| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Testsuite for eBPF verifier |
| * |
| * Copyright (c) 2014 PLUMgrid, http://plumgrid.com |
| * Copyright (c) 2017 Facebook |
| * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io |
| */ |
| |
| #include <endian.h> |
| #include <asm/types.h> |
| #include <linux/types.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <errno.h> |
| #include <string.h> |
| #include <stddef.h> |
| #include <stdbool.h> |
| #include <sched.h> |
| #include <limits.h> |
| #include <assert.h> |
| |
| #include <linux/unistd.h> |
| #include <linux/filter.h> |
| #include <linux/bpf_perf_event.h> |
| #include <linux/bpf.h> |
| #include <linux/if_ether.h> |
| #include <linux/btf.h> |
| |
| #include <bpf/btf.h> |
| #include <bpf/bpf.h> |
| #include <bpf/libbpf.h> |
| |
| #ifdef HAVE_GENHDR |
| # include "autoconf.h" |
| #else |
| # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) |
| # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 |
| # endif |
| #endif |
| #include "cap_helpers.h" |
| #include "bpf_rand.h" |
| #include "bpf_util.h" |
| #include "test_btf.h" |
| #include "../../../include/linux/filter.h" |
| |
| #ifndef ENOTSUPP |
| #define ENOTSUPP 524 |
| #endif |
| |
| #define MAX_INSNS BPF_MAXINSNS |
| #define MAX_EXPECTED_INSNS 32 |
| #define MAX_UNEXPECTED_INSNS 32 |
| #define MAX_TEST_INSNS 1000000 |
| #define MAX_FIXUPS 8 |
| #define MAX_NR_MAPS 23 |
| #define MAX_TEST_RUNS 8 |
| #define POINTER_VALUE 0xcafe4all |
| #define TEST_DATA_LEN 64 |
| #define MAX_FUNC_INFOS 8 |
| #define MAX_BTF_STRINGS 256 |
| #define MAX_BTF_TYPES 256 |
| |
| #define INSN_OFF_MASK ((__s16)0xFFFF) |
| #define INSN_IMM_MASK ((__s32)0xFFFFFFFF) |
| #define SKIP_INSNS() BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef) |
| |
| #define DEFAULT_LIBBPF_LOG_LEVEL 4 |
| #define VERBOSE_LIBBPF_LOG_LEVEL 1 |
| |
| #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) |
| #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) |
| |
| /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ |
| #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN | \ |
| 1ULL << CAP_PERFMON | \ |
| 1ULL << CAP_BPF) |
| #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" |
| static bool unpriv_disabled = false; |
| static int skips; |
| static bool verbose = false; |
| |
| struct kfunc_btf_id_pair { |
| const char *kfunc; |
| int insn_idx; |
| }; |
| |
| struct bpf_test { |
| const char *descr; |
| struct bpf_insn insns[MAX_INSNS]; |
| struct bpf_insn *fill_insns; |
| /* If specified, test engine looks for this sequence of |
| * instructions in the BPF program after loading. Allows to |
| * test rewrites applied by verifier. Use values |
| * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm` |
| * fields if content does not matter. The test case fails if |
| * specified instructions are not found. |
| * |
| * The sequence could be split into sub-sequences by adding |
| * SKIP_INSNS instruction at the end of each sub-sequence. In |
| * such case sub-sequences are searched for one after another. |
| */ |
| struct bpf_insn expected_insns[MAX_EXPECTED_INSNS]; |
| /* If specified, test engine applies same pattern matching |
| * logic as for `expected_insns`. If the specified pattern is |
| * matched test case is marked as failed. |
| */ |
| struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS]; |
| int fixup_map_hash_8b[MAX_FIXUPS]; |
| int fixup_map_hash_48b[MAX_FIXUPS]; |
| int fixup_map_hash_16b[MAX_FIXUPS]; |
| int fixup_map_array_48b[MAX_FIXUPS]; |
| int fixup_map_sockmap[MAX_FIXUPS]; |
| int fixup_map_sockhash[MAX_FIXUPS]; |
| int fixup_map_xskmap[MAX_FIXUPS]; |
| int fixup_map_stacktrace[MAX_FIXUPS]; |
| int fixup_prog1[MAX_FIXUPS]; |
| int fixup_prog2[MAX_FIXUPS]; |
| int fixup_map_in_map[MAX_FIXUPS]; |
| int fixup_cgroup_storage[MAX_FIXUPS]; |
| int fixup_percpu_cgroup_storage[MAX_FIXUPS]; |
| int fixup_map_spin_lock[MAX_FIXUPS]; |
| int fixup_map_array_ro[MAX_FIXUPS]; |
| int fixup_map_array_wo[MAX_FIXUPS]; |
| int fixup_map_array_small[MAX_FIXUPS]; |
| int fixup_sk_storage_map[MAX_FIXUPS]; |
| int fixup_map_event_output[MAX_FIXUPS]; |
| int fixup_map_reuseport_array[MAX_FIXUPS]; |
| int fixup_map_ringbuf[MAX_FIXUPS]; |
| int fixup_map_timer[MAX_FIXUPS]; |
| int fixup_map_kptr[MAX_FIXUPS]; |
| struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS]; |
| /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. |
| * Can be a tab-separated sequence of expected strings. An empty string |
| * means no log verification. |
| */ |
| const char *errstr; |
| const char *errstr_unpriv; |
| uint32_t insn_processed; |
| int prog_len; |
| enum { |
| UNDEF, |
| ACCEPT, |
| REJECT, |
| VERBOSE_ACCEPT, |
| } result, result_unpriv; |
| enum bpf_prog_type prog_type; |
| uint8_t flags; |
| void (*fill_helper)(struct bpf_test *self); |
| int runs; |
| #define bpf_testdata_struct_t \ |
| struct { \ |
| uint32_t retval, retval_unpriv; \ |
| union { \ |
| __u8 data[TEST_DATA_LEN]; \ |
| __u64 data64[TEST_DATA_LEN / 8]; \ |
| }; \ |
| } |
| union { |
| bpf_testdata_struct_t; |
| bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; |
| }; |
| enum bpf_attach_type expected_attach_type; |
| const char *kfunc; |
| struct bpf_func_info func_info[MAX_FUNC_INFOS]; |
| int func_info_cnt; |
| char btf_strings[MAX_BTF_STRINGS]; |
| /* A set of BTF types to load when specified, |
| * use macro definitions from test_btf.h, |
| * must end with BTF_END_RAW |
| */ |
| __u32 btf_types[MAX_BTF_TYPES]; |
| }; |
| |
| /* Note we want this to be 64 bit aligned so that the end of our array is |
| * actually the end of the structure. |
| */ |
| #define MAX_ENTRIES 11 |
| |
| struct test_val { |
| unsigned int index; |
| int foo[MAX_ENTRIES]; |
| }; |
| |
| struct other_val { |
| long long foo; |
| long long bar; |
| }; |
| |
| static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) |
| { |
| /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ |
| #define PUSH_CNT 51 |
| /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ |
| unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; |
| struct bpf_insn *insn = self->fill_insns; |
| int i = 0, j, k = 0; |
| |
| insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); |
| loop: |
| for (j = 0; j < PUSH_CNT; j++) { |
| insn[i++] = BPF_LD_ABS(BPF_B, 0); |
| /* jump to error label */ |
| insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); |
| i++; |
| insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); |
| insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); |
| insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); |
| insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, |
| BPF_FUNC_skb_vlan_push), |
| insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); |
| i++; |
| } |
| |
| for (j = 0; j < PUSH_CNT; j++) { |
| insn[i++] = BPF_LD_ABS(BPF_B, 0); |
| insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); |
| i++; |
| insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); |
| insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, |
| BPF_FUNC_skb_vlan_pop), |
| insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); |
| i++; |
| } |
| if (++k < 5) |
| goto loop; |
| |
| for (; i < len - 3; i++) |
| insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); |
| insn[len - 3] = BPF_JMP_A(1); |
| /* error label */ |
| insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); |
| insn[len - 1] = BPF_EXIT_INSN(); |
| self->prog_len = len; |
| } |
| |
| static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) |
| { |
| struct bpf_insn *insn = self->fill_insns; |
| /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, |
| * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted |
| * to extend the error value of the inlined ld_abs sequence which then |
| * contains 7 insns. so, set the dividend to 7 so the testcase could |
| * work on all arches. |
| */ |
| unsigned int len = (1 << 15) / 7; |
| int i = 0; |
| |
| insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); |
| insn[i++] = BPF_LD_ABS(BPF_B, 0); |
| insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); |
| i++; |
| while (i < len - 1) |
| insn[i++] = BPF_LD_ABS(BPF_B, 1); |
| insn[i] = BPF_EXIT_INSN(); |
| self->prog_len = i + 1; |
| } |
| |
| static void bpf_fill_rand_ld_dw(struct bpf_test *self) |
| { |
| struct bpf_insn *insn = self->fill_insns; |
| uint64_t res = 0; |
| int i = 0; |
| |
| insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); |
| while (i < self->retval) { |
| uint64_t val = bpf_semi_rand_get(); |
| struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; |
| |
| res ^= val; |
| insn[i++] = tmp[0]; |
| insn[i++] = tmp[1]; |
| insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); |
| } |
| insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); |
| insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); |
| insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); |
| insn[i] = BPF_EXIT_INSN(); |
| self->prog_len = i + 1; |
| res ^= (res >> 32); |
| self->retval = (uint32_t)res; |
| } |
| |
| #define MAX_JMP_SEQ 8192 |
| |
| /* test the sequence of 8k jumps */ |
| static void bpf_fill_scale1(struct bpf_test *self) |
| { |
| struct bpf_insn *insn = self->fill_insns; |
| int i = 0, k = 0; |
| |
| insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); |
| /* test to check that the long sequence of jumps is acceptable */ |
| while (k++ < MAX_JMP_SEQ) { |
| insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, |
| BPF_FUNC_get_prandom_u32); |
| insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); |
| insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); |
| insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, |
| -8 * (k % 64 + 1)); |
| } |
| /* is_state_visited() doesn't allocate state for pruning for every jump. |
| * Hence multiply jmps by 4 to accommodate that heuristic |
| */ |
| while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) |
| insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); |
| insn[i] = BPF_EXIT_INSN(); |
| self->prog_len = i + 1; |
| self->retval = 42; |
| } |
| |
| /* test the sequence of 8k jumps in inner most function (function depth 8)*/ |
| static void bpf_fill_scale2(struct bpf_test *self) |
| { |
| struct bpf_insn *insn = self->fill_insns; |
| int i = 0, k = 0; |
| |
| #define FUNC_NEST 7 |
| for (k = 0; k < FUNC_NEST; k++) { |
| insn[i++] = BPF_CALL_REL(1); |
| insn[i++] = BPF_EXIT_INSN(); |
| } |
| insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); |
| /* test to check that the long sequence of jumps is acceptable */ |
| k = 0; |
| while (k++ < MAX_JMP_SEQ) { |
| insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, |
| BPF_FUNC_get_prandom_u32); |
| insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); |
| insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); |
| insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, |
| -8 * (k % (64 - 4 * FUNC_NEST) + 1)); |
| } |
| while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) |
| insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); |
| insn[i] = BPF_EXIT_INSN(); |
| self->prog_len = i + 1; |
| self->retval = 42; |
| } |
| |
| static void bpf_fill_scale(struct bpf_test *self) |
| { |
| switch (self->retval) { |
| case 1: |
| return bpf_fill_scale1(self); |
| case 2: |
| return bpf_fill_scale2(self); |
| default: |
| self->prog_len = 0; |
| break; |
| } |
| } |
| |
| static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) |
| { |
| unsigned int len = 259, hlen = 128; |
| int i; |
| |
| insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); |
| for (i = 1; i <= hlen; i++) { |
| insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); |
| insn[i + hlen] = BPF_JMP_A(hlen - i); |
| } |
| insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); |
| insn[len - 1] = BPF_EXIT_INSN(); |
| |
| return len; |
| } |
| |
| static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) |
| { |
| unsigned int len = 4100, jmp_off = 2048; |
| int i, j; |
| |
| insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); |
| for (i = 1; i <= jmp_off; i++) { |
| insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); |
| } |
| insn[i++] = BPF_JMP_A(jmp_off); |
| for (; i <= jmp_off * 2 + 1; i+=16) { |
| for (j = 0; j < 16; j++) { |
| insn[i + j] = BPF_JMP_A(16 - j - 1); |
| } |
| } |
| |
| insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); |
| insn[len - 1] = BPF_EXIT_INSN(); |
| |
| return len; |
| } |
| |
| static void bpf_fill_torturous_jumps(struct bpf_test *self) |
| { |
| struct bpf_insn *insn = self->fill_insns; |
| int i = 0; |
| |
| switch (self->retval) { |
| case 1: |
| self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); |
| return; |
| case 2: |
| self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); |
| return; |
| case 3: |
| /* main */ |
| insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); |
| insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); |
| insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); |
| insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); |
| insn[i++] = BPF_EXIT_INSN(); |
| |
| /* subprog 1 */ |
| i += bpf_fill_torturous_jumps_insn_1(insn + i); |
| |
| /* subprog 2 */ |
| i += bpf_fill_torturous_jumps_insn_2(insn + i); |
| |
| self->prog_len = i; |
| return; |
| default: |
| self->prog_len = 0; |
| break; |
| } |
| } |
| |
| static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self) |
| { |
| struct bpf_insn *insn = self->fill_insns; |
| /* This test was added to catch a specific use after free |
| * error, which happened upon BPF program reallocation. |
| * Reallocation is handled by core.c:bpf_prog_realloc, which |
| * reuses old memory if page boundary is not crossed. The |
| * value of `len` is chosen to cross this boundary on bpf_loop |
| * patching. |
| */ |
| const int len = getpagesize() - 25; |
| int callback_load_idx; |
| int callback_idx; |
| int i = 0; |
| |
| insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1); |
| callback_load_idx = i; |
| insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, |
| BPF_REG_2, BPF_PSEUDO_FUNC, 0, |
| 777 /* filled below */); |
| insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0); |
| insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0); |
| insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0); |
| insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop); |
| |
| while (i < len - 3) |
| insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); |
| insn[i++] = BPF_EXIT_INSN(); |
| |
| callback_idx = i; |
| insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); |
| insn[i++] = BPF_EXIT_INSN(); |
| |
| insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1; |
| self->func_info[1].insn_off = callback_idx; |
| self->prog_len = i; |
| assert(i == len); |
| } |
| |
| /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ |
| #define BPF_SK_LOOKUP(func) \ |
| /* struct bpf_sock_tuple tuple = {} */ \ |
| BPF_MOV64_IMM(BPF_REG_2, 0), \ |
| BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ |
| BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ |
| BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ |
| BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ |
| BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ |
| BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ |
| /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ |
| BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ |
| BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ |
| BPF_MOV64_IMM(BPF_REG_4, 0), \ |
| BPF_MOV64_IMM(BPF_REG_5, 0), \ |
| BPF_EMIT_CALL(BPF_FUNC_ ## func) |
| |
| /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return |
| * value into 0 and does necessary preparation for direct packet access |
| * through r2. The allowed access range is 8 bytes. |
| */ |
| #define BPF_DIRECT_PKT_R2 \ |
| BPF_MOV64_IMM(BPF_REG_0, 0), \ |
| BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ |
| offsetof(struct __sk_buff, data)), \ |
| BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ |
| offsetof(struct __sk_buff, data_end)), \ |
| BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ |
| BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ |
| BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ |
| BPF_EXIT_INSN() |
| |
| /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random |
| * positive u32, and zero-extend it into 64-bit. |
| */ |
| #define BPF_RAND_UEXT_R7 \ |
| BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ |
| BPF_FUNC_get_prandom_u32), \ |
| BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ |
| BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) |
| |
| /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random |
| * negative u32, and sign-extend it into 64-bit. |
| */ |
| #define BPF_RAND_SEXT_R7 \ |
| BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ |
| BPF_FUNC_get_prandom_u32), \ |
| BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ |
| BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ |
| BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ |
| BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) |
| |
| static struct bpf_test tests[] = { |
| #define FILL_ARRAY |
| #include <verifier/tests.h> |
| #undef FILL_ARRAY |
| }; |
| |
| static int probe_filter_length(const struct bpf_insn *fp) |
| { |
| int len; |
| |
| for (len = MAX_INSNS - 1; len > 0; --len) |
| if (fp[len].code != 0 || fp[len].imm != 0) |
| break; |
| return len + 1; |
| } |
| |
| static bool skip_unsupported_map(enum bpf_map_type map_type) |
| { |
| if (!libbpf_probe_bpf_map_type(map_type, NULL)) { |
| printf("SKIP (unsupported map type %d)\n", map_type); |
| skips++; |
| return true; |
| } |
| return false; |
| } |
| |
| static int __create_map(uint32_t type, uint32_t size_key, |
| uint32_t size_value, uint32_t max_elem, |
| uint32_t extra_flags) |
| { |
| LIBBPF_OPTS(bpf_map_create_opts, opts); |
| int fd; |
| |
| opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags; |
| fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts); |
| if (fd < 0) { |
| if (skip_unsupported_map(type)) |
| return -1; |
| printf("Failed to create hash map '%s'!\n", strerror(errno)); |
| } |
| |
| return fd; |
| } |
| |
| static int create_map(uint32_t type, uint32_t size_key, |
| uint32_t size_value, uint32_t max_elem) |
| { |
| return __create_map(type, size_key, size_value, max_elem, 0); |
| } |
| |
| static void update_map(int fd, int index) |
| { |
| struct test_val value = { |
| .index = (6 + 1) * sizeof(int), |
| .foo[6] = 0xabcdef12, |
| }; |
| |
| assert(!bpf_map_update_elem(fd, &index, &value, 0)); |
| } |
| |
| static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) |
| { |
| struct bpf_insn prog[] = { |
| BPF_MOV64_IMM(BPF_REG_0, ret), |
| BPF_EXIT_INSN(), |
| }; |
| |
| return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); |
| } |
| |
| static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, |
| int idx, int ret) |
| { |
| struct bpf_insn prog[] = { |
| BPF_MOV64_IMM(BPF_REG_3, idx), |
| BPF_LD_MAP_FD(BPF_REG_2, mfd), |
| BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, |
| BPF_FUNC_tail_call), |
| BPF_MOV64_IMM(BPF_REG_0, ret), |
| BPF_EXIT_INSN(), |
| }; |
| |
| return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); |
