigned int cpu; | 
 | 	int i; | 
 |  | 
 | 	for (i = page_start; i < page_end; i++) { | 
 | 		if (pcpu_chunk_page_occupied(chunk, i)) { | 
 | 			if (map_start >= 0) { | 
 | 				if (pcpu_map(chunk, map_start, map_end)) | 
 | 					goto err; | 
 | 				map_start = -1; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		map_start = map_start < 0 ? i : map_start; | 
 | 		map_end = i + 1; | 
 |  | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | 
 |  | 
 | 			*pagep = alloc_pages_node(cpu_to_node(cpu), | 
 | 						  alloc_mask, 0); | 
 | 			if (!*pagep) | 
 | 				goto err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) | 
 | 		goto err; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, | 
 | 		       size); | 
 |  | 
 | 	return 0; | 
 | err: | 
 | 	/* likely under heavy memory pressure, give memory back */ | 
 | 	pcpu_depopulate_chunk(chunk, off, size, true); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | 
 | { | 
 | 	if (!chunk) | 
 | 		return; | 
 | 	if (chunk->vm) | 
 | 		free_vm_area(chunk->vm); | 
 | 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | 
 | 	kfree(chunk); | 
 | } | 
 |  | 
 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | 
 | { | 
 | 	struct pcpu_chunk *chunk; | 
 |  | 
 | 	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | 
 | 	if (!chunk) | 
 | 		return NULL; | 
 |  | 
 | 	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | 
 | 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | 
 | 	chunk->map[chunk->map_used++] = pcpu_unit_size; | 
 | 	chunk->page = chunk->page_ar; | 
 |  | 
 | 	chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL); | 
 | 	if (!chunk->vm) { | 
 | 		free_pcpu_chunk(chunk); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&chunk->list); | 
 | 	chunk->free_size = pcpu_unit_size; | 
 | 	chunk->contig_hint = pcpu_unit_size; | 
 |  | 
 | 	return chunk; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_alloc - the percpu allocator | 
 |  * @size: size of area to allocate in bytes | 
 |  * @align: alignment of area (max PAGE_SIZE) | 
 |  * @reserved: allocate from the reserved chunk if available | 
 |  * | 
 |  * Allocate percpu area of @size bytes aligned at @align. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Does GFP_KERNEL allocation. | 
 |  * | 
 |  * RETURNS: | 
 |  * Percpu pointer to the allocated area on success, NULL on failure. | 
 |  */ | 
 | static void *pcpu_alloc(size_t size, size_t align, bool reserved) | 
 | { | 
 | 	struct pcpu_chunk *chunk; | 
 | 	int slot, off; | 
 |  | 
 | 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { | 
 | 		WARN(true, "illegal size (%zu) or align (%zu) for " | 
 | 		     "percpu allocation\n", size, align); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&pcpu_alloc_mutex); | 
 | 	spin_lock_irq(&pcpu_lock); | 
 |  | 
 | 	/* serve reserved allocations from the reserved chunk if available */ | 
 | 	if (reserved && pcpu_reserved_chunk) { | 
 | 		chunk = pcpu_reserved_chunk; | 
 | 		if (size > chunk->contig_hint || | 
 | 		    pcpu_extend_area_map(chunk) < 0) | 
 | 			goto fail_unlock; | 
 | 		off = pcpu_alloc_area(chunk, size, align); | 
 | 		if (off >= 0) | 
 | 			goto area_found; | 
 | 		goto fail_unlock; | 
 | 	} | 
 |  | 
 | restart: | 
 | 	/* search through normal chunks */ | 
 | 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { | 
 | 		list_for_each_entry(chunk, &pcpu_slot[slot], list) { | 
