|  | /************************************************************************ | 
|  | * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC | 
|  | * Copyright(c) 2002-2007 Neterion Inc. | 
|  |  | 
|  | * This software may be used and distributed according to the terms of | 
|  | * the GNU General Public License (GPL), incorporated herein by reference. | 
|  | * Drivers based on or derived from this code fall under the GPL and must | 
|  | * retain the authorship, copyright and license notice.  This file is not | 
|  | * a complete program and may only be used when the entire operating | 
|  | * system is licensed under the GPL. | 
|  | * See the file COPYING in this distribution for more information. | 
|  | * | 
|  | * Credits: | 
|  | * Jeff Garzik		: For pointing out the improper error condition | 
|  | *			  check in the s2io_xmit routine and also some | 
|  | *			  issues in the Tx watch dog function. Also for | 
|  | *			  patiently answering all those innumerable | 
|  | *			  questions regaring the 2.6 porting issues. | 
|  | * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some | 
|  | *			  macros available only in 2.6 Kernel. | 
|  | * Francois Romieu	: For pointing out all code part that were | 
|  | *			  deprecated and also styling related comments. | 
|  | * Grant Grundler	: For helping me get rid of some Architecture | 
|  | *			  dependent code. | 
|  | * Christopher Hellwig	: Some more 2.6 specific issues in the driver. | 
|  | * | 
|  | * The module loadable parameters that are supported by the driver and a brief | 
|  | * explaination of all the variables. | 
|  | * | 
|  | * rx_ring_num : This can be used to program the number of receive rings used | 
|  | * in the driver. | 
|  | * rx_ring_sz: This defines the number of receive blocks each ring can have. | 
|  | *     This is also an array of size 8. | 
|  | * rx_ring_mode: This defines the operation mode of all 8 rings. The valid | 
|  | *		values are 1, 2. | 
|  | * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. | 
|  | * tx_fifo_len: This too is an array of 8. Each element defines the number of | 
|  | * Tx descriptors that can be associated with each corresponding FIFO. | 
|  | * intr_type: This defines the type of interrupt. The values can be 0(INTA), | 
|  | *     2(MSI_X). Default value is '2(MSI_X)' | 
|  | * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not. | 
|  | *     Possible values '1' for enable '0' for disable. Default is '0' | 
|  | * lro_max_pkts: This parameter defines maximum number of packets can be | 
|  | *     aggregated as a single large packet | 
|  | * napi: This parameter used to enable/disable NAPI (polling Rx) | 
|  | *     Possible values '1' for enable and '0' for disable. Default is '1' | 
|  | * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO) | 
|  | *      Possible values '1' for enable and '0' for disable. Default is '0' | 
|  | * vlan_tag_strip: This can be used to enable or disable vlan stripping. | 
|  | *                 Possible values '1' for enable , '0' for disable. | 
|  | *                 Default is '2' - which means disable in promisc mode | 
|  | *                 and enable in non-promiscuous mode. | 
|  | ************************************************************************/ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/ioctl.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <net/tcp.h> | 
|  |  | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/div64.h> | 
|  | #include <asm/irq.h> | 
|  |  | 
|  | /* local include */ | 
|  | #include "s2io.h" | 
|  | #include "s2io-regs.h" | 
|  |  | 
|  | #define DRV_VERSION "2.0.26.15-2" | 
|  |  | 
|  | /* S2io Driver name & version. */ | 
|  | static char s2io_driver_name[] = "Neterion"; | 
|  | static char s2io_driver_version[] = DRV_VERSION; | 
|  |  | 
|  | static int rxd_size[2] = {32,48}; | 
|  | static int rxd_count[2] = {127,85}; | 
|  |  | 
|  | static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && | 
|  | (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cards with following subsystem_id have a link state indication | 
|  | * problem, 600B, 600C, 600D, 640B, 640C and 640D. | 
|  | * macro below identifies these cards given the subsystem_id. | 
|  | */ | 
|  | #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ | 
|  | (dev_type == XFRAME_I_DEVICE) ?			\ | 
|  | ((((subid >= 0x600B) && (subid <= 0x600D)) || \ | 
|  | ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 | 
|  |  | 
|  | #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ | 
|  | ADAPTER_STATUS_RMAC_LOCAL_FAULT))) | 
|  | #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status)) | 
|  | #define PANIC	1 | 
|  | #define LOW	2 | 
|  | static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring) | 
|  | { | 
|  | struct mac_info *mac_control; | 
|  |  | 
|  | mac_control = &sp->mac_control; | 
|  | if (rxb_size <= rxd_count[sp->rxd_mode]) | 
|  | return PANIC; | 
|  | else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) | 
|  | return  LOW; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int is_s2io_card_up(const struct s2io_nic * sp) | 
|  | { | 
|  | return test_bit(__S2IO_STATE_CARD_UP, &sp->state); | 
|  | } | 
|  |  | 
|  | /* Ethtool related variables and Macros. */ | 
|  | static char s2io_gstrings[][ETH_GSTRING_LEN] = { | 
|  | "Register test\t(offline)", | 
|  | "Eeprom test\t(offline)", | 
|  | "Link test\t(online)", | 
|  | "RLDRAM test\t(offline)", | 
|  | "BIST Test\t(offline)" | 
|  | }; | 
|  |  | 
|  | static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { | 
|  | {"tmac_frms"}, | 
|  | {"tmac_data_octets"}, | 
|  | {"tmac_drop_frms"}, | 
|  | {"tmac_mcst_frms"}, | 
|  | {"tmac_bcst_frms"}, | 
|  | {"tmac_pause_ctrl_frms"}, | 
|  | {"tmac_ttl_octets"}, | 
|  | {"tmac_ucst_frms"}, | 
|  | {"tmac_nucst_frms"}, | 
|  | {"tmac_any_err_frms"}, | 
|  | {"tmac_ttl_less_fb_octets"}, | 
|  | {"tmac_vld_ip_octets"}, | 
|  | {"tmac_vld_ip"}, | 
|  | {"tmac_drop_ip"}, | 
|  | {"tmac_icmp"}, | 
|  | {"tmac_rst_tcp"}, | 
|  | {"tmac_tcp"}, | 
|  | {"tmac_udp"}, | 
|  | {"rmac_vld_frms"}, | 
|  | {"rmac_data_octets"}, | 
|  | {"rmac_fcs_err_frms"}, | 
|  | {"rmac_drop_frms"}, | 
|  | {"rmac_vld_mcst_frms"}, | 
|  | {"rmac_vld_bcst_frms"}, | 
|  | {"rmac_in_rng_len_err_frms"}, | 
|  | {"rmac_out_rng_len_err_frms"}, | 
|  | {"rmac_long_frms"}, | 
|  | {"rmac_pause_ctrl_frms"}, | 
|  | {"rmac_unsup_ctrl_frms"}, | 
|  | {"rmac_ttl_octets"}, | 
|  | {"rmac_accepted_ucst_frms"}, | 
|  | {"rmac_accepted_nucst_frms"}, | 
|  | {"rmac_discarded_frms"}, | 
|  | {"rmac_drop_events"}, | 
|  | {"rmac_ttl_less_fb_octets"}, | 
|  | {"rmac_ttl_frms"}, | 
|  | {"rmac_usized_frms"}, | 
|  | {"rmac_osized_frms"}, | 
|  | {"rmac_frag_frms"}, | 
|  | {"rmac_jabber_frms"}, | 
|  | {"rmac_ttl_64_frms"}, | 
|  | {"rmac_ttl_65_127_frms"}, | 
|  | {"rmac_ttl_128_255_frms"}, | 
|  | {"rmac_ttl_256_511_frms"}, | 
|  | {"rmac_ttl_512_1023_frms"}, | 
|  | {"rmac_ttl_1024_1518_frms"}, | 
|  | {"rmac_ip"}, | 
|  | {"rmac_ip_octets"}, | 
|  | {"rmac_hdr_err_ip"}, | 
|  | {"rmac_drop_ip"}, | 
|  | {"rmac_icmp"}, | 
|  | {"rmac_tcp"}, | 
|  | {"rmac_udp"}, | 
|  | {"rmac_err_drp_udp"}, | 
|  | {"rmac_xgmii_err_sym"}, | 
|  | {"rmac_frms_q0"}, | 
|  | {"rmac_frms_q1"}, | 
|  | {"rmac_frms_q2"}, | 
|  | {"rmac_frms_q3"}, | 
|  | {"rmac_frms_q4"}, | 
|  | {"rmac_frms_q5"}, | 
|  | {"rmac_frms_q6"}, | 
|  | {"rmac_frms_q7"}, | 
|  | {"rmac_full_q0"}, | 
|  | {"rmac_full_q1"}, | 
|  | {"rmac_full_q2"}, | 
|  | {"rmac_full_q3"}, | 
|  | {"rmac_full_q4"}, | 
|  | {"rmac_full_q5"}, | 
|  | {"rmac_full_q6"}, | 
|  | {"rmac_full_q7"}, | 
|  | {"rmac_pause_cnt"}, | 
|  | {"rmac_xgmii_data_err_cnt"}, | 
|  | {"rmac_xgmii_ctrl_err_cnt"}, | 
|  | {"rmac_accepted_ip"}, | 
|  | {"rmac_err_tcp"}, | 
|  | {"rd_req_cnt"}, | 
|  | {"new_rd_req_cnt"}, | 
|  | {"new_rd_req_rtry_cnt"}, | 
|  | {"rd_rtry_cnt"}, | 
|  | {"wr_rtry_rd_ack_cnt"}, | 
|  | {"wr_req_cnt"}, | 
|  | {"new_wr_req_cnt"}, | 
|  | {"new_wr_req_rtry_cnt"}, | 
|  | {"wr_rtry_cnt"}, | 
|  | {"wr_disc_cnt"}, | 
|  | {"rd_rtry_wr_ack_cnt"}, | 
|  | {"txp_wr_cnt"}, | 
|  | {"txd_rd_cnt"}, | 
|  | {"txd_wr_cnt"}, | 
|  | {"rxd_rd_cnt"}, | 
|  | {"rxd_wr_cnt"}, | 
|  | {"txf_rd_cnt"}, | 
|  | {"rxf_wr_cnt"} | 
|  | }; | 
|  |  | 
|  | static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { | 
|  | {"rmac_ttl_1519_4095_frms"}, | 
|  | {"rmac_ttl_4096_8191_frms"}, | 
|  | {"rmac_ttl_8192_max_frms"}, | 
|  | {"rmac_ttl_gt_max_frms"}, | 
|  | {"rmac_osized_alt_frms"}, | 
|  | {"rmac_jabber_alt_frms"}, | 
|  | {"rmac_gt_max_alt_frms"}, | 
|  | {"rmac_vlan_frms"}, | 
|  | {"rmac_len_discard"}, | 
|  | {"rmac_fcs_discard"}, | 
|  | {"rmac_pf_discard"}, | 
|  | {"rmac_da_discard"}, | 
|  | {"rmac_red_discard"}, | 
|  | {"rmac_rts_discard"}, | 
|  | {"rmac_ingm_full_discard"}, | 
|  | {"link_fault_cnt"} | 
|  | }; | 
|  |  | 
|  | static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { | 
|  | {"\n DRIVER STATISTICS"}, | 
|  | {"single_bit_ecc_errs"}, | 
|  | {"double_bit_ecc_errs"}, | 
|  | {"parity_err_cnt"}, | 
|  | {"serious_err_cnt"}, | 
|  | {"soft_reset_cnt"}, | 
|  | {"fifo_full_cnt"}, | 
|  | {"ring_0_full_cnt"}, | 
|  | {"ring_1_full_cnt"}, | 
|  | {"ring_2_full_cnt"}, | 
|  | {"ring_3_full_cnt"}, | 
|  | {"ring_4_full_cnt"}, | 
|  | {"ring_5_full_cnt"}, | 
|  | {"ring_6_full_cnt"}, | 
|  | {"ring_7_full_cnt"}, | 
|  | {"alarm_transceiver_temp_high"}, | 
|  | {"alarm_transceiver_temp_low"}, | 
|  | {"alarm_laser_bias_current_high"}, | 
|  | {"alarm_laser_bias_current_low"}, | 
|  | {"alarm_laser_output_power_high"}, | 
|  | {"alarm_laser_output_power_low"}, | 
|  | {"warn_transceiver_temp_high"}, | 
|  | {"warn_transceiver_temp_low"}, | 
|  | {"warn_laser_bias_current_high"}, | 
|  | {"warn_laser_bias_current_low"}, | 
|  | {"warn_laser_output_power_high"}, | 
|  | {"warn_laser_output_power_low"}, | 
|  | {"lro_aggregated_pkts"}, | 
|  | {"lro_flush_both_count"}, | 
|  | {"lro_out_of_sequence_pkts"}, | 
|  | {"lro_flush_due_to_max_pkts"}, | 
|  | {"lro_avg_aggr_pkts"}, | 
|  | {"mem_alloc_fail_cnt"}, | 
|  | {"pci_map_fail_cnt"}, | 
|  | {"watchdog_timer_cnt"}, | 
|  | {"mem_allocated"}, | 
|  | {"mem_freed"}, | 
|  | {"link_up_cnt"}, | 
|  | {"link_down_cnt"}, | 
|  | {"link_up_time"}, | 
|  | {"link_down_time"}, | 
|  | {"tx_tcode_buf_abort_cnt"}, | 
|  | {"tx_tcode_desc_abort_cnt"}, | 
|  | {"tx_tcode_parity_err_cnt"}, | 
|  | {"tx_tcode_link_loss_cnt"}, | 
|  | {"tx_tcode_list_proc_err_cnt"}, | 
|  | {"rx_tcode_parity_err_cnt"}, | 
|  | {"rx_tcode_abort_cnt"}, | 
|  | {"rx_tcode_parity_abort_cnt"}, | 
|  | {"rx_tcode_rda_fail_cnt"}, | 
|  | {"rx_tcode_unkn_prot_cnt"}, | 
|  | {"rx_tcode_fcs_err_cnt"}, | 
|  | {"rx_tcode_buf_size_err_cnt"}, | 
|  | {"rx_tcode_rxd_corrupt_cnt"}, | 
|  | {"rx_tcode_unkn_err_cnt"}, | 
|  | {"tda_err_cnt"}, | 
|  | {"pfc_err_cnt"}, | 
|  | {"pcc_err_cnt"}, | 
|  | {"tti_err_cnt"}, | 
|  | {"tpa_err_cnt"}, | 
|  | {"sm_err_cnt"}, | 
|  | {"lso_err_cnt"}, | 
|  | {"mac_tmac_err_cnt"}, | 
|  | {"mac_rmac_err_cnt"}, | 
|  | {"xgxs_txgxs_err_cnt"}, | 
|  | {"xgxs_rxgxs_err_cnt"}, | 
|  | {"rc_err_cnt"}, | 
|  | {"prc_pcix_err_cnt"}, | 
|  | {"rpa_err_cnt"}, | 
|  | {"rda_err_cnt"}, | 
|  | {"rti_err_cnt"}, | 
|  | {"mc_err_cnt"} | 
|  | }; | 
|  |  | 
|  | #define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys) | 
|  | #define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys) | 
|  | #define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys) | 
|  |  | 
|  | #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN ) | 
|  | #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN ) | 
|  |  | 
|  | #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN ) | 
|  | #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN ) | 
|  |  | 
|  | #define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings) | 
|  | #define S2IO_STRINGS_LEN	S2IO_TEST_LEN * ETH_GSTRING_LEN | 
|  |  | 
|  | #define S2IO_TIMER_CONF(timer, handle, arg, exp)		\ | 
|  | init_timer(&timer);			\ | 
|  | timer.function = handle;		\ | 
|  | timer.data = (unsigned long) arg;	\ | 
|  | mod_timer(&timer, (jiffies + exp))	\ | 
|  |  | 
|  | /* copy mac addr to def_mac_addr array */ | 
|  | static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) | 
|  | { | 
|  | sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); | 
|  | sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); | 
|  | sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); | 
|  | sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); | 
|  | sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); | 
|  | sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); | 
|  | } | 
|  | /* Add the vlan */ | 
|  | static void s2io_vlan_rx_register(struct net_device *dev, | 
|  | struct vlan_group *grp) | 
|  | { | 
|  | int i; | 
|  | struct s2io_nic *nic = dev->priv; | 
|  | unsigned long flags[MAX_TX_FIFOS]; | 
|  | struct mac_info *mac_control = &nic->mac_control; | 
|  | struct config_param *config = &nic->config; | 
|  |  | 
|  | for (i = 0; i < config->tx_fifo_num; i++) | 
|  | spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]); | 
|  |  | 
|  | nic->vlgrp = grp; | 
|  | for (i = config->tx_fifo_num - 1; i >= 0; i--) | 
|  | spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, | 
|  | flags[i]); | 
|  | } | 
|  |  | 
|  | /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */ | 
|  | static int vlan_strip_flag; | 
|  |  | 
|  | /* | 
|  | * Constants to be programmed into the Xena's registers, to configure | 
|  | * the XAUI. | 
|  | */ | 
|  |  | 
|  | #define	END_SIGN	0x0 | 
|  | static const u64 herc_act_dtx_cfg[] = { | 
|  | /* Set address */ | 
|  | 0x8000051536750000ULL, 0x80000515367500E0ULL, | 
|  | /* Write data */ | 
|  | 0x8000051536750004ULL, 0x80000515367500E4ULL, | 
|  | /* Set address */ | 
|  | 0x80010515003F0000ULL, 0x80010515003F00E0ULL, | 
|  | /* Write data */ | 
|  | 0x80010515003F0004ULL, 0x80010515003F00E4ULL, | 
|  | /* Set address */ | 
|  | 0x801205150D440000ULL, 0x801205150D4400E0ULL, | 
|  | /* Write data */ | 
|  | 0x801205150D440004ULL, 0x801205150D4400E4ULL, | 
|  | /* Set address */ | 
|  | 0x80020515F2100000ULL, 0x80020515F21000E0ULL, | 
|  | /* Write data */ | 
|  | 0x80020515F2100004ULL, 0x80020515F21000E4ULL, | 
|  | /* Done */ | 
|  | END_SIGN | 
|  | }; | 
|  |  | 
|  | static const u64 xena_dtx_cfg[] = { | 
|  | /* Set address */ | 
|  | 0x8000051500000000ULL, 0x80000515000000E0ULL, | 
|  | /* Write data */ | 
|  | 0x80000515D9350004ULL, 0x80000515D93500E4ULL, | 
|  | /* Set address */ | 
|  | 0x8001051500000000ULL, 0x80010515000000E0ULL, | 
|  | /* Write data */ | 
|  | 0x80010515001E0004ULL, 0x80010515001E00E4ULL, | 
|  | /* Set address */ | 
|  | 0x8002051500000000ULL, 0x80020515000000E0ULL, | 
|  | /* Write data */ | 
|  | 0x80020515F2100004ULL, 0x80020515F21000E4ULL, | 
|  | END_SIGN | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Constants for Fixing the MacAddress problem seen mostly on | 
|  | * Alpha machines. | 
|  | */ | 
|  | static const u64 fix_mac[] = { | 
|  | 0x0060000000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0040600000000000ULL, 0x0000600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 0x0020600000000000ULL, 0x0000600000000000ULL, | 
|  | 0x0040600000000000ULL, 0x0060600000000000ULL, | 
|  | END_SIGN | 
|  | }; | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  |  | 
|  |  | 
|  | /* Module Loadable parameters. */ | 
|  | S2IO_PARM_INT(tx_fifo_num, 1); | 
|  | S2IO_PARM_INT(rx_ring_num, 1); | 
|  |  | 
|  |  | 
|  | S2IO_PARM_INT(rx_ring_mode, 1); | 
|  | S2IO_PARM_INT(use_continuous_tx_intrs, 1); | 
|  | S2IO_PARM_INT(rmac_pause_time, 0x100); | 
|  | S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); | 
|  | S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); | 
|  | S2IO_PARM_INT(shared_splits, 0); | 
|  | S2IO_PARM_INT(tmac_util_period, 5); | 
|  | S2IO_PARM_INT(rmac_util_period, 5); | 
|  | S2IO_PARM_INT(l3l4hdr_size, 128); | 
|  | /* Frequency of Rx desc syncs expressed as power of 2 */ | 
|  | S2IO_PARM_INT(rxsync_frequency, 3); | 
|  | /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ | 
|  | S2IO_PARM_INT(intr_type, 2); | 
|  | /* Large receive offload feature */ | 
|  | static unsigned int lro_enable; | 
|  | module_param_named(lro, lro_enable, uint, 0); | 
|  |  | 
|  | /* Max pkts to be aggregated by LRO at one time. If not specified, | 
|  | * aggregation happens until we hit max IP pkt size(64K) | 
|  | */ | 
|  | S2IO_PARM_INT(lro_max_pkts, 0xFFFF); | 
|  | S2IO_PARM_INT(indicate_max_pkts, 0); | 
|  |  | 
|  | S2IO_PARM_INT(napi, 1); | 
|  | S2IO_PARM_INT(ufo, 0); | 
|  | S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); | 
|  |  | 
|  | static unsigned int tx_fifo_len[MAX_TX_FIFOS] = | 
|  | {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; | 
|  | static unsigned int rx_ring_sz[MAX_RX_RINGS] = | 
|  | {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; | 
|  | static unsigned int rts_frm_len[MAX_RX_RINGS] = | 
|  | {[0 ...(MAX_RX_RINGS - 1)] = 0 }; | 
|  |  | 
|  | module_param_array(tx_fifo_len, uint, NULL, 0); | 
|  | module_param_array(rx_ring_sz, uint, NULL, 0); | 
|  | module_param_array(rts_frm_len, uint, NULL, 0); | 
|  |  | 
|  | /* | 
|  | * S2IO device table. | 
|  | * This table lists all the devices that this driver supports. | 
|  | */ | 
|  | static struct pci_device_id s2io_tbl[] __devinitdata = { | 
|  | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, | 
|  | PCI_ANY_ID, PCI_ANY_ID}, | 
|  | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, | 
|  | PCI_ANY_ID, PCI_ANY_ID}, | 
|  | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, | 
|  | PCI_ANY_ID, PCI_ANY_ID}, | 
|  | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, | 
|  | PCI_ANY_ID, PCI_ANY_ID}, | 
|  | {0,} | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, s2io_tbl); | 
|  |  | 
|  | static struct pci_error_handlers s2io_err_handler = { | 
|  | .error_detected = s2io_io_error_detected, | 
|  | .slot_reset = s2io_io_slot_reset, | 
|  | .resume = s2io_io_resume, | 
|  | }; | 
|  |  | 
|  | static struct pci_driver s2io_driver = { | 
|  | .name = "S2IO", | 
|  | .id_table = s2io_tbl, | 
|  | .probe = s2io_init_nic, | 
|  | .remove = __devexit_p(s2io_rem_nic), | 
|  | .err_handler = &s2io_err_handler, | 
|  | }; | 
|  |  | 
|  | /* A simplifier macro used both by init and free shared_mem Fns(). */ | 
|  | #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) | 
|  |  | 
|  | /** | 
|  | * init_shared_mem - Allocation and Initialization of Memory | 
|  | * @nic: Device private variable. | 
|  | * Description: The function allocates all the memory areas shared | 
|  | * between the NIC and the driver. This includes Tx descriptors, | 
|  | * Rx descriptors and the statistics block. | 
|  | */ | 
|  |  | 
|  | static int init_shared_mem(struct s2io_nic *nic) | 
|  | { | 
|  | u32 size; | 
|  | void *tmp_v_addr, *tmp_v_addr_next; | 
|  | dma_addr_t tmp_p_addr, tmp_p_addr_next; | 
|  | struct RxD_block *pre_rxd_blk = NULL; | 
|  | int i, j, blk_cnt; | 
|  | int lst_size, lst_per_page; | 
|  | struct net_device *dev = nic->dev; | 
|  | unsigned long tmp; | 
|  | struct buffAdd *ba; | 
|  |  | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  | unsigned long long mem_allocated = 0; | 
|  |  | 
|  | mac_control = &nic->mac_control; | 
|  | config = &nic->config; | 
|  |  | 
|  |  | 
|  | /* Allocation and initialization of TXDLs in FIOFs */ | 
|  | size = 0; | 
|  | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | size += config->tx_cfg[i].fifo_len; | 
|  | } | 
|  | if (size > MAX_AVAILABLE_TXDS) { | 
|  | DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, "); | 
|  | DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | size = 0; | 
|  | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | size = config->tx_cfg[i].fifo_len; | 
|  | /* | 
|  | * Legal values are from 2 to 8192 | 
|  | */ | 
|  | if (size < 2) { | 
|  | DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size); | 
|  | DBG_PRINT(ERR_DBG, "for fifo %d\n", i); | 
|  | DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len" | 
|  | "are 2 to 8192\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | lst_size = (sizeof(struct TxD) * config->max_txds); | 
|  | lst_per_page = PAGE_SIZE / lst_size; | 
|  |  | 
|  | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | int fifo_len = config->tx_cfg[i].fifo_len; | 
|  | int list_holder_size = fifo_len * sizeof(struct list_info_hold); | 
|  | mac_control->fifos[i].list_info = kzalloc(list_holder_size, | 
|  | GFP_KERNEL); | 
|  | if (!mac_control->fifos[i].list_info) { | 
|  | DBG_PRINT(INFO_DBG, | 
|  | "Malloc failed for list_info\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | mem_allocated += list_holder_size; | 
|  | } | 
|  | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, | 
|  | lst_per_page); | 
|  | mac_control->fifos[i].tx_curr_put_info.offset = 0; | 
|  | mac_control->fifos[i].tx_curr_put_info.fifo_len = | 
|  | config->tx_cfg[i].fifo_len - 1; | 
|  | mac_control->fifos[i].tx_curr_get_info.offset = 0; | 
|  | mac_control->fifos[i].tx_curr_get_info.fifo_len = | 
|  | config->tx_cfg[i].fifo_len - 1; | 
|  | mac_control->fifos[i].fifo_no = i; | 
|  | mac_control->fifos[i].nic = nic; | 
|  | mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2; | 
|  |  | 
|  | for (j = 0; j < page_num; j++) { | 
|  | int k = 0; | 
|  | dma_addr_t tmp_p; | 
|  | void *tmp_v; | 
|  | tmp_v = pci_alloc_consistent(nic->pdev, | 
|  | PAGE_SIZE, &tmp_p); | 
|  | if (!tmp_v) { | 
|  | DBG_PRINT(INFO_DBG, | 
|  | "pci_alloc_consistent "); | 
|  | DBG_PRINT(INFO_DBG, "failed for TxDL\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* If we got a zero DMA address(can happen on | 
|  | * certain platforms like PPC), reallocate. | 
|  | * Store virtual address of page we don't want, | 
|  | * to be freed later. | 
|  | */ | 
|  | if (!tmp_p) { | 
|  | mac_control->zerodma_virt_addr = tmp_v; | 
|  | DBG_PRINT(INIT_DBG, | 
|  | "%s: Zero DMA address for TxDL. ", dev->name); | 
|  | DBG_PRINT(INIT_DBG, | 
|  | "Virtual address %p\n", tmp_v); | 
|  | tmp_v = pci_alloc_consistent(nic->pdev, | 
|  | PAGE_SIZE, &tmp_p); | 
|  | if (!tmp_v) { | 
|  | DBG_PRINT(INFO_DBG, | 
|  | "pci_alloc_consistent "); | 
|  | DBG_PRINT(INFO_DBG, "failed for TxDL\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | mem_allocated += PAGE_SIZE; | 
|  | } | 
|  | while (k < lst_per_page) { | 
|  | int l = (j * lst_per_page) + k; | 
|  | if (l == config->tx_cfg[i].fifo_len) | 
|  | break; | 
|  | mac_control->fifos[i].list_info[l].list_virt_addr = | 
|  | tmp_v + (k * lst_size); | 
|  | mac_control->fifos[i].list_info[l].list_phy_addr = | 
|  | tmp_p + (k * lst_size); | 
|  | k++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | size = config->tx_cfg[i].fifo_len; | 
|  | mac_control->fifos[i].ufo_in_band_v | 
|  | = kcalloc(size, sizeof(u64), GFP_KERNEL); | 
|  | if (!mac_control->fifos[i].ufo_in_band_v) | 
|  | return -ENOMEM; | 
|  | mem_allocated += (size * sizeof(u64)); | 
|  | } | 
|  |  | 
|  | /* Allocation and initialization of RXDs in Rings */ | 
|  | size = 0; | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | if (config->rx_cfg[i].num_rxd % | 
|  | (rxd_count[nic->rxd_mode] + 1)) { | 
|  | DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); | 
|  | DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", | 
|  | i); | 
|  | DBG_PRINT(ERR_DBG, "RxDs per Block"); | 
|  | return FAILURE; | 
|  | } | 
|  | size += config->rx_cfg[i].num_rxd; | 
|  | mac_control->rings[i].block_count = | 
|  | config->rx_cfg[i].num_rxd / | 
|  | (rxd_count[nic->rxd_mode] + 1 ); | 
|  | mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd - | 
|  | mac_control->rings[i].block_count; | 
|  | } | 
|  | if (nic->rxd_mode == RXD_MODE_1) | 
|  | size = (size * (sizeof(struct RxD1))); | 
|  | else | 
|  | size = (size * (sizeof(struct RxD3))); | 
|  |  | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | mac_control->rings[i].rx_curr_get_info.block_index = 0; | 
|  | mac_control->rings[i].rx_curr_get_info.offset = 0; | 
|  | mac_control->rings[i].rx_curr_get_info.ring_len = | 
|  | config->rx_cfg[i].num_rxd - 1; | 
|  | mac_control->rings[i].rx_curr_put_info.block_index = 0; | 
|  | mac_control->rings[i].rx_curr_put_info.offset = 0; | 
|  | mac_control->rings[i].rx_curr_put_info.ring_len = | 
|  | config->rx_cfg[i].num_rxd - 1; | 
|  | mac_control->rings[i].nic = nic; | 
|  | mac_control->rings[i].ring_no = i; | 
|  |  | 
|  | blk_cnt = config->rx_cfg[i].num_rxd / | 
|  | (rxd_count[nic->rxd_mode] + 1); | 
|  | /*  Allocating all the Rx blocks */ | 
|  | for (j = 0; j < blk_cnt; j++) { | 
|  | struct rx_block_info *rx_blocks; | 
|  | int l; | 
|  |  | 
|  | rx_blocks = &mac_control->rings[i].rx_blocks[j]; | 
|  | size = SIZE_OF_BLOCK; //size is always page size | 
|  | tmp_v_addr = pci_alloc_consistent(nic->pdev, size, | 
|  | &tmp_p_addr); | 
|  | if (tmp_v_addr == NULL) { | 
|  | /* | 
|  | * In case of failure, free_shared_mem() | 
|  | * is called, which should free any | 
|  | * memory that was alloced till the | 
|  | * failure happened. | 
|  | */ | 
|  | rx_blocks->block_virt_addr = tmp_v_addr; | 
|  | return -ENOMEM; | 
|  | } | 
|  | mem_allocated += size; | 
|  | memset(tmp_v_addr, 0, size); | 
|  | rx_blocks->block_virt_addr = tmp_v_addr; | 