| } |
| |
| static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, |
| int p1key, int p2key, int p3key) |
| { |
| int mfd, p1fd, p2fd, p3fd; |
| |
| mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int), |
| sizeof(int), max_elem, NULL); |
| if (mfd < 0) { |
| if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) |
| return -1; |
| printf("Failed to create prog array '%s'!\n", strerror(errno)); |
| return -1; |
| } |
| |
| p1fd = create_prog_dummy_simple(prog_type, 42); |
| p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); |
| p3fd = create_prog_dummy_simple(prog_type, 24); |
| if (p1fd < 0 || p2fd < 0 || p3fd < 0) |
| goto err; |
| if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) |
| goto err; |
| if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) |
| goto err; |
| if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { |
| err: |
| close(mfd); |
| mfd = -1; |
| } |
| close(p3fd); |
| close(p2fd); |
| close(p1fd); |
| return mfd; |
| } |
| |
| static int create_map_in_map(void) |
| { |
| LIBBPF_OPTS(bpf_map_create_opts, opts); |
| int inner_map_fd, outer_map_fd; |
| |
| inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), |
| sizeof(int), 1, NULL); |
| if (inner_map_fd < 0) { |
| if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) |
| return -1; |
| printf("Failed to create array '%s'!\n", strerror(errno)); |
| return inner_map_fd; |
| } |
| |
| opts.inner_map_fd = inner_map_fd; |
| outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, |
| sizeof(int), sizeof(int), 1, &opts); |
| if (outer_map_fd < 0) { |
| if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) |
| return -1; |
| printf("Failed to create array of maps '%s'!\n", |
| strerror(errno)); |
| } |
| |
| close(inner_map_fd); |
| |
| return outer_map_fd; |
| } |
| |
| static int create_cgroup_storage(bool percpu) |
| { |
| enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : |
| BPF_MAP_TYPE_CGROUP_STORAGE; |
| int fd; |
| |
| fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key), |
| TEST_DATA_LEN, 0, NULL); |
| if (fd < 0) { |
| if (skip_unsupported_map(type)) |
| return -1; |
| printf("Failed to create cgroup storage '%s'!\n", |
| strerror(errno)); |
| } |
| |
| return fd; |
| } |
| |
| /* struct bpf_spin_lock { |
| * int val; |
| * }; |
| * struct val { |
| * int cnt; |
| * struct bpf_spin_lock l; |
| * }; |
| * struct bpf_timer { |
| * __u64 :64; |
| * __u64 :64; |
| * } __attribute__((aligned(8))); |
| * struct timer { |
| * struct bpf_timer t; |
| * }; |
| * struct btf_ptr { |
| * struct prog_test_ref_kfunc __kptr *ptr; |
| * struct prog_test_ref_kfunc __kptr_ref *ptr; |
| * struct prog_test_member __kptr_ref *ptr; |
| * } |
| */ |
| static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t" |
| "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_ref" |
| "\0prog_test_member"; |
| static __u32 btf_raw_types[] = { |
| /* int */ |
| BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ |
| /* struct bpf_spin_lock */ /* [2] */ |
| BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), |
| BTF_MEMBER_ENC(15, 1, 0), /* int val; */ |
| /* struct val */ /* [3] */ |
| BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), |
| BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ |
| BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ |
| /* struct bpf_timer */ /* [4] */ |
| BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16), |
| /* struct timer */ /* [5] */ |
| BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16), |
| BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */ |
| /* struct prog_test_ref_kfunc */ /* [6] */ |
| BTF_STRUCT_ENC(51, 0, 0), |
| BTF_STRUCT_ENC(89, 0, 0), /* [7] */ |
| /* type tag "kptr" */ |
| BTF_TYPE_TAG_ENC(75, 6), /* [8] */ |
| /* type tag "kptr_ref" */ |
| BTF_TYPE_TAG_ENC(80, 6), /* [9] */ |
| BTF_TYPE_TAG_ENC(80, 7), /* [10] */ |
| BTF_PTR_ENC(8), /* [11] */ |
| BTF_PTR_ENC(9), /* [12] */ |
| BTF_PTR_ENC(10), /* [13] */ |
| /* struct btf_ptr */ /* [14] */ |
| BTF_STRUCT_ENC(43, 3, 24), |
| BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr *ptr; */ |
| BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr_ref *ptr; */ |
| BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr_ref *ptr; */ |
| }; |
| |
| static char bpf_vlog[UINT_MAX >> 8]; |
| |
| static int load_btf_spec(__u32 *types, int types_len, |
| const char *strings, int strings_len) |
| { |
| struct btf_header hdr = { |
| .magic = BTF_MAGIC, |
| .version = BTF_VERSION, |
| .hdr_len = sizeof(struct btf_header), |
| .type_len = types_len, |
| .str_off = types_len, |
| .str_len = strings_len, |
| }; |
| void *ptr, *raw_btf; |
| int btf_fd; |
| LIBBPF_OPTS(bpf_btf_load_opts, opts, |
| .log_buf = bpf_vlog, |
| .log_size = sizeof(bpf_vlog), |
| .log_level = (verbose |
| ? VERBOSE_LIBBPF_LOG_LEVEL |
| : DEFAULT_LIBBPF_LOG_LEVEL), |
| ); |
| |
| raw_btf = malloc(sizeof(hdr) + types_len + strings_len); |
| |
| ptr = raw_btf; |
| memcpy(ptr, &hdr, sizeof(hdr)); |
| ptr += sizeof(hdr); |
| memcpy(ptr, types, hdr.type_len); |
| ptr += hdr.type_len; |
| memcpy(ptr, strings, hdr.str_len); |
| ptr += hdr.str_len; |
| |
| btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts); |
| if (btf_fd < 0) |
| printf("Failed to load BTF spec: '%s'\n", strerror(errno)); |
| |
| free(raw_btf); |
| |
| return btf_fd < 0 ? -1 : btf_fd; |
| } |
| |
| static int load_btf(void) |
| { |
| return load_btf_spec(btf_raw_types, sizeof(btf_raw_types), |
| btf_str_sec, sizeof(btf_str_sec)); |
| } |
| |
| static int load_btf_for_test(struct bpf_test *test) |
| { |
| int types_num = 0; |
| |
| while (types_num < MAX_BTF_TYPES && |
| test->btf_types[types_num] != BTF_END_RAW) |
| ++types_num; |
| |
| int types_len = types_num * sizeof(test->btf_types[0]); |
| |
| return load_btf_spec(test->btf_types, types_len, |
| test->btf_strings, sizeof(test->btf_strings)); |
| } |
| |
| static int create_map_spin_lock(void) |
| { |
| LIBBPF_OPTS(bpf_map_create_opts, opts, |
| .btf_key_type_id = 1, |
| .btf_value_type_id = 3, |
| ); |
| int fd, btf_fd; |
| |
| btf_fd = load_btf(); |
| if (btf_fd < 0) |
| return -1; |
| opts.btf_fd = btf_fd; |
| fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts); |
| if (fd < 0) |
| printf("Failed to create map with spin_lock\n"); |
| return fd; |
| } |
| |
| static int create_sk_storage_map(void) |
| { |
| LIBBPF_OPTS(bpf_map_create_opts, opts, |
| .map_flags = BPF_F_NO_PREALLOC, |