 | 			if (size > chunk->contig_hint) | 
 | 				continue; | 
 |  | 
 | 			switch (pcpu_extend_area_map(chunk)) { | 
 | 			case 0: | 
 | 				break; | 
 | 			case 1: | 
 | 				goto restart;	/* pcpu_lock dropped, restart */ | 
 | 			default: | 
 | 				goto fail_unlock; | 
 | 			} | 
 |  | 
 | 			off = pcpu_alloc_area(chunk, size, align); | 
 | 			if (off >= 0) | 
 | 				goto area_found; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* hmmm... no space left, create a new chunk */ | 
 | 	spin_unlock_irq(&pcpu_lock); | 
 |  | 
 | 	chunk = alloc_pcpu_chunk(); | 
 | 	if (!chunk) | 
 | 		goto fail_unlock_mutex; | 
 |  | 
 | 	spin_lock_irq(&pcpu_lock); | 
 | 	pcpu_chunk_relocate(chunk, -1); | 
 | 	pcpu_chunk_addr_insert(chunk); | 
 | 	goto restart; | 
 |  | 
 | area_found: | 
 | 	spin_unlock_irq(&pcpu_lock); | 
 |  | 
 | 	/* populate, map and clear the area */ | 
 | 	if (pcpu_populate_chunk(chunk, off, size)) { | 
 | 		spin_lock_irq(&pcpu_lock); | 
 | 		pcpu_free_area(chunk, off); | 
 | 		goto fail_unlock; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&pcpu_alloc_mutex); | 
 |  | 
 | 	return __addr_to_pcpu_ptr(chunk->vm->addr + off); | 
 |  | 
 | fail_unlock: | 
 | 	spin_unlock_irq(&pcpu_lock); | 
 | fail_unlock_mutex: | 
 | 	mutex_unlock(&pcpu_alloc_mutex); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * __alloc_percpu - allocate dynamic percpu area | 
 |  * @size: size of area to allocate in bytes | 
 |  * @align: alignment of area (max PAGE_SIZE) | 
 |  * | 
 |  * Allocate percpu area of @size bytes aligned at @align.  Might | 
 |  * sleep.  Might trigger writeouts. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Does GFP_KERNEL allocation. | 
 |  * | 
 |  * RETURNS: | 
 |  * Percpu pointer to the allocated area on success, NULL on failure. | 
 |  */ | 
 | void *__alloc_percpu(size_t size, size_t align) | 
 | { | 
 | 	return pcpu_alloc(size, align, false); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__alloc_percpu); | 
 |  | 
 | /** | 
 |  * __alloc_reserved_percpu - allocate reserved percpu area | 
 |  * @size: size of area to allocate in bytes | 
 |  * @align: alignment of area (max PAGE_SIZE) | 
 |  * | 
 |  * Allocate percpu area of @size bytes aligned at @align from reserved | 
 |  * percpu area if arch has set it up; otherwise, allocation is served | 
 |  * from the same dynamic area.  Might sleep.  Might trigger writeouts. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Does GFP_KERNEL allocation. | 
 |  * | 
 |  * RETURNS: | 
 |  * Percpu pointer to the allocated area on success, NULL on failure. | 
 |  */ | 
 | void *__alloc_reserved_percpu(size_t size, size_t align) | 
 | { | 
 | 	return pcpu_alloc(size, align, true); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_reclaim - reclaim fully free chunks, workqueue function | 
 |  * @work: unused | 
 |  * | 
 |  * Reclaim all fully free chunks except for the first one. | 
 |  * | 
 |  * CONTEXT: | 
 |  * workqueue context. | 
 |  */ | 
 | static void pcpu_reclaim(struct work_struct *work) | 
 | { | 
 | 	LIST_HEAD(todo); | 
 | 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; | 
 | 	struct pcpu_chunk *chunk, *next; | 
 |  | 
 | 	mutex_lock(&pcpu_alloc_mutex); | 
 | 	spin_lock_irq(&pcpu_lock); | 
 |  | 
 | 	list_for_each_entry_safe(chunk, next, head, list) { | 
 | 		WARN_ON(chunk->immutable); | 
 |  | 