|  | rx_blocks->block_dma_addr = tmp_p_addr; | 
|  | rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)* | 
|  | rxd_count[nic->rxd_mode], | 
|  | GFP_KERNEL); | 
|  | if (!rx_blocks->rxds) | 
|  | return -ENOMEM; | 
|  | mem_allocated += | 
|  | (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]); | 
|  | for (l=0; l<rxd_count[nic->rxd_mode];l++) { | 
|  | rx_blocks->rxds[l].virt_addr = | 
|  | rx_blocks->block_virt_addr + | 
|  | (rxd_size[nic->rxd_mode] * l); | 
|  | rx_blocks->rxds[l].dma_addr = | 
|  | rx_blocks->block_dma_addr + | 
|  | (rxd_size[nic->rxd_mode] * l); | 
|  | } | 
|  | } | 
|  | /* Interlinking all Rx Blocks */ | 
|  | for (j = 0; j < blk_cnt; j++) { | 
|  | tmp_v_addr = | 
|  | mac_control->rings[i].rx_blocks[j].block_virt_addr; | 
|  | tmp_v_addr_next = | 
|  | mac_control->rings[i].rx_blocks[(j + 1) % | 
|  | blk_cnt].block_virt_addr; | 
|  | tmp_p_addr = | 
|  | mac_control->rings[i].rx_blocks[j].block_dma_addr; | 
|  | tmp_p_addr_next = | 
|  | mac_control->rings[i].rx_blocks[(j + 1) % | 
|  | blk_cnt].block_dma_addr; | 
|  |  | 
|  | pre_rxd_blk = (struct RxD_block *) tmp_v_addr; | 
|  | pre_rxd_blk->reserved_2_pNext_RxD_block = | 
|  | (unsigned long) tmp_v_addr_next; | 
|  | pre_rxd_blk->pNext_RxD_Blk_physical = | 
|  | (u64) tmp_p_addr_next; | 
|  | } | 
|  | } | 
|  | if (nic->rxd_mode == RXD_MODE_3B) { | 
|  | /* | 
|  | * Allocation of Storages for buffer addresses in 2BUFF mode | 
|  | * and the buffers as well. | 
|  | */ | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | blk_cnt = config->rx_cfg[i].num_rxd / | 
|  | (rxd_count[nic->rxd_mode]+ 1); | 
|  | mac_control->rings[i].ba = | 
|  | kmalloc((sizeof(struct buffAdd *) * blk_cnt), | 
|  | GFP_KERNEL); | 
|  | if (!mac_control->rings[i].ba) | 
|  | return -ENOMEM; | 
|  | mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt); | 
|  | for (j = 0; j < blk_cnt; j++) { | 
|  | int k = 0; | 
|  | mac_control->rings[i].ba[j] = | 
|  | kmalloc((sizeof(struct buffAdd) * | 
|  | (rxd_count[nic->rxd_mode] + 1)), | 
|  | GFP_KERNEL); | 
|  | if (!mac_control->rings[i].ba[j]) | 
|  | return -ENOMEM; | 
|  | mem_allocated += (sizeof(struct buffAdd) *  \ | 
|  | (rxd_count[nic->rxd_mode] + 1)); | 
|  | while (k != rxd_count[nic->rxd_mode]) { | 
|  | ba = &mac_control->rings[i].ba[j][k]; | 
|  |  | 
|  | ba->ba_0_org = (void *) kmalloc | 
|  | (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL); | 
|  | if (!ba->ba_0_org) | 
|  | return -ENOMEM; | 
|  | mem_allocated += | 
|  | (BUF0_LEN + ALIGN_SIZE); | 
|  | tmp = (unsigned long)ba->ba_0_org; | 
|  | tmp += ALIGN_SIZE; | 
|  | tmp &= ~((unsigned long) ALIGN_SIZE); | 
|  | ba->ba_0 = (void *) tmp; | 
|  |  | 
|  | ba->ba_1_org = (void *) kmalloc | 
|  | (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL); | 
|  | if (!ba->ba_1_org) | 
|  | return -ENOMEM; | 
|  | mem_allocated | 
|  | += (BUF1_LEN + ALIGN_SIZE); | 
|  | tmp = (unsigned long) ba->ba_1_org; | 
|  | tmp += ALIGN_SIZE; | 
|  | tmp &= ~((unsigned long) ALIGN_SIZE); | 
|  | ba->ba_1 = (void *) tmp; | 
|  | k++; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocation and initialization of Statistics block */ | 
|  | size = sizeof(struct stat_block); | 
|  | mac_control->stats_mem = pci_alloc_consistent | 
|  | (nic->pdev, size, &mac_control->stats_mem_phy); | 
|  |  | 
|  | if (!mac_control->stats_mem) { | 
|  | /* | 
|  | * In case of failure, free_shared_mem() is called, which | 
|  | * should free any memory that was alloced till the | 
|  | * failure happened. | 
|  | */ | 
|  | return -ENOMEM; | 
|  | } | 
|  | mem_allocated += size; | 
|  | mac_control->stats_mem_sz = size; | 
|  |  | 
|  | tmp_v_addr = mac_control->stats_mem; | 
|  | mac_control->stats_info = (struct stat_block *) tmp_v_addr; | 
|  | memset(tmp_v_addr, 0, size); | 
|  | DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name, | 
|  | (unsigned long long) tmp_p_addr); | 
|  | mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; | 
|  | return SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_shared_mem - Free the allocated Memory | 
|  | * @nic:  Device private variable. | 
|  | * Description: This function is to free all memory locations allocated by | 
|  | * the init_shared_mem() function and return it to the kernel. | 
|  | */ | 
|  |  | 
|  | static void free_shared_mem(struct s2io_nic *nic) | 
|  | { | 
|  | int i, j, blk_cnt, size; | 
|  | void *tmp_v_addr; | 
|  | dma_addr_t tmp_p_addr; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  | int lst_size, lst_per_page; | 
|  | struct net_device *dev; | 
|  | int page_num = 0; | 
|  |  | 
|  | if (!nic) | 
|  | return; | 
|  |  | 
|  | dev = nic->dev; | 
|  |  | 
|  | mac_control = &nic->mac_control; | 
|  | config = &nic->config; | 
|  |  | 
|  | lst_size = (sizeof(struct TxD) * config->max_txds); | 
|  | lst_per_page = PAGE_SIZE / lst_size; | 
|  |  | 
|  | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, | 
|  | lst_per_page); | 
|  | for (j = 0; j < page_num; j++) { | 
|  | int mem_blks = (j * lst_per_page); | 
|  | if (!mac_control->fifos[i].list_info) | 
|  | return; | 
|  | if (!mac_control->fifos[i].list_info[mem_blks]. | 
|  | list_virt_addr) | 
|  | break; | 
|  | pci_free_consistent(nic->pdev, PAGE_SIZE, | 
|  | mac_control->fifos[i]. | 
|  | list_info[mem_blks]. | 
|  | list_virt_addr, | 
|  | mac_control->fifos[i]. | 
|  | list_info[mem_blks]. | 
|  | list_phy_addr); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed | 
|  | += PAGE_SIZE; | 
|  | } | 
|  | /* If we got a zero DMA address during allocation, | 
|  | * free the page now | 
|  | */ | 
|  | if (mac_control->zerodma_virt_addr) { | 
|  | pci_free_consistent(nic->pdev, PAGE_SIZE, | 
|  | mac_control->zerodma_virt_addr, | 
|  | (dma_addr_t)0); | 
|  | DBG_PRINT(INIT_DBG, | 
|  | "%s: Freeing TxDL with zero DMA addr. ", | 
|  | dev->name); | 
|  | DBG_PRINT(INIT_DBG, "Virtual address %p\n", | 
|  | mac_control->zerodma_virt_addr); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed | 
|  | += PAGE_SIZE; | 
|  | } | 
|  | kfree(mac_control->fifos[i].list_info); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed += | 
|  | (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold)); | 
|  | } | 
|  |  | 
|  | size = SIZE_OF_BLOCK; | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | blk_cnt = mac_control->rings[i].block_count; | 
|  | for (j = 0; j < blk_cnt; j++) { | 
|  | tmp_v_addr = mac_control->rings[i].rx_blocks[j]. | 
|  | block_virt_addr; | 
|  | tmp_p_addr = mac_control->rings[i].rx_blocks[j]. | 
|  | block_dma_addr; | 
|  | if (tmp_v_addr == NULL) | 
|  | break; | 
|  | pci_free_consistent(nic->pdev, size, | 
|  | tmp_v_addr, tmp_p_addr); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed += size; | 
|  | kfree(mac_control->rings[i].rx_blocks[j].rxds); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed += | 
|  | ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nic->rxd_mode == RXD_MODE_3B) { | 
|  | /* Freeing buffer storage addresses in 2BUFF mode. */ | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | blk_cnt = config->rx_cfg[i].num_rxd / | 
|  | (rxd_count[nic->rxd_mode] + 1); | 
|  | for (j = 0; j < blk_cnt; j++) { | 
|  | int k = 0; | 
|  | if (!mac_control->rings[i].ba[j]) | 
|  | continue; | 
|  | while (k != rxd_count[nic->rxd_mode]) { | 
|  | struct buffAdd *ba = | 
|  | &mac_control->rings[i].ba[j][k]; | 
|  | kfree(ba->ba_0_org); | 
|  | nic->mac_control.stats_info->sw_stat.\ | 
|  | mem_freed += (BUF0_LEN + ALIGN_SIZE); | 
|  | kfree(ba->ba_1_org); | 
|  | nic->mac_control.stats_info->sw_stat.\ | 
|  | mem_freed += (BUF1_LEN + ALIGN_SIZE); | 
|  | k++; | 
|  | } | 
|  | kfree(mac_control->rings[i].ba[j]); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed += | 
|  | (sizeof(struct buffAdd) * | 
|  | (rxd_count[nic->rxd_mode] + 1)); | 
|  | } | 
|  | kfree(mac_control->rings[i].ba); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed += | 
|  | (sizeof(struct buffAdd *) * blk_cnt); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nic->config.tx_fifo_num; i++) { | 
|  | if (mac_control->fifos[i].ufo_in_band_v) { | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed | 
|  | += (config->tx_cfg[i].fifo_len * sizeof(u64)); | 
|  | kfree(mac_control->fifos[i].ufo_in_band_v); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mac_control->stats_mem) { | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed += | 
|  | mac_control->stats_mem_sz; | 
|  | pci_free_consistent(nic->pdev, | 
|  | mac_control->stats_mem_sz, | 
|  | mac_control->stats_mem, | 
|  | mac_control->stats_mem_phy); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_verify_pci_mode - | 
|  | */ | 
|  |  | 
|  | static int s2io_verify_pci_mode(struct s2io_nic *nic) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | register u64 val64 = 0; | 
|  | int     mode; | 
|  |  | 
|  | val64 = readq(&bar0->pci_mode); | 
|  | mode = (u8)GET_PCI_MODE(val64); | 
|  |  | 
|  | if ( val64 & PCI_MODE_UNKNOWN_MODE) | 
|  | return -1;      /* Unknown PCI mode */ | 
|  | return mode; | 
|  | } | 
|  |  | 
|  | #define NEC_VENID   0x1033 | 
|  | #define NEC_DEVID   0x0125 | 
|  | static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) | 
|  | { | 
|  | struct pci_dev *tdev = NULL; | 
|  | while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) { | 
|  | if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { | 
|  | if (tdev->bus == s2io_pdev->bus->parent) | 
|  | pci_dev_put(tdev); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; | 
|  | /** | 
|  | * s2io_print_pci_mode - | 
|  | */ | 
|  | static int s2io_print_pci_mode(struct s2io_nic *nic) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | register u64 val64 = 0; | 
|  | int	mode; | 
|  | struct config_param *config = &nic->config; | 
|  |  | 
|  | val64 = readq(&bar0->pci_mode); | 
|  | mode = (u8)GET_PCI_MODE(val64); | 
|  |  | 
|  | if ( val64 & PCI_MODE_UNKNOWN_MODE) | 
|  | return -1;	/* Unknown PCI mode */ | 
|  |  | 
|  | config->bus_speed = bus_speed[mode]; | 
|  |  | 
|  | if (s2io_on_nec_bridge(nic->pdev)) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", | 
|  | nic->dev->name); | 
|  | return mode; | 
|  | } | 
|  |  | 
|  | if (val64 & PCI_MODE_32_BITS) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name); | 
|  | } else { | 
|  | DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name); | 
|  | } | 
|  |  | 
|  | switch(mode) { | 
|  | case PCI_MODE_PCI_33: | 
|  | DBG_PRINT(ERR_DBG, "33MHz PCI bus\n"); | 
|  | break; | 
|  | case PCI_MODE_PCI_66: | 
|  | DBG_PRINT(ERR_DBG, "66MHz PCI bus\n"); | 
|  | break; | 
|  | case PCI_MODE_PCIX_M1_66: | 
|  | DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n"); | 
|  | break; | 
|  | case PCI_MODE_PCIX_M1_100: | 
|  | DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n"); | 
|  | break; | 
|  | case PCI_MODE_PCIX_M1_133: | 
|  | DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n"); | 
|  | break; | 
|  | case PCI_MODE_PCIX_M2_66: | 
|  | DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n"); | 
|  | break; | 
|  | case PCI_MODE_PCIX_M2_100: | 
|  | DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n"); | 
|  | break; | 
|  | case PCI_MODE_PCIX_M2_133: | 
|  | DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n"); | 
|  | break; | 
|  | default: | 
|  | return -1;	/* Unsupported bus speed */ | 
|  | } | 
|  |  | 
|  | return mode; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  init_tti - Initialization transmit traffic interrupt scheme | 
|  | *  @nic: device private variable | 
|  | *  @link: link status (UP/DOWN) used to enable/disable continuous | 
|  | *  transmit interrupts | 
|  | *  Description: The function configures transmit traffic interrupts | 
|  | *  Return Value:  SUCCESS on success and | 
|  | *  '-1' on failure | 
|  | */ | 
|  |  | 
|  | int init_tti(struct s2io_nic *nic, int link) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | register u64 val64 = 0; | 
|  | int i; | 
|  | struct config_param *config; | 
|  |  | 
|  | config = &nic->config; | 
|  |  | 
|  | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | /* | 
|  | * TTI Initialization. Default Tx timer gets us about | 
|  | * 250 interrupts per sec. Continuous interrupts are enabled | 
|  | * by default. | 
|  | */ | 
|  | if (nic->device_type == XFRAME_II_DEVICE) { | 
|  | int count = (nic->config.bus_speed * 125)/2; | 
|  | val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); | 
|  | } else | 
|  | val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); | 
|  |  | 
|  | val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | | 
|  | TTI_DATA1_MEM_TX_URNG_B(0x10) | | 
|  | TTI_DATA1_MEM_TX_URNG_C(0x30) | | 
|  | TTI_DATA1_MEM_TX_TIMER_AC_EN; | 
|  |  | 
|  | if (use_continuous_tx_intrs && (link == LINK_UP)) | 
|  | val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; | 
|  | writeq(val64, &bar0->tti_data1_mem); | 
|  |  | 
|  | val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | | 
|  | TTI_DATA2_MEM_TX_UFC_B(0x20) | | 
|  | TTI_DATA2_MEM_TX_UFC_C(0x40) | | 
|  | TTI_DATA2_MEM_TX_UFC_D(0x80); | 
|  |  | 
|  | writeq(val64, &bar0->tti_data2_mem); | 
|  |  | 
|  | val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD | | 
|  | TTI_CMD_MEM_OFFSET(i); | 
|  | writeq(val64, &bar0->tti_command_mem); | 
|  |  | 
|  | if (wait_for_cmd_complete(&bar0->tti_command_mem, | 
|  | TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS) | 
|  | return FAILURE; | 
|  | } | 
|  |  | 
|  | return SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  init_nic - Initialization of hardware | 
|  | *  @nic: device private variable | 
|  | *  Description: The function sequentially configures every block | 
|  | *  of the H/W from their reset values. | 
|  | *  Return Value:  SUCCESS on success and | 
|  | *  '-1' on failure (endian settings incorrect). | 
|  | */ | 
|  |  | 
|  | static int init_nic(struct s2io_nic *nic) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | struct net_device *dev = nic->dev; | 
|  | register u64 val64 = 0; | 
|  | void __iomem *add; | 
|  | u32 time; | 
|  | int i, j; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  | int dtx_cnt = 0; | 
|  | unsigned long long mem_share; | 
|  | int mem_size; | 
|  |  | 
|  | mac_control = &nic->mac_control; | 
|  | config = &nic->config; | 
|  |  | 
|  | /* to set the swapper controle on the card */ | 
|  | if(s2io_set_swapper(nic)) { | 
|  | DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Herc requires EOI to be removed from reset before XGXS, so.. | 
|  | */ | 
|  | if (nic->device_type & XFRAME_II_DEVICE) { | 
|  | val64 = 0xA500000000ULL; | 
|  | writeq(val64, &bar0->sw_reset); | 
|  | msleep(500); | 
|  | val64 = readq(&bar0->sw_reset); | 
|  | } | 
|  |  | 
|  | /* Remove XGXS from reset state */ | 
|  | val64 = 0; | 
|  | writeq(val64, &bar0->sw_reset); | 
|  | msleep(500); | 
|  | val64 = readq(&bar0->sw_reset); | 
|  |  | 
|  | /* Ensure that it's safe to access registers by checking | 
|  | * RIC_RUNNING bit is reset. Check is valid only for XframeII. | 
|  | */ | 
|  | if (nic->device_type == XFRAME_II_DEVICE) { | 
|  | for (i = 0; i < 50; i++) { | 
|  | val64 = readq(&bar0->adapter_status); | 
|  | if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) | 
|  | break; | 
|  | msleep(10); | 
|  | } | 
|  | if (i == 50) | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /*  Enable Receiving broadcasts */ | 
|  | add = &bar0->mac_cfg; | 
|  | val64 = readq(&bar0->mac_cfg); | 
|  | val64 |= MAC_RMAC_BCAST_ENABLE; | 
|  | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | writel((u32) val64, add); | 
|  | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | writel((u32) (val64 >> 32), (add + 4)); | 
|  |  | 
|  | /* Read registers in all blocks */ | 
|  | val64 = readq(&bar0->mac_int_mask); | 
|  | val64 = readq(&bar0->mc_int_mask); | 
|  | val64 = readq(&bar0->xgxs_int_mask); | 
|  |  | 
|  | /*  Set MTU */ | 
|  | val64 = dev->mtu; | 
|  | writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); | 
|  |  | 
|  | if (nic->device_type & XFRAME_II_DEVICE) { | 
|  | while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { | 
|  | SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], | 
|  | &bar0->dtx_control, UF); | 
|  | if (dtx_cnt & 0x1) | 
|  | msleep(1); /* Necessary!! */ | 
|  | dtx_cnt++; | 
|  | } | 
|  | } else { | 
|  | while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { | 
|  | SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], | 
|  | &bar0->dtx_control, UF); | 
|  | val64 = readq(&bar0->dtx_control); | 
|  | dtx_cnt++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*  Tx DMA Initialization */ | 
|  | val64 = 0; | 
|  | writeq(val64, &bar0->tx_fifo_partition_0); | 
|  | writeq(val64, &bar0->tx_fifo_partition_1); | 
|  | writeq(val64, &bar0->tx_fifo_partition_2); | 
|  | writeq(val64, &bar0->tx_fifo_partition_3); | 
|  |  | 
|  |  | 
|  | for (i = 0, j = 0; i < config->tx_fifo_num; i++) { | 
|  | val64 |= | 
|  | vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19), | 
|  | 13) | vBIT(config->tx_cfg[i].fifo_priority, | 
|  | ((j * 32) + 5), 3); | 
|  |  | 
|  | if (i == (config->tx_fifo_num - 1)) { | 
|  | if (i % 2 == 0) | 
|  | i++; | 
|  | } | 
|  |  | 
|  | switch (i) { | 
|  | case 1: | 
|  | writeq(val64, &bar0->tx_fifo_partition_0); | 
|  | val64 = 0; | 
|  | j = 0; | 
|  | break; | 
|  | case 3: | 
|  | writeq(val64, &bar0->tx_fifo_partition_1); | 
|  | val64 = 0; | 
|  | j = 0; | 
|  | break; | 
|  | case 5: | 
|  | writeq(val64, &bar0->tx_fifo_partition_2); | 
|  | val64 = 0; | 
|  | j = 0; | 
|  | break; | 
|  | case 7: | 
|  | writeq(val64, &bar0->tx_fifo_partition_3); | 
|  | val64 = 0; | 
|  | j = 0; | 
|  | break; | 
|  | default: | 
|  | j++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug | 
|  | * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. | 
|  | */ | 
|  | if ((nic->device_type == XFRAME_I_DEVICE) && | 
|  | (nic->pdev->revision < 4)) | 
|  | writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); | 
|  |  | 
|  | val64 = readq(&bar0->tx_fifo_partition_0); | 
|  | DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", | 
|  | &bar0->tx_fifo_partition_0, (unsigned long long) val64); | 
|  |  | 
|  | /* | 
|  | * Initialization of Tx_PA_CONFIG register to ignore packet | 
|  | * integrity checking. | 
|  | */ | 
|  | val64 = readq(&bar0->tx_pa_cfg); | 
|  | val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | | 
|  | TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; | 
|  | writeq(val64, &bar0->tx_pa_cfg); | 
|  |  | 
|  | /* Rx DMA intialization. */ | 
|  | val64 = 0; | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | val64 |= | 
|  | vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)), | 
|  | 3); | 
|  | } | 
|  | writeq(val64, &bar0->rx_queue_priority); | 
|  |  | 
|  | /* | 
|  | * Allocating equal share of memory to all the | 
|  | * configured Rings. | 
|  | */ | 
|  | val64 = 0; | 
|  | if (nic->device_type & XFRAME_II_DEVICE) | 
|  | mem_size = 32; | 
|  | else | 
|  | mem_size = 64; | 
|  |  | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | switch (i) { | 
|  | case 0: | 
|  | mem_share = (mem_size / config->rx_ring_num + | 
|  | mem_size % config->rx_ring_num); | 
|  | val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); | 
|  | continue; | 
|  | case 1: | 
|  | mem_share = (mem_size / config->rx_ring_num); | 
|  | val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); | 
|  | continue; | 
|  | case 2: | 
|  | mem_share = (mem_size / config->rx_ring_num); | 
|  | val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); | 
|  | continue; | 
|  | case 3: | 
|  | mem_share = (mem_size / config->rx_ring_num); | 
|  | val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); | 
|  | continue; | 
|  | case 4: | 
|  | mem_share = (mem_size / config->rx_ring_num); | 
|  | val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); | 
|  | continue; | 
|  | case 5: | 
|  | mem_share = (mem_size / config->rx_ring_num); | 
|  | val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); | 
|  | continue; | 
|  | case 6: | 
|  | mem_share = (mem_size / config->rx_ring_num); | 
|  | val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); | 
|  | continue; | 
|  | case 7: | 
|  | mem_share = (mem_size / config->rx_ring_num); | 
|  | val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | writeq(val64, &bar0->rx_queue_cfg); | 
|  |  | 
|  | /* | 
|  | * Filling Tx round robin registers | 
|  | * as per the number of FIFOs for equal scheduling priority | 
|  | */ | 
|  | switch (config->tx_fifo_num) { | 
|  | case 1: | 
|  | val64 = 0x0; | 
|  | writeq(val64, &bar0->tx_w_round_robin_0); | 
|  | writeq(val64, &bar0->tx_w_round_robin_1); | 
|  | writeq(val64, &bar0->tx_w_round_robin_2); | 
|  | writeq(val64, &bar0->tx_w_round_robin_3); | 
|  | writeq(val64, &bar0->tx_w_round_robin_4); | 
|  | break; | 
|  | case 2: | 
|  | val64 = 0x0001000100010001ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_0); | 
|  | writeq(val64, &bar0->tx_w_round_robin_1); | 
|  | writeq(val64, &bar0->tx_w_round_robin_2); | 
|  | writeq(val64, &bar0->tx_w_round_robin_3); | 
|  | val64 = 0x0001000100000000ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_4); | 
|  | break; | 
|  | case 3: | 
|  | val64 = 0x0001020001020001ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_0); | 
|  | val64 = 0x0200010200010200ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_1); | 
|  | val64 = 0x0102000102000102ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_2); | 
|  | val64 = 0x0001020001020001ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_3); | 
|  | val64 = 0x0200010200000000ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_4); | 
|  | break; | 
|  | case 4: | 
|  | val64 = 0x0001020300010203ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_0); | 
|  | writeq(val64, &bar0->tx_w_round_robin_1); | 
|  | writeq(val64, &bar0->tx_w_round_robin_2); | 
|  | writeq(val64, &bar0->tx_w_round_robin_3); | 
|  | val64 = 0x0001020300000000ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_4); | 
|  | break; | 
|  | case 5: | 
|  | val64 = 0x0001020304000102ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_0); | 
|  | val64 = 0x0304000102030400ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_1); | 
|  | val64 = 0x0102030400010203ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_2); | 
|  | val64 = 0x0400010203040001ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_3); | 
|  | val64 = 0x0203040000000000ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_4); | 
|  | break; | 
|  | case 6: | 
|  | val64 = 0x0001020304050001ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_0); | 
|  | val64 = 0x0203040500010203ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_1); | 
|  | val64 = 0x0405000102030405ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_2); | 
|  | val64 = 0x0001020304050001ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_3); | 
|  | val64 = 0x0203040500000000ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_4); | 
|  | break; | 
|  | case 7: | 
|  | val64 = 0x0001020304050600ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_0); | 
|  | val64 = 0x0102030405060001ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_1); | 
|  | val64 = 0x0203040506000102ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_2); | 
|  | val64 = 0x0304050600010203ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_3); | 
|  | val64 = 0x0405060000000000ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_4); | 
|  | break; | 
|  | case 8: | 
|  | val64 = 0x0001020304050607ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_0); | 
|  | writeq(val64, &bar0->tx_w_round_robin_1); | 
|  | writeq(val64, &bar0->tx_w_round_robin_2); | 
|  | writeq(val64, &bar0->tx_w_round_robin_3); | 
|  | val64 = 0x0001020300000000ULL; | 
|  | writeq(val64, &bar0->tx_w_round_robin_4); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Enable all configured Tx FIFO partitions */ | 
|  | val64 = readq(&bar0->tx_fifo_partition_0); | 
|  | val64 |= (TX_FIFO_PARTITION_EN); | 
|  | writeq(val64, &bar0->tx_fifo_partition_0); | 
|  |  | 
|  | /* Filling the Rx round robin registers as per the | 
|  | * number of Rings and steering based on QoS. | 
|  | */ | 
|  | switch (config->rx_ring_num) { | 
|  | case 1: | 
|  | val64 = 0x8080808080808080ULL; | 
|  | writeq(val64, &bar0->rts_qos_steering); | 
|  | break; | 
|  | case 2: | 
|  | val64 = 0x0000010000010000ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_0); | 
|  | val64 = 0x0100000100000100ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_1); | 
|  | val64 = 0x0001000001000001ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_2); | 
|  | val64 = 0x0000010000010000ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_3); | 
|  | val64 = 0x0100000000000000ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_4); | 
|  |  | 
|  | val64 = 0x8080808040404040ULL; | 
|  | writeq(val64, &bar0->rts_qos_steering); | 
|  | break; | 
|  | case 3: | 
|  | val64 = 0x0001000102000001ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_0); | 
|  | val64 = 0x0001020000010001ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_1); | 
|  | val64 = 0x0200000100010200ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_2); | 