| .btf_key_type_id = 1, |
| .btf_value_type_id = 3, |
| ); |
| int fd, btf_fd; |
| |
| btf_fd = load_btf(); |
| if (btf_fd < 0) |
| return -1; |
| opts.btf_fd = btf_fd; |
| fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts); |
| close(opts.btf_fd); |
| if (fd < 0) |
| printf("Failed to create sk_storage_map\n"); |
| return fd; |
| } |
| |
| static int create_map_timer(void) |
| { |
| LIBBPF_OPTS(bpf_map_create_opts, opts, |
| .btf_key_type_id = 1, |
| .btf_value_type_id = 5, |
| ); |
| int fd, btf_fd; |
| |
| btf_fd = load_btf(); |
| if (btf_fd < 0) |
| return -1; |
| |
| opts.btf_fd = btf_fd; |
| fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts); |
| if (fd < 0) |
| printf("Failed to create map with timer\n"); |
| return fd; |
| } |
| |
| static int create_map_kptr(void) |
| { |
| LIBBPF_OPTS(bpf_map_create_opts, opts, |
| .btf_key_type_id = 1, |
| .btf_value_type_id = 14, |
| ); |
| int fd, btf_fd; |
| |
| btf_fd = load_btf(); |
| if (btf_fd < 0) |
| return -1; |
| |
| opts.btf_fd = btf_fd; |
| fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts); |
| if (fd < 0) |
| printf("Failed to create map with btf_id pointer\n"); |
| return fd; |
| } |
| |
| static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, |
| struct bpf_insn *prog, int *map_fds) |
| { |
| int *fixup_map_hash_8b = test->fixup_map_hash_8b; |
| int *fixup_map_hash_48b = test->fixup_map_hash_48b; |
| int *fixup_map_hash_16b = test->fixup_map_hash_16b; |
| int *fixup_map_array_48b = test->fixup_map_array_48b; |
| int *fixup_map_sockmap = test->fixup_map_sockmap; |
| int *fixup_map_sockhash = test->fixup_map_sockhash; |
| int *fixup_map_xskmap = test->fixup_map_xskmap; |
| int *fixup_map_stacktrace = test->fixup_map_stacktrace; |
| int *fixup_prog1 = test->fixup_prog1; |
| int *fixup_prog2 = test->fixup_prog2; |
| int *fixup_map_in_map = test->fixup_map_in_map; |
| int *fixup_cgroup_storage = test->fixup_cgroup_storage; |
| int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; |
| int *fixup_map_spin_lock = test->fixup_map_spin_lock; |
| int *fixup_map_array_ro = test->fixup_map_array_ro; |
| int *fixup_map_array_wo = test->fixup_map_array_wo; |
| int *fixup_map_array_small = test->fixup_map_array_small; |
| int *fixup_sk_storage_map = test->fixup_sk_storage_map; |
| int *fixup_map_event_output = test->fixup_map_event_output; |
| int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; |
| int *fixup_map_ringbuf = test->fixup_map_ringbuf; |
| int *fixup_map_timer = test->fixup_map_timer; |
| int *fixup_map_kptr = test->fixup_map_kptr; |
| struct kfunc_btf_id_pair *fixup_kfunc_btf_id = test->fixup_kfunc_btf_id; |
| |
| if (test->fill_helper) { |
| test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); |
| test->fill_helper(test); |
| } |
| |
| /* Allocating HTs with 1 elem is fine here, since we only test |
| * for verifier and not do a runtime lookup, so the only thing |
| * that really matters is value size in this case. |
| */ |
| if (*fixup_map_hash_8b) { |
| map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), |
| sizeof(long long), 1); |
| do { |
| prog[*fixup_map_hash_8b].imm = map_fds[0]; |
| fixup_map_hash_8b++; |
| } while (*fixup_map_hash_8b); |
| } |
| |
| if (*fixup_map_hash_48b) { |
| map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), |
| sizeof(struct test_val), 1); |
| do { |
| prog[*fixup_map_hash_48b].imm = map_fds[1]; |
| fixup_map_hash_48b++; |
| } while (*fixup_map_hash_48b); |
| } |
| |
| if (*fixup_map_hash_16b) { |
| map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), |
| sizeof(struct other_val), 1); |
| do { |
| prog[*fixup_map_hash_16b].imm = map_fds[2]; |
| fixup_map_hash_16b++; |
| } while (*fixup_map_hash_16b); |
| } |
| |
| if (*fixup_map_array_48b) { |
| map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), |
| sizeof(struct test_val), 1); |
| update_map(map_fds[3], 0); |
| do { |
| prog[*fixup_map_array_48b].imm = map_fds[3]; |
| fixup_map_array_48b++; |
| } while (*fixup_map_array_48b); |
| } |
| |
| if (*fixup_prog1) { |
| map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); |
| do { |
| prog[*fixup_prog1].imm = map_fds[4]; |
| fixup_prog1++; |
| } while (*fixup_prog1); |
| } |
| |
| if (*fixup_prog2) { |
| map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); |
| do { |
| prog[*fixup_prog2].imm = map_fds[5]; |
| fixup_prog2++; |
| } while (*fixup_prog2); |
| } |
| |
| if (*fixup_map_in_map) { |
| map_fds[6] = create_map_in_map(); |
| do { |
| prog[*fixup_map_in_map].imm = map_fds[6]; |
| fixup_map_in_map++; |
| } while (*fixup_map_in_map); |
| } |
| |
| if (*fixup_cgroup_storage) { |
| map_fds[7] = create_cgroup_storage(false); |
| do { |
| prog[*fixup_cgroup_storage].imm = map_fds[7]; |
| fixup_cgroup_storage++; |
| } while (*fixup_cgroup_storage); |
| } |
| |
| if (*fixup_percpu_cgroup_storage) { |
| map_fds[8] = create_cgroup_storage(true); |
| do { |
| prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; |
| fixup_percpu_cgroup_storage++; |
| } while (*fixup_percpu_cgroup_storage); |
| } |
| if (*fixup_map_sockmap) { |
| map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), |
| sizeof(int), 1); |
| do { |
| prog[*fixup_map_sockmap].imm = map_fds[9]; |
| fixup_map_sockmap++; |
| } while (*fixup_map_sockmap); |
| } |
| if (*fixup_map_sockhash) { |
| map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), |
| sizeof(int), 1); |
| do { |
| prog[*fixup_map_sockhash].imm = map_fds[10]; |
| fixup_map_sockhash++; |
| } while (*fixup_map_sockhash); |
| } |
| if (*fixup_map_xskmap) { |
| map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), |
| sizeof(int), 1); |
| do { |
| prog[*fixup_map_xskmap].imm = map_fds[11]; |
| fixup_map_xskmap++; |
| } while (*fixup_map_xskmap); |
| } |
| if (*fixup_map_stacktrace) { |
| map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), |
| sizeof(u64), 1); |
| do { |
| prog[*fixup_map_stacktrace].imm = map_fds[12]; |
| fixup_map_stacktrace++; |
| } while (*fixup_map_stacktrace); |
| } |
| if (*fixup_map_spin_lock) { |
| map_fds[13] = create_map_spin_lock(); |
| do { |
| prog[*fixup_map_spin_lock].imm = map_fds[13]; |
| fixup_map_spin_lock++; |
| } while (*fixup_map_spin_lock); |
| } |
| if (*fixup_map_array_ro) { |
| map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), |
| sizeof(struct test_val), 1, |
| BPF_F_RDONLY_PROG); |
| update_map(map_fds[14], 0); |
| do { |
| prog[*fixup_map_array_ro].imm = map_fds[14]; |