 | 		/* spare the first one */ | 
 | 		if (chunk == list_first_entry(head, struct pcpu_chunk, list)) | 
 | 			continue; | 
 |  | 
 | 		rb_erase(&chunk->rb_node, &pcpu_addr_root); | 
 | 		list_move(&chunk->list, &todo); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&pcpu_lock); | 
 | 	mutex_unlock(&pcpu_alloc_mutex); | 
 |  | 
 | 	list_for_each_entry_safe(chunk, next, &todo, list) { | 
 | 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); | 
 | 		free_pcpu_chunk(chunk); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * free_percpu - free percpu area | 
 |  * @ptr: pointer to area to free | 
 |  * | 
 |  * Free percpu area @ptr. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Can be called from atomic context. | 
 |  */ | 
 | void free_percpu(void *ptr) | 
 | { | 
 | 	void *addr = __pcpu_ptr_to_addr(ptr); | 
 | 	struct pcpu_chunk *chunk; | 
 | 	unsigned long flags; | 
 | 	int off; | 
 |  | 
 | 	if (!ptr) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&pcpu_lock, flags); | 
 |  | 
 | 	chunk = pcpu_chunk_addr_search(addr); | 
 | 	off = addr - chunk->vm->addr; | 
 |  | 
 | 	pcpu_free_area(chunk, off); | 
 |  | 
 | 	/* if there are more than one fully free chunks, wake up grim reaper */ | 
 | 	if (chunk->free_size == pcpu_unit_size) { | 
 | 		struct pcpu_chunk *pos; | 
 |  | 
 | 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) | 
 | 			if (pos != chunk) { | 
 | 				schedule_work(&pcpu_reclaim_work); | 
 | 				break; | 
 | 			} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&pcpu_lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(free_percpu); | 
 |  | 
 | /** | 
 |  * pcpu_setup_first_chunk - initialize the first percpu chunk | 
 |  * @get_page_fn: callback to fetch page pointer | 
 |  * @static_size: the size of static percpu area in bytes | 
 |  * @reserved_size: the size of reserved percpu area in bytes | 
 |  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | 
 |  * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | 
 |  * @base_addr: mapped address, NULL for auto | 
 |  * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary | 
 |  * | 
 |  * Initialize the first percpu chunk which contains the kernel static | 
 |  * perpcu area.  This function is to be called from arch percpu area | 
 |  * setup path.  The first two parameters are mandatory.  The rest are | 
 |  * optional. | 
 |  * | 
 |  * @get_page_fn() should return pointer to percpu page given cpu | 
 |  * number and page number.  It should at least return enough pages to | 
 |  * cover the static area.  The returned pages for static area should | 
 |  * have been initialized with valid data.  If @unit_size is specified, | 
 |  * it can also return pages after the static area.  NULL return | 
 |  * indicates end of pages for the cpu.  Note that @get_page_fn() must | 
 |  * return the same number of pages for all cpus. | 
 |  * | 
 |  * @reserved_size, if non-zero, specifies the amount of bytes to | 
 |  * reserve after the static area in the first chunk.  This reserves | 
 |  * the first chunk such that it's available only through reserved | 
 |  * percpu allocation.  This is primarily used to serve module percpu | 
 |  * static areas on architectures where the addressing model has | 
 |  * limited offset range for symbol relocations to guarantee module | 
 |  * percpu symbols fall inside the relocatable range. | 
 |  * | 