|  | val64 = 0x0001000102000001ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_3); | 
|  | val64 = 0x0001020000000000ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_4); | 
|  |  | 
|  | val64 = 0x8080804040402020ULL; | 
|  | writeq(val64, &bar0->rts_qos_steering); | 
|  | break; | 
|  | case 4: | 
|  | val64 = 0x0001020300010200ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_0); | 
|  | val64 = 0x0100000102030001ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_1); | 
|  | val64 = 0x0200010000010203ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_2); | 
|  | val64 = 0x0001020001000001ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_3); | 
|  | val64 = 0x0203000100000000ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_4); | 
|  |  | 
|  | val64 = 0x8080404020201010ULL; | 
|  | writeq(val64, &bar0->rts_qos_steering); | 
|  | break; | 
|  | case 5: | 
|  | val64 = 0x0001000203000102ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_0); | 
|  | val64 = 0x0001020001030004ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_1); | 
|  | val64 = 0x0001000203000102ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_2); | 
|  | val64 = 0x0001020001030004ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_3); | 
|  | val64 = 0x0001000000000000ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_4); | 
|  |  | 
|  | val64 = 0x8080404020201008ULL; | 
|  | writeq(val64, &bar0->rts_qos_steering); | 
|  | break; | 
|  | case 6: | 
|  | val64 = 0x0001020304000102ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_0); | 
|  | val64 = 0x0304050001020001ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_1); | 
|  | val64 = 0x0203000100000102ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_2); | 
|  | val64 = 0x0304000102030405ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_3); | 
|  | val64 = 0x0001000200000000ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_4); | 
|  |  | 
|  | val64 = 0x8080404020100804ULL; | 
|  | writeq(val64, &bar0->rts_qos_steering); | 
|  | break; | 
|  | case 7: | 
|  | val64 = 0x0001020001020300ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_0); | 
|  | val64 = 0x0102030400010203ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_1); | 
|  | val64 = 0x0405060001020001ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_2); | 
|  | val64 = 0x0304050000010200ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_3); | 
|  | val64 = 0x0102030000000000ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_4); | 
|  |  | 
|  | val64 = 0x8080402010080402ULL; | 
|  | writeq(val64, &bar0->rts_qos_steering); | 
|  | break; | 
|  | case 8: | 
|  | val64 = 0x0001020300040105ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_0); | 
|  | val64 = 0x0200030106000204ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_1); | 
|  | val64 = 0x0103000502010007ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_2); | 
|  | val64 = 0x0304010002060500ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_3); | 
|  | val64 = 0x0103020400000000ULL; | 
|  | writeq(val64, &bar0->rx_w_round_robin_4); | 
|  |  | 
|  | val64 = 0x8040201008040201ULL; | 
|  | writeq(val64, &bar0->rts_qos_steering); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* UDP Fix */ | 
|  | val64 = 0; | 
|  | for (i = 0; i < 8; i++) | 
|  | writeq(val64, &bar0->rts_frm_len_n[i]); | 
|  |  | 
|  | /* Set the default rts frame length for the rings configured */ | 
|  | val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); | 
|  | for (i = 0 ; i < config->rx_ring_num ; i++) | 
|  | writeq(val64, &bar0->rts_frm_len_n[i]); | 
|  |  | 
|  | /* Set the frame length for the configured rings | 
|  | * desired by the user | 
|  | */ | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | /* If rts_frm_len[i] == 0 then it is assumed that user not | 
|  | * specified frame length steering. | 
|  | * If the user provides the frame length then program | 
|  | * the rts_frm_len register for those values or else | 
|  | * leave it as it is. | 
|  | */ | 
|  | if (rts_frm_len[i] != 0) { | 
|  | writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), | 
|  | &bar0->rts_frm_len_n[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Disable differentiated services steering logic */ | 
|  | for (i = 0; i < 64; i++) { | 
|  | if (rts_ds_steer(nic, i, 0) == FAILURE) { | 
|  | DBG_PRINT(ERR_DBG, "%s: failed rts ds steering", | 
|  | dev->name); | 
|  | DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Program statistics memory */ | 
|  | writeq(mac_control->stats_mem_phy, &bar0->stat_addr); | 
|  |  | 
|  | if (nic->device_type == XFRAME_II_DEVICE) { | 
|  | val64 = STAT_BC(0x320); | 
|  | writeq(val64, &bar0->stat_byte_cnt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initializing the sampling rate for the device to calculate the | 
|  | * bandwidth utilization. | 
|  | */ | 
|  | val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | | 
|  | MAC_RX_LINK_UTIL_VAL(rmac_util_period); | 
|  | writeq(val64, &bar0->mac_link_util); | 
|  |  | 
|  | /* | 
|  | * Initializing the Transmit and Receive Traffic Interrupt | 
|  | * Scheme. | 
|  | */ | 
|  |  | 
|  | /* Initialize TTI */ | 
|  | if (SUCCESS != init_tti(nic, nic->last_link_state)) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* RTI Initialization */ | 
|  | if (nic->device_type == XFRAME_II_DEVICE) { | 
|  | /* | 
|  | * Programmed to generate Apprx 500 Intrs per | 
|  | * second | 
|  | */ | 
|  | int count = (nic->config.bus_speed * 125)/4; | 
|  | val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); | 
|  | } else | 
|  | val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); | 
|  | val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | | 
|  | RTI_DATA1_MEM_RX_URNG_B(0x10) | | 
|  | RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; | 
|  |  | 
|  | writeq(val64, &bar0->rti_data1_mem); | 
|  |  | 
|  | val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | | 
|  | RTI_DATA2_MEM_RX_UFC_B(0x2) ; | 
|  | if (nic->config.intr_type == MSI_X) | 
|  | val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \ | 
|  | RTI_DATA2_MEM_RX_UFC_D(0x40)); | 
|  | else | 
|  | val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \ | 
|  | RTI_DATA2_MEM_RX_UFC_D(0x80)); | 
|  | writeq(val64, &bar0->rti_data2_mem); | 
|  |  | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD | 
|  | | RTI_CMD_MEM_OFFSET(i); | 
|  | writeq(val64, &bar0->rti_command_mem); | 
|  |  | 
|  | /* | 
|  | * Once the operation completes, the Strobe bit of the | 
|  | * command register will be reset. We poll for this | 
|  | * particular condition. We wait for a maximum of 500ms | 
|  | * for the operation to complete, if it's not complete | 
|  | * by then we return error. | 
|  | */ | 
|  | time = 0; | 
|  | while (TRUE) { | 
|  | val64 = readq(&bar0->rti_command_mem); | 
|  | if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) | 
|  | break; | 
|  |  | 
|  | if (time > 10) { | 
|  | DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n", | 
|  | dev->name); | 
|  | return -ENODEV; | 
|  | } | 
|  | time++; | 
|  | msleep(50); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initializing proper values as Pause threshold into all | 
|  | * the 8 Queues on Rx side. | 
|  | */ | 
|  | writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); | 
|  | writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); | 
|  |  | 
|  | /* Disable RMAC PAD STRIPPING */ | 
|  | add = &bar0->mac_cfg; | 
|  | val64 = readq(&bar0->mac_cfg); | 
|  | val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); | 
|  | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | writel((u32) (val64), add); | 
|  | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | writel((u32) (val64 >> 32), (add + 4)); | 
|  | val64 = readq(&bar0->mac_cfg); | 
|  |  | 
|  | /* Enable FCS stripping by adapter */ | 
|  | add = &bar0->mac_cfg; | 
|  | val64 = readq(&bar0->mac_cfg); | 
|  | val64 |= MAC_CFG_RMAC_STRIP_FCS; | 
|  | if (nic->device_type == XFRAME_II_DEVICE) | 
|  | writeq(val64, &bar0->mac_cfg); | 
|  | else { | 
|  | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | writel((u32) (val64), add); | 
|  | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | writel((u32) (val64 >> 32), (add + 4)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the time value to be inserted in the pause frame | 
|  | * generated by xena. | 
|  | */ | 
|  | val64 = readq(&bar0->rmac_pause_cfg); | 
|  | val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); | 
|  | val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); | 
|  | writeq(val64, &bar0->rmac_pause_cfg); | 
|  |  | 
|  | /* | 
|  | * Set the Threshold Limit for Generating the pause frame | 
|  | * If the amount of data in any Queue exceeds ratio of | 
|  | * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 | 
|  | * pause frame is generated | 
|  | */ | 
|  | val64 = 0; | 
|  | for (i = 0; i < 4; i++) { | 
|  | val64 |= | 
|  | (((u64) 0xFF00 | nic->mac_control. | 
|  | mc_pause_threshold_q0q3) | 
|  | << (i * 2 * 8)); | 
|  | } | 
|  | writeq(val64, &bar0->mc_pause_thresh_q0q3); | 
|  |  | 
|  | val64 = 0; | 
|  | for (i = 0; i < 4; i++) { | 
|  | val64 |= | 
|  | (((u64) 0xFF00 | nic->mac_control. | 
|  | mc_pause_threshold_q4q7) | 
|  | << (i * 2 * 8)); | 
|  | } | 
|  | writeq(val64, &bar0->mc_pause_thresh_q4q7); | 
|  |  | 
|  | /* | 
|  | * TxDMA will stop Read request if the number of read split has | 
|  | * exceeded the limit pointed by shared_splits | 
|  | */ | 
|  | val64 = readq(&bar0->pic_control); | 
|  | val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); | 
|  | writeq(val64, &bar0->pic_control); | 
|  |  | 
|  | if (nic->config.bus_speed == 266) { | 
|  | writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); | 
|  | writeq(0x0, &bar0->read_retry_delay); | 
|  | writeq(0x0, &bar0->write_retry_delay); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Programming the Herc to split every write transaction | 
|  | * that does not start on an ADB to reduce disconnects. | 
|  | */ | 
|  | if (nic->device_type == XFRAME_II_DEVICE) { | 
|  | val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | | 
|  | MISC_LINK_STABILITY_PRD(3); | 
|  | writeq(val64, &bar0->misc_control); | 
|  | val64 = readq(&bar0->pic_control2); | 
|  | val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); | 
|  | writeq(val64, &bar0->pic_control2); | 
|  | } | 
|  | if (strstr(nic->product_name, "CX4")) { | 
|  | val64 = TMAC_AVG_IPG(0x17); | 
|  | writeq(val64, &bar0->tmac_avg_ipg); | 
|  | } | 
|  |  | 
|  | return SUCCESS; | 
|  | } | 
|  | #define LINK_UP_DOWN_INTERRUPT		1 | 
|  | #define MAC_RMAC_ERR_TIMER		2 | 
|  |  | 
|  | static int s2io_link_fault_indication(struct s2io_nic *nic) | 
|  | { | 
|  | if (nic->config.intr_type != INTA) | 
|  | return MAC_RMAC_ERR_TIMER; | 
|  | if (nic->device_type == XFRAME_II_DEVICE) | 
|  | return LINK_UP_DOWN_INTERRUPT; | 
|  | else | 
|  | return MAC_RMAC_ERR_TIMER; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  do_s2io_write_bits -  update alarm bits in alarm register | 
|  | *  @value: alarm bits | 
|  | *  @flag: interrupt status | 
|  | *  @addr: address value | 
|  | *  Description: update alarm bits in alarm register | 
|  | *  Return Value: | 
|  | *  NONE. | 
|  | */ | 
|  | static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) | 
|  | { | 
|  | u64 temp64; | 
|  |  | 
|  | temp64 = readq(addr); | 
|  |  | 
|  | if(flag == ENABLE_INTRS) | 
|  | temp64 &= ~((u64) value); | 
|  | else | 
|  | temp64 |= ((u64) value); | 
|  | writeq(temp64, addr); | 
|  | } | 
|  |  | 
|  | static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | register u64 gen_int_mask = 0; | 
|  |  | 
|  | if (mask & TX_DMA_INTR) { | 
|  |  | 
|  | gen_int_mask |= TXDMA_INT_M; | 
|  |  | 
|  | do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | | 
|  | TXDMA_PCC_INT | TXDMA_TTI_INT | | 
|  | TXDMA_LSO_INT | TXDMA_TPA_INT | | 
|  | TXDMA_SM_INT, flag, &bar0->txdma_int_mask); | 
|  |  | 
|  | do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | | 
|  | PFC_MISC_0_ERR | PFC_MISC_1_ERR | | 
|  | PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, | 
|  | &bar0->pfc_err_mask); | 
|  |  | 
|  | do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | | 
|  | TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | | 
|  | TDA_PCIX_ERR, flag, &bar0->tda_err_mask); | 
|  |  | 
|  | do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | | 
|  | PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | | 
|  | PCC_N_SERR | PCC_6_COF_OV_ERR | | 
|  | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | | 
|  | PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | | 
|  | PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask); | 
|  |  | 
|  | do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | | 
|  | TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); | 
|  |  | 
|  | do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | | 
|  | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | | 
|  | LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, | 
|  | flag, &bar0->lso_err_mask); | 
|  |  | 
|  | do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, | 
|  | flag, &bar0->tpa_err_mask); | 
|  |  | 
|  | do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (mask & TX_MAC_INTR) { | 
|  | gen_int_mask |= TXMAC_INT_M; | 
|  | do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, | 
|  | &bar0->mac_int_mask); | 
|  | do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | | 
|  | TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | | 
|  | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, | 
|  | flag, &bar0->mac_tmac_err_mask); | 
|  | } | 
|  |  | 
|  | if (mask & TX_XGXS_INTR) { | 
|  | gen_int_mask |= TXXGXS_INT_M; | 
|  | do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, | 
|  | &bar0->xgxs_int_mask); | 
|  | do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | | 
|  | TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, | 
|  | flag, &bar0->xgxs_txgxs_err_mask); | 
|  | } | 
|  |  | 
|  | if (mask & RX_DMA_INTR) { | 
|  | gen_int_mask |= RXDMA_INT_M; | 
|  | do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | | 
|  | RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, | 
|  | flag, &bar0->rxdma_int_mask); | 
|  | do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | | 
|  | RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | | 
|  | RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | | 
|  | RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); | 
|  | do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | | 
|  | PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | | 
|  | PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, | 
|  | &bar0->prc_pcix_err_mask); | 
|  | do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | | 
|  | RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, | 
|  | &bar0->rpa_err_mask); | 
|  | do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | | 
|  | RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | | 
|  | RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | | 
|  | RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR, | 
|  | flag, &bar0->rda_err_mask); | 
|  | do_s2io_write_bits(RTI_SM_ERR_ALARM | | 
|  | RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, | 
|  | flag, &bar0->rti_err_mask); | 
|  | } | 
|  |  | 
|  | if (mask & RX_MAC_INTR) { | 
|  | gen_int_mask |= RXMAC_INT_M; | 
|  | do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, | 
|  | &bar0->mac_int_mask); | 
|  | do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | | 
|  | RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | | 
|  | RMAC_DOUBLE_ECC_ERR | | 
|  | RMAC_LINK_STATE_CHANGE_INT, | 
|  | flag, &bar0->mac_rmac_err_mask); | 
|  | } | 
|  |  | 
|  | if (mask & RX_XGXS_INTR) | 
|  | { | 
|  | gen_int_mask |= RXXGXS_INT_M; | 
|  | do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, | 
|  | &bar0->xgxs_int_mask); | 
|  | do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, | 
|  | &bar0->xgxs_rxgxs_err_mask); | 
|  | } | 
|  |  | 
|  | if (mask & MC_INTR) { | 
|  | gen_int_mask |= MC_INT_M; | 
|  | do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask); | 
|  | do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | | 
|  | MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, | 
|  | &bar0->mc_err_mask); | 
|  | } | 
|  | nic->general_int_mask = gen_int_mask; | 
|  |  | 
|  | /* Remove this line when alarm interrupts are enabled */ | 
|  | nic->general_int_mask = 0; | 
|  | } | 
|  | /** | 
|  | *  en_dis_able_nic_intrs - Enable or Disable the interrupts | 
|  | *  @nic: device private variable, | 
|  | *  @mask: A mask indicating which Intr block must be modified and, | 
|  | *  @flag: A flag indicating whether to enable or disable the Intrs. | 
|  | *  Description: This function will either disable or enable the interrupts | 
|  | *  depending on the flag argument. The mask argument can be used to | 
|  | *  enable/disable any Intr block. | 
|  | *  Return Value: NONE. | 
|  | */ | 
|  |  | 
|  | static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | register u64 temp64 = 0, intr_mask = 0; | 
|  |  | 
|  | intr_mask = nic->general_int_mask; | 
|  |  | 
|  | /*  Top level interrupt classification */ | 
|  | /*  PIC Interrupts */ | 
|  | if (mask & TX_PIC_INTR) { | 
|  | /*  Enable PIC Intrs in the general intr mask register */ | 
|  | intr_mask |= TXPIC_INT_M; | 
|  | if (flag == ENABLE_INTRS) { | 
|  | /* | 
|  | * If Hercules adapter enable GPIO otherwise | 
|  | * disable all PCIX, Flash, MDIO, IIC and GPIO | 
|  | * interrupts for now. | 
|  | * TODO | 
|  | */ | 
|  | if (s2io_link_fault_indication(nic) == | 
|  | LINK_UP_DOWN_INTERRUPT ) { | 
|  | do_s2io_write_bits(PIC_INT_GPIO, flag, | 
|  | &bar0->pic_int_mask); | 
|  | do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, | 
|  | &bar0->gpio_int_mask); | 
|  | } else | 
|  | writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); | 
|  | } else if (flag == DISABLE_INTRS) { | 
|  | /* | 
|  | * Disable PIC Intrs in the general | 
|  | * intr mask register | 
|  | */ | 
|  | writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*  Tx traffic interrupts */ | 
|  | if (mask & TX_TRAFFIC_INTR) { | 
|  | intr_mask |= TXTRAFFIC_INT_M; | 
|  | if (flag == ENABLE_INTRS) { | 
|  | /* | 
|  | * Enable all the Tx side interrupts | 
|  | * writing 0 Enables all 64 TX interrupt levels | 
|  | */ | 
|  | writeq(0x0, &bar0->tx_traffic_mask); | 
|  | } else if (flag == DISABLE_INTRS) { | 
|  | /* | 
|  | * Disable Tx Traffic Intrs in the general intr mask | 
|  | * register. | 
|  | */ | 
|  | writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*  Rx traffic interrupts */ | 
|  | if (mask & RX_TRAFFIC_INTR) { | 
|  | intr_mask |= RXTRAFFIC_INT_M; | 
|  | if (flag == ENABLE_INTRS) { | 
|  | /* writing 0 Enables all 8 RX interrupt levels */ | 
|  | writeq(0x0, &bar0->rx_traffic_mask); | 
|  | } else if (flag == DISABLE_INTRS) { | 
|  | /* | 
|  | * Disable Rx Traffic Intrs in the general intr mask | 
|  | * register. | 
|  | */ | 
|  | writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | temp64 = readq(&bar0->general_int_mask); | 
|  | if (flag == ENABLE_INTRS) | 
|  | temp64 &= ~((u64) intr_mask); | 
|  | else | 
|  | temp64 = DISABLE_ALL_INTRS; | 
|  | writeq(temp64, &bar0->general_int_mask); | 
|  |  | 
|  | nic->general_int_mask = readq(&bar0->general_int_mask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  verify_pcc_quiescent- Checks for PCC quiescent state | 
|  | *  Return: 1 If PCC is quiescence | 
|  | *          0 If PCC is not quiescence | 
|  | */ | 
|  | static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) | 
|  | { | 
|  | int ret = 0, herc; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64 = readq(&bar0->adapter_status); | 
|  |  | 
|  | herc = (sp->device_type == XFRAME_II_DEVICE); | 
|  |  | 
|  | if (flag == FALSE) { | 
|  | if ((!herc && (sp->pdev->revision >= 4)) || herc) { | 
|  | if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) | 
|  | ret = 1; | 
|  | } else { | 
|  | if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) | 
|  | ret = 1; | 
|  | } | 
|  | } else { | 
|  | if ((!herc && (sp->pdev->revision >= 4)) || herc) { | 
|  | if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == | 
|  | ADAPTER_STATUS_RMAC_PCC_IDLE)) | 
|  | ret = 1; | 
|  | } else { | 
|  | if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == | 
|  | ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) | 
|  | ret = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | /** | 
|  | *  verify_xena_quiescence - Checks whether the H/W is ready | 
|  | *  Description: Returns whether the H/W is ready to go or not. Depending | 
|  | *  on whether adapter enable bit was written or not the comparison | 
|  | *  differs and the calling function passes the input argument flag to | 
|  | *  indicate this. | 
|  | *  Return: 1 If xena is quiescence | 
|  | *          0 If Xena is not quiescence | 
|  | */ | 
|  |  | 
|  | static int verify_xena_quiescence(struct s2io_nic *sp) | 
|  | { | 
|  | int  mode; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64 = readq(&bar0->adapter_status); | 
|  | mode = s2io_verify_pci_mode(sp); | 
|  |  | 
|  | if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { | 
|  | DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!"); | 
|  | return 0; | 
|  | } | 
|  | if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { | 
|  | DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!"); | 
|  | return 0; | 
|  | } | 
|  | if (!(val64 & ADAPTER_STATUS_PFC_READY)) { | 
|  | DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!"); | 
|  | return 0; | 
|  | } | 
|  | if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { | 
|  | DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!"); | 
|  | return 0; | 
|  | } | 
|  | if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { | 
|  | DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!"); | 
|  | return 0; | 
|  | } | 
|  | if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { | 
|  | DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!"); | 
|  | return 0; | 
|  | } | 
|  | if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { | 
|  | DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!"); | 
|  | return 0; | 
|  | } | 
|  | if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { | 
|  | DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In PCI 33 mode, the P_PLL is not used, and therefore, | 
|  | * the the P_PLL_LOCK bit in the adapter_status register will | 
|  | * not be asserted. | 
|  | */ | 
|  | if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && | 
|  | sp->device_type == XFRAME_II_DEVICE && mode != | 
|  | PCI_MODE_PCI_33) { | 
|  | DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!"); | 
|  | return 0; | 
|  | } | 
|  | if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == | 
|  | ADAPTER_STATUS_RC_PRC_QUIESCENT)) { | 
|  | DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!"); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fix_mac_address -  Fix for Mac addr problem on Alpha platforms | 
|  | * @sp: Pointer to device specifc structure | 
|  | * Description : | 
|  | * New procedure to clear mac address reading  problems on Alpha platforms | 
|  | * | 
|  | */ | 
|  |  | 
|  | static void fix_mac_address(struct s2io_nic * sp) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64; | 
|  | int i = 0; | 
|  |  | 
|  | while (fix_mac[i] != END_SIGN) { | 
|  | writeq(fix_mac[i++], &bar0->gpio_control); | 
|  | udelay(10); | 
|  | val64 = readq(&bar0->gpio_control); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  start_nic - Turns the device on | 
|  | *  @nic : device private variable. | 
|  | *  Description: | 
|  | *  This function actually turns the device on. Before this  function is | 
|  | *  called,all Registers are configured from their reset states | 
|  | *  and shared memory is allocated but the NIC is still quiescent. On | 
|  | *  calling this function, the device interrupts are cleared and the NIC is | 
|  | *  literally switched on by writing into the adapter control register. | 
|  | *  Return Value: | 
|  | *  SUCCESS on success and -1 on failure. | 
|  | */ | 
|  |  | 
|  | static int start_nic(struct s2io_nic *nic) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | struct net_device *dev = nic->dev; | 
|  | register u64 val64 = 0; | 
|  | u16 subid, i; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  |  | 
|  | mac_control = &nic->mac_control; | 
|  | config = &nic->config; | 
|  |  | 
|  | /*  PRC Initialization and configuration */ | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr, | 
|  | &bar0->prc_rxd0_n[i]); | 
|  |  | 
|  | val64 = readq(&bar0->prc_ctrl_n[i]); | 
|  | if (nic->rxd_mode == RXD_MODE_1) | 
|  | val64 |= PRC_CTRL_RC_ENABLED; | 
|  | else | 
|  | val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; | 
|  | if (nic->device_type == XFRAME_II_DEVICE) | 
|  | val64 |= PRC_CTRL_GROUP_READS; | 
|  | val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); | 
|  | val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); | 
|  | writeq(val64, &bar0->prc_ctrl_n[i]); | 
|  | } | 
|  |  | 
|  | if (nic->rxd_mode == RXD_MODE_3B) { | 
