| #include <linux/mm.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/string.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/export.h> | 
 | #include <linux/err.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/security.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #include <asm/sections.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | static inline int is_kernel_rodata(unsigned long addr) | 
 | { | 
 | 	return addr >= (unsigned long)__start_rodata && | 
 | 		addr < (unsigned long)__end_rodata; | 
 | } | 
 |  | 
 | /** | 
 |  * kfree_const - conditionally free memory | 
 |  * @x: pointer to the memory | 
 |  * | 
 |  * Function calls kfree only if @x is not in .rodata section. | 
 |  */ | 
 | void kfree_const(const void *x) | 
 | { | 
 | 	if (!is_kernel_rodata((unsigned long)x)) | 
 | 		kfree(x); | 
 | } | 
 | EXPORT_SYMBOL(kfree_const); | 
 |  | 
 | /** | 
 |  * kstrdup - allocate space for and copy an existing string | 
 |  * @s: the string to duplicate | 
 |  * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
 |  */ | 
 | char *kstrdup(const char *s, gfp_t gfp) | 
 | { | 
 | 	size_t len; | 
 | 	char *buf; | 
 |  | 
 | 	if (!s) | 
 | 		return NULL; | 
 |  | 
 | 	len = strlen(s) + 1; | 
 | 	buf = kmalloc_track_caller(len, gfp); | 
 | 	if (buf) | 
 | 		memcpy(buf, s, len); | 
 | 	return buf; | 
 | } | 
 | EXPORT_SYMBOL(kstrdup); | 
 |  | 
 | /** | 
 |  * kstrdup_const - conditionally duplicate an existing const string | 
 |  * @s: the string to duplicate | 
 |  * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
 |  * | 
 |  * Function returns source string if it is in .rodata section otherwise it | 
 |  * fallbacks to kstrdup. | 
 |  * Strings allocated by kstrdup_const should be freed by kfree_const. | 
 |  */ | 
 | const char *kstrdup_const(const char *s, gfp_t gfp) | 
 | { | 
 | 	if (is_kernel_rodata((unsigned long)s)) | 
 | 		return s; | 
 |  | 
 | 	return kstrdup(s, gfp); | 
 | } | 
 | EXPORT_SYMBOL(kstrdup_const); | 
 |  | 
 | /** | 
 |  * kstrndup - allocate space for and copy an existing string | 
 |  * @s: the string to duplicate | 
 |  * @max: read at most @max chars from @s | 
 |  * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
 |  */ | 
 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | 
 | { | 
 | 	size_t len; | 
 | 	char *buf; | 
 |  | 
 | 	if (!s) | 
 | 		return NULL; | 
 |  | 
 | 	len = strnlen(s, max); | 
 | 	buf = kmalloc_track_caller(len+1, gfp); | 
 | 	if (buf) { | 
 | 		memcpy(buf, s, len); | 
 | 		buf[len] = '\0'; | 
 | 	} | 
 | 	return buf; | 
 | } | 
 | EXPORT_SYMBOL(kstrndup); | 
 |  | 
 | /** | 
 |  * kmemdup - duplicate region of memory | 
 |  * | 
 |  * @src: memory region to duplicate | 
 |  * @len: memory region length | 
 |  * @gfp: GFP mask to use | 
 |  */ | 
 | void *kmemdup(const void *src, size_t len, gfp_t gfp) | 
 | { | 
 | 	void *p; | 
 |  | 
 | 	p = kmalloc_track_caller(len, gfp); | 
 | 	if (p) | 
 | 		memcpy(p, src, len); | 
 | 	return p; | 
 | } | 
 | EXPORT_SYMBOL(kmemdup); | 
 |  | 
 | /** | 
 |  * memdup_user - duplicate memory region from user space | 
 |  * | 
 |  * @src: source address in user space | 
 |  * @len: number of bytes to copy | 
 |  * | 
 |  * Returns an ERR_PTR() on failure. | 
 |  */ | 
 | void *memdup_user(const void __user *src, size_t len) | 
 | { | 
 | 	void *p; | 
 |  | 
 | 	/* | 
 | 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and | 
 | 	 * cause pagefault, which makes it pointless to use GFP_NOFS | 
 | 	 * or GFP_ATOMIC. | 
 | 	 */ | 
 | 	p = kmalloc_track_caller(len, GFP_KERNEL); | 
 | 	if (!p) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (copy_from_user(p, src, len)) { | 