| fixup_map_array_ro++; |
| } while (*fixup_map_array_ro); |
| } |
| if (*fixup_map_array_wo) { |
| map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), |
| sizeof(struct test_val), 1, |
| BPF_F_WRONLY_PROG); |
| update_map(map_fds[15], 0); |
| do { |
| prog[*fixup_map_array_wo].imm = map_fds[15]; |
| fixup_map_array_wo++; |
| } while (*fixup_map_array_wo); |
| } |
| if (*fixup_map_array_small) { |
| map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), |
| 1, 1, 0); |
| update_map(map_fds[16], 0); |
| do { |
| prog[*fixup_map_array_small].imm = map_fds[16]; |
| fixup_map_array_small++; |
| } while (*fixup_map_array_small); |
| } |
| if (*fixup_sk_storage_map) { |
| map_fds[17] = create_sk_storage_map(); |
| do { |
| prog[*fixup_sk_storage_map].imm = map_fds[17]; |
| fixup_sk_storage_map++; |
| } while (*fixup_sk_storage_map); |
| } |
| if (*fixup_map_event_output) { |
| map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, |
| sizeof(int), sizeof(int), 1, 0); |
| do { |
| prog[*fixup_map_event_output].imm = map_fds[18]; |
| fixup_map_event_output++; |
| } while (*fixup_map_event_output); |
| } |
| if (*fixup_map_reuseport_array) { |
| map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, |
| sizeof(u32), sizeof(u64), 1, 0); |
| do { |
| prog[*fixup_map_reuseport_array].imm = map_fds[19]; |
| fixup_map_reuseport_array++; |
| } while (*fixup_map_reuseport_array); |
| } |
| if (*fixup_map_ringbuf) { |
| map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, |
| 0, 4096); |
| do { |
| prog[*fixup_map_ringbuf].imm = map_fds[20]; |
| fixup_map_ringbuf++; |
| } while (*fixup_map_ringbuf); |
| } |
| if (*fixup_map_timer) { |
| map_fds[21] = create_map_timer(); |
| do { |
| prog[*fixup_map_timer].imm = map_fds[21]; |
| fixup_map_timer++; |
| } while (*fixup_map_timer); |
| } |
| if (*fixup_map_kptr) { |
| map_fds[22] = create_map_kptr(); |
| do { |
| prog[*fixup_map_kptr].imm = map_fds[22]; |
| fixup_map_kptr++; |
| } while (*fixup_map_kptr); |
| } |
| |
| /* Patch in kfunc BTF IDs */ |
| if (fixup_kfunc_btf_id->kfunc) { |
| struct btf *btf; |
| int btf_id; |
| |
| do { |
| btf_id = 0; |
| btf = btf__load_vmlinux_btf(); |
| if (btf) { |
| btf_id = btf__find_by_name_kind(btf, |
| fixup_kfunc_btf_id->kfunc, |
| BTF_KIND_FUNC); |
| btf_id = btf_id < 0 ? 0 : btf_id; |
| } |
| btf__free(btf); |
| prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id; |
| fixup_kfunc_btf_id++; |
| } while (fixup_kfunc_btf_id->kfunc); |
| } |
| } |
| |
| struct libcap { |
| struct __user_cap_header_struct hdr; |
| struct __user_cap_data_struct data[2]; |
| }; |
| |
| static int set_admin(bool admin) |
| { |
| int err; |
| |
| if (admin) { |
| err = cap_enable_effective(ADMIN_CAPS, NULL); |
| if (err) |
| perror("cap_enable_effective(ADMIN_CAPS)"); |
| } else { |
| err = cap_disable_effective(ADMIN_CAPS, NULL); |
| if (err) |
| perror("cap_disable_effective(ADMIN_CAPS)"); |
| } |
| |
| return err; |
| } |
| |
| static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, |
| void *data, size_t size_data) |
| { |
| __u8 tmp[TEST_DATA_LEN << 2]; |
| __u32 size_tmp = sizeof(tmp); |
| int err, saved_errno; |
| LIBBPF_OPTS(bpf_test_run_opts, topts, |
| .data_in = data, |
| .data_size_in = size_data, |
| .data_out = tmp, |
| .data_size_out = size_tmp, |
| .repeat = 1, |
| ); |
| |
| if (unpriv) |
| set_admin(true); |
| err = bpf_prog_test_run_opts(fd_prog, &topts); |
| saved_errno = errno; |
| |
| if (unpriv) |
| set_admin(false); |
| |
| if (err) { |
| switch (saved_errno) { |
| case ENOTSUPP: |
| printf("Did not run the program (not supported) "); |
| return 0; |
| case EPERM: |
| if (unpriv) { |
| printf("Did not run the program (no permission) "); |
| return 0; |
| } |
| /* fallthrough; */ |
| default: |
| printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", |
| strerror(saved_errno)); |
| return err; |
| } |
| } |
| |
| if (topts.retval != expected_val && expected_val != POINTER_VALUE) { |
| printf("FAIL retval %d != %d ", topts.retval, expected_val); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Returns true if every part of exp (tab-separated) appears in log, in order. |
| * |
| * If exp is an empty string, returns true. |
| */ |
| static bool cmp_str_seq(const char *log, const char *exp) |
| { |
| char needle[200]; |
| const char *p, *q; |
| int len; |
| |
| do { |
| if (!strlen(exp)) |
| break; |
| p = strchr(exp, '\t'); |
| if (!p) |
| p = exp + strlen(exp); |
| |
| len = p - exp; |
| if (len >= sizeof(needle) || !len) { |
| printf("FAIL\nTestcase bug\n"); |
| return false; |
| } |
| strncpy(needle, exp, len); |
| needle[len] = 0; |
| q = strstr(log, needle); |
| if (!q) { |
| printf("FAIL\nUnexpected verifier log!\n" |
| "EXP: %s\nRES:\n", needle); |
| return false; |
| } |
| log = q + len; |
| exp = p + 1; |
| } while (*p); |
| return true; |
| } |
| |
| static int get_xlated_program(int fd_prog, struct bpf_insn **buf, int *cnt) |
| { |
| struct bpf_prog_info info = {}; |
| __u32 info_len = sizeof(info); |
| __u32 xlated_prog_len; |
| __u32 buf_element_size = sizeof(struct bpf_insn); |
| |
| if (bpf_obj_get_info_by_fd(fd_prog, &info, &info_len)) { |
| perror("bpf_obj_get_info_by_fd failed"); |
| return -1; |
| } |
| |
| xlated_prog_len = info.xlated_prog_len; |
| if (xlated_prog_len % buf_element_size) { |
| printf("Program length %d is not multiple of %d\n", |
| xlated_prog_len, buf_element_size); |
| return -1; |
| } |
| |
| *cnt = xlated_prog_len / buf_element_size; |
| *buf = calloc(*cnt, buf_element_size); |
| if (!buf) { |
| perror("can't allocate xlated program buffer"); |
| return -ENOMEM; |
| } |
| |
| bzero(&info, sizeof(info)); |
| info.xlated_prog_len = xlated_prog_len; |
| info.xlated_prog_insns = (__u64)(unsigned long)*buf; |
| if (bpf_obj_get_info_by_fd(fd_prog, &info, &info_len)) { |
| perror("second bpf_obj_get_info_by_fd failed"); |
| goto out_free_buf; |
| } |
| |
| return 0; |
| |
| out_free_buf: |
| free(*buf); |
| return -1; |
| } |
| |
| static bool is_null_insn(struct bpf_insn *insn) |
| { |
| struct bpf_insn null_insn = {}; |
| |
| return memcmp(insn, &null_insn, sizeof(null_insn)) == 0; |
| } |
| |
| static bool is_skip_insn(struct bpf_insn *insn) |
| { |
| struct bpf_insn skip_insn = SKIP_INSNS(); |
| |
| return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0; |
| } |
| |
| static int null_terminated_insn_len(struct bpf_insn *seq, int max_len) |
| { |