|  | /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ | 
|  | val64 = readq(&bar0->rx_pa_cfg); | 
|  | val64 |= RX_PA_CFG_IGNORE_L2_ERR; | 
|  | writeq(val64, &bar0->rx_pa_cfg); | 
|  | } | 
|  |  | 
|  | if (vlan_tag_strip == 0) { | 
|  | val64 = readq(&bar0->rx_pa_cfg); | 
|  | val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; | 
|  | writeq(val64, &bar0->rx_pa_cfg); | 
|  | vlan_strip_flag = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enabling MC-RLDRAM. After enabling the device, we timeout | 
|  | * for around 100ms, which is approximately the time required | 
|  | * for the device to be ready for operation. | 
|  | */ | 
|  | val64 = readq(&bar0->mc_rldram_mrs); | 
|  | val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; | 
|  | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | 
|  | val64 = readq(&bar0->mc_rldram_mrs); | 
|  |  | 
|  | msleep(100);	/* Delay by around 100 ms. */ | 
|  |  | 
|  | /* Enabling ECC Protection. */ | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | val64 &= ~ADAPTER_ECC_EN; | 
|  | writeq(val64, &bar0->adapter_control); | 
|  |  | 
|  | /* | 
|  | * Verify if the device is ready to be enabled, if so enable | 
|  | * it. | 
|  | */ | 
|  | val64 = readq(&bar0->adapter_status); | 
|  | if (!verify_xena_quiescence(nic)) { | 
|  | DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name); | 
|  | DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n", | 
|  | (unsigned long long) val64); | 
|  | return FAILURE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With some switches, link might be already up at this point. | 
|  | * Because of this weird behavior, when we enable laser, | 
|  | * we may not get link. We need to handle this. We cannot | 
|  | * figure out which switch is misbehaving. So we are forced to | 
|  | * make a global change. | 
|  | */ | 
|  |  | 
|  | /* Enabling Laser. */ | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | val64 |= ADAPTER_EOI_TX_ON; | 
|  | writeq(val64, &bar0->adapter_control); | 
|  |  | 
|  | if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { | 
|  | /* | 
|  | * Dont see link state interrupts initally on some switches, | 
|  | * so directly scheduling the link state task here. | 
|  | */ | 
|  | schedule_work(&nic->set_link_task); | 
|  | } | 
|  | /* SXE-002: Initialize link and activity LED */ | 
|  | subid = nic->pdev->subsystem_device; | 
|  | if (((subid & 0xFF) >= 0x07) && | 
|  | (nic->device_type == XFRAME_I_DEVICE)) { | 
|  | val64 = readq(&bar0->gpio_control); | 
|  | val64 |= 0x0000800000000000ULL; | 
|  | writeq(val64, &bar0->gpio_control); | 
|  | val64 = 0x0411040400000000ULL; | 
|  | writeq(val64, (void __iomem *)bar0 + 0x2700); | 
|  | } | 
|  |  | 
|  | return SUCCESS; | 
|  | } | 
|  | /** | 
|  | * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb | 
|  | */ | 
|  | static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \ | 
|  | TxD *txdlp, int get_off) | 
|  | { | 
|  | struct s2io_nic *nic = fifo_data->nic; | 
|  | struct sk_buff *skb; | 
|  | struct TxD *txds; | 
|  | u16 j, frg_cnt; | 
|  |  | 
|  | txds = txdlp; | 
|  | if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { | 
|  | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | txds->Buffer_Pointer, sizeof(u64), | 
|  | PCI_DMA_TODEVICE); | 
|  | txds++; | 
|  | } | 
|  |  | 
|  | skb = (struct sk_buff *) ((unsigned long) | 
|  | txds->Host_Control); | 
|  | if (!skb) { | 
|  | memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); | 
|  | return NULL; | 
|  | } | 
|  | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | txds->Buffer_Pointer, | 
|  | skb->len - skb->data_len, | 
|  | PCI_DMA_TODEVICE); | 
|  | frg_cnt = skb_shinfo(skb)->nr_frags; | 
|  | if (frg_cnt) { | 
|  | txds++; | 
|  | for (j = 0; j < frg_cnt; j++, txds++) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; | 
|  | if (!txds->Buffer_Pointer) | 
|  | break; | 
|  | pci_unmap_page(nic->pdev, (dma_addr_t) | 
|  | txds->Buffer_Pointer, | 
|  | frag->size, PCI_DMA_TODEVICE); | 
|  | } | 
|  | } | 
|  | memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds)); | 
|  | return(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  free_tx_buffers - Free all queued Tx buffers | 
|  | *  @nic : device private variable. | 
|  | *  Description: | 
|  | *  Free all queued Tx buffers. | 
|  | *  Return Value: void | 
|  | */ | 
|  |  | 
|  | static void free_tx_buffers(struct s2io_nic *nic) | 
|  | { | 
|  | struct net_device *dev = nic->dev; | 
|  | struct sk_buff *skb; | 
|  | struct TxD *txdp; | 
|  | int i, j; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  | int cnt = 0; | 
|  |  | 
|  | mac_control = &nic->mac_control; | 
|  | config = &nic->config; | 
|  |  | 
|  | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags); | 
|  | for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) { | 
|  | txdp = (struct TxD *) \ | 
|  | mac_control->fifos[i].list_info[j].list_virt_addr; | 
|  | skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); | 
|  | if (skb) { | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed | 
|  | += skb->truesize; | 
|  | dev_kfree_skb(skb); | 
|  | cnt++; | 
|  | } | 
|  | } | 
|  | DBG_PRINT(INTR_DBG, | 
|  | "%s:forcibly freeing %d skbs on FIFO%d\n", | 
|  | dev->name, cnt, i); | 
|  | mac_control->fifos[i].tx_curr_get_info.offset = 0; | 
|  | mac_control->fifos[i].tx_curr_put_info.offset = 0; | 
|  | spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *   stop_nic -  To stop the nic | 
|  | *   @nic ; device private variable. | 
|  | *   Description: | 
|  | *   This function does exactly the opposite of what the start_nic() | 
|  | *   function does. This function is called to stop the device. | 
|  | *   Return Value: | 
|  | *   void. | 
|  | */ | 
|  |  | 
|  | static void stop_nic(struct s2io_nic *nic) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | register u64 val64 = 0; | 
|  | u16 interruptible; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  |  | 
|  | mac_control = &nic->mac_control; | 
|  | config = &nic->config; | 
|  |  | 
|  | /*  Disable all interrupts */ | 
|  | en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); | 
|  | interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; | 
|  | interruptible |= TX_PIC_INTR; | 
|  | en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); | 
|  |  | 
|  | /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | val64 &= ~(ADAPTER_CNTL_EN); | 
|  | writeq(val64, &bar0->adapter_control); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  fill_rx_buffers - Allocates the Rx side skbs | 
|  | *  @nic:  device private variable | 
|  | *  @ring_no: ring number | 
|  | *  Description: | 
|  | *  The function allocates Rx side skbs and puts the physical | 
|  | *  address of these buffers into the RxD buffer pointers, so that the NIC | 
|  | *  can DMA the received frame into these locations. | 
|  | *  The NIC supports 3 receive modes, viz | 
|  | *  1. single buffer, | 
|  | *  2. three buffer and | 
|  | *  3. Five buffer modes. | 
|  | *  Each mode defines how many fragments the received frame will be split | 
|  | *  up into by the NIC. The frame is split into L3 header, L4 Header, | 
|  | *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself | 
|  | *  is split into 3 fragments. As of now only single buffer mode is | 
|  | *  supported. | 
|  | *   Return Value: | 
|  | *  SUCCESS on success or an appropriate -ve value on failure. | 
|  | */ | 
|  |  | 
|  | static int fill_rx_buffers(struct s2io_nic *nic, int ring_no) | 
|  | { | 
|  | struct net_device *dev = nic->dev; | 
|  | struct sk_buff *skb; | 
|  | struct RxD_t *rxdp; | 
|  | int off, off1, size, block_no, block_no1; | 
|  | u32 alloc_tab = 0; | 
|  | u32 alloc_cnt; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  | u64 tmp; | 
|  | struct buffAdd *ba; | 
|  | unsigned long flags; | 
|  | struct RxD_t *first_rxdp = NULL; | 
|  | u64 Buffer0_ptr = 0, Buffer1_ptr = 0; | 
|  | struct RxD1 *rxdp1; | 
|  | struct RxD3 *rxdp3; | 
|  | struct swStat *stats = &nic->mac_control.stats_info->sw_stat; | 
|  |  | 
|  | mac_control = &nic->mac_control; | 
|  | config = &nic->config; | 
|  | alloc_cnt = mac_control->rings[ring_no].pkt_cnt - | 
|  | atomic_read(&nic->rx_bufs_left[ring_no]); | 
|  |  | 
|  | block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index; | 
|  | off1 = mac_control->rings[ring_no].rx_curr_get_info.offset; | 
|  | while (alloc_tab < alloc_cnt) { | 
|  | block_no = mac_control->rings[ring_no].rx_curr_put_info. | 
|  | block_index; | 
|  | off = mac_control->rings[ring_no].rx_curr_put_info.offset; | 
|  |  | 
|  | rxdp = mac_control->rings[ring_no]. | 
|  | rx_blocks[block_no].rxds[off].virt_addr; | 
|  |  | 
|  | if ((block_no == block_no1) && (off == off1) && | 
|  | (rxdp->Host_Control)) { | 
|  | DBG_PRINT(INTR_DBG, "%s: Get and Put", | 
|  | dev->name); | 
|  | DBG_PRINT(INTR_DBG, " info equated\n"); | 
|  | goto end; | 
|  | } | 
|  | if (off && (off == rxd_count[nic->rxd_mode])) { | 
|  | mac_control->rings[ring_no].rx_curr_put_info. | 
|  | block_index++; | 
|  | if (mac_control->rings[ring_no].rx_curr_put_info. | 
|  | block_index == mac_control->rings[ring_no]. | 
|  | block_count) | 
|  | mac_control->rings[ring_no].rx_curr_put_info. | 
|  | block_index = 0; | 
|  | block_no = mac_control->rings[ring_no]. | 
|  | rx_curr_put_info.block_index; | 
|  | if (off == rxd_count[nic->rxd_mode]) | 
|  | off = 0; | 
|  | mac_control->rings[ring_no].rx_curr_put_info. | 
|  | offset = off; | 
|  | rxdp = mac_control->rings[ring_no]. | 
|  | rx_blocks[block_no].block_virt_addr; | 
|  | DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", | 
|  | dev->name, rxdp); | 
|  | } | 
|  | if(!napi) { | 
|  | spin_lock_irqsave(&nic->put_lock, flags); | 
|  | mac_control->rings[ring_no].put_pos = | 
|  | (block_no * (rxd_count[nic->rxd_mode] + 1)) + off; | 
|  | spin_unlock_irqrestore(&nic->put_lock, flags); | 
|  | } else { | 
|  | mac_control->rings[ring_no].put_pos = | 
|  | (block_no * (rxd_count[nic->rxd_mode] + 1)) + off; | 
|  | } | 
|  | if ((rxdp->Control_1 & RXD_OWN_XENA) && | 
|  | ((nic->rxd_mode == RXD_MODE_3B) && | 
|  | (rxdp->Control_2 & s2BIT(0)))) { | 
|  | mac_control->rings[ring_no].rx_curr_put_info. | 
|  | offset = off; | 
|  | goto end; | 
|  | } | 
|  | /* calculate size of skb based on ring mode */ | 
|  | size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + | 
|  | HEADER_802_2_SIZE + HEADER_SNAP_SIZE; | 
|  | if (nic->rxd_mode == RXD_MODE_1) | 
|  | size += NET_IP_ALIGN; | 
|  | else | 
|  | size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; | 
|  |  | 
|  | /* allocate skb */ | 
|  | skb = dev_alloc_skb(size); | 
|  | if(!skb) { | 
|  | DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name); | 
|  | DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n"); | 
|  | if (first_rxdp) { | 
|  | wmb(); | 
|  | first_rxdp->Control_1 |= RXD_OWN_XENA; | 
|  | } | 
|  | nic->mac_control.stats_info->sw_stat. \ | 
|  | mem_alloc_fail_cnt++; | 
|  | return -ENOMEM ; | 
|  | } | 
|  | nic->mac_control.stats_info->sw_stat.mem_allocated | 
|  | += skb->truesize; | 
|  | if (nic->rxd_mode == RXD_MODE_1) { | 
|  | /* 1 buffer mode - normal operation mode */ | 
|  | rxdp1 = (struct RxD1*)rxdp; | 
|  | memset(rxdp, 0, sizeof(struct RxD1)); | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  | rxdp1->Buffer0_ptr = pci_map_single | 
|  | (nic->pdev, skb->data, size - NET_IP_ALIGN, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if( (rxdp1->Buffer0_ptr == 0) || | 
|  | (rxdp1->Buffer0_ptr == | 
|  | DMA_ERROR_CODE)) | 
|  | goto pci_map_failed; | 
|  |  | 
|  | rxdp->Control_2 = | 
|  | SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); | 
|  |  | 
|  | } else if (nic->rxd_mode == RXD_MODE_3B) { | 
|  | /* | 
|  | * 2 buffer mode - | 
|  | * 2 buffer mode provides 128 | 
|  | * byte aligned receive buffers. | 
|  | */ | 
|  |  | 
|  | rxdp3 = (struct RxD3*)rxdp; | 
|  | /* save buffer pointers to avoid frequent dma mapping */ | 
|  | Buffer0_ptr = rxdp3->Buffer0_ptr; | 
|  | Buffer1_ptr = rxdp3->Buffer1_ptr; | 
|  | memset(rxdp, 0, sizeof(struct RxD3)); | 
|  | /* restore the buffer pointers for dma sync*/ | 
|  | rxdp3->Buffer0_ptr = Buffer0_ptr; | 
|  | rxdp3->Buffer1_ptr = Buffer1_ptr; | 
|  |  | 
|  | ba = &mac_control->rings[ring_no].ba[block_no][off]; | 
|  | skb_reserve(skb, BUF0_LEN); | 
|  | tmp = (u64)(unsigned long) skb->data; | 
|  | tmp += ALIGN_SIZE; | 
|  | tmp &= ~ALIGN_SIZE; | 
|  | skb->data = (void *) (unsigned long)tmp; | 
|  | skb_reset_tail_pointer(skb); | 
|  |  | 
|  | if (!(rxdp3->Buffer0_ptr)) | 
|  | rxdp3->Buffer0_ptr = | 
|  | pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | else | 
|  | pci_dma_sync_single_for_device(nic->pdev, | 
|  | (dma_addr_t) rxdp3->Buffer0_ptr, | 
|  | BUF0_LEN, PCI_DMA_FROMDEVICE); | 
|  | if( (rxdp3->Buffer0_ptr == 0) || | 
|  | (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) | 
|  | goto pci_map_failed; | 
|  |  | 
|  | rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); | 
|  | if (nic->rxd_mode == RXD_MODE_3B) { | 
|  | /* Two buffer mode */ | 
|  |  | 
|  | /* | 
|  | * Buffer2 will have L3/L4 header plus | 
|  | * L4 payload | 
|  | */ | 
|  | rxdp3->Buffer2_ptr = pci_map_single | 
|  | (nic->pdev, skb->data, dev->mtu + 4, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | if( (rxdp3->Buffer2_ptr == 0) || | 
|  | (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) | 
|  | goto pci_map_failed; | 
|  |  | 
|  | rxdp3->Buffer1_ptr = | 
|  | pci_map_single(nic->pdev, | 
|  | ba->ba_1, BUF1_LEN, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if( (rxdp3->Buffer1_ptr == 0) || | 
|  | (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) { | 
|  | pci_unmap_single | 
|  | (nic->pdev, | 
|  | (dma_addr_t)rxdp3->Buffer2_ptr, | 
|  | dev->mtu + 4, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | goto pci_map_failed; | 
|  | } | 
|  | rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); | 
|  | rxdp->Control_2 |= SET_BUFFER2_SIZE_3 | 
|  | (dev->mtu + 4); | 
|  | } | 
|  | rxdp->Control_2 |= s2BIT(0); | 
|  | } | 
|  | rxdp->Host_Control = (unsigned long) (skb); | 
|  | if (alloc_tab & ((1 << rxsync_frequency) - 1)) | 
|  | rxdp->Control_1 |= RXD_OWN_XENA; | 
|  | off++; | 
|  | if (off == (rxd_count[nic->rxd_mode] + 1)) | 
|  | off = 0; | 
|  | mac_control->rings[ring_no].rx_curr_put_info.offset = off; | 
|  |  | 
|  | rxdp->Control_2 |= SET_RXD_MARKER; | 
|  | if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { | 
|  | if (first_rxdp) { | 
|  | wmb(); | 
|  | first_rxdp->Control_1 |= RXD_OWN_XENA; | 
|  | } | 
|  | first_rxdp = rxdp; | 
|  | } | 
|  | atomic_inc(&nic->rx_bufs_left[ring_no]); | 
|  | alloc_tab++; | 
|  | } | 
|  |  | 
|  | end: | 
|  | /* Transfer ownership of first descriptor to adapter just before | 
|  | * exiting. Before that, use memory barrier so that ownership | 
|  | * and other fields are seen by adapter correctly. | 
|  | */ | 
|  | if (first_rxdp) { | 
|  | wmb(); | 
|  | first_rxdp->Control_1 |= RXD_OWN_XENA; | 
|  | } | 
|  |  | 
|  | return SUCCESS; | 
|  | pci_map_failed: | 
|  | stats->pci_map_fail_cnt++; | 
|  | stats->mem_freed += skb->truesize; | 
|  | dev_kfree_skb_irq(skb); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) | 
|  | { | 
|  | struct net_device *dev = sp->dev; | 
|  | int j; | 
|  | struct sk_buff *skb; | 
|  | struct RxD_t *rxdp; | 
|  | struct mac_info *mac_control; | 
|  | struct buffAdd *ba; | 
|  | struct RxD1 *rxdp1; | 
|  | struct RxD3 *rxdp3; | 
|  |  | 
|  | mac_control = &sp->mac_control; | 
|  | for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { | 
|  | rxdp = mac_control->rings[ring_no]. | 
|  | rx_blocks[blk].rxds[j].virt_addr; | 
|  | skb = (struct sk_buff *) | 
|  | ((unsigned long) rxdp->Host_Control); | 
|  | if (!skb) { | 
|  | continue; | 
|  | } | 
|  | if (sp->rxd_mode == RXD_MODE_1) { | 
|  | rxdp1 = (struct RxD1*)rxdp; | 
|  | pci_unmap_single(sp->pdev, (dma_addr_t) | 
|  | rxdp1->Buffer0_ptr, | 
|  | dev->mtu + | 
|  | HEADER_ETHERNET_II_802_3_SIZE | 
|  | + HEADER_802_2_SIZE + | 
|  | HEADER_SNAP_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | memset(rxdp, 0, sizeof(struct RxD1)); | 
|  | } else if(sp->rxd_mode == RXD_MODE_3B) { | 
|  | rxdp3 = (struct RxD3*)rxdp; | 
|  | ba = &mac_control->rings[ring_no]. | 
|  | ba[blk][j]; | 
|  | pci_unmap_single(sp->pdev, (dma_addr_t) | 
|  | rxdp3->Buffer0_ptr, | 
|  | BUF0_LEN, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | pci_unmap_single(sp->pdev, (dma_addr_t) | 
|  | rxdp3->Buffer1_ptr, | 
|  | BUF1_LEN, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | pci_unmap_single(sp->pdev, (dma_addr_t) | 
|  | rxdp3->Buffer2_ptr, | 
|  | dev->mtu + 4, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | memset(rxdp, 0, sizeof(struct RxD3)); | 
|  | } | 
|  | sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize; | 
|  | dev_kfree_skb(skb); | 
|  | atomic_dec(&sp->rx_bufs_left[ring_no]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  free_rx_buffers - Frees all Rx buffers | 
|  | *  @sp: device private variable. | 
|  | *  Description: | 
|  | *  This function will free all Rx buffers allocated by host. | 
|  | *  Return Value: | 
|  | *  NONE. | 
|  | */ | 
|  |  | 
|  | static void free_rx_buffers(struct s2io_nic *sp) | 
|  | { | 
|  | struct net_device *dev = sp->dev; | 
|  | int i, blk = 0, buf_cnt = 0; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  |  | 
|  | mac_control = &sp->mac_control; | 
|  | config = &sp->config; | 
|  |  | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | for (blk = 0; blk < rx_ring_sz[i]; blk++) | 
|  | free_rxd_blk(sp,i,blk); | 
|  |  | 
|  | mac_control->rings[i].rx_curr_put_info.block_index = 0; | 
|  | mac_control->rings[i].rx_curr_get_info.block_index = 0; | 
|  | mac_control->rings[i].rx_curr_put_info.offset = 0; | 
|  | mac_control->rings[i].rx_curr_get_info.offset = 0; | 
|  | atomic_set(&sp->rx_bufs_left[i], 0); | 
|  | DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n", | 
|  | dev->name, buf_cnt, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_poll - Rx interrupt handler for NAPI support | 
|  | * @napi : pointer to the napi structure. | 
|  | * @budget : The number of packets that were budgeted to be processed | 
|  | * during  one pass through the 'Poll" function. | 
|  | * Description: | 
|  | * Comes into picture only if NAPI support has been incorporated. It does | 
|  | * the same thing that rx_intr_handler does, but not in a interrupt context | 
|  | * also It will process only a given number of packets. | 
|  | * Return value: | 
|  | * 0 on success and 1 if there are No Rx packets to be processed. | 
|  | */ | 
|  |  | 
|  | static int s2io_poll(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); | 
|  | struct net_device *dev = nic->dev; | 
|  | int pkt_cnt = 0, org_pkts_to_process; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | int i; | 
|  |  | 
|  | mac_control = &nic->mac_control; | 
|  | config = &nic->config; | 
|  |  | 
|  | nic->pkts_to_process = budget; | 
|  | org_pkts_to_process = nic->pkts_to_process; | 
|  |  | 
|  | writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); | 
|  | readl(&bar0->rx_traffic_int); | 
|  |  | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | rx_intr_handler(&mac_control->rings[i]); | 
|  | pkt_cnt = org_pkts_to_process - nic->pkts_to_process; | 
|  | if (!nic->pkts_to_process) { | 
|  | /* Quota for the current iteration has been met */ | 
|  | goto no_rx; | 
|  | } | 
|  | } | 
|  |  | 
|  | netif_rx_complete(dev, napi); | 
|  |  | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | if (fill_rx_buffers(nic, i) == -ENOMEM) { | 
|  | DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name); | 
|  | DBG_PRINT(INFO_DBG, " in Rx Poll!!\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* Re enable the Rx interrupts. */ | 
|  | writeq(0x0, &bar0->rx_traffic_mask); | 
|  | readl(&bar0->rx_traffic_mask); | 
|  | return pkt_cnt; | 
|  |  | 
|  | no_rx: | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | if (fill_rx_buffers(nic, i) == -ENOMEM) { | 
|  | DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name); | 
|  | DBG_PRINT(INFO_DBG, " in Rx Poll!!\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return pkt_cnt; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /** | 
|  | * s2io_netpoll - netpoll event handler entry point | 
|  | * @dev : pointer to the device structure. | 
|  | * Description: | 
|  | * 	This function will be called by upper layer to check for events on the | 
|  | * interface in situations where interrupts are disabled. It is used for | 
|  | * specific in-kernel networking tasks, such as remote consoles and kernel | 
|  | * debugging over the network (example netdump in RedHat). | 
|  | */ | 
|  | static void s2io_netpoll(struct net_device *dev) | 
|  | { | 
|  | struct s2io_nic *nic = dev->priv; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | u64 val64 = 0xFFFFFFFFFFFFFFFFULL; | 
|  | int i; | 
|  |  | 
|  | if (pci_channel_offline(nic->pdev)) | 
|  | return; | 
|  |  | 
|  | disable_irq(dev->irq); | 
|  |  | 
|  | mac_control = &nic->mac_control; | 
|  | config = &nic->config; | 
|  |  | 
|  | writeq(val64, &bar0->rx_traffic_int); | 
|  | writeq(val64, &bar0->tx_traffic_int); | 
|  |  | 
|  | /* we need to free up the transmitted skbufs or else netpoll will | 
|  | * run out of skbs and will fail and eventually netpoll application such | 
|  | * as netdump will fail. | 
|  | */ | 
|  | for (i = 0; i < config->tx_fifo_num; i++) | 
|  | tx_intr_handler(&mac_control->fifos[i]); | 
|  |  | 
|  | /* check for received packet and indicate up to network */ | 
|  | for (i = 0; i < config->rx_ring_num; i++) | 
|  | rx_intr_handler(&mac_control->rings[i]); | 
|  |  | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | if (fill_rx_buffers(nic, i) == -ENOMEM) { | 
|  | DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name); | 
|  | DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | enable_irq(dev->irq); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | *  rx_intr_handler - Rx interrupt handler | 
|  | *  @nic: device private variable. | 
|  | *  Description: | 
|  | *  If the interrupt is because of a received frame or if the | 
|  | *  receive ring contains fresh as yet un-processed frames,this function is | 
|  | *  called. It picks out the RxD at which place the last Rx processing had | 
|  | *  stopped and sends the skb to the OSM's Rx handler and then increments | 
|  | *  the offset. | 
|  | *  Return Value: | 
|  | *  NONE. | 
|  | */ | 
|  | static void rx_intr_handler(struct ring_info *ring_data) | 
|  | { | 
|  | struct s2io_nic *nic = ring_data->nic; | 
|  | struct net_device *dev = (struct net_device *) nic->dev; | 
|  | int get_block, put_block, put_offset; | 
|  | struct rx_curr_get_info get_info, put_info; | 
|  | struct RxD_t *rxdp; | 
|  | struct sk_buff *skb; | 
|  | int pkt_cnt = 0; | 
|  | int i; | 
|  | struct RxD1* rxdp1; | 
|  | struct RxD3* rxdp3; | 
|  |  | 
|  | spin_lock(&nic->rx_lock); | 
|  |  | 
|  | get_info = ring_data->rx_curr_get_info; | 
|  | get_block = get_info.block_index; | 
|  | memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); | 
|  | put_block = put_info.block_index; | 
|  | rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; | 
|  | if (!napi) { | 
|  | spin_lock(&nic->put_lock); | 
|  | put_offset = ring_data->put_pos; | 
|  | spin_unlock(&nic->put_lock); | 
|  | } else | 
|  | put_offset = ring_data->put_pos; | 
|  |  | 
|  | while (RXD_IS_UP2DT(rxdp)) { | 
|  | /* | 
|  | * If your are next to put index then it's | 
|  | * FIFO full condition | 
|  | */ | 
|  | if ((get_block == put_block) && | 
|  | (get_info.offset + 1) == put_info.offset) { | 
|  | DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name); | 
|  | break; | 
|  | } | 
|  | skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control); | 
|  | if (skb == NULL) { | 
|  | DBG_PRINT(ERR_DBG, "%s: The skb is ", | 
|  | dev->name); | 
|  | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); | 
|  | spin_unlock(&nic->rx_lock); | 
|  | return; | 
|  | } | 
|  | if (nic->rxd_mode == RXD_MODE_1) { | 
|  | rxdp1 = (struct RxD1*)rxdp; | 
|  | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | rxdp1->Buffer0_ptr, | 
|  | dev->mtu + | 
|  | HEADER_ETHERNET_II_802_3_SIZE + | 
|  | HEADER_802_2_SIZE + | 
|  | HEADER_SNAP_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | } else if (nic->rxd_mode == RXD_MODE_3B) { | 
|  | rxdp3 = (struct RxD3*)rxdp; | 
|  | pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t) | 
|  | rxdp3->Buffer0_ptr, | 
|  | BUF0_LEN, PCI_DMA_FROMDEVICE); | 
|  | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | rxdp3->Buffer2_ptr, | 
|  | dev->mtu + 4, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | } | 
|  | prefetch(skb->data); | 
|  | rx_osm_handler(ring_data, rxdp); | 
|  | get_info.offset++; | 
|  | ring_data->rx_curr_get_info.offset = get_info.offset; | 
|  | rxdp = ring_data->rx_blocks[get_block]. | 
|  | rxds[get_info.offset].virt_addr; | 
|  | if (get_info.offset == rxd_count[nic->rxd_mode]) { | 
|  | get_info.offset = 0; | 
|  | ring_data->rx_curr_get_info.offset = get_info.offset; | 
|  | get_block++; | 
|  | if (get_block == ring_data->block_count) | 
|  | get_block = 0; | 