 | 		kfree(p); | 
 | 		return ERR_PTR(-EFAULT); | 
 | 	} | 
 |  | 
 | 	return p; | 
 | } | 
 | EXPORT_SYMBOL(memdup_user); | 
 |  | 
 | /* | 
 |  * strndup_user - duplicate an existing string from user space | 
 |  * @s: The string to duplicate | 
 |  * @n: Maximum number of bytes to copy, including the trailing NUL. | 
 |  */ | 
 | char *strndup_user(const char __user *s, long n) | 
 | { | 
 | 	char *p; | 
 | 	long length; | 
 |  | 
 | 	length = strnlen_user(s, n); | 
 |  | 
 | 	if (!length) | 
 | 		return ERR_PTR(-EFAULT); | 
 |  | 
 | 	if (length > n) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	p = memdup_user(s, length); | 
 |  | 
 | 	if (IS_ERR(p)) | 
 | 		return p; | 
 |  | 
 | 	p[length - 1] = '\0'; | 
 |  | 
 | 	return p; | 
 | } | 
 | EXPORT_SYMBOL(strndup_user); | 
 |  | 
 | /** | 
 |  * memdup_user_nul - duplicate memory region from user space and NUL-terminate | 
 |  * | 
 |  * @src: source address in user space | 
 |  * @len: number of bytes to copy | 
 |  * | 
 |  * Returns an ERR_PTR() on failure. | 
 |  */ | 
 | void *memdup_user_nul(const void __user *src, size_t len) | 
 | { | 
 | 	char *p; | 
 |  | 
 | 	/* | 
 | 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and | 
 | 	 * cause pagefault, which makes it pointless to use GFP_NOFS | 
 | 	 * or GFP_ATOMIC. | 
 | 	 */ | 
 | 	p = kmalloc_track_caller(len + 1, GFP_KERNEL); | 
 | 	if (!p) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (copy_from_user(p, src, len)) { | 
 | 		kfree(p); | 
 | 		return ERR_PTR(-EFAULT); | 
 | 	} | 
 | 	p[len] = '\0'; | 
 |  | 
 | 	return p; | 
 | } | 
 | EXPORT_SYMBOL(memdup_user_nul); | 
 |  | 
 | void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		struct vm_area_struct *prev, struct rb_node *rb_parent) | 
 | { | 
 | 	struct vm_area_struct *next; | 
 |  | 
 | 	vma->vm_prev = prev; | 
 | 	if (prev) { | 
 | 		next = prev->vm_next; | 
 | 		prev->vm_next = vma; | 
 | 	} else { | 
 | 		mm->mmap = vma; | 
 | 		if (rb_parent) | 
 | 			next = rb_entry(rb_parent, | 
 | 					struct vm_area_struct, vm_rb); | 
 | 		else | 
 | 			next = NULL; | 
 | 	} | 
 | 	vma->vm_next = next; | 
 | 	if (next) | 
 | 		next->vm_prev = vma; | 
 | } | 
 |  | 
 | /* Check if the vma is being used as a stack by this task */ | 
 | int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t) | 
 | { | 
 | 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); | 
 | } | 
 |  | 
 | #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) | 
 | void arch_pick_mmap_layout(struct mm_struct *mm) | 
 | { | 
 | 	mm->mmap_base = TASK_UNMAPPED_BASE; | 
 | 	mm->get_unmapped_area = arch_get_unmapped_area; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall | 
 |  * back to the regular GUP. | 
 |  * If the architecture not support this function, simply return with no | 
 |  * page pinned | 
 |  */ | 
 | int __weak __get_user_pages_fast(unsigned long start, | 
 | 				 int nr_pages, int write, struct page **pages) | 
 | { | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); | 
 |  | 
 | /** | 
 |  * get_user_pages_fast() - pin user pages in memory | 
 |  * @start:	starting user address | 
 |  * @nr_pages:	number of pages from start to pin | 
 |  * @write:	whether pages will be written to | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_pages long. | 
 |  * | 
 |  * Returns number of pages pinned. This may be fewer than the number | 
 |  * requested. If nr_pages is 0 or negative, returns 0. If no pages | 
 |  * were pinned, returns -errno. | 
 |  * | 
 |  * get_user_pages_fast provides equivalent functionality to get_user_pages, | 
 |  * operating on current and current->mm, with force=0 and vma=NULL. However | 