 |  * @dyn_size, if non-negative, determines the number of bytes | 
 |  * available for dynamic allocation in the first chunk.  Specifying | 
 |  * non-negative value makes percpu leave alone the area beyond | 
 |  * @static_size + @reserved_size + @dyn_size. | 
 |  * | 
 |  * @unit_size, if non-negative, specifies unit size and must be | 
 |  * aligned to PAGE_SIZE and equal to or larger than @static_size + | 
 |  * @reserved_size + if non-negative, @dyn_size. | 
 |  * | 
 |  * Non-null @base_addr means that the caller already allocated virtual | 
 |  * region for the first chunk and mapped it.  percpu must not mess | 
 |  * with the chunk.  Note that @base_addr with 0 @unit_size or non-NULL | 
 |  * @populate_pte_fn doesn't make any sense. | 
 |  * | 
 |  * @populate_pte_fn is used to populate the pagetable.  NULL means the | 
 |  * caller already populated the pagetable. | 
 |  * | 
 |  * If the first chunk ends up with both reserved and dynamic areas, it | 
 |  * is served by two chunks - one to serve the core static and reserved | 
 |  * areas and the other for the dynamic area.  They share the same vm | 
 |  * and page map but uses different area allocation map to stay away | 
 |  * from each other.  The latter chunk is circulated in the chunk slots | 
 |  * and available for dynamic allocation like any other chunks. | 
 |  * | 
 |  * RETURNS: | 
 |  * The determined pcpu_unit_size which can be used to initialize | 
 |  * percpu access. | 
 |  */ | 
 | size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, | 
 | 				     size_t static_size, size_t reserved_size, | 
 | 				     ssize_t dyn_size, ssize_t unit_size, | 
 | 				     void *base_addr, | 
 | 				     pcpu_populate_pte_fn_t populate_pte_fn) | 
 | { | 
 | 	static struct vm_struct first_vm; | 
 | 	static int smap[2], dmap[2]; | 
 | 	size_t size_sum = static_size + reserved_size + | 
 | 			  (dyn_size >= 0 ? dyn_size : 0); | 
 | 	struct pcpu_chunk *schunk, *dchunk = NULL; | 
 | 	unsigned int cpu; | 
 | 	int nr_pages; | 
 | 	int err, i; | 
 |  | 
 | 	/* santiy checks */ | 
 | 	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || | 
 | 		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); | 
 | 	BUG_ON(!static_size); | 
 | 	if (unit_size >= 0) { | 
 | 		BUG_ON(unit_size < size_sum); | 
 | 		BUG_ON(unit_size & ~PAGE_MASK); | 
 | 		BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE); | 
 | 	} else | 
 | 		BUG_ON(base_addr); | 
 | 	BUG_ON(base_addr && populate_pte_fn); | 
 |  | 
 | 	if (unit_size >= 0) | 
 | 		pcpu_unit_pages = unit_size >> PAGE_SHIFT; | 
 | 	else | 
 | 		pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, | 
 | 					PFN_UP(size_sum)); | 
 |  | 
 | 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | 
 | 	pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size; | 
 | 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) | 
 | 		+ num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *); | 
 |  | 
 | 	if (dyn_size < 0) | 
 | 		dyn_size = pcpu_unit_size - static_size - reserved_size; | 
 |  | 
 | 	/* | 
 | 	 * Allocate chunk slots.  The additional last slot is for | 
 | 	 * empty chunks. | 
 | 	 */ | 
 | 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | 
 | 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); | 
 | 	for (i = 0; i < pcpu_nr_slots; i++) | 
 | 		INIT_LIST_HEAD(&pcpu_slot[i]); | 
 |  | 
 | 	/* | 