|  | ring_data->rx_curr_get_info.block_index = get_block; | 
|  | rxdp = ring_data->rx_blocks[get_block].block_virt_addr; | 
|  | } | 
|  |  | 
|  | nic->pkts_to_process -= 1; | 
|  | if ((napi) && (!nic->pkts_to_process)) | 
|  | break; | 
|  | pkt_cnt++; | 
|  | if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) | 
|  | break; | 
|  | } | 
|  | if (nic->lro) { | 
|  | /* Clear all LRO sessions before exiting */ | 
|  | for (i=0; i<MAX_LRO_SESSIONS; i++) { | 
|  | struct lro *lro = &nic->lro0_n[i]; | 
|  | if (lro->in_use) { | 
|  | update_L3L4_header(nic, lro); | 
|  | queue_rx_frame(lro->parent); | 
|  | clear_lro_session(lro); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&nic->rx_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  tx_intr_handler - Transmit interrupt handler | 
|  | *  @nic : device private variable | 
|  | *  Description: | 
|  | *  If an interrupt was raised to indicate DMA complete of the | 
|  | *  Tx packet, this function is called. It identifies the last TxD | 
|  | *  whose buffer was freed and frees all skbs whose data have already | 
|  | *  DMA'ed into the NICs internal memory. | 
|  | *  Return Value: | 
|  | *  NONE | 
|  | */ | 
|  |  | 
|  | static void tx_intr_handler(struct fifo_info *fifo_data) | 
|  | { | 
|  | struct s2io_nic *nic = fifo_data->nic; | 
|  | struct net_device *dev = (struct net_device *) nic->dev; | 
|  | struct tx_curr_get_info get_info, put_info; | 
|  | struct sk_buff *skb; | 
|  | struct TxD *txdlp; | 
|  | unsigned long flags = 0; | 
|  | u8 err_mask; | 
|  |  | 
|  | if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) | 
|  | return; | 
|  |  | 
|  | get_info = fifo_data->tx_curr_get_info; | 
|  | memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); | 
|  | txdlp = (struct TxD *) fifo_data->list_info[get_info.offset]. | 
|  | list_virt_addr; | 
|  | while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && | 
|  | (get_info.offset != put_info.offset) && | 
|  | (txdlp->Host_Control)) { | 
|  | /* Check for TxD errors */ | 
|  | if (txdlp->Control_1 & TXD_T_CODE) { | 
|  | unsigned long long err; | 
|  | err = txdlp->Control_1 & TXD_T_CODE; | 
|  | if (err & 0x1) { | 
|  | nic->mac_control.stats_info->sw_stat. | 
|  | parity_err_cnt++; | 
|  | } | 
|  |  | 
|  | /* update t_code statistics */ | 
|  | err_mask = err >> 48; | 
|  | switch(err_mask) { | 
|  | case 2: | 
|  | nic->mac_control.stats_info->sw_stat. | 
|  | tx_buf_abort_cnt++; | 
|  | break; | 
|  |  | 
|  | case 3: | 
|  | nic->mac_control.stats_info->sw_stat. | 
|  | tx_desc_abort_cnt++; | 
|  | break; | 
|  |  | 
|  | case 7: | 
|  | nic->mac_control.stats_info->sw_stat. | 
|  | tx_parity_err_cnt++; | 
|  | break; | 
|  |  | 
|  | case 10: | 
|  | nic->mac_control.stats_info->sw_stat. | 
|  | tx_link_loss_cnt++; | 
|  | break; | 
|  |  | 
|  | case 15: | 
|  | nic->mac_control.stats_info->sw_stat. | 
|  | tx_list_proc_err_cnt++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); | 
|  | if (skb == NULL) { | 
|  | spin_unlock_irqrestore(&fifo_data->tx_lock, flags); | 
|  | DBG_PRINT(ERR_DBG, "%s: Null skb ", | 
|  | __FUNCTION__); | 
|  | DBG_PRINT(ERR_DBG, "in Tx Free Intr\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Updating the statistics block */ | 
|  | nic->stats.tx_bytes += skb->len; | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize; | 
|  | dev_kfree_skb_irq(skb); | 
|  |  | 
|  | get_info.offset++; | 
|  | if (get_info.offset == get_info.fifo_len + 1) | 
|  | get_info.offset = 0; | 
|  | txdlp = (struct TxD *) fifo_data->list_info | 
|  | [get_info.offset].list_virt_addr; | 
|  | fifo_data->tx_curr_get_info.offset = | 
|  | get_info.offset; | 
|  | } | 
|  |  | 
|  | if (netif_queue_stopped(dev)) | 
|  | netif_wake_queue(dev); | 
|  |  | 
|  | spin_unlock_irqrestore(&fifo_data->tx_lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_mdio_write - Function to write in to MDIO registers | 
|  | *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) | 
|  | *  @addr     : address value | 
|  | *  @value    : data value | 
|  | *  @dev      : pointer to net_device structure | 
|  | *  Description: | 
|  | *  This function is used to write values to the MDIO registers | 
|  | *  NONE | 
|  | */ | 
|  | static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev) | 
|  | { | 
|  | u64 val64 = 0x0; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  |  | 
|  | //address transaction | 
|  | val64 = val64 | MDIO_MMD_INDX_ADDR(addr) | 
|  | | MDIO_MMD_DEV_ADDR(mmd_type) | 
|  | | MDIO_MMS_PRT_ADDR(0x0); | 
|  | writeq(val64, &bar0->mdio_control); | 
|  | val64 = val64 | MDIO_CTRL_START_TRANS(0xE); | 
|  | writeq(val64, &bar0->mdio_control); | 
|  | udelay(100); | 
|  |  | 
|  | //Data transaction | 
|  | val64 = 0x0; | 
|  | val64 = val64 | MDIO_MMD_INDX_ADDR(addr) | 
|  | | MDIO_MMD_DEV_ADDR(mmd_type) | 
|  | | MDIO_MMS_PRT_ADDR(0x0) | 
|  | | MDIO_MDIO_DATA(value) | 
|  | | MDIO_OP(MDIO_OP_WRITE_TRANS); | 
|  | writeq(val64, &bar0->mdio_control); | 
|  | val64 = val64 | MDIO_CTRL_START_TRANS(0xE); | 
|  | writeq(val64, &bar0->mdio_control); | 
|  | udelay(100); | 
|  |  | 
|  | val64 = 0x0; | 
|  | val64 = val64 | MDIO_MMD_INDX_ADDR(addr) | 
|  | | MDIO_MMD_DEV_ADDR(mmd_type) | 
|  | | MDIO_MMS_PRT_ADDR(0x0) | 
|  | | MDIO_OP(MDIO_OP_READ_TRANS); | 
|  | writeq(val64, &bar0->mdio_control); | 
|  | val64 = val64 | MDIO_CTRL_START_TRANS(0xE); | 
|  | writeq(val64, &bar0->mdio_control); | 
|  | udelay(100); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_mdio_read - Function to write in to MDIO registers | 
|  | *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) | 
|  | *  @addr     : address value | 
|  | *  @dev      : pointer to net_device structure | 
|  | *  Description: | 
|  | *  This function is used to read values to the MDIO registers | 
|  | *  NONE | 
|  | */ | 
|  | static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) | 
|  | { | 
|  | u64 val64 = 0x0; | 
|  | u64 rval64 = 0x0; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  |  | 
|  | /* address transaction */ | 
|  | val64 = val64 | MDIO_MMD_INDX_ADDR(addr) | 
|  | | MDIO_MMD_DEV_ADDR(mmd_type) | 
|  | | MDIO_MMS_PRT_ADDR(0x0); | 
|  | writeq(val64, &bar0->mdio_control); | 
|  | val64 = val64 | MDIO_CTRL_START_TRANS(0xE); | 
|  | writeq(val64, &bar0->mdio_control); | 
|  | udelay(100); | 
|  |  | 
|  | /* Data transaction */ | 
|  | val64 = 0x0; | 
|  | val64 = val64 | MDIO_MMD_INDX_ADDR(addr) | 
|  | | MDIO_MMD_DEV_ADDR(mmd_type) | 
|  | | MDIO_MMS_PRT_ADDR(0x0) | 
|  | | MDIO_OP(MDIO_OP_READ_TRANS); | 
|  | writeq(val64, &bar0->mdio_control); | 
|  | val64 = val64 | MDIO_CTRL_START_TRANS(0xE); | 
|  | writeq(val64, &bar0->mdio_control); | 
|  | udelay(100); | 
|  |  | 
|  | /* Read the value from regs */ | 
|  | rval64 = readq(&bar0->mdio_control); | 
|  | rval64 = rval64 & 0xFFFF0000; | 
|  | rval64 = rval64 >> 16; | 
|  | return rval64; | 
|  | } | 
|  | /** | 
|  | *  s2io_chk_xpak_counter - Function to check the status of the xpak counters | 
|  | *  @counter      : couter value to be updated | 
|  | *  @flag         : flag to indicate the status | 
|  | *  @type         : counter type | 
|  | *  Description: | 
|  | *  This function is to check the status of the xpak counters value | 
|  | *  NONE | 
|  | */ | 
|  |  | 
|  | static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type) | 
|  | { | 
|  | u64 mask = 0x3; | 
|  | u64 val64; | 
|  | int i; | 
|  | for(i = 0; i <index; i++) | 
|  | mask = mask << 0x2; | 
|  |  | 
|  | if(flag > 0) | 
|  | { | 
|  | *counter = *counter + 1; | 
|  | val64 = *regs_stat & mask; | 
|  | val64 = val64 >> (index * 0x2); | 
|  | val64 = val64 + 1; | 
|  | if(val64 == 3) | 
|  | { | 
|  | switch(type) | 
|  | { | 
|  | case 1: | 
|  | DBG_PRINT(ERR_DBG, "Take Xframe NIC out of " | 
|  | "service. Excessive temperatures may " | 
|  | "result in premature transceiver " | 
|  | "failure \n"); | 
|  | break; | 
|  | case 2: | 
|  | DBG_PRINT(ERR_DBG, "Take Xframe NIC out of " | 
|  | "service Excessive bias currents may " | 
|  | "indicate imminent laser diode " | 
|  | "failure \n"); | 
|  | break; | 
|  | case 3: | 
|  | DBG_PRINT(ERR_DBG, "Take Xframe NIC out of " | 
|  | "service Excessive laser output " | 
|  | "power may saturate far-end " | 
|  | "receiver\n"); | 
|  | break; | 
|  | default: | 
|  | DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm " | 
|  | "type \n"); | 
|  | } | 
|  | val64 = 0x0; | 
|  | } | 
|  | val64 = val64 << (index * 0x2); | 
|  | *regs_stat = (*regs_stat & (~mask)) | (val64); | 
|  |  | 
|  | } else { | 
|  | *regs_stat = *regs_stat & (~mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_updt_xpak_counter - Function to update the xpak counters | 
|  | *  @dev         : pointer to net_device struct | 
|  | *  Description: | 
|  | *  This function is to upate the status of the xpak counters value | 
|  | *  NONE | 
|  | */ | 
|  | static void s2io_updt_xpak_counter(struct net_device *dev) | 
|  | { | 
|  | u16 flag  = 0x0; | 
|  | u16 type  = 0x0; | 
|  | u16 val16 = 0x0; | 
|  | u64 val64 = 0x0; | 
|  | u64 addr  = 0x0; | 
|  |  | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct stat_block *stat_info = sp->mac_control.stats_info; | 
|  |  | 
|  | /* Check the communication with the MDIO slave */ | 
|  | addr = 0x0000; | 
|  | val64 = 0x0; | 
|  | val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev); | 
|  | if((val64 == 0xFFFF) || (val64 == 0x0000)) | 
|  | { | 
|  | DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - " | 
|  | "Returned %llx\n", (unsigned long long)val64); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check for the expecte value of 2040 at PMA address 0x0000 */ | 
|  | if(val64 != 0x2040) | 
|  | { | 
|  | DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "); | 
|  | DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n", | 
|  | (unsigned long long)val64); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Loading the DOM register to MDIO register */ | 
|  | addr = 0xA100; | 
|  | s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev); | 
|  | val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev); | 
|  |  | 
|  | /* Reading the Alarm flags */ | 
|  | addr = 0xA070; | 
|  | val64 = 0x0; | 
|  | val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev); | 
|  |  | 
|  | flag = CHECKBIT(val64, 0x7); | 
|  | type = 1; | 
|  | s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high, | 
|  | &stat_info->xpak_stat.xpak_regs_stat, | 
|  | 0x0, flag, type); | 
|  |  | 
|  | if(CHECKBIT(val64, 0x6)) | 
|  | stat_info->xpak_stat.alarm_transceiver_temp_low++; | 
|  |  | 
|  | flag = CHECKBIT(val64, 0x3); | 
|  | type = 2; | 
|  | s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high, | 
|  | &stat_info->xpak_stat.xpak_regs_stat, | 
|  | 0x2, flag, type); | 
|  |  | 
|  | if(CHECKBIT(val64, 0x2)) | 
|  | stat_info->xpak_stat.alarm_laser_bias_current_low++; | 
|  |  | 
|  | flag = CHECKBIT(val64, 0x1); | 
|  | type = 3; | 
|  | s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high, | 
|  | &stat_info->xpak_stat.xpak_regs_stat, | 
|  | 0x4, flag, type); | 
|  |  | 
|  | if(CHECKBIT(val64, 0x0)) | 
|  | stat_info->xpak_stat.alarm_laser_output_power_low++; | 
|  |  | 
|  | /* Reading the Warning flags */ | 
|  | addr = 0xA074; | 
|  | val64 = 0x0; | 
|  | val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev); | 
|  |  | 
|  | if(CHECKBIT(val64, 0x7)) | 
|  | stat_info->xpak_stat.warn_transceiver_temp_high++; | 
|  |  | 
|  | if(CHECKBIT(val64, 0x6)) | 
|  | stat_info->xpak_stat.warn_transceiver_temp_low++; | 
|  |  | 
|  | if(CHECKBIT(val64, 0x3)) | 
|  | stat_info->xpak_stat.warn_laser_bias_current_high++; | 
|  |  | 
|  | if(CHECKBIT(val64, 0x2)) | 
|  | stat_info->xpak_stat.warn_laser_bias_current_low++; | 
|  |  | 
|  | if(CHECKBIT(val64, 0x1)) | 
|  | stat_info->xpak_stat.warn_laser_output_power_high++; | 
|  |  | 
|  | if(CHECKBIT(val64, 0x0)) | 
|  | stat_info->xpak_stat.warn_laser_output_power_low++; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  wait_for_cmd_complete - waits for a command to complete. | 
|  | *  @sp : private member of the device structure, which is a pointer to the | 
|  | *  s2io_nic structure. | 
|  | *  Description: Function that waits for a command to Write into RMAC | 
|  | *  ADDR DATA registers to be completed and returns either success or | 
|  | *  error depending on whether the command was complete or not. | 
|  | *  Return value: | 
|  | *   SUCCESS on success and FAILURE on failure. | 
|  | */ | 
|  |  | 
|  | static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, | 
|  | int bit_state) | 
|  | { | 
|  | int ret = FAILURE, cnt = 0, delay = 1; | 
|  | u64 val64; | 
|  |  | 
|  | if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) | 
|  | return FAILURE; | 
|  |  | 
|  | do { | 
|  | val64 = readq(addr); | 
|  | if (bit_state == S2IO_BIT_RESET) { | 
|  | if (!(val64 & busy_bit)) { | 
|  | ret = SUCCESS; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (!(val64 & busy_bit)) { | 
|  | ret = SUCCESS; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if(in_interrupt()) | 
|  | mdelay(delay); | 
|  | else | 
|  | msleep(delay); | 
|  |  | 
|  | if (++cnt >= 10) | 
|  | delay = 50; | 
|  | } while (cnt < 20); | 
|  | return ret; | 
|  | } | 
|  | /* | 
|  | * check_pci_device_id - Checks if the device id is supported | 
|  | * @id : device id | 
|  | * Description: Function to check if the pci device id is supported by driver. | 
|  | * Return value: Actual device id if supported else PCI_ANY_ID | 
|  | */ | 
|  | static u16 check_pci_device_id(u16 id) | 
|  | { | 
|  | switch (id) { | 
|  | case PCI_DEVICE_ID_HERC_WIN: | 
|  | case PCI_DEVICE_ID_HERC_UNI: | 
|  | return XFRAME_II_DEVICE; | 
|  | case PCI_DEVICE_ID_S2IO_UNI: | 
|  | case PCI_DEVICE_ID_S2IO_WIN: | 
|  | return XFRAME_I_DEVICE; | 
|  | default: | 
|  | return PCI_ANY_ID; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_reset - Resets the card. | 
|  | *  @sp : private member of the device structure. | 
|  | *  Description: Function to Reset the card. This function then also | 
|  | *  restores the previously saved PCI configuration space registers as | 
|  | *  the card reset also resets the configuration space. | 
|  | *  Return value: | 
|  | *  void. | 
|  | */ | 
|  |  | 
|  | static void s2io_reset(struct s2io_nic * sp) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64; | 
|  | u16 subid, pci_cmd; | 
|  | int i; | 
|  | u16 val16; | 
|  | unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; | 
|  | unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; | 
|  |  | 
|  | DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n", | 
|  | __FUNCTION__, sp->dev->name); | 
|  |  | 
|  | /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ | 
|  | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); | 
|  |  | 
|  | val64 = SW_RESET_ALL; | 
|  | writeq(val64, &bar0->sw_reset); | 
|  | if (strstr(sp->product_name, "CX4")) { | 
|  | msleep(750); | 
|  | } | 
|  | msleep(250); | 
|  | for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { | 
|  |  | 
|  | /* Restore the PCI state saved during initialization. */ | 
|  | pci_restore_state(sp->pdev); | 
|  | pci_read_config_word(sp->pdev, 0x2, &val16); | 
|  | if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) | 
|  | break; | 
|  | msleep(200); | 
|  | } | 
|  |  | 
|  | if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) { | 
|  | DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__); | 
|  | } | 
|  |  | 
|  | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); | 
|  |  | 
|  | s2io_init_pci(sp); | 
|  |  | 
|  | /* Set swapper to enable I/O register access */ | 
|  | s2io_set_swapper(sp); | 
|  |  | 
|  | /* restore mac_addr entries */ | 
|  | do_s2io_restore_unicast_mc(sp); | 
|  |  | 
|  | /* Restore the MSIX table entries from local variables */ | 
|  | restore_xmsi_data(sp); | 
|  |  | 
|  | /* Clear certain PCI/PCI-X fields after reset */ | 
|  | if (sp->device_type == XFRAME_II_DEVICE) { | 
|  | /* Clear "detected parity error" bit */ | 
|  | pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); | 
|  |  | 
|  | /* Clearing PCIX Ecc status register */ | 
|  | pci_write_config_dword(sp->pdev, 0x68, 0x7C); | 
|  |  | 
|  | /* Clearing PCI_STATUS error reflected here */ | 
|  | writeq(s2BIT(62), &bar0->txpic_int_reg); | 
|  | } | 
|  |  | 
|  | /* Reset device statistics maintained by OS */ | 
|  | memset(&sp->stats, 0, sizeof (struct net_device_stats)); | 
|  |  | 
|  | up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt; | 
|  | down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt; | 
|  | up_time = sp->mac_control.stats_info->sw_stat.link_up_time; | 
|  | down_time = sp->mac_control.stats_info->sw_stat.link_down_time; | 
|  | reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt; | 
|  | mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated; | 
|  | mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed; | 
|  | watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt; | 
|  | /* save link up/down time/cnt, reset/memory/watchdog cnt */ | 
|  | memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block)); | 
|  | /* restore link up/down time/cnt, reset/memory/watchdog cnt */ | 
|  | sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt; | 
|  | sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt; | 
|  | sp->mac_control.stats_info->sw_stat.link_up_time = up_time; | 
|  | sp->mac_control.stats_info->sw_stat.link_down_time = down_time; | 
|  | sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt; | 
|  | sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt; | 
|  | sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt; | 
|  | sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt; | 
|  |  | 
|  | /* SXE-002: Configure link and activity LED to turn it off */ | 
|  | subid = sp->pdev->subsystem_device; | 
|  | if (((subid & 0xFF) >= 0x07) && | 
|  | (sp->device_type == XFRAME_I_DEVICE)) { | 
|  | val64 = readq(&bar0->gpio_control); | 
|  | val64 |= 0x0000800000000000ULL; | 
|  | writeq(val64, &bar0->gpio_control); | 
|  | val64 = 0x0411040400000000ULL; | 
|  | writeq(val64, (void __iomem *)bar0 + 0x2700); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear spurious ECC interrupts that would have occured on | 
|  | * XFRAME II cards after reset. | 
|  | */ | 
|  | if (sp->device_type == XFRAME_II_DEVICE) { | 
|  | val64 = readq(&bar0->pcc_err_reg); | 
|  | writeq(val64, &bar0->pcc_err_reg); | 
|  | } | 
|  |  | 
|  | sp->device_enabled_once = FALSE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_set_swapper - to set the swapper controle on the card | 
|  | *  @sp : private member of the device structure, | 
|  | *  pointer to the s2io_nic structure. | 
|  | *  Description: Function to set the swapper control on the card | 
|  | *  correctly depending on the 'endianness' of the system. | 
|  | *  Return value: | 
|  | *  SUCCESS on success and FAILURE on failure. | 
|  | */ | 
|  |  | 
|  | static int s2io_set_swapper(struct s2io_nic * sp) | 
|  | { | 
|  | struct net_device *dev = sp->dev; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64, valt, valr; | 
|  |  | 
|  | /* | 
|  | * Set proper endian settings and verify the same by reading | 
|  | * the PIF Feed-back register. | 
|  | */ | 
|  |  | 
|  | val64 = readq(&bar0->pif_rd_swapper_fb); | 
|  | if (val64 != 0x0123456789ABCDEFULL) { | 
|  | int i = 0; | 
|  | u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */ | 
|  | 0x8100008181000081ULL,  /* FE=1, SE=0 */ | 
|  | 0x4200004242000042ULL,  /* FE=0, SE=1 */ | 
|  | 0};                     /* FE=0, SE=0 */ | 
|  |  | 
|  | while(i<4) { | 
|  | writeq(value[i], &bar0->swapper_ctrl); | 
|  | val64 = readq(&bar0->pif_rd_swapper_fb); | 
|  | if (val64 == 0x0123456789ABCDEFULL) | 
|  | break; | 
|  | i++; | 
|  | } | 
|  | if (i == 4) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", | 
|  | dev->name); | 
|  | DBG_PRINT(ERR_DBG, "feedback read %llx\n", | 
|  | (unsigned long long) val64); | 
|  | return FAILURE; | 
|  | } | 
|  | valr = value[i]; | 
|  | } else { | 
|  | valr = readq(&bar0->swapper_ctrl); | 
|  | } | 
|  |  | 
|  | valt = 0x0123456789ABCDEFULL; | 
|  | writeq(valt, &bar0->xmsi_address); | 
|  | val64 = readq(&bar0->xmsi_address); | 
|  |  | 
|  | if(val64 != valt) { | 
|  | int i = 0; | 
|  | u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */ | 
|  | 0x0081810000818100ULL,  /* FE=1, SE=0 */ | 
|  | 0x0042420000424200ULL,  /* FE=0, SE=1 */ | 
|  | 0};                     /* FE=0, SE=0 */ | 
|  |  | 
|  | while(i<4) { | 
|  | writeq((value[i] | valr), &bar0->swapper_ctrl); | 
|  | writeq(valt, &bar0->xmsi_address); | 
|  | val64 = readq(&bar0->xmsi_address); | 
|  | if(val64 == valt) | 
|  | break; | 
|  | i++; | 
|  | } | 
|  | if(i == 4) { | 
|  | unsigned long long x = val64; | 
|  | DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr "); | 
|  | DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x); | 
|  | return FAILURE; | 
|  | } | 
|  | } | 
|  | val64 = readq(&bar0->swapper_ctrl); | 
|  | val64 &= 0xFFFF000000000000ULL; | 
|  |  | 
|  | #ifdef  __BIG_ENDIAN | 
|  | /* | 
|  | * The device by default set to a big endian format, so a | 
|  | * big endian driver need not set anything. | 
|  | */ | 
|  | val64 |= (SWAPPER_CTRL_TXP_FE | | 
|  | SWAPPER_CTRL_TXP_SE | | 
|  | SWAPPER_CTRL_TXD_R_FE | | 
|  | SWAPPER_CTRL_TXD_W_FE | | 
|  | SWAPPER_CTRL_TXF_R_FE | | 
|  | SWAPPER_CTRL_RXD_R_FE | | 
|  | SWAPPER_CTRL_RXD_W_FE | | 
|  | SWAPPER_CTRL_RXF_W_FE | | 
|  | SWAPPER_CTRL_XMSI_FE | | 
|  | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); | 
|  | if (sp->config.intr_type == INTA) | 
|  | val64 |= SWAPPER_CTRL_XMSI_SE; | 
|  | writeq(val64, &bar0->swapper_ctrl); | 
|  | #else | 
|  | /* | 
|  | * Initially we enable all bits to make it accessible by the | 
|  | * driver, then we selectively enable only those bits that | 
|  | * we want to set. | 
|  | */ | 
|  | val64 |= (SWAPPER_CTRL_TXP_FE | | 
|  | SWAPPER_CTRL_TXP_SE | | 
|  | SWAPPER_CTRL_TXD_R_FE | | 
|  | SWAPPER_CTRL_TXD_R_SE | | 
|  | SWAPPER_CTRL_TXD_W_FE | | 
|  | SWAPPER_CTRL_TXD_W_SE | | 
|  | SWAPPER_CTRL_TXF_R_FE | | 
|  | SWAPPER_CTRL_RXD_R_FE | | 
|  | SWAPPER_CTRL_RXD_R_SE | | 
|  | SWAPPER_CTRL_RXD_W_FE | | 
|  | SWAPPER_CTRL_RXD_W_SE | | 
|  | SWAPPER_CTRL_RXF_W_FE | | 
|  | SWAPPER_CTRL_XMSI_FE | | 
|  | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); | 
|  | if (sp->config.intr_type == INTA) | 
|  | val64 |= SWAPPER_CTRL_XMSI_SE; | 
|  | writeq(val64, &bar0->swapper_ctrl); | 
|  | #endif | 
|  | val64 = readq(&bar0->swapper_ctrl); | 
|  |  | 
|  | /* | 
|  | * Verifying if endian settings are accurate by reading a | 
|  | * feedback register. | 
|  | */ | 
|  | val64 = readq(&bar0->pif_rd_swapper_fb); | 
|  | if (val64 != 0x0123456789ABCDEFULL) { | 
|  | /* Endian settings are incorrect, calls for another dekko. */ | 
|  | DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", | 
|  | dev->name); | 
|  | DBG_PRINT(ERR_DBG, "feedback read %llx\n", | 
|  | (unsigned long long) val64); | 
|  | return FAILURE; | 
|  | } | 
|  |  | 
|  | return SUCCESS; | 
|  | } | 
|  |  | 
|  | static int wait_for_msix_trans(struct s2io_nic *nic, int i) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | u64 val64; | 
|  | int ret = 0, cnt = 0; | 
|  |  | 
|  | do { | 
|  | val64 = readq(&bar0->xmsi_access); | 
|  | if (!(val64 & s2BIT(15))) | 
|  | break; | 
|  | mdelay(1); | 
|  | cnt++; | 
|  | } while(cnt < 5); | 
|  | if (cnt == 5) { | 
|  | DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void restore_xmsi_data(struct s2io_nic *nic) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | u64 val64; | 
|  | int i; | 
|  |  | 
|  | for (i=0; i < MAX_REQUESTED_MSI_X; i++) { | 
|  | writeq(nic->msix_info[i].addr, &bar0->xmsi_address); | 
|  | writeq(nic->msix_info[i].data, &bar0->xmsi_data); | 
|  | val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6)); | 
|  | writeq(val64, &bar0->xmsi_access); | 
|  | if (wait_for_msix_trans(nic, i)) { | 
|  | DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void store_xmsi_data(struct s2io_nic *nic) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | u64 val64, addr, data; | 
|  | int i; | 
|  |  | 
|  | /* Store and display */ | 
|  | for (i=0; i < MAX_REQUESTED_MSI_X; i++) { | 
|  | val64 = (s2BIT(15) | vBIT(i, 26, 6)); | 
|  | writeq(val64, &bar0->xmsi_access); | 
|  | if (wait_for_msix_trans(nic, i)) { | 
|  | DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__); | 
|  | continue; | 
|  | } | 
|  | addr = readq(&bar0->xmsi_address); | 
|  | data = readq(&bar0->xmsi_data); | 
|  | if (addr && data) { | 
|  | nic->msix_info[i].addr = addr; | 
|  | nic->msix_info[i].data = data; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int s2io_enable_msi_x(struct s2io_nic *nic) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | u64 tx_mat, rx_mat; | 
|  | u16 msi_control; /* Temp variable */ | 
|  | int ret, i, j, msix_indx = 1; | 
|  |  | 
|  | nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry), | 
|  | GFP_KERNEL); | 
|  | if (!nic->entries) { | 
|  | DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \ | 
|  | __FUNCTION__); | 
|  | nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++; | 
|  | return -ENOMEM; | 
|  | } | 