 |  * unlike get_user_pages, it must be called without mmap_sem held. | 
 |  * | 
 |  * get_user_pages_fast may take mmap_sem and page table locks, so no | 
 |  * assumptions can be made about lack of locking. get_user_pages_fast is to be | 
 |  * implemented in a way that is advantageous (vs get_user_pages()) when the | 
 |  * user memory area is already faulted in and present in ptes. However if the | 
 |  * pages have to be faulted in, it may turn out to be slightly slower so | 
 |  * callers need to carefully consider what to use. On many architectures, | 
 |  * get_user_pages_fast simply falls back to get_user_pages. | 
 |  */ | 
 | int __weak get_user_pages_fast(unsigned long start, | 
 | 				int nr_pages, int write, struct page **pages) | 
 | { | 
 | 	return get_user_pages_unlocked(start, nr_pages, write, 0, pages); | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_user_pages_fast); | 
 |  | 
 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, | 
 | 	unsigned long len, unsigned long prot, | 
 | 	unsigned long flag, unsigned long pgoff) | 
 | { | 
 | 	unsigned long ret; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	unsigned long populate; | 
 |  | 
 | 	ret = security_mmap_file(file, prot, flag); | 
 | 	if (!ret) { | 
 | 		down_write(&mm->mmap_sem); | 
 | 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, | 
 | 				    &populate); | 
 | 		up_write(&mm->mmap_sem); | 
 | 		if (populate) | 
 | 			mm_populate(ret, populate); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | unsigned long vm_mmap(struct file *file, unsigned long addr, | 
 | 	unsigned long len, unsigned long prot, | 
 | 	unsigned long flag, unsigned long offset) | 
 | { | 
 | 	if (unlikely(offset + PAGE_ALIGN(len) < offset)) | 
 | 		return -EINVAL; | 
 | 	if (unlikely(offset_in_page(offset))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); | 
 | } | 
 | EXPORT_SYMBOL(vm_mmap); | 
 |  | 
 | void kvfree(const void *addr) | 
 | { | 
 | 	if (is_vmalloc_addr(addr)) | 
 | 		vfree(addr); | 
 | 	else | 
 | 		kfree(addr); | 
 | } | 
 | EXPORT_SYMBOL(kvfree); | 
 |  | 
 | static inline void *__page_rmapping(struct page *page) | 
 | { | 
 | 	unsigned long mapping; | 
 |  | 
 | 	mapping = (unsigned long)page->mapping; | 
 | 	mapping &= ~PAGE_MAPPING_FLAGS; | 
 |  | 
 | 	return (void *)mapping; | 
 | } | 
 |  | 
 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ | 
 | void *page_rmapping(struct page *page) | 
 | { | 
 | 	page = compound_head(page); | 
 | 	return __page_rmapping(page); | 
 | } | 
 |  | 
 | struct anon_vma *page_anon_vma(struct page *page) | 
 | { | 
 | 	unsigned long mapping; | 
 |  | 
 | 	page = compound_head(page); | 
 | 	mapping = (unsigned long)page->mapping; | 
 | 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | 
 | 		return NULL; | 
 | 	return __page_rmapping(page); | 
 | } | 
 |  | 
 | struct address_space *page_mapping(struct page *page) | 
 | { | 
 | 	struct address_space *mapping; | 
 |  | 
 | 	page = compound_head(page); | 
 |  | 
 | 	/* This happens if someone calls flush_dcache_page on slab page */ | 
 | 	if (unlikely(PageSlab(page))) | 
 | 		return NULL; | 
 |  | 
 | 	if (unlikely(PageSwapCache(page))) { | 
 | 		swp_entry_t entry; | 
 |  | 
 | 		entry.val = page_private(page); | 
 | 		return swap_address_space(entry); | 
 | 	} | 
 |  | 
 | 	mapping = page->mapping; | 
 | 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) | 
 | 		return NULL; | 
 | 	return mapping; | 
 | } | 
 |  | 
 | /* Slow path of page_mapcount() for compound pages */ | 
 | int __page_mapcount(struct page *page) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = atomic_read(&page->_mapcount) + 1; | 