 | 	 * Initialize static chunk.  If reserved_size is zero, the | 
 | 	 * static chunk covers static area + dynamic allocation area | 
 | 	 * in the first chunk.  If reserved_size is not zero, it | 
 | 	 * covers static area + reserved area (mostly used for module | 
 | 	 * static percpu allocation). | 
 | 	 */ | 
 | 	schunk = alloc_bootmem(pcpu_chunk_struct_size); | 
 | 	INIT_LIST_HEAD(&schunk->list); | 
 | 	schunk->vm = &first_vm; | 
 | 	schunk->map = smap; | 
 | 	schunk->map_alloc = ARRAY_SIZE(smap); | 
 | 	schunk->page = schunk->page_ar; | 
 |  | 
 | 	if (reserved_size) { | 
 | 		schunk->free_size = reserved_size; | 
 | 		pcpu_reserved_chunk = schunk;	/* not for dynamic alloc */ | 
 | 	} else { | 
 | 		schunk->free_size = dyn_size; | 
 | 		dyn_size = 0;			/* dynamic area covered */ | 
 | 	} | 
 | 	schunk->contig_hint = schunk->free_size; | 
 |  | 
 | 	schunk->map[schunk->map_used++] = -static_size; | 
 | 	if (schunk->free_size) | 
 | 		schunk->map[schunk->map_used++] = schunk->free_size; | 
 |  | 
 | 	pcpu_reserved_chunk_limit = static_size + schunk->free_size; | 
 |  | 
 | 	/* init dynamic chunk if necessary */ | 
 | 	if (dyn_size) { | 
 | 		dchunk = alloc_bootmem(sizeof(struct pcpu_chunk)); | 
 | 		INIT_LIST_HEAD(&dchunk->list); | 
 | 		dchunk->vm = &first_vm; | 
 | 		dchunk->map = dmap; | 
 | 		dchunk->map_alloc = ARRAY_SIZE(dmap); | 
 | 		dchunk->page = schunk->page_ar;	/* share page map with schunk */ | 
 |  | 
 | 		dchunk->contig_hint = dchunk->free_size = dyn_size; | 
 | 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; | 
 | 		dchunk->map[dchunk->map_used++] = dchunk->free_size; | 
 | 	} | 
 |  | 
 | 	/* allocate vm address */ | 
 | 	first_vm.flags = VM_ALLOC; | 
 | 	first_vm.size = pcpu_chunk_size; | 
 |  | 
 | 	if (!base_addr) | 
 | 		vm_area_register_early(&first_vm, PAGE_SIZE); | 
 | 	else { | 
 | 		/* | 
 | 		 * Pages already mapped.  No need to remap into | 
 | 		 * vmalloc area.  In this case the first chunks can't | 
 | 		 * be mapped or unmapped by percpu and are marked | 
 | 		 * immutable. | 
 | 		 */ | 
 | 		first_vm.addr = base_addr; | 
 | 		schunk->immutable = true; | 
 | 		if (dchunk) | 
 | 			dchunk->immutable = true; | 
 | 	} | 
 |  | 
 | 	/* assign pages */ | 
 | 	nr_pages = -1; | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		for (i = 0; i < pcpu_unit_pages; i++) { | 
 | 			struct page *page = get_page_fn(cpu, i); | 
 |  | 
 | 			if (!page) | 
 | 				break; | 
 | 			*pcpu_chunk_pagep(schunk, cpu, i) = page; | 
 | 		} | 
 |  | 
 | 		BUG_ON(i < PFN_UP(static_size)); | 
 |  | 
 | 		if (nr_pages < 0) | 
 | 			nr_pages = i; | 
 | 		else | 
 | 			BUG_ON(nr_pages != i); | 
 | 	} | 
 |  | 
 | 	/* map them */ | 
 | 	if (populate_pte_fn) { | 
 | 		for_each_possible_cpu(cpu) | 
 | 			for (i = 0; i < nr_pages; i++) | 
 | 				populate_pte_fn(pcpu_chunk_addr(schunk, | 
 | 								cpu, i)); | 
 |  | 
 | 		err = pcpu_map(schunk, 0, nr_pages); | 
 | 		if (err) | 
 | 			panic("failed to setup static percpu area, err=%d\n", | 
 | 			      err); | 
 | 	} | 
 |  | 
 | 	/* link the first chunk in */ | 
 | 	if (!dchunk) { | 
 | 		pcpu_chunk_relocate(schunk, -1); | 
 | 		pcpu_chunk_addr_insert(schunk); | 
 | 	} else { | 
 | 		pcpu_chunk_relocate(dchunk, -1); | 
 | 		pcpu_chunk_addr_insert(dchunk); | 
 | 	} | 
 |  | 
 | 	/* we're done */ | 
 | 	pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0); | 