|  | nic->mac_control.stats_info->sw_stat.mem_allocated | 
|  | += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry)); | 
|  |  | 
|  | nic->s2io_entries = | 
|  | kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry), | 
|  | GFP_KERNEL); | 
|  | if (!nic->s2io_entries) { | 
|  | DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", | 
|  | __FUNCTION__); | 
|  | nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++; | 
|  | kfree(nic->entries); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed | 
|  | += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry)); | 
|  | return -ENOMEM; | 
|  | } | 
|  | nic->mac_control.stats_info->sw_stat.mem_allocated | 
|  | += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry)); | 
|  |  | 
|  | for (i=0; i< MAX_REQUESTED_MSI_X; i++) { | 
|  | nic->entries[i].entry = i; | 
|  | nic->s2io_entries[i].entry = i; | 
|  | nic->s2io_entries[i].arg = NULL; | 
|  | nic->s2io_entries[i].in_use = 0; | 
|  | } | 
|  |  | 
|  | tx_mat = readq(&bar0->tx_mat0_n[0]); | 
|  | for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) { | 
|  | tx_mat |= TX_MAT_SET(i, msix_indx); | 
|  | nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i]; | 
|  | nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE; | 
|  | nic->s2io_entries[msix_indx].in_use = MSIX_FLG; | 
|  | } | 
|  | writeq(tx_mat, &bar0->tx_mat0_n[0]); | 
|  |  | 
|  | rx_mat = readq(&bar0->rx_mat); | 
|  | for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) { | 
|  | rx_mat |= RX_MAT_SET(j, msix_indx); | 
|  | nic->s2io_entries[msix_indx].arg | 
|  | = &nic->mac_control.rings[j]; | 
|  | nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE; | 
|  | nic->s2io_entries[msix_indx].in_use = MSIX_FLG; | 
|  | } | 
|  | writeq(rx_mat, &bar0->rx_mat); | 
|  |  | 
|  | nic->avail_msix_vectors = 0; | 
|  | ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X); | 
|  | /* We fail init if error or we get less vectors than min required */ | 
|  | if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) { | 
|  | nic->avail_msix_vectors = ret; | 
|  | ret = pci_enable_msix(nic->pdev, nic->entries, ret); | 
|  | } | 
|  | if (ret) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name); | 
|  | kfree(nic->entries); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed | 
|  | += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry)); | 
|  | kfree(nic->s2io_entries); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed | 
|  | += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry)); | 
|  | nic->entries = NULL; | 
|  | nic->s2io_entries = NULL; | 
|  | nic->avail_msix_vectors = 0; | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (!nic->avail_msix_vectors) | 
|  | nic->avail_msix_vectors = MAX_REQUESTED_MSI_X; | 
|  |  | 
|  | /* | 
|  | * To enable MSI-X, MSI also needs to be enabled, due to a bug | 
|  | * in the herc NIC. (Temp change, needs to be removed later) | 
|  | */ | 
|  | pci_read_config_word(nic->pdev, 0x42, &msi_control); | 
|  | msi_control |= 0x1; /* Enable MSI */ | 
|  | pci_write_config_word(nic->pdev, 0x42, msi_control); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handle software interrupt used during MSI(X) test */ | 
|  | static irqreturn_t s2io_test_intr(int irq, void *dev_id) | 
|  | { | 
|  | struct s2io_nic *sp = dev_id; | 
|  |  | 
|  | sp->msi_detected = 1; | 
|  | wake_up(&sp->msi_wait); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Test interrupt path by forcing a a software IRQ */ | 
|  | static int s2io_test_msi(struct s2io_nic *sp) | 
|  | { | 
|  | struct pci_dev *pdev = sp->pdev; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | int err; | 
|  | u64 val64, saved64; | 
|  |  | 
|  | err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, | 
|  | sp->name, sp); | 
|  | if (err) { | 
|  | DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", | 
|  | sp->dev->name, pci_name(pdev), pdev->irq); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | init_waitqueue_head (&sp->msi_wait); | 
|  | sp->msi_detected = 0; | 
|  |  | 
|  | saved64 = val64 = readq(&bar0->scheduled_int_ctrl); | 
|  | val64 |= SCHED_INT_CTRL_ONE_SHOT; | 
|  | val64 |= SCHED_INT_CTRL_TIMER_EN; | 
|  | val64 |= SCHED_INT_CTRL_INT2MSI(1); | 
|  | writeq(val64, &bar0->scheduled_int_ctrl); | 
|  |  | 
|  | wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); | 
|  |  | 
|  | if (!sp->msi_detected) { | 
|  | /* MSI(X) test failed, go back to INTx mode */ | 
|  | DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " | 
|  | "using MSI(X) during test\n", sp->dev->name, | 
|  | pci_name(pdev)); | 
|  |  | 
|  | err = -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | free_irq(sp->entries[1].vector, sp); | 
|  |  | 
|  | writeq(saved64, &bar0->scheduled_int_ctrl); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void remove_msix_isr(struct s2io_nic *sp) | 
|  | { | 
|  | int i; | 
|  | u16 msi_control; | 
|  |  | 
|  | for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { | 
|  | if (sp->s2io_entries[i].in_use == | 
|  | MSIX_REGISTERED_SUCCESS) { | 
|  | int vector = sp->entries[i].vector; | 
|  | void *arg = sp->s2io_entries[i].arg; | 
|  | free_irq(vector, arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(sp->entries); | 
|  | kfree(sp->s2io_entries); | 
|  | sp->entries = NULL; | 
|  | sp->s2io_entries = NULL; | 
|  |  | 
|  | pci_read_config_word(sp->pdev, 0x42, &msi_control); | 
|  | msi_control &= 0xFFFE; /* Disable MSI */ | 
|  | pci_write_config_word(sp->pdev, 0x42, msi_control); | 
|  |  | 
|  | pci_disable_msix(sp->pdev); | 
|  | } | 
|  |  | 
|  | static void remove_inta_isr(struct s2io_nic *sp) | 
|  | { | 
|  | struct net_device *dev = sp->dev; | 
|  |  | 
|  | free_irq(sp->pdev->irq, dev); | 
|  | } | 
|  |  | 
|  | /* ********************************************************* * | 
|  | * Functions defined below concern the OS part of the driver * | 
|  | * ********************************************************* */ | 
|  |  | 
|  | /** | 
|  | *  s2io_open - open entry point of the driver | 
|  | *  @dev : pointer to the device structure. | 
|  | *  Description: | 
|  | *  This function is the open entry point of the driver. It mainly calls a | 
|  | *  function to allocate Rx buffers and inserts them into the buffer | 
|  | *  descriptors and then enables the Rx part of the NIC. | 
|  | *  Return value: | 
|  | *  0 on success and an appropriate (-)ve integer as defined in errno.h | 
|  | *   file on failure. | 
|  | */ | 
|  |  | 
|  | static int s2io_open(struct net_device *dev) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * Make sure you have link off by default every time | 
|  | * Nic is initialized | 
|  | */ | 
|  | netif_carrier_off(dev); | 
|  | sp->last_link_state = 0; | 
|  |  | 
|  | if (sp->config.intr_type == MSI_X) { | 
|  | int ret = s2io_enable_msi_x(sp); | 
|  |  | 
|  | if (!ret) { | 
|  | ret = s2io_test_msi(sp); | 
|  | /* rollback MSI-X, will re-enable during add_isr() */ | 
|  | remove_msix_isr(sp); | 
|  | } | 
|  | if (ret) { | 
|  |  | 
|  | DBG_PRINT(ERR_DBG, | 
|  | "%s: MSI-X requested but failed to enable\n", | 
|  | dev->name); | 
|  | sp->config.intr_type = INTA; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* NAPI doesn't work well with MSI(X) */ | 
|  | if (sp->config.intr_type != INTA) { | 
|  | if(sp->config.napi) | 
|  | sp->config.napi = 0; | 
|  | } | 
|  |  | 
|  | /* Initialize H/W and enable interrupts */ | 
|  | err = s2io_card_up(sp); | 
|  | if (err) { | 
|  | DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", | 
|  | dev->name); | 
|  | goto hw_init_failed; | 
|  | } | 
|  |  | 
|  | if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { | 
|  | DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); | 
|  | s2io_card_down(sp); | 
|  | err = -ENODEV; | 
|  | goto hw_init_failed; | 
|  | } | 
|  |  | 
|  | netif_start_queue(dev); | 
|  | return 0; | 
|  |  | 
|  | hw_init_failed: | 
|  | if (sp->config.intr_type == MSI_X) { | 
|  | if (sp->entries) { | 
|  | kfree(sp->entries); | 
|  | sp->mac_control.stats_info->sw_stat.mem_freed | 
|  | += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry)); | 
|  | } | 
|  | if (sp->s2io_entries) { | 
|  | kfree(sp->s2io_entries); | 
|  | sp->mac_control.stats_info->sw_stat.mem_freed | 
|  | += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry)); | 
|  | } | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_close -close entry point of the driver | 
|  | *  @dev : device pointer. | 
|  | *  Description: | 
|  | *  This is the stop entry point of the driver. It needs to undo exactly | 
|  | *  whatever was done by the open entry point,thus it's usually referred to | 
|  | *  as the close function.Among other things this function mainly stops the | 
|  | *  Rx side of the NIC and frees all the Rx buffers in the Rx rings. | 
|  | *  Return value: | 
|  | *  0 on success and an appropriate (-)ve integer as defined in errno.h | 
|  | *  file on failure. | 
|  | */ | 
|  |  | 
|  | static int s2io_close(struct net_device *dev) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct config_param *config = &sp->config; | 
|  | u64 tmp64; | 
|  | int offset; | 
|  |  | 
|  | /* Return if the device is already closed               * | 
|  | *  Can happen when s2io_card_up failed in change_mtu    * | 
|  | */ | 
|  | if (!is_s2io_card_up(sp)) | 
|  | return 0; | 
|  |  | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | /* delete all populated mac entries */ | 
|  | for (offset = 1; offset < config->max_mc_addr; offset++) { | 
|  | tmp64 = do_s2io_read_unicast_mc(sp, offset); | 
|  | if (tmp64 != S2IO_DISABLE_MAC_ENTRY) | 
|  | do_s2io_delete_unicast_mc(sp, tmp64); | 
|  | } | 
|  |  | 
|  | /* Reset card, kill tasklet and free Tx and Rx buffers. */ | 
|  | s2io_card_down(sp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_xmit - Tx entry point of te driver | 
|  | *  @skb : the socket buffer containing the Tx data. | 
|  | *  @dev : device pointer. | 
|  | *  Description : | 
|  | *  This function is the Tx entry point of the driver. S2IO NIC supports | 
|  | *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO. | 
|  | *  NOTE: when device cant queue the pkt,just the trans_start variable will | 
|  | *  not be upadted. | 
|  | *  Return value: | 
|  | *  0 on success & 1 on failure. | 
|  | */ | 
|  |  | 
|  | static int s2io_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; | 
|  | register u64 val64; | 
|  | struct TxD *txdp; | 
|  | struct TxFIFO_element __iomem *tx_fifo; | 
|  | unsigned long flags = 0; | 
|  | u16 vlan_tag = 0; | 
|  | int vlan_priority = 0; | 
|  | struct fifo_info *fifo = NULL; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  | int offload_type; | 
|  | struct swStat *stats = &sp->mac_control.stats_info->sw_stat; | 
|  |  | 
|  | mac_control = &sp->mac_control; | 
|  | config = &sp->config; | 
|  |  | 
|  | DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); | 
|  |  | 
|  | if (unlikely(skb->len <= 0)) { | 
|  | DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name); | 
|  | dev_kfree_skb_any(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!is_s2io_card_up(sp)) { | 
|  | DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", | 
|  | dev->name); | 
|  | dev_kfree_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | queue = 0; | 
|  | /* Get Fifo number to Transmit based on vlan priority */ | 
|  | if (sp->vlgrp && vlan_tx_tag_present(skb)) { | 
|  | vlan_tag = vlan_tx_tag_get(skb); | 
|  | vlan_priority = vlan_tag >> 13; | 
|  | queue = config->fifo_mapping[vlan_priority]; | 
|  | } | 
|  |  | 
|  | fifo = &mac_control->fifos[queue]; | 
|  | spin_lock_irqsave(&fifo->tx_lock, flags); | 
|  | put_off = (u16) fifo->tx_curr_put_info.offset; | 
|  | get_off = (u16) fifo->tx_curr_get_info.offset; | 
|  | txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr; | 
|  |  | 
|  | queue_len = fifo->tx_curr_put_info.fifo_len + 1; | 
|  | /* Avoid "put" pointer going beyond "get" pointer */ | 
|  | if (txdp->Host_Control || | 
|  | ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { | 
|  | DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); | 
|  | netif_stop_queue(dev); | 
|  | dev_kfree_skb(skb); | 
|  | spin_unlock_irqrestore(&fifo->tx_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | offload_type = s2io_offload_type(skb); | 
|  | if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { | 
|  | txdp->Control_1 |= TXD_TCP_LSO_EN; | 
|  | txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); | 
|  | } | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | txdp->Control_2 |= | 
|  | (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | | 
|  | TXD_TX_CKO_UDP_EN); | 
|  | } | 
|  | txdp->Control_1 |= TXD_GATHER_CODE_FIRST; | 
|  | txdp->Control_1 |= TXD_LIST_OWN_XENA; | 
|  | txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); | 
|  |  | 
|  | if (sp->vlgrp && vlan_tx_tag_present(skb)) { | 
|  | txdp->Control_2 |= TXD_VLAN_ENABLE; | 
|  | txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); | 
|  | } | 
|  |  | 
|  | frg_len = skb->len - skb->data_len; | 
|  | if (offload_type == SKB_GSO_UDP) { | 
|  | int ufo_size; | 
|  |  | 
|  | ufo_size = s2io_udp_mss(skb); | 
|  | ufo_size &= ~7; | 
|  | txdp->Control_1 |= TXD_UFO_EN; | 
|  | txdp->Control_1 |= TXD_UFO_MSS(ufo_size); | 
|  | txdp->Control_1 |= TXD_BUFFER0_SIZE(8); | 
|  | #ifdef __BIG_ENDIAN | 
|  | fifo->ufo_in_band_v[put_off] = | 
|  | (u64)skb_shinfo(skb)->ip6_frag_id; | 
|  | #else | 
|  | fifo->ufo_in_band_v[put_off] = | 
|  | (u64)skb_shinfo(skb)->ip6_frag_id << 32; | 
|  | #endif | 
|  | txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v; | 
|  | txdp->Buffer_Pointer = pci_map_single(sp->pdev, | 
|  | fifo->ufo_in_band_v, | 
|  | sizeof(u64), PCI_DMA_TODEVICE); | 
|  | if((txdp->Buffer_Pointer == 0) || | 
|  | (txdp->Buffer_Pointer == DMA_ERROR_CODE)) | 
|  | goto pci_map_failed; | 
|  | txdp++; | 
|  | } | 
|  |  | 
|  | txdp->Buffer_Pointer = pci_map_single | 
|  | (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); | 
|  | if((txdp->Buffer_Pointer == 0) || | 
|  | (txdp->Buffer_Pointer == DMA_ERROR_CODE)) | 
|  | goto pci_map_failed; | 
|  |  | 
|  | txdp->Host_Control = (unsigned long) skb; | 
|  | txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); | 
|  | if (offload_type == SKB_GSO_UDP) | 
|  | txdp->Control_1 |= TXD_UFO_EN; | 
|  |  | 
|  | frg_cnt = skb_shinfo(skb)->nr_frags; | 
|  | /* For fragmented SKB. */ | 
|  | for (i = 0; i < frg_cnt; i++) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  | /* A '0' length fragment will be ignored */ | 
|  | if (!frag->size) | 
|  | continue; | 
|  | txdp++; | 
|  | txdp->Buffer_Pointer = (u64) pci_map_page | 
|  | (sp->pdev, frag->page, frag->page_offset, | 
|  | frag->size, PCI_DMA_TODEVICE); | 
|  | txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size); | 
|  | if (offload_type == SKB_GSO_UDP) | 
|  | txdp->Control_1 |= TXD_UFO_EN; | 
|  | } | 
|  | txdp->Control_1 |= TXD_GATHER_CODE_LAST; | 
|  |  | 
|  | if (offload_type == SKB_GSO_UDP) | 
|  | frg_cnt++; /* as Txd0 was used for inband header */ | 
|  |  | 
|  | tx_fifo = mac_control->tx_FIFO_start[queue]; | 
|  | val64 = fifo->list_info[put_off].list_phy_addr; | 
|  | writeq(val64, &tx_fifo->TxDL_Pointer); | 
|  |  | 
|  | val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | | 
|  | TX_FIFO_LAST_LIST); | 
|  | if (offload_type) | 
|  | val64 |= TX_FIFO_SPECIAL_FUNC; | 
|  |  | 
|  | writeq(val64, &tx_fifo->List_Control); | 
|  |  | 
|  | mmiowb(); | 
|  |  | 
|  | put_off++; | 
|  | if (put_off == fifo->tx_curr_put_info.fifo_len + 1) | 
|  | put_off = 0; | 
|  | fifo->tx_curr_put_info.offset = put_off; | 
|  |  | 
|  | /* Avoid "put" pointer going beyond "get" pointer */ | 
|  | if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { | 
|  | sp->mac_control.stats_info->sw_stat.fifo_full_cnt++; | 
|  | DBG_PRINT(TX_DBG, | 
|  | "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", | 
|  | put_off, get_off); | 
|  | netif_stop_queue(dev); | 
|  | } | 
|  | mac_control->stats_info->sw_stat.mem_allocated += skb->truesize; | 
|  | dev->trans_start = jiffies; | 
|  | spin_unlock_irqrestore(&fifo->tx_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | pci_map_failed: | 
|  | stats->pci_map_fail_cnt++; | 
|  | netif_stop_queue(dev); | 
|  | stats->mem_freed += skb->truesize; | 
|  | dev_kfree_skb(skb); | 
|  | spin_unlock_irqrestore(&fifo->tx_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | s2io_alarm_handle(unsigned long data) | 
|  | { | 
|  | struct s2io_nic *sp = (struct s2io_nic *)data; | 
|  | struct net_device *dev = sp->dev; | 
|  |  | 
|  | s2io_handle_errors(dev); | 
|  | mod_timer(&sp->alarm_timer, jiffies + HZ / 2); | 
|  | } | 
|  |  | 
|  | static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n) | 
|  | { | 
|  | int rxb_size, level; | 
|  |  | 
|  | if (!sp->lro) { | 
|  | rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]); | 
|  | level = rx_buffer_level(sp, rxb_size, rng_n); | 
|  |  | 
|  | if ((level == PANIC) && (!TASKLET_IN_USE)) { | 
|  | int ret; | 
|  | DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__); | 
|  | DBG_PRINT(INTR_DBG, "PANIC levels\n"); | 
|  | if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) { | 
|  | DBG_PRINT(INFO_DBG, "Out of memory in %s", | 
|  | __FUNCTION__); | 
|  | clear_bit(0, (&sp->tasklet_status)); | 
|  | return -1; | 
|  | } | 
|  | clear_bit(0, (&sp->tasklet_status)); | 
|  | } else if (level == LOW) | 
|  | tasklet_schedule(&sp->task); | 
|  |  | 
|  | } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) { | 
|  | DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name); | 
|  | DBG_PRINT(INFO_DBG, " in Rx Intr!!\n"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) | 
|  | { | 
|  | struct ring_info *ring = (struct ring_info *)dev_id; | 
|  | struct s2io_nic *sp = ring->nic; | 
|  |  | 
|  | if (!is_s2io_card_up(sp)) | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | rx_intr_handler(ring); | 
|  | s2io_chk_rx_buffers(sp, ring->ring_no); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) | 
|  | { | 
|  | struct fifo_info *fifo = (struct fifo_info *)dev_id; | 
|  | struct s2io_nic *sp = fifo->nic; | 
|  |  | 
|  | if (!is_s2io_card_up(sp)) | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | tx_intr_handler(fifo); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | static void s2io_txpic_intr_handle(struct s2io_nic *sp) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64; | 
|  |  | 
|  | val64 = readq(&bar0->pic_int_status); | 
|  | if (val64 & PIC_INT_GPIO) { | 
|  | val64 = readq(&bar0->gpio_int_reg); | 
|  | if ((val64 & GPIO_INT_REG_LINK_DOWN) && | 
|  | (val64 & GPIO_INT_REG_LINK_UP)) { | 
|  | /* | 
|  | * This is unstable state so clear both up/down | 
|  | * interrupt and adapter to re-evaluate the link state. | 
|  | */ | 
|  | val64 |=  GPIO_INT_REG_LINK_DOWN; | 
|  | val64 |= GPIO_INT_REG_LINK_UP; | 
|  | writeq(val64, &bar0->gpio_int_reg); | 
|  | val64 = readq(&bar0->gpio_int_mask); | 
|  | val64 &= ~(GPIO_INT_MASK_LINK_UP | | 
|  | GPIO_INT_MASK_LINK_DOWN); | 
|  | writeq(val64, &bar0->gpio_int_mask); | 
|  | } | 
|  | else if (val64 & GPIO_INT_REG_LINK_UP) { | 
|  | val64 = readq(&bar0->adapter_status); | 
|  | /* Enable Adapter */ | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | val64 |= ADAPTER_CNTL_EN; | 
|  | writeq(val64, &bar0->adapter_control); | 
|  | val64 |= ADAPTER_LED_ON; | 
|  | writeq(val64, &bar0->adapter_control); | 
|  | if (!sp->device_enabled_once) | 
|  | sp->device_enabled_once = 1; | 
|  |  | 
|  | s2io_link(sp, LINK_UP); | 
|  | /* | 
|  | * unmask link down interrupt and mask link-up | 
|  | * intr | 
|  | */ | 
|  | val64 = readq(&bar0->gpio_int_mask); | 
|  | val64 &= ~GPIO_INT_MASK_LINK_DOWN; | 
|  | val64 |= GPIO_INT_MASK_LINK_UP; | 
|  | writeq(val64, &bar0->gpio_int_mask); | 
|  |  | 
|  | }else if (val64 & GPIO_INT_REG_LINK_DOWN) { | 
|  | val64 = readq(&bar0->adapter_status); | 
|  | s2io_link(sp, LINK_DOWN); | 
|  | /* Link is down so unmaks link up interrupt */ | 
|  | val64 = readq(&bar0->gpio_int_mask); | 
|  | val64 &= ~GPIO_INT_MASK_LINK_UP; | 
|  | val64 |= GPIO_INT_MASK_LINK_DOWN; | 
|  | writeq(val64, &bar0->gpio_int_mask); | 
|  |  | 
|  | /* turn off LED */ | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | val64 = val64 &(~ADAPTER_LED_ON); | 
|  | writeq(val64, &bar0->adapter_control); | 
|  | } | 
|  | } | 
|  | val64 = readq(&bar0->gpio_int_mask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter | 
|  | *  @value: alarm bits | 
|  | *  @addr: address value | 
|  | *  @cnt: counter variable | 
|  | *  Description: Check for alarm and increment the counter | 
|  | *  Return Value: | 
|  | *  1 - if alarm bit set | 
|  | *  0 - if alarm bit is not set | 
|  | */ | 
|  | static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr, | 
|  | unsigned long long *cnt) | 
|  | { | 
|  | u64 val64; | 
|  | val64 = readq(addr); | 
|  | if ( val64 & value ) { | 
|  | writeq(val64, addr); | 
|  | (*cnt)++; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_handle_errors - Xframe error indication handler | 
|  | *  @nic: device private variable | 
|  | *  Description: Handle alarms such as loss of link, single or | 
|  | *  double ECC errors, critical and serious errors. | 
|  | *  Return Value: | 
|  | *  NONE | 
|  | */ | 
|  | static void s2io_handle_errors(void * dev_id) | 
|  | { | 
|  | struct net_device *dev = (struct net_device *) dev_id; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 temp64 = 0,val64=0; | 
|  | int i = 0; | 
|  |  | 
|  | struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; | 
|  | struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; | 
|  |  | 
|  | if (!is_s2io_card_up(sp)) | 
|  | return; | 
|  |  | 
|  | if (pci_channel_offline(sp->pdev)) | 
|  | return; | 
|  |  | 
|  | memset(&sw_stat->ring_full_cnt, 0, | 
|  | sizeof(sw_stat->ring_full_cnt)); | 
|  |  | 
|  | /* Handling the XPAK counters update */ | 
|  | if(stats->xpak_timer_count < 72000) { | 
|  | /* waiting for an hour */ | 
|  | stats->xpak_timer_count++; | 
|  | } else { | 
|  | s2io_updt_xpak_counter(dev); | 
|  | /* reset the count to zero */ | 
|  | stats->xpak_timer_count = 0; | 
|  | } | 
|  |  | 
|  | /* Handling link status change error Intr */ | 
|  | if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { | 
|  | val64 = readq(&bar0->mac_rmac_err_reg); | 
|  | writeq(val64, &bar0->mac_rmac_err_reg); | 
|  | if (val64 & RMAC_LINK_STATE_CHANGE_INT) | 
|  | schedule_work(&sp->set_link_task); | 
|  | } | 
|  |  | 
|  | /* In case of a serious error, the device will be Reset. */ | 
|  | if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, | 
|  | &sw_stat->serious_err_cnt)) | 
|  | goto reset; | 
|  |  | 
|  | /* Check for data parity error */ | 
|  | if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, | 
|  | &sw_stat->parity_err_cnt)) | 
|  | goto reset; | 
|  |  | 
|  | /* Check for ring full counter */ | 
|  | if (sp->device_type == XFRAME_II_DEVICE) { | 
|  | val64 = readq(&bar0->ring_bump_counter1); | 
|  | for (i=0; i<4; i++) { | 
|  | temp64 = ( val64 & vBIT(0xFFFF,(i*16),16)); | 
|  | temp64 >>= 64 - ((i+1)*16); | 
|  | sw_stat->ring_full_cnt[i] += temp64; | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->ring_bump_counter2); | 
|  | for (i=0; i<4; i++) { | 
|  | temp64 = ( val64 & vBIT(0xFFFF,(i*16),16)); | 
|  | temp64 >>= 64 - ((i+1)*16); | 
|  | sw_stat->ring_full_cnt[i+4] += temp64; | 
|  | } | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->txdma_int_status); | 
|  | /*check for pfc_err*/ | 
|  | if (val64 & TXDMA_PFC_INT) { | 
|  | if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM| | 
|  | PFC_MISC_0_ERR | PFC_MISC_1_ERR| | 
|  | PFC_PCIX_ERR, &bar0->pfc_err_reg, | 
|  | &sw_stat->pfc_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg, | 
|  | &sw_stat->pfc_err_cnt); | 
|  | } | 
|  |  | 
|  | /*check for tda_err*/ | 
|  | if (val64 & TXDMA_TDA_INT) { | 
|  | if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | | 
|  | TDA_SM1_ERR_ALARM, &bar0->tda_err_reg, | 
|  | &sw_stat->tda_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, | 
|  | &bar0->tda_err_reg, &sw_stat->tda_err_cnt); | 
|  | } | 
|  | /*check for pcc_err*/ | 
|  | if (val64 & TXDMA_PCC_INT) { | 
|  | if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 
|  | | PCC_N_SERR | PCC_6_COF_OV_ERR | 
|  | | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 
|  | | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | 
|  | | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg, | 
|  | &sw_stat->pcc_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, | 
|  | &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt); | 
|  | } | 
|  |  | 
|  | /*check for tti_err*/ | 
|  | if (val64 & TXDMA_TTI_INT) { | 
|  | if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg, | 
|  | &sw_stat->tti_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, | 
|  | &bar0->tti_err_reg, &sw_stat->tti_err_cnt); | 
|  | } | 
|  |  | 
|  | /*check for lso_err*/ | 
|  | if (val64 & TXDMA_LSO_INT) { | 
|  | if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | 
|  | | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, | 
|  | &bar0->lso_err_reg, &sw_stat->lso_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, | 
|  | &bar0->lso_err_reg, &sw_stat->lso_err_cnt); | 