| int i; |
| |
| for (i = 0; i < max_len; ++i) { |
| if (is_null_insn(&seq[i])) |
| return i; |
| } |
| return max_len; |
| } |
| |
| static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked) |
| { |
| struct bpf_insn orig_masked; |
| |
| memcpy(&orig_masked, orig, sizeof(orig_masked)); |
| if (masked->imm == INSN_IMM_MASK) |
| orig_masked.imm = INSN_IMM_MASK; |
| if (masked->off == INSN_OFF_MASK) |
| orig_masked.off = INSN_OFF_MASK; |
| |
| return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0; |
| } |
| |
| static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq, |
| int seq_len, int subseq_len) |
| { |
| int i, j; |
| |
| if (subseq_len > seq_len) |
| return -1; |
| |
| for (i = 0; i < seq_len - subseq_len + 1; ++i) { |
| bool found = true; |
| |
| for (j = 0; j < subseq_len; ++j) { |
| if (!compare_masked_insn(&seq[i + j], &subseq[j])) { |
| found = false; |
| break; |
| } |
| } |
| if (found) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| static int find_skip_insn_marker(struct bpf_insn *seq, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; ++i) |
| if (is_skip_insn(&seq[i])) |
| return i; |
| |
| return -1; |
| } |
| |
| /* Return true if all sub-sequences in `subseqs` could be found in |
| * `seq` one after another. Sub-sequences are separated by a single |
| * nil instruction. |
| */ |
| static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs, |
| int seq_len, int max_subseqs_len) |
| { |
| int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len); |
| |
| while (subseqs_len > 0) { |
| int skip_idx = find_skip_insn_marker(subseqs, subseqs_len); |
| int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx; |
| int subseq_idx = find_insn_subseq(seq, subseqs, |
| seq_len, cur_subseq_len); |
| |
| if (subseq_idx < 0) |
| return false; |
| seq += subseq_idx + cur_subseq_len; |
| seq_len -= subseq_idx + cur_subseq_len; |
| subseqs += cur_subseq_len + 1; |
| subseqs_len -= cur_subseq_len + 1; |
| } |
| |
| return true; |
| } |
| |
| static void print_insn(struct bpf_insn *buf, int cnt) |
| { |
| int i; |
| |
| printf(" addr op d s off imm\n"); |
| for (i = 0; i < cnt; ++i) { |
| struct bpf_insn *insn = &buf[i]; |
| |
| if (is_null_insn(insn)) |
| break; |
| |
| if (is_skip_insn(insn)) |
| printf(" ...\n"); |
| else |
| printf(" %04x: %02x %1x %x %04hx %08x\n", |
| i, insn->code, insn->dst_reg, |
| insn->src_reg, insn->off, insn->imm); |
| } |
| } |
| |
| static bool check_xlated_program(struct bpf_test *test, int fd_prog) |
| { |
| struct bpf_insn *buf; |
| int cnt; |
| bool result = true; |
| bool check_expected = !is_null_insn(test->expected_insns); |
| bool check_unexpected = !is_null_insn(test->unexpected_insns); |
| |
| if (!check_expected && !check_unexpected) |
| goto out; |
| |
| if (get_xlated_program(fd_prog, &buf, &cnt)) { |
| printf("FAIL: can't get xlated program\n"); |
| result = false; |
| goto out; |
| } |
| |
| if (check_expected && |
| !find_all_insn_subseqs(buf, test->expected_insns, |
| cnt, MAX_EXPECTED_INSNS)) { |
| printf("FAIL: can't find expected subsequence of instructions\n"); |
| result = false; |
| if (verbose) { |
| printf("Program:\n"); |
| print_insn(buf, cnt); |
| printf("Expected subsequence:\n"); |
| print_insn(test->expected_insns, MAX_EXPECTED_INSNS); |
| } |
| } |
| |
| if (check_unexpected && |
| find_all_insn_subseqs(buf, test->unexpected_insns, |
| cnt, MAX_UNEXPECTED_INSNS)) { |
| printf("FAIL: found unexpected subsequence of instructions\n"); |
| result = false; |
| if (verbose) { |
| printf("Program:\n"); |
| print_insn(buf, cnt); |
| printf("Un-expected subsequence:\n"); |
| print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS); |
| } |
| } |
| |
| free(buf); |
| out: |
| return result; |
| } |
| |
| static void do_test_single(struct bpf_test *test, bool unpriv, |
| int *passes, int *errors) |
| { |
| int fd_prog, btf_fd, expected_ret, alignment_prevented_execution; |
| int prog_len, prog_type = test->prog_type; |
| struct bpf_insn *prog = test->insns; |
| LIBBPF_OPTS(bpf_prog_load_opts, opts); |
| int run_errs, run_successes; |
| int map_fds[MAX_NR_MAPS]; |
| const char *expected_err; |
| int saved_errno; |
| int fixup_skips; |
| __u32 pflags; |
| int i, err; |
| |
| fd_prog = -1; |
| for (i = 0; i < MAX_NR_MAPS; i++) |
| map_fds[i] = -1; |
| btf_fd = -1; |
| |
| if (!prog_type) |
| prog_type = BPF_PROG_TYPE_SOCKET_FILTER; |
| fixup_skips = skips; |
| do_test_fixup(test, prog_type, prog, map_fds); |
| if (test->fill_insns) { |
| prog = test->fill_insns; |
| prog_len = test->prog_len; |
| } else { |
| prog_len = probe_filter_length(prog); |
| } |
| /* If there were some map skips during fixup due to missing bpf |
| * features, skip this test. |
| */ |
| if (fixup_skips != skips) |
| return; |
| |
| pflags = BPF_F_TEST_RND_HI32; |
| if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) |
| pflags |= BPF_F_STRICT_ALIGNMENT; |
| if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) |
| pflags |= BPF_F_ANY_ALIGNMENT; |
| if (test->flags & ~3) |
| pflags |= test->flags; |
| |
| expected_ret = unpriv && test->result_unpriv != UNDEF ? |
| test->result_unpriv : test->result; |
| expected_err = unpriv && test->errstr_unpriv ? |
| test->errstr_unpriv : test->errstr; |
| |
| opts.expected_attach_type = test->expected_attach_type; |
| if (verbose) |
| opts.log_level = VERBOSE_LIBBPF_LOG_LEVEL; |
| else if (expected_ret == VERBOSE_ACCEPT) |
| opts.log_level = 2; |
| else |
| opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL; |
| opts.prog_flags = pflags; |
| |
| if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) { |
| int attach_btf_id; |
| |
| attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, |
| opts.expected_attach_type); |
| if (attach_btf_id < 0) { |
| printf("FAIL\nFailed to find BTF ID for '%s'!\n", |
| test->kfunc); |
| (*errors)++; |
| return; |
| } |
| |
| opts.attach_btf_id = attach_btf_id; |
| } |
| |
| if (test->btf_types[0] != 0) { |
| btf_fd = load_btf_for_test(test); |
| if (btf_fd < 0) |
| goto fail_log; |
| opts.prog_btf_fd = btf_fd; |
| } |
| |
| if (test->func_info_cnt != 0) { |
| opts.func_info = test->func_info; |
| opts.func_info_cnt = test->func_info_cnt; |
| opts.func_info_rec_size = sizeof(test->func_info[0]); |
| } |
| |
| opts.log_buf = bpf_vlog; |
| opts.log_size = sizeof(bpf_vlog); |
| fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts); |
| saved_errno = errno; |
| |