 | 	page = compound_head(page); | 
 | 	ret += atomic_read(compound_mapcount_ptr(page)) + 1; | 
 | 	if (PageDoubleMap(page)) | 
 | 		ret--; | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__page_mapcount); | 
 |  | 
 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; | 
 | int sysctl_overcommit_ratio __read_mostly = 50; | 
 | unsigned long sysctl_overcommit_kbytes __read_mostly; | 
 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | 
 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | 
 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | 
 |  | 
 | int overcommit_ratio_handler(struct ctl_table *table, int write, | 
 | 			     void __user *buffer, size_t *lenp, | 
 | 			     loff_t *ppos) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
 | 	if (ret == 0 && write) | 
 | 		sysctl_overcommit_kbytes = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int overcommit_kbytes_handler(struct ctl_table *table, int write, | 
 | 			     void __user *buffer, size_t *lenp, | 
 | 			     loff_t *ppos) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
 | 	if (ret == 0 && write) | 
 | 		sysctl_overcommit_ratio = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | 
 |  */ | 
 | unsigned long vm_commit_limit(void) | 
 | { | 
 | 	unsigned long allowed; | 
 |  | 
 | 	if (sysctl_overcommit_kbytes) | 
 | 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | 
 | 	else | 
 | 		allowed = ((totalram_pages - hugetlb_total_pages()) | 
 | 			   * sysctl_overcommit_ratio / 100); | 
 | 	allowed += total_swap_pages; | 
 |  | 
 | 	return allowed; | 
 | } | 
 |  | 
 | /* | 
 |  * Make sure vm_committed_as in one cacheline and not cacheline shared with | 
 |  * other variables. It can be updated by several CPUs frequently. | 
 |  */ | 
 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | 
 |  | 
 | /* | 
 |  * The global memory commitment made in the system can be a metric | 
 |  * that can be used to drive ballooning decisions when Linux is hosted | 
 |  * as a guest. On Hyper-V, the host implements a policy engine for dynamically | 
 |  * balancing memory across competing virtual machines that are hosted. | 
 |  * Several metrics drive this policy engine including the guest reported | 
 |  * memory commitment. | 
 |  */ | 
 | unsigned long vm_memory_committed(void) | 
 | { | 
 | 	return percpu_counter_read_positive(&vm_committed_as); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vm_memory_committed); | 
 |  | 
 | /* | 
 |  * Check that a process has enough memory to allocate a new virtual | 
 |  * mapping. 0 means there is enough memory for the allocation to | 
 |  * succeed and -ENOMEM implies there is not. | 
 |  * | 
 |  * We currently support three overcommit policies, which are set via the | 
 |  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting | 
 |  * | 
 |  * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | 
 |  * Additional code 2002 Jul 20 by Robert Love. | 
 |  * | 
 |  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | 
 |  * | 
 |  * Note this is a helper function intended to be used by LSMs which | 
 |  * wish to use this logic. | 
 |  */ | 
 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | 
 | { | 
 | 	long free, allowed, reserve; | 
 |  | 
 | 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < | 
 | 			-(s64)vm_committed_as_batch * num_online_cpus(), | 
 | 			"memory commitment underflow"); | 
 |  | 
 | 	vm_acct_memory(pages); | 
 |  | 
 | 	/* | 
 | 	 * Sometimes we want to use more memory than we have | 
 | 	 */ | 
 | 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | 
 | 		return 0; | 
 |  | 