|  | } | 
|  |  | 
|  | /*check for tpa_err*/ | 
|  | if (val64 & TXDMA_TPA_INT) { | 
|  | if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg, | 
|  | &sw_stat->tpa_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg, | 
|  | &sw_stat->tpa_err_cnt); | 
|  | } | 
|  |  | 
|  | /*check for sm_err*/ | 
|  | if (val64 & TXDMA_SM_INT) { | 
|  | if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg, | 
|  | &sw_stat->sm_err_cnt)) | 
|  | goto reset; | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->mac_int_status); | 
|  | if (val64 & MAC_INT_STATUS_TMAC_INT) { | 
|  | if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, | 
|  | &bar0->mac_tmac_err_reg, | 
|  | &sw_stat->mac_tmac_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 
|  | | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, | 
|  | &bar0->mac_tmac_err_reg, | 
|  | &sw_stat->mac_tmac_err_cnt); | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->xgxs_int_status); | 
|  | if (val64 & XGXS_INT_STATUS_TXGXS) { | 
|  | if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, | 
|  | &bar0->xgxs_txgxs_err_reg, | 
|  | &sw_stat->xgxs_txgxs_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, | 
|  | &bar0->xgxs_txgxs_err_reg, | 
|  | &sw_stat->xgxs_txgxs_err_cnt); | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->rxdma_int_status); | 
|  | if (val64 & RXDMA_INT_RC_INT_M) { | 
|  | if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | 
|  | | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM, | 
|  | &bar0->rc_err_reg, &sw_stat->rc_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | 
|  | | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, | 
|  | &sw_stat->rc_err_cnt); | 
|  | if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | 
|  | | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg, | 
|  | &sw_stat->prc_pcix_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn | 
|  | | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg, | 
|  | &sw_stat->prc_pcix_err_cnt); | 
|  | } | 
|  |  | 
|  | if (val64 & RXDMA_INT_RPA_INT_M) { | 
|  | if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, | 
|  | &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, | 
|  | &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt); | 
|  | } | 
|  |  | 
|  | if (val64 & RXDMA_INT_RDA_INT_M) { | 
|  | if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | 
|  | | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM | 
|  | | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR, | 
|  | &bar0->rda_err_reg, &sw_stat->rda_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR | 
|  | | RDA_MISC_ERR | RDA_PCIX_ERR, | 
|  | &bar0->rda_err_reg, &sw_stat->rda_err_cnt); | 
|  | } | 
|  |  | 
|  | if (val64 & RXDMA_INT_RTI_INT_M) { | 
|  | if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg, | 
|  | &sw_stat->rti_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, | 
|  | &bar0->rti_err_reg, &sw_stat->rti_err_cnt); | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->mac_int_status); | 
|  | if (val64 & MAC_INT_STATUS_RMAC_INT) { | 
|  | if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, | 
|  | &bar0->mac_rmac_err_reg, | 
|  | &sw_stat->mac_rmac_err_cnt)) | 
|  | goto reset; | 
|  | do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR| | 
|  | RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg, | 
|  | &sw_stat->mac_rmac_err_cnt); | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->xgxs_int_status); | 
|  | if (val64 & XGXS_INT_STATUS_RXGXS) { | 
|  | if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, | 
|  | &bar0->xgxs_rxgxs_err_reg, | 
|  | &sw_stat->xgxs_rxgxs_err_cnt)) | 
|  | goto reset; | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->mc_int_status); | 
|  | if(val64 & MC_INT_STATUS_MC_INT) { | 
|  | if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg, | 
|  | &sw_stat->mc_err_cnt)) | 
|  | goto reset; | 
|  |  | 
|  | /* Handling Ecc errors */ | 
|  | if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { | 
|  | writeq(val64, &bar0->mc_err_reg); | 
|  | if (val64 & MC_ERR_REG_ECC_ALL_DBL) { | 
|  | sw_stat->double_ecc_errs++; | 
|  | if (sp->device_type != XFRAME_II_DEVICE) { | 
|  | /* | 
|  | * Reset XframeI only if critical error | 
|  | */ | 
|  | if (val64 & | 
|  | (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | | 
|  | MC_ERR_REG_MIRI_ECC_DB_ERR_1)) | 
|  | goto reset; | 
|  | } | 
|  | } else | 
|  | sw_stat->single_ecc_errs++; | 
|  | } | 
|  | } | 
|  | return; | 
|  |  | 
|  | reset: | 
|  | netif_stop_queue(dev); | 
|  | schedule_work(&sp->rst_timer_task); | 
|  | sw_stat->soft_reset_cnt++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_isr - ISR handler of the device . | 
|  | *  @irq: the irq of the device. | 
|  | *  @dev_id: a void pointer to the dev structure of the NIC. | 
|  | *  Description:  This function is the ISR handler of the device. It | 
|  | *  identifies the reason for the interrupt and calls the relevant | 
|  | *  service routines. As a contongency measure, this ISR allocates the | 
|  | *  recv buffers, if their numbers are below the panic value which is | 
|  | *  presently set to 25% of the original number of rcv buffers allocated. | 
|  | *  Return value: | 
|  | *   IRQ_HANDLED: will be returned if IRQ was handled by this routine | 
|  | *   IRQ_NONE: will be returned if interrupt is not from our device | 
|  | */ | 
|  | static irqreturn_t s2io_isr(int irq, void *dev_id) | 
|  | { | 
|  | struct net_device *dev = (struct net_device *) dev_id; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | int i; | 
|  | u64 reason = 0; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  |  | 
|  | /* Pretend we handled any irq's from a disconnected card */ | 
|  | if (pci_channel_offline(sp->pdev)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | if (!is_s2io_card_up(sp)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | mac_control = &sp->mac_control; | 
|  | config = &sp->config; | 
|  |  | 
|  | /* | 
|  | * Identify the cause for interrupt and call the appropriate | 
|  | * interrupt handler. Causes for the interrupt could be; | 
|  | * 1. Rx of packet. | 
|  | * 2. Tx complete. | 
|  | * 3. Link down. | 
|  | */ | 
|  | reason = readq(&bar0->general_int_status); | 
|  |  | 
|  | if (unlikely(reason == S2IO_MINUS_ONE) ) { | 
|  | /* Nothing much can be done. Get out */ | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (reason & (GEN_INTR_RXTRAFFIC | | 
|  | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) | 
|  | { | 
|  | writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); | 
|  |  | 
|  | if (config->napi) { | 
|  | if (reason & GEN_INTR_RXTRAFFIC) { | 
|  | if (likely(netif_rx_schedule_prep(dev, | 
|  | &sp->napi))) { | 
|  | __netif_rx_schedule(dev, &sp->napi); | 
|  | writeq(S2IO_MINUS_ONE, | 
|  | &bar0->rx_traffic_mask); | 
|  | } else | 
|  | writeq(S2IO_MINUS_ONE, | 
|  | &bar0->rx_traffic_int); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * rx_traffic_int reg is an R1 register, writing all 1's | 
|  | * will ensure that the actual interrupt causing bit | 
|  | * get's cleared and hence a read can be avoided. | 
|  | */ | 
|  | if (reason & GEN_INTR_RXTRAFFIC) | 
|  | writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); | 
|  |  | 
|  | for (i = 0; i < config->rx_ring_num; i++) | 
|  | rx_intr_handler(&mac_control->rings[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * tx_traffic_int reg is an R1 register, writing all 1's | 
|  | * will ensure that the actual interrupt causing bit get's | 
|  | * cleared and hence a read can be avoided. | 
|  | */ | 
|  | if (reason & GEN_INTR_TXTRAFFIC) | 
|  | writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); | 
|  |  | 
|  | for (i = 0; i < config->tx_fifo_num; i++) | 
|  | tx_intr_handler(&mac_control->fifos[i]); | 
|  |  | 
|  | if (reason & GEN_INTR_TXPIC) | 
|  | s2io_txpic_intr_handle(sp); | 
|  |  | 
|  | /* | 
|  | * Reallocate the buffers from the interrupt handler itself. | 
|  | */ | 
|  | if (!config->napi) { | 
|  | for (i = 0; i < config->rx_ring_num; i++) | 
|  | s2io_chk_rx_buffers(sp, i); | 
|  | } | 
|  | writeq(sp->general_int_mask, &bar0->general_int_mask); | 
|  | readl(&bar0->general_int_status); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | } | 
|  | else if (!reason) { | 
|  | /* The interrupt was not raised by us */ | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_updt_stats - | 
|  | */ | 
|  | static void s2io_updt_stats(struct s2io_nic *sp) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64; | 
|  | int cnt = 0; | 
|  |  | 
|  | if (is_s2io_card_up(sp)) { | 
|  | /* Apprx 30us on a 133 MHz bus */ | 
|  | val64 = SET_UPDT_CLICKS(10) | | 
|  | STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; | 
|  | writeq(val64, &bar0->stat_cfg); | 
|  | do { | 
|  | udelay(100); | 
|  | val64 = readq(&bar0->stat_cfg); | 
|  | if (!(val64 & s2BIT(0))) | 
|  | break; | 
|  | cnt++; | 
|  | if (cnt == 5) | 
|  | break; /* Updt failed */ | 
|  | } while(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_get_stats - Updates the device statistics structure. | 
|  | *  @dev : pointer to the device structure. | 
|  | *  Description: | 
|  | *  This function updates the device statistics structure in the s2io_nic | 
|  | *  structure and returns a pointer to the same. | 
|  | *  Return value: | 
|  | *  pointer to the updated net_device_stats structure. | 
|  | */ | 
|  |  | 
|  | static struct net_device_stats *s2io_get_stats(struct net_device *dev) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  |  | 
|  |  | 
|  | mac_control = &sp->mac_control; | 
|  | config = &sp->config; | 
|  |  | 
|  | /* Configure Stats for immediate updt */ | 
|  | s2io_updt_stats(sp); | 
|  |  | 
|  | sp->stats.tx_packets = | 
|  | le32_to_cpu(mac_control->stats_info->tmac_frms); | 
|  | sp->stats.tx_errors = | 
|  | le32_to_cpu(mac_control->stats_info->tmac_any_err_frms); | 
|  | sp->stats.rx_errors = | 
|  | le64_to_cpu(mac_control->stats_info->rmac_drop_frms); | 
|  | sp->stats.multicast = | 
|  | le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms); | 
|  | sp->stats.rx_length_errors = | 
|  | le64_to_cpu(mac_control->stats_info->rmac_long_frms); | 
|  |  | 
|  | return (&sp->stats); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_set_multicast - entry point for multicast address enable/disable. | 
|  | *  @dev : pointer to the device structure | 
|  | *  Description: | 
|  | *  This function is a driver entry point which gets called by the kernel | 
|  | *  whenever multicast addresses must be enabled/disabled. This also gets | 
|  | *  called to set/reset promiscuous mode. Depending on the deivce flag, we | 
|  | *  determine, if multicast address must be enabled or if promiscuous mode | 
|  | *  is to be disabled etc. | 
|  | *  Return value: | 
|  | *  void. | 
|  | */ | 
|  |  | 
|  | static void s2io_set_multicast(struct net_device *dev) | 
|  | { | 
|  | int i, j, prev_cnt; | 
|  | struct dev_mc_list *mclist; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = | 
|  | 0xfeffffffffffULL; | 
|  | u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; | 
|  | void __iomem *add; | 
|  | struct config_param *config = &sp->config; | 
|  |  | 
|  | if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { | 
|  | /*  Enable all Multicast addresses */ | 
|  | writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), | 
|  | &bar0->rmac_addr_data0_mem); | 
|  | writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), | 
|  | &bar0->rmac_addr_data1_mem); | 
|  | val64 = RMAC_ADDR_CMD_MEM_WE | | 
|  | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); | 
|  | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  | /* Wait till command completes */ | 
|  | wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | 
|  | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | 
|  | S2IO_BIT_RESET); | 
|  |  | 
|  | sp->m_cast_flg = 1; | 
|  | sp->all_multi_pos = config->max_mc_addr - 1; | 
|  | } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { | 
|  | /*  Disable all Multicast addresses */ | 
|  | writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), | 
|  | &bar0->rmac_addr_data0_mem); | 
|  | writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), | 
|  | &bar0->rmac_addr_data1_mem); | 
|  | val64 = RMAC_ADDR_CMD_MEM_WE | | 
|  | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); | 
|  | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  | /* Wait till command completes */ | 
|  | wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | 
|  | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | 
|  | S2IO_BIT_RESET); | 
|  |  | 
|  | sp->m_cast_flg = 0; | 
|  | sp->all_multi_pos = 0; | 
|  | } | 
|  |  | 
|  | if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { | 
|  | /*  Put the NIC into promiscuous mode */ | 
|  | add = &bar0->mac_cfg; | 
|  | val64 = readq(&bar0->mac_cfg); | 
|  | val64 |= MAC_CFG_RMAC_PROM_ENABLE; | 
|  |  | 
|  | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | writel((u32) val64, add); | 
|  | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | writel((u32) (val64 >> 32), (add + 4)); | 
|  |  | 
|  | if (vlan_tag_strip != 1) { | 
|  | val64 = readq(&bar0->rx_pa_cfg); | 
|  | val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; | 
|  | writeq(val64, &bar0->rx_pa_cfg); | 
|  | vlan_strip_flag = 0; | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->mac_cfg); | 
|  | sp->promisc_flg = 1; | 
|  | DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", | 
|  | dev->name); | 
|  | } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { | 
|  | /*  Remove the NIC from promiscuous mode */ | 
|  | add = &bar0->mac_cfg; | 
|  | val64 = readq(&bar0->mac_cfg); | 
|  | val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; | 
|  |  | 
|  | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | writel((u32) val64, add); | 
|  | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | writel((u32) (val64 >> 32), (add + 4)); | 
|  |  | 
|  | if (vlan_tag_strip != 0) { | 
|  | val64 = readq(&bar0->rx_pa_cfg); | 
|  | val64 |= RX_PA_CFG_STRIP_VLAN_TAG; | 
|  | writeq(val64, &bar0->rx_pa_cfg); | 
|  | vlan_strip_flag = 1; | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->mac_cfg); | 
|  | sp->promisc_flg = 0; | 
|  | DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", | 
|  | dev->name); | 
|  | } | 
|  |  | 
|  | /*  Update individual M_CAST address list */ | 
|  | if ((!sp->m_cast_flg) && dev->mc_count) { | 
|  | if (dev->mc_count > | 
|  | (config->max_mc_addr - config->max_mac_addr)) { | 
|  | DBG_PRINT(ERR_DBG, "%s: No more Rx filters ", | 
|  | dev->name); | 
|  | DBG_PRINT(ERR_DBG, "can be added, please enable "); | 
|  | DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | prev_cnt = sp->mc_addr_count; | 
|  | sp->mc_addr_count = dev->mc_count; | 
|  |  | 
|  | /* Clear out the previous list of Mc in the H/W. */ | 
|  | for (i = 0; i < prev_cnt; i++) { | 
|  | writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), | 
|  | &bar0->rmac_addr_data0_mem); | 
|  | writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), | 
|  | &bar0->rmac_addr_data1_mem); | 
|  | val64 = RMAC_ADDR_CMD_MEM_WE | | 
|  | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | RMAC_ADDR_CMD_MEM_OFFSET | 
|  | (config->mc_start_offset + i); | 
|  | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  |  | 
|  | /* Wait for command completes */ | 
|  | if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | 
|  | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | 
|  | S2IO_BIT_RESET)) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Adding ", | 
|  | dev->name); | 
|  | DBG_PRINT(ERR_DBG, "Multicasts failed\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Create the new Rx filter list and update the same in H/W. */ | 
|  | for (i = 0, mclist = dev->mc_list; i < dev->mc_count; | 
|  | i++, mclist = mclist->next) { | 
|  | memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr, | 
|  | ETH_ALEN); | 
|  | mac_addr = 0; | 
|  | for (j = 0; j < ETH_ALEN; j++) { | 
|  | mac_addr |= mclist->dmi_addr[j]; | 
|  | mac_addr <<= 8; | 
|  | } | 
|  | mac_addr >>= 8; | 
|  | writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), | 
|  | &bar0->rmac_addr_data0_mem); | 
|  | writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), | 
|  | &bar0->rmac_addr_data1_mem); | 
|  | val64 = RMAC_ADDR_CMD_MEM_WE | | 
|  | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | RMAC_ADDR_CMD_MEM_OFFSET | 
|  | (i + config->mc_start_offset); | 
|  | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  |  | 
|  | /* Wait for command completes */ | 
|  | if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | 
|  | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | 
|  | S2IO_BIT_RESET)) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Adding ", | 
|  | dev->name); | 
|  | DBG_PRINT(ERR_DBG, "Multicasts failed\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* read from CAM unicast & multicast addresses and store it in | 
|  | * def_mac_addr structure | 
|  | */ | 
|  | void do_s2io_store_unicast_mc(struct s2io_nic *sp) | 
|  | { | 
|  | int offset; | 
|  | u64 mac_addr = 0x0; | 
|  | struct config_param *config = &sp->config; | 
|  |  | 
|  | /* store unicast & multicast mac addresses */ | 
|  | for (offset = 0; offset < config->max_mc_addr; offset++) { | 
|  | mac_addr = do_s2io_read_unicast_mc(sp, offset); | 
|  | /* if read fails disable the entry */ | 
|  | if (mac_addr == FAILURE) | 
|  | mac_addr = S2IO_DISABLE_MAC_ENTRY; | 
|  | do_s2io_copy_mac_addr(sp, offset, mac_addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ | 
|  | static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) | 
|  | { | 
|  | int offset; | 
|  | struct config_param *config = &sp->config; | 
|  | /* restore unicast mac address */ | 
|  | for (offset = 0; offset < config->max_mac_addr; offset++) | 
|  | do_s2io_prog_unicast(sp->dev, | 
|  | sp->def_mac_addr[offset].mac_addr); | 
|  |  | 
|  | /* restore multicast mac address */ | 
|  | for (offset = config->mc_start_offset; | 
|  | offset < config->max_mc_addr; offset++) | 
|  | do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); | 
|  | } | 
|  |  | 
|  | /* add a multicast MAC address to CAM */ | 
|  | static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) | 
|  | { | 
|  | int i; | 
|  | u64 mac_addr = 0; | 
|  | struct config_param *config = &sp->config; | 
|  |  | 
|  | for (i = 0; i < ETH_ALEN; i++) { | 
|  | mac_addr <<= 8; | 
|  | mac_addr |= addr[i]; | 
|  | } | 
|  | if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) | 
|  | return SUCCESS; | 
|  |  | 
|  | /* check if the multicast mac already preset in CAM */ | 
|  | for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { | 
|  | u64 tmp64; | 
|  | tmp64 = do_s2io_read_unicast_mc(sp, i); | 
|  | if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ | 
|  | break; | 
|  |  | 
|  | if (tmp64 == mac_addr) | 
|  | return SUCCESS; | 
|  | } | 
|  | if (i == config->max_mc_addr) { | 
|  | DBG_PRINT(ERR_DBG, | 
|  | "CAM full no space left for multicast MAC\n"); | 
|  | return FAILURE; | 
|  | } | 
|  | /* Update the internal structure with this new mac address */ | 
|  | do_s2io_copy_mac_addr(sp, i, mac_addr); | 
|  |  | 
|  | return (do_s2io_add_mac(sp, mac_addr, i)); | 
|  | } | 
|  |  | 
|  | /* add MAC address to CAM */ | 
|  | static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) | 
|  | { | 
|  | u64 val64; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  |  | 
|  | writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), | 
|  | &bar0->rmac_addr_data0_mem); | 
|  |  | 
|  | val64 = | 
|  | RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | RMAC_ADDR_CMD_MEM_OFFSET(off); | 
|  | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  |  | 
|  | /* Wait till command completes */ | 
|  | if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | 
|  | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | 
|  | S2IO_BIT_RESET)) { | 
|  | DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); | 
|  | return FAILURE; | 
|  | } | 
|  | return SUCCESS; | 
|  | } | 
|  | /* deletes a specified unicast/multicast mac entry from CAM */ | 
|  | static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) | 
|  | { | 
|  | int offset; | 
|  | u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; | 
|  | struct config_param *config = &sp->config; | 
|  |  | 
|  | for (offset = 1; | 
|  | offset < config->max_mc_addr; offset++) { | 
|  | tmp64 = do_s2io_read_unicast_mc(sp, offset); | 
|  | if (tmp64 == addr) { | 
|  | /* disable the entry by writing  0xffffffffffffULL */ | 
|  | if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE) | 
|  | return FAILURE; | 
|  | /* store the new mac list from CAM */ | 
|  | do_s2io_store_unicast_mc(sp); | 
|  | return SUCCESS; | 
|  | } | 
|  | } | 
|  | DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", | 
|  | (unsigned long long)addr); | 
|  | return FAILURE; | 
|  | } | 
|  |  | 
|  | /* read mac entries from CAM */ | 
|  | static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) | 
|  | { | 
|  | u64 tmp64 = 0xffffffffffff0000ULL, val64; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  |  | 
|  | /* read mac addr */ | 
|  | val64 = | 
|  | RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | RMAC_ADDR_CMD_MEM_OFFSET(offset); | 
|  | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  |  | 
|  | /* Wait till command completes */ | 
|  | if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | 
|  | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, | 
|  | S2IO_BIT_RESET)) { | 
|  | DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); | 
|  | return FAILURE; | 
|  | } | 
|  | tmp64 = readq(&bar0->rmac_addr_data0_mem); | 
|  | return (tmp64 >> 16); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_set_mac_addr driver entry point | 
|  | */ | 
|  |  | 
|  | static int s2io_set_mac_addr(struct net_device *dev, void *p) | 
|  | { | 
|  | struct sockaddr *addr = p; | 
|  |  | 
|  | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
|  |  | 
|  | /* store the MAC address in CAM */ | 
|  | return (do_s2io_prog_unicast(dev, dev->dev_addr)); | 
|  | } | 
|  | /** | 
|  | *  do_s2io_prog_unicast - Programs the Xframe mac address | 
|  | *  @dev : pointer to the device structure. | 
|  | *  @addr: a uchar pointer to the new mac address which is to be set. | 
|  | *  Description : This procedure will program the Xframe to receive | 
|  | *  frames with new Mac Address | 
|  | *  Return value: SUCCESS on success and an appropriate (-)ve integer | 
|  | *  as defined in errno.h file on failure. | 
|  | */ | 
|  |  | 
|  | static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | register u64 mac_addr = 0, perm_addr = 0; | 
|  | int i; | 
|  | u64 tmp64; | 
|  | struct config_param *config = &sp->config; | 
|  |  | 
|  | /* | 
|  | * Set the new MAC address as the new unicast filter and reflect this | 
|  | * change on the device address registered with the OS. It will be | 
|  | * at offset 0. | 
|  | */ | 
|  | for (i = 0; i < ETH_ALEN; i++) { | 
|  | mac_addr <<= 8; | 
|  | mac_addr |= addr[i]; | 
|  | perm_addr <<= 8; | 
|  | perm_addr |= sp->def_mac_addr[0].mac_addr[i]; | 
|  | } | 
|  |  | 
|  | /* check if the dev_addr is different than perm_addr */ | 
|  | if (mac_addr == perm_addr) | 
|  | return SUCCESS; | 
|  |  | 
|  | /* check if the mac already preset in CAM */ | 
|  | for (i = 1; i < config->max_mac_addr; i++) { | 
|  | tmp64 = do_s2io_read_unicast_mc(sp, i); | 
|  | if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ | 
|  | break; | 
|  |  | 
|  | if (tmp64 == mac_addr) { | 
|  | DBG_PRINT(INFO_DBG, | 
|  | "MAC addr:0x%llx already present in CAM\n", | 
|  | (unsigned long long)mac_addr); | 
|  | return SUCCESS; | 
|  | } | 
|  | } | 
|  | if (i == config->max_mac_addr) { | 
|  | DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); | 
|  | return FAILURE; | 
|  | } | 
|  | /* Update the internal structure with this new mac address */ | 
|  | do_s2io_copy_mac_addr(sp, i, mac_addr); | 
|  | return (do_s2io_add_mac(sp, mac_addr, i)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_ethtool_sset - Sets different link parameters. | 
|  | * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure. | 
|  | * @info: pointer to the structure with parameters given by ethtool to set | 
|  | * link information. | 
|  | * Description: | 
|  | * The function sets different link parameters provided by the user onto | 
|  | * the NIC. | 
|  | * Return value: | 
|  | * 0 on success. | 
|  | */ | 
|  |  | 
|  | static int s2io_ethtool_sset(struct net_device *dev, | 
|  | struct ethtool_cmd *info) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | if ((info->autoneg == AUTONEG_ENABLE) || | 
|  | (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL)) | 
|  | return -EINVAL; | 
|  | else { | 
|  | s2io_close(sp->dev); | 
|  | s2io_open(sp->dev); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_ethtol_gset - Return link specific information. | 
|  | * @sp : private member of the device structure, pointer to the | 
|  | *      s2io_nic structure. | 
|  | * @info : pointer to the structure with parameters given by ethtool | 
|  | * to return link information. | 
|  | * Description: | 