| /* BPF_PROG_TYPE_TRACING requires more setup and |
| * bpf_probe_prog_type won't give correct answer |
| */ |
| if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && |
| !libbpf_probe_bpf_prog_type(prog_type, NULL)) { |
| printf("SKIP (unsupported program type %d)\n", prog_type); |
| skips++; |
| goto close_fds; |
| } |
| |
| if (fd_prog < 0 && saved_errno == ENOTSUPP) { |
| printf("SKIP (program uses an unsupported feature)\n"); |
| skips++; |
| goto close_fds; |
| } |
| |
| alignment_prevented_execution = 0; |
| |
| if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { |
| if (fd_prog < 0) { |
| printf("FAIL\nFailed to load prog '%s'!\n", |
| strerror(saved_errno)); |
| goto fail_log; |
| } |
| #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS |
| if (fd_prog >= 0 && |
| (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) |
| alignment_prevented_execution = 1; |
| #endif |
| if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { |
| goto fail_log; |
| } |
| } else { |
| if (fd_prog >= 0) { |
| printf("FAIL\nUnexpected success to load!\n"); |
| goto fail_log; |
| } |
| if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { |
| printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", |
| expected_err, bpf_vlog); |
| goto fail_log; |
| } |
| } |
| |
| if (!unpriv && test->insn_processed) { |
| uint32_t insn_processed; |
| char *proc; |
| |
| proc = strstr(bpf_vlog, "processed "); |
| insn_processed = atoi(proc + 10); |
| if (test->insn_processed != insn_processed) { |
| printf("FAIL\nUnexpected insn_processed %u vs %u\n", |
| insn_processed, test->insn_processed); |
| goto fail_log; |
| } |
| } |
| |
| if (verbose) |
| printf(", verifier log:\n%s", bpf_vlog); |
| |
| if (!check_xlated_program(test, fd_prog)) |
| goto fail_log; |
| |
| run_errs = 0; |
| run_successes = 0; |
| if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { |
| uint32_t expected_val; |
| int i; |
| |
| if (!test->runs) |
| test->runs = 1; |
| |
| for (i = 0; i < test->runs; i++) { |
| if (unpriv && test->retvals[i].retval_unpriv) |
| expected_val = test->retvals[i].retval_unpriv; |
| else |
| expected_val = test->retvals[i].retval; |
| |
| err = do_prog_test_run(fd_prog, unpriv, expected_val, |
| test->retvals[i].data, |
| sizeof(test->retvals[i].data)); |
| if (err) { |
| printf("(run %d/%d) ", i + 1, test->runs); |
| run_errs++; |
| } else { |
| run_successes++; |
| } |
| } |
| } |
| |
| if (!run_errs) { |
| (*passes)++; |
| if (run_successes > 1) |
| printf("%d cases ", run_successes); |
| printf("OK"); |
| if (alignment_prevented_execution) |
| printf(" (NOTE: not executed due to unknown alignment)"); |
| printf("\n"); |
| } else { |
| printf("\n"); |
| goto fail_log; |
| } |
| close_fds: |
| if (test->fill_insns) |
| free(test->fill_insns); |
| close(fd_prog); |
| close(btf_fd); |
| for (i = 0; i < MAX_NR_MAPS; i++) |
| close(map_fds[i]); |
| sched_yield(); |
| return; |
| fail_log: |
| (*errors)++; |
| printf("%s", bpf_vlog); |
| goto close_fds; |
| } |
| |
| static bool is_admin(void) |
| { |
| __u64 caps; |
| |
| /* The test checks for finer cap as CAP_NET_ADMIN, |
| * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN. |
| * Thus, disable CAP_SYS_ADMIN at the beginning. |
| */ |
| if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) { |
| perror("cap_disable_effective(CAP_SYS_ADMIN)"); |
| return false; |
| } |
| |
| return (caps & ADMIN_CAPS) == ADMIN_CAPS; |
| } |
| |
| static void get_unpriv_disabled() |
| { |
| char buf[2]; |
| FILE *fd; |
| |
| fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); |
| if (!fd) { |
| perror("fopen /proc/sys/"UNPRIV_SYSCTL); |
| unpriv_disabled = true; |
| return; |
| } |
| if (fgets(buf, 2, fd) == buf && atoi(buf)) |
| unpriv_disabled = true; |
| fclose(fd); |
| } |
| |
| static bool test_as_unpriv(struct bpf_test *test) |
| { |
| #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS |
| /* Some architectures have strict alignment requirements. In |
| * that case, the BPF verifier detects if a program has |
| * unaligned accesses and rejects them. A user can pass |
| * BPF_F_ANY_ALIGNMENT to a program to override this |
| * check. That, however, will only work when a privileged user |
| * loads a program. An unprivileged user loading a program |
| * with this flag will be rejected prior entering the |
| * verifier. |
| */ |
| if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) |
| return false; |
| #endif |
| return !test->prog_type || |
| test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || |
| test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; |
| } |
| |
| static int do_test(bool unpriv, unsigned int from, unsigned int to) |
| { |
| int i, passes = 0, errors = 0; |
| |
| for (i = from; i < to; i++) { |
| struct bpf_test *test = &tests[i]; |
| |
| /* Program types that are not supported by non-root we |
| * skip right away. |
| */ |
| if (test_as_unpriv(test) && unpriv_disabled) { |
| printf("#%d/u %s SKIP\n", i, test->descr); |
| skips++; |
| } else if (test_as_unpriv(test)) { |
| if (!unpriv) |
| set_admin(false); |
| printf("#%d/u %s ", i, test->descr); |
| do_test_single(test, true, &passes, &errors); |
| if (!unpriv) |
| set_admin(true); |
| } |
| |
| if (unpriv) { |
| printf("#%d/p %s SKIP\n", i, test->descr); |
| skips++; |
| } else { |
| printf("#%d/p %s ", i, test->descr); |
| do_test_single(test, false, &passes, &errors); |
| } |
| } |
| |
| printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, |
| skips, errors); |
| return errors ? EXIT_FAILURE : EXIT_SUCCESS; |
| } |
| |
| int main(int argc, char **argv) |
| { |
| unsigned int from = 0, to = ARRAY_SIZE(tests); |
| bool unpriv = !is_admin(); |
| int arg = 1; |
| |
| if (argc > 1 && strcmp(argv[1], "-v") == 0) { |
| arg++; |
| verbose = true; |
| argc--; |
| } |
| |
| if (argc == 3) { |
| unsigned int l = atoi(argv[arg]); |
| unsigned int u = atoi(argv[arg + 1]); |
| |
| if (l < to && u < to) { |
| from = l; |
| to = u + 1; |
| } |
| } else if (argc == 2) { |
| unsigned int t = atoi(argv[arg]); |
| |
| if (t < to) { |
| from = t; |
| to = t + 1; |
| } |
| } |
| |
| get_unpriv_disabled(); |
| if (unpriv && unpriv_disabled) { |
| printf("Cannot run as unprivileged user with sysctl %s.\n", |
| UNPRIV_SYSCTL); |
| return EXIT_FAILURE; |
| } |
| |
| /* Use libbpf 1.0 API mode */ |
| libbpf_set_strict_mode(LIBBPF_STRICT_ALL); |
| |
| bpf_semi_rand_init(); |
| return do_test(unpriv, from, to); |
| } |