 | 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | 
 | 		free = global_page_state(NR_FREE_PAGES); | 
 | 		free += global_page_state(NR_FILE_PAGES); | 
 |  | 
 | 		/* | 
 | 		 * shmem pages shouldn't be counted as free in this | 
 | 		 * case, they can't be purged, only swapped out, and | 
 | 		 * that won't affect the overall amount of available | 
 | 		 * memory in the system. | 
 | 		 */ | 
 | 		free -= global_page_state(NR_SHMEM); | 
 |  | 
 | 		free += get_nr_swap_pages(); | 
 |  | 
 | 		/* | 
 | 		 * Any slabs which are created with the | 
 | 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents | 
 | 		 * which are reclaimable, under pressure.  The dentry | 
 | 		 * cache and most inode caches should fall into this | 
 | 		 */ | 
 | 		free += global_page_state(NR_SLAB_RECLAIMABLE); | 
 |  | 
 | 		/* | 
 | 		 * Leave reserved pages. The pages are not for anonymous pages. | 
 | 		 */ | 
 | 		if (free <= totalreserve_pages) | 
 | 			goto error; | 
 | 		else | 
 | 			free -= totalreserve_pages; | 
 |  | 
 | 		/* | 
 | 		 * Reserve some for root | 
 | 		 */ | 
 | 		if (!cap_sys_admin) | 
 | 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | 
 |  | 
 | 		if (free > pages) | 
 | 			return 0; | 
 |  | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	allowed = vm_commit_limit(); | 
 | 	/* | 
 | 	 * Reserve some for root | 
 | 	 */ | 
 | 	if (!cap_sys_admin) | 
 | 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | 
 |  | 
 | 	/* | 
 | 	 * Don't let a single process grow so big a user can't recover | 
 | 	 */ | 
 | 	if (mm) { | 
 | 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); | 
 | 		allowed -= min_t(long, mm->total_vm / 32, reserve); | 
 | 	} | 
 |  | 
 | 	if (percpu_counter_read_positive(&vm_committed_as) < allowed) | 
 | 		return 0; | 
 | error: | 
 | 	vm_unacct_memory(pages); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /** | 
 |  * get_cmdline() - copy the cmdline value to a buffer. | 
 |  * @task:     the task whose cmdline value to copy. | 
 |  * @buffer:   the buffer to copy to. | 
 |  * @buflen:   the length of the buffer. Larger cmdline values are truncated | 
 |  *            to this length. | 
 |  * Returns the size of the cmdline field copied. Note that the copy does | 
 |  * not guarantee an ending NULL byte. | 
 |  */ | 
 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | 
 | { | 
 | 	int res = 0; | 
 | 	unsigned int len; | 
 | 	struct mm_struct *mm = get_task_mm(task); | 
 | 	unsigned long arg_start, arg_end, env_start, env_end; | 
 | 	if (!mm) | 
 | 		goto out; | 
 | 	if (!mm->arg_end) | 
 | 		goto out_mm;	/* Shh! No looking before we're done */ | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 | 	arg_start = mm->arg_start; | 
 | 	arg_end = mm->arg_end; | 
 | 	env_start = mm->env_start; | 
 | 	env_end = mm->env_end; | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	len = arg_end - arg_start; | 
 |  | 
 | 	if (len > buflen) | 
 | 		len = buflen; | 
 |  | 
 | 	res = access_process_vm(task, arg_start, buffer, len, 0); | 
 |  | 
 | 	/* | 
 | 	 * If the nul at the end of args has been overwritten, then | 
 | 	 * assume application is using setproctitle(3). | 
 | 	 */ | 
 | 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | 
 | 		len = strnlen(buffer, res); | 
 | 		if (len < res) { | 
 | 			res = len; | 
 | 		} else { | 
 | 			len = env_end - env_start; | 
 | 			if (len > buflen - res) | 
 | 				len = buflen - res; | 
 | 			res += access_process_vm(task, env_start, | 
 | 						 buffer+res, len, 0); | 
 | 			res = strnlen(buffer, res); | 
 | 		} | 
 | 	} | 
 | out_mm: | 
 | 	mmput(mm); | 
 | out: | 
 | 	return res; | 
 | } |