 | 	return pcpu_unit_size; | 
 | } | 
 |  | 
 | /* | 
 |  * Embedding first chunk setup helper. | 
 |  */ | 
 | static void *pcpue_ptr __initdata; | 
 | static size_t pcpue_size __initdata; | 
 | static size_t pcpue_unit_size __initdata; | 
 |  | 
 | static struct page * __init pcpue_get_page(unsigned int cpu, int pageno) | 
 | { | 
 | 	size_t off = (size_t)pageno << PAGE_SHIFT; | 
 |  | 
 | 	if (off >= pcpue_size) | 
 | 		return NULL; | 
 |  | 
 | 	return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off); | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | 
 |  * @static_size: the size of static percpu area in bytes | 
 |  * @reserved_size: the size of reserved percpu area in bytes | 
 |  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | 
 |  * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | 
 |  * | 
 |  * This is a helper to ease setting up embedded first percpu chunk and | 
 |  * can be called where pcpu_setup_first_chunk() is expected. | 
 |  * | 
 |  * If this function is used to setup the first chunk, it is allocated | 
 |  * as a contiguous area using bootmem allocator and used as-is without | 
 |  * being mapped into vmalloc area.  This enables the first chunk to | 
 |  * piggy back on the linear physical mapping which often uses larger | 
 |  * page size. | 
 |  * | 
 |  * When @dyn_size is positive, dynamic area might be larger than | 
 |  * specified to fill page alignment.  Also, when @dyn_size is auto, | 
 |  * @dyn_size does not fill the whole first chunk but only what's | 
 |  * necessary for page alignment after static and reserved areas. | 
 |  * | 
 |  * If the needed size is smaller than the minimum or specified unit | 
 |  * size, the leftover is returned to the bootmem allocator. | 
 |  * | 
 |  * RETURNS: | 
 |  * The determined pcpu_unit_size which can be used to initialize | 
 |  * percpu access on success, -errno on failure. | 
 |  */ | 
 | ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size, | 
 | 				      ssize_t dyn_size, ssize_t unit_size) | 
 | { | 
 | 	unsigned int cpu; | 
 |  | 
 | 	/* determine parameters and allocate */ | 
 | 	pcpue_size = PFN_ALIGN(static_size + reserved_size + | 
 | 			       (dyn_size >= 0 ? dyn_size : 0)); | 
 | 	if (dyn_size != 0) | 
 | 		dyn_size = pcpue_size - static_size - reserved_size; | 
 |  | 
 | 	if (unit_size >= 0) { | 
 | 		BUG_ON(unit_size < pcpue_size); | 
 | 		pcpue_unit_size = unit_size; | 
 | 	} else | 
 | 		pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE); | 
 |  | 
 | 	pcpue_ptr = __alloc_bootmem_nopanic( | 
 | 					num_possible_cpus() * pcpue_unit_size, | 
 | 					PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | 
 | 	if (!pcpue_ptr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* return the leftover and copy */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		void *ptr = pcpue_ptr + cpu * pcpue_unit_size; | 
 |  | 
 | 		free_bootmem(__pa(ptr + pcpue_size), | 
 | 			     pcpue_unit_size - pcpue_size); | 
 | 		memcpy(ptr, __per_cpu_load, static_size); | 
 | 	} | 
 |  | 
 | 	/* we're ready, commit */ | 
 | 	pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n", | 
 | 		pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size); | 
 |  | 
 | 	return pcpu_setup_first_chunk(pcpue_get_page, static_size, | 
 | 				      reserved_size, dyn_size, | 
 | 				      pcpue_unit_size, pcpue_ptr, NULL); | 
 | } |