|  | * Returns link specific information like speed, duplex etc.. to ethtool. | 
|  | * Return value : | 
|  | * return 0 on success. | 
|  | */ | 
|  |  | 
|  | static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); | 
|  | info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); | 
|  | info->port = PORT_FIBRE; | 
|  |  | 
|  | /* info->transceiver */ | 
|  | info->transceiver = XCVR_EXTERNAL; | 
|  |  | 
|  | if (netif_carrier_ok(sp->dev)) { | 
|  | info->speed = 10000; | 
|  | info->duplex = DUPLEX_FULL; | 
|  | } else { | 
|  | info->speed = -1; | 
|  | info->duplex = -1; | 
|  | } | 
|  |  | 
|  | info->autoneg = AUTONEG_DISABLE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_ethtool_gdrvinfo - Returns driver specific information. | 
|  | * @sp : private member of the device structure, which is a pointer to the | 
|  | * s2io_nic structure. | 
|  | * @info : pointer to the structure with parameters given by ethtool to | 
|  | * return driver information. | 
|  | * Description: | 
|  | * Returns driver specefic information like name, version etc.. to ethtool. | 
|  | * Return value: | 
|  | *  void | 
|  | */ | 
|  |  | 
|  | static void s2io_ethtool_gdrvinfo(struct net_device *dev, | 
|  | struct ethtool_drvinfo *info) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  |  | 
|  | strncpy(info->driver, s2io_driver_name, sizeof(info->driver)); | 
|  | strncpy(info->version, s2io_driver_version, sizeof(info->version)); | 
|  | strncpy(info->fw_version, "", sizeof(info->fw_version)); | 
|  | strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); | 
|  | info->regdump_len = XENA_REG_SPACE; | 
|  | info->eedump_len = XENA_EEPROM_SPACE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. | 
|  | *  @sp: private member of the device structure, which is a pointer to the | 
|  | *  s2io_nic structure. | 
|  | *  @regs : pointer to the structure with parameters given by ethtool for | 
|  | *  dumping the registers. | 
|  | *  @reg_space: The input argumnet into which all the registers are dumped. | 
|  | *  Description: | 
|  | *  Dumps the entire register space of xFrame NIC into the user given | 
|  | *  buffer area. | 
|  | * Return value : | 
|  | * void . | 
|  | */ | 
|  |  | 
|  | static void s2io_ethtool_gregs(struct net_device *dev, | 
|  | struct ethtool_regs *regs, void *space) | 
|  | { | 
|  | int i; | 
|  | u64 reg; | 
|  | u8 *reg_space = (u8 *) space; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  |  | 
|  | regs->len = XENA_REG_SPACE; | 
|  | regs->version = sp->pdev->subsystem_device; | 
|  |  | 
|  | for (i = 0; i < regs->len; i += 8) { | 
|  | reg = readq(sp->bar0 + i); | 
|  | memcpy((reg_space + i), ®, 8); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_phy_id  - timer function that alternates adapter LED. | 
|  | *  @data : address of the private member of the device structure, which | 
|  | *  is a pointer to the s2io_nic structure, provided as an u32. | 
|  | * Description: This is actually the timer function that alternates the | 
|  | * adapter LED bit of the adapter control bit to set/reset every time on | 
|  | * invocation. The timer is set for 1/2 a second, hence tha NIC blinks | 
|  | *  once every second. | 
|  | */ | 
|  | static void s2io_phy_id(unsigned long data) | 
|  | { | 
|  | struct s2io_nic *sp = (struct s2io_nic *) data; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64 = 0; | 
|  | u16 subid; | 
|  |  | 
|  | subid = sp->pdev->subsystem_device; | 
|  | if ((sp->device_type == XFRAME_II_DEVICE) || | 
|  | ((subid & 0xFF) >= 0x07)) { | 
|  | val64 = readq(&bar0->gpio_control); | 
|  | val64 ^= GPIO_CTRL_GPIO_0; | 
|  | writeq(val64, &bar0->gpio_control); | 
|  | } else { | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | val64 ^= ADAPTER_LED_ON; | 
|  | writeq(val64, &bar0->adapter_control); | 
|  | } | 
|  |  | 
|  | mod_timer(&sp->id_timer, jiffies + HZ / 2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_ethtool_idnic - To physically identify the nic on the system. | 
|  | * @sp : private member of the device structure, which is a pointer to the | 
|  | * s2io_nic structure. | 
|  | * @id : pointer to the structure with identification parameters given by | 
|  | * ethtool. | 
|  | * Description: Used to physically identify the NIC on the system. | 
|  | * The Link LED will blink for a time specified by the user for | 
|  | * identification. | 
|  | * NOTE: The Link has to be Up to be able to blink the LED. Hence | 
|  | * identification is possible only if it's link is up. | 
|  | * Return value: | 
|  | * int , returns 0 on success | 
|  | */ | 
|  |  | 
|  | static int s2io_ethtool_idnic(struct net_device *dev, u32 data) | 
|  | { | 
|  | u64 val64 = 0, last_gpio_ctrl_val; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u16 subid; | 
|  |  | 
|  | subid = sp->pdev->subsystem_device; | 
|  | last_gpio_ctrl_val = readq(&bar0->gpio_control); | 
|  | if ((sp->device_type == XFRAME_I_DEVICE) && | 
|  | ((subid & 0xFF) < 0x07)) { | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | if (!(val64 & ADAPTER_CNTL_EN)) { | 
|  | printk(KERN_ERR | 
|  | "Adapter Link down, cannot blink LED\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  | if (sp->id_timer.function == NULL) { | 
|  | init_timer(&sp->id_timer); | 
|  | sp->id_timer.function = s2io_phy_id; | 
|  | sp->id_timer.data = (unsigned long) sp; | 
|  | } | 
|  | mod_timer(&sp->id_timer, jiffies); | 
|  | if (data) | 
|  | msleep_interruptible(data * HZ); | 
|  | else | 
|  | msleep_interruptible(MAX_FLICKER_TIME); | 
|  | del_timer_sync(&sp->id_timer); | 
|  |  | 
|  | if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) { | 
|  | writeq(last_gpio_ctrl_val, &bar0->gpio_control); | 
|  | last_gpio_ctrl_val = readq(&bar0->gpio_control); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void s2io_ethtool_gringparam(struct net_device *dev, | 
|  | struct ethtool_ringparam *ering) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | int i,tx_desc_count=0,rx_desc_count=0; | 
|  |  | 
|  | if (sp->rxd_mode == RXD_MODE_1) | 
|  | ering->rx_max_pending = MAX_RX_DESC_1; | 
|  | else if (sp->rxd_mode == RXD_MODE_3B) | 
|  | ering->rx_max_pending = MAX_RX_DESC_2; | 
|  |  | 
|  | ering->tx_max_pending = MAX_TX_DESC; | 
|  | for (i = 0 ; i < sp->config.tx_fifo_num ; i++) | 
|  | tx_desc_count += sp->config.tx_cfg[i].fifo_len; | 
|  |  | 
|  | DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds); | 
|  | ering->tx_pending = tx_desc_count; | 
|  | rx_desc_count = 0; | 
|  | for (i = 0 ; i < sp->config.rx_ring_num ; i++) | 
|  | rx_desc_count += sp->config.rx_cfg[i].num_rxd; | 
|  |  | 
|  | ering->rx_pending = rx_desc_count; | 
|  |  | 
|  | ering->rx_mini_max_pending = 0; | 
|  | ering->rx_mini_pending = 0; | 
|  | if(sp->rxd_mode == RXD_MODE_1) | 
|  | ering->rx_jumbo_max_pending = MAX_RX_DESC_1; | 
|  | else if (sp->rxd_mode == RXD_MODE_3B) | 
|  | ering->rx_jumbo_max_pending = MAX_RX_DESC_2; | 
|  | ering->rx_jumbo_pending = rx_desc_count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_ethtool_getpause_data -Pause frame frame generation and reception. | 
|  | * @sp : private member of the device structure, which is a pointer to the | 
|  | *	s2io_nic structure. | 
|  | * @ep : pointer to the structure with pause parameters given by ethtool. | 
|  | * Description: | 
|  | * Returns the Pause frame generation and reception capability of the NIC. | 
|  | * Return value: | 
|  | *  void | 
|  | */ | 
|  | static void s2io_ethtool_getpause_data(struct net_device *dev, | 
|  | struct ethtool_pauseparam *ep) | 
|  | { | 
|  | u64 val64; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  |  | 
|  | val64 = readq(&bar0->rmac_pause_cfg); | 
|  | if (val64 & RMAC_PAUSE_GEN_ENABLE) | 
|  | ep->tx_pause = TRUE; | 
|  | if (val64 & RMAC_PAUSE_RX_ENABLE) | 
|  | ep->rx_pause = TRUE; | 
|  | ep->autoneg = FALSE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_ethtool_setpause_data -  set/reset pause frame generation. | 
|  | * @sp : private member of the device structure, which is a pointer to the | 
|  | *      s2io_nic structure. | 
|  | * @ep : pointer to the structure with pause parameters given by ethtool. | 
|  | * Description: | 
|  | * It can be used to set or reset Pause frame generation or reception | 
|  | * support of the NIC. | 
|  | * Return value: | 
|  | * int, returns 0 on Success | 
|  | */ | 
|  |  | 
|  | static int s2io_ethtool_setpause_data(struct net_device *dev, | 
|  | struct ethtool_pauseparam *ep) | 
|  | { | 
|  | u64 val64; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  |  | 
|  | val64 = readq(&bar0->rmac_pause_cfg); | 
|  | if (ep->tx_pause) | 
|  | val64 |= RMAC_PAUSE_GEN_ENABLE; | 
|  | else | 
|  | val64 &= ~RMAC_PAUSE_GEN_ENABLE; | 
|  | if (ep->rx_pause) | 
|  | val64 |= RMAC_PAUSE_RX_ENABLE; | 
|  | else | 
|  | val64 &= ~RMAC_PAUSE_RX_ENABLE; | 
|  | writeq(val64, &bar0->rmac_pause_cfg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_eeprom - reads 4 bytes of data from user given offset. | 
|  | * @sp : private member of the device structure, which is a pointer to the | 
|  | *      s2io_nic structure. | 
|  | * @off : offset at which the data must be written | 
|  | * @data : Its an output parameter where the data read at the given | 
|  | *	offset is stored. | 
|  | * Description: | 
|  | * Will read 4 bytes of data from the user given offset and return the | 
|  | * read data. | 
|  | * NOTE: Will allow to read only part of the EEPROM visible through the | 
|  | *   I2C bus. | 
|  | * Return value: | 
|  | *  -1 on failure and 0 on success. | 
|  | */ | 
|  |  | 
|  | #define S2IO_DEV_ID		5 | 
|  | static int read_eeprom(struct s2io_nic * sp, int off, u64 * data) | 
|  | { | 
|  | int ret = -1; | 
|  | u32 exit_cnt = 0; | 
|  | u64 val64; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  |  | 
|  | if (sp->device_type == XFRAME_I_DEVICE) { | 
|  | val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | | 
|  | I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ | | 
|  | I2C_CONTROL_CNTL_START; | 
|  | SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); | 
|  |  | 
|  | while (exit_cnt < 5) { | 
|  | val64 = readq(&bar0->i2c_control); | 
|  | if (I2C_CONTROL_CNTL_END(val64)) { | 
|  | *data = I2C_CONTROL_GET_DATA(val64); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | msleep(50); | 
|  | exit_cnt++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sp->device_type == XFRAME_II_DEVICE) { | 
|  | val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | | 
|  | SPI_CONTROL_BYTECNT(0x3) | | 
|  | SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); | 
|  | SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); | 
|  | val64 |= SPI_CONTROL_REQ; | 
|  | SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); | 
|  | while (exit_cnt < 5) { | 
|  | val64 = readq(&bar0->spi_control); | 
|  | if (val64 & SPI_CONTROL_NACK) { | 
|  | ret = 1; | 
|  | break; | 
|  | } else if (val64 & SPI_CONTROL_DONE) { | 
|  | *data = readq(&bar0->spi_data); | 
|  | *data &= 0xffffff; | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | msleep(50); | 
|  | exit_cnt++; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  write_eeprom - actually writes the relevant part of the data value. | 
|  | *  @sp : private member of the device structure, which is a pointer to the | 
|  | *       s2io_nic structure. | 
|  | *  @off : offset at which the data must be written | 
|  | *  @data : The data that is to be written | 
|  | *  @cnt : Number of bytes of the data that are actually to be written into | 
|  | *  the Eeprom. (max of 3) | 
|  | * Description: | 
|  | *  Actually writes the relevant part of the data value into the Eeprom | 
|  | *  through the I2C bus. | 
|  | * Return value: | 
|  | *  0 on success, -1 on failure. | 
|  | */ | 
|  |  | 
|  | static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt) | 
|  | { | 
|  | int exit_cnt = 0, ret = -1; | 
|  | u64 val64; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  |  | 
|  | if (sp->device_type == XFRAME_I_DEVICE) { | 
|  | val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | | 
|  | I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) | | 
|  | I2C_CONTROL_CNTL_START; | 
|  | SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); | 
|  |  | 
|  | while (exit_cnt < 5) { | 
|  | val64 = readq(&bar0->i2c_control); | 
|  | if (I2C_CONTROL_CNTL_END(val64)) { | 
|  | if (!(val64 & I2C_CONTROL_NACK)) | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | msleep(50); | 
|  | exit_cnt++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sp->device_type == XFRAME_II_DEVICE) { | 
|  | int write_cnt = (cnt == 8) ? 0 : cnt; | 
|  | writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data); | 
|  |  | 
|  | val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | | 
|  | SPI_CONTROL_BYTECNT(write_cnt) | | 
|  | SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); | 
|  | SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); | 
|  | val64 |= SPI_CONTROL_REQ; | 
|  | SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); | 
|  | while (exit_cnt < 5) { | 
|  | val64 = readq(&bar0->spi_control); | 
|  | if (val64 & SPI_CONTROL_NACK) { | 
|  | ret = 1; | 
|  | break; | 
|  | } else if (val64 & SPI_CONTROL_DONE) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | msleep(50); | 
|  | exit_cnt++; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | static void s2io_vpd_read(struct s2io_nic *nic) | 
|  | { | 
|  | u8 *vpd_data; | 
|  | u8 data; | 
|  | int i=0, cnt, fail = 0; | 
|  | int vpd_addr = 0x80; | 
|  |  | 
|  | if (nic->device_type == XFRAME_II_DEVICE) { | 
|  | strcpy(nic->product_name, "Xframe II 10GbE network adapter"); | 
|  | vpd_addr = 0x80; | 
|  | } | 
|  | else { | 
|  | strcpy(nic->product_name, "Xframe I 10GbE network adapter"); | 
|  | vpd_addr = 0x50; | 
|  | } | 
|  | strcpy(nic->serial_num, "NOT AVAILABLE"); | 
|  |  | 
|  | vpd_data = kmalloc(256, GFP_KERNEL); | 
|  | if (!vpd_data) { | 
|  | nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++; | 
|  | return; | 
|  | } | 
|  | nic->mac_control.stats_info->sw_stat.mem_allocated += 256; | 
|  |  | 
|  | for (i = 0; i < 256; i +=4 ) { | 
|  | pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); | 
|  | pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data); | 
|  | pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); | 
|  | for (cnt = 0; cnt <5; cnt++) { | 
|  | msleep(2); | 
|  | pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); | 
|  | if (data == 0x80) | 
|  | break; | 
|  | } | 
|  | if (cnt >= 5) { | 
|  | DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); | 
|  | fail = 1; | 
|  | break; | 
|  | } | 
|  | pci_read_config_dword(nic->pdev,  (vpd_addr + 4), | 
|  | (u32 *)&vpd_data[i]); | 
|  | } | 
|  |  | 
|  | if(!fail) { | 
|  | /* read serial number of adapter */ | 
|  | for (cnt = 0; cnt < 256; cnt++) { | 
|  | if ((vpd_data[cnt] == 'S') && | 
|  | (vpd_data[cnt+1] == 'N') && | 
|  | (vpd_data[cnt+2] < VPD_STRING_LEN)) { | 
|  | memset(nic->serial_num, 0, VPD_STRING_LEN); | 
|  | memcpy(nic->serial_num, &vpd_data[cnt + 3], | 
|  | vpd_data[cnt+2]); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { | 
|  | memset(nic->product_name, 0, vpd_data[1]); | 
|  | memcpy(nic->product_name, &vpd_data[3], vpd_data[1]); | 
|  | } | 
|  | kfree(vpd_data); | 
|  | nic->mac_control.stats_info->sw_stat.mem_freed += 256; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom. | 
|  | *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure. | 
|  | *  @eeprom : pointer to the user level structure provided by ethtool, | 
|  | *  containing all relevant information. | 
|  | *  @data_buf : user defined value to be written into Eeprom. | 
|  | *  Description: Reads the values stored in the Eeprom at given offset | 
|  | *  for a given length. Stores these values int the input argument data | 
|  | *  buffer 'data_buf' and returns these to the caller (ethtool.) | 
|  | *  Return value: | 
|  | *  int  0 on success | 
|  | */ | 
|  |  | 
|  | static int s2io_ethtool_geeprom(struct net_device *dev, | 
|  | struct ethtool_eeprom *eeprom, u8 * data_buf) | 
|  | { | 
|  | u32 i, valid; | 
|  | u64 data; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  |  | 
|  | eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); | 
|  |  | 
|  | if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) | 
|  | eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; | 
|  |  | 
|  | for (i = 0; i < eeprom->len; i += 4) { | 
|  | if (read_eeprom(sp, (eeprom->offset + i), &data)) { | 
|  | DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | valid = INV(data); | 
|  | memcpy((data_buf + i), &valid, 4); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom | 
|  | *  @sp : private member of the device structure, which is a pointer to the | 
|  | *  s2io_nic structure. | 
|  | *  @eeprom : pointer to the user level structure provided by ethtool, | 
|  | *  containing all relevant information. | 
|  | *  @data_buf ; user defined value to be written into Eeprom. | 
|  | *  Description: | 
|  | *  Tries to write the user provided value in the Eeprom, at the offset | 
|  | *  given by the user. | 
|  | *  Return value: | 
|  | *  0 on success, -EFAULT on failure. | 
|  | */ | 
|  |  | 
|  | static int s2io_ethtool_seeprom(struct net_device *dev, | 
|  | struct ethtool_eeprom *eeprom, | 
|  | u8 * data_buf) | 
|  | { | 
|  | int len = eeprom->len, cnt = 0; | 
|  | u64 valid = 0, data; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  |  | 
|  | if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { | 
|  | DBG_PRINT(ERR_DBG, | 
|  | "ETHTOOL_WRITE_EEPROM Err: Magic value "); | 
|  | DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", | 
|  | eeprom->magic); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | while (len) { | 
|  | data = (u32) data_buf[cnt] & 0x000000FF; | 
|  | if (data) { | 
|  | valid = (u32) (data << 24); | 
|  | } else | 
|  | valid = data; | 
|  |  | 
|  | if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { | 
|  | DBG_PRINT(ERR_DBG, | 
|  | "ETHTOOL_WRITE_EEPROM Err: Cannot "); | 
|  | DBG_PRINT(ERR_DBG, | 
|  | "write into the specified offset\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | cnt++; | 
|  | len--; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_register_test - reads and writes into all clock domains. | 
|  | * @sp : private member of the device structure, which is a pointer to the | 
|  | * s2io_nic structure. | 
|  | * @data : variable that returns the result of each of the test conducted b | 
|  | * by the driver. | 
|  | * Description: | 
|  | * Read and write into all clock domains. The NIC has 3 clock domains, | 
|  | * see that registers in all the three regions are accessible. | 
|  | * Return value: | 
|  | * 0 on success. | 
|  | */ | 
|  |  | 
|  | static int s2io_register_test(struct s2io_nic * sp, uint64_t * data) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64 = 0, exp_val; | 
|  | int fail = 0; | 
|  |  | 
|  | val64 = readq(&bar0->pif_rd_swapper_fb); | 
|  | if (val64 != 0x123456789abcdefULL) { | 
|  | fail = 1; | 
|  | DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n"); | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->rmac_pause_cfg); | 
|  | if (val64 != 0xc000ffff00000000ULL) { | 
|  | fail = 1; | 
|  | DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n"); | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->rx_queue_cfg); | 
|  | if (sp->device_type == XFRAME_II_DEVICE) | 
|  | exp_val = 0x0404040404040404ULL; | 
|  | else | 
|  | exp_val = 0x0808080808080808ULL; | 
|  | if (val64 != exp_val) { | 
|  | fail = 1; | 
|  | DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n"); | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->xgxs_efifo_cfg); | 
|  | if (val64 != 0x000000001923141EULL) { | 
|  | fail = 1; | 
|  | DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n"); | 
|  | } | 
|  |  | 
|  | val64 = 0x5A5A5A5A5A5A5A5AULL; | 
|  | writeq(val64, &bar0->xmsi_data); | 
|  | val64 = readq(&bar0->xmsi_data); | 
|  | if (val64 != 0x5A5A5A5A5A5A5A5AULL) { | 
|  | fail = 1; | 
|  | DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n"); | 
|  | } | 
|  |  | 
|  | val64 = 0xA5A5A5A5A5A5A5A5ULL; | 
|  | writeq(val64, &bar0->xmsi_data); | 
|  | val64 = readq(&bar0->xmsi_data); | 
|  | if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { | 
|  | fail = 1; | 
|  | DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n"); | 
|  | } | 
|  |  | 
|  | *data = fail; | 
|  | return fail; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. | 
|  | * @sp : private member of the device structure, which is a pointer to the | 
|  | * s2io_nic structure. | 
|  | * @data:variable that returns the result of each of the test conducted by | 
|  | * the driver. | 
|  | * Description: | 
|  | * Verify that EEPROM in the xena can be programmed using I2C_CONTROL | 
|  | * register. | 
|  | * Return value: | 
|  | * 0 on success. | 
|  | */ | 
|  |  | 
|  | static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data) | 
|  | { | 
|  | int fail = 0; | 
|  | u64 ret_data, org_4F0, org_7F0; | 
|  | u8 saved_4F0 = 0, saved_7F0 = 0; | 
|  | struct net_device *dev = sp->dev; | 
|  |  | 
|  | /* Test Write Error at offset 0 */ | 
|  | /* Note that SPI interface allows write access to all areas | 
|  | * of EEPROM. Hence doing all negative testing only for Xframe I. | 
|  | */ | 
|  | if (sp->device_type == XFRAME_I_DEVICE) | 
|  | if (!write_eeprom(sp, 0, 0, 3)) | 
|  | fail = 1; | 
|  |  | 
|  | /* Save current values at offsets 0x4F0 and 0x7F0 */ | 
|  | if (!read_eeprom(sp, 0x4F0, &org_4F0)) | 
|  | saved_4F0 = 1; | 
|  | if (!read_eeprom(sp, 0x7F0, &org_7F0)) | 
|  | saved_7F0 = 1; | 
|  |  | 
|  | /* Test Write at offset 4f0 */ | 
|  | if (write_eeprom(sp, 0x4F0, 0x012345, 3)) | 
|  | fail = 1; | 
|  | if (read_eeprom(sp, 0x4F0, &ret_data)) | 
|  | fail = 1; | 
|  |  | 
|  | if (ret_data != 0x012345) { | 
|  | DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " | 
|  | "Data written %llx Data read %llx\n", | 
|  | dev->name, (unsigned long long)0x12345, | 
|  | (unsigned long long)ret_data); | 
|  | fail = 1; | 
|  | } | 
|  |  | 
|  | /* Reset the EEPROM data go FFFF */ | 
|  | write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); | 
|  |  | 
|  | /* Test Write Request Error at offset 0x7c */ | 
|  | if (sp->device_type == XFRAME_I_DEVICE) | 
|  | if (!write_eeprom(sp, 0x07C, 0, 3)) | 
|  | fail = 1; | 
|  |  | 
|  | /* Test Write Request at offset 0x7f0 */ | 
|  | if (write_eeprom(sp, 0x7F0, 0x012345, 3)) | 
|  | fail = 1; | 
|  | if (read_eeprom(sp, 0x7F0, &ret_data)) | 
|  | fail = 1; | 
|  |  | 
|  | if (ret_data != 0x012345) { | 
|  | DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " | 
|  | "Data written %llx Data read %llx\n", | 
|  | dev->name, (unsigned long long)0x12345, | 
|  | (unsigned long long)ret_data); | 
|  | fail = 1; | 
|  | } | 
|  |  | 
|  | /* Reset the EEPROM data go FFFF */ | 
|  | write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); | 
|  |  | 
|  | if (sp->device_type == XFRAME_I_DEVICE) { | 
|  | /* Test Write Error at offset 0x80 */ | 
|  | if (!write_eeprom(sp, 0x080, 0, 3)) | 
|  | fail = 1; | 
|  |  | 
|  | /* Test Write Error at offset 0xfc */ | 
|  | if (!write_eeprom(sp, 0x0FC, 0, 3)) | 
|  | fail = 1; | 
|  |  | 
|  | /* Test Write Error at offset 0x100 */ | 
|  | if (!write_eeprom(sp, 0x100, 0, 3)) | 
|  | fail = 1; | 
|  |  | 
|  | /* Test Write Error at offset 4ec */ | 
|  | if (!write_eeprom(sp, 0x4EC, 0, 3)) | 
|  | fail = 1; | 
|  | } | 
|  |  | 
|  | /* Restore values at offsets 0x4F0 and 0x7F0 */ | 
|  | if (saved_4F0) | 
|  | write_eeprom(sp, 0x4F0, org_4F0, 3); | 
|  | if (saved_7F0) | 
|  | write_eeprom(sp, 0x7F0, org_7F0, 3); | 
|  |  | 
|  | *data = fail; | 
|  | return fail; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_bist_test - invokes the MemBist test of the card . | 
|  | * @sp : private member of the device structure, which is a pointer to the | 
|  | * s2io_nic structure. | 
|  | * @data:variable that returns the result of each of the test conducted by | 
|  | * the driver. | 
|  | * Description: | 
|  | * This invokes the MemBist test of the card. We give around | 
|  | * 2 secs time for the Test to complete. If it's still not complete | 
|  | * within this peiod, we consider that the test failed. | 
|  | * Return value: | 
|  | * 0 on success and -1 on failure. | 
|  | */ | 
|  |  | 
|  | static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data) | 
|  | { | 
|  | u8 bist = 0; | 
|  | int cnt = 0, ret = -1; | 
|  |  | 
|  | pci_read_config_byte(sp->pdev, PCI_BIST, &bist); | 
|  | bist |= PCI_BIST_START; | 
|  | pci_write_config_word(sp->pdev, PCI_BIST, bist); | 
|  |  | 
|  | while (cnt < 20) { | 
|  | pci_read_config_byte(sp->pdev, PCI_BIST, &bist); | 
|  | if (!(bist & PCI_BIST_START)) { | 
|  | *data = (bist & PCI_BIST_CODE_MASK); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | msleep(100); | 
|  | cnt++; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io-link_test - verifies the link state of the nic | 
|  | * @sp ; private member of the device structure, which is a pointer to the | 
|  | * s2io_nic structure. | 
|  | * @data: variable that returns the result of each of the test conducted by | 
|  | * the driver. | 
|  | * Description: | 
|  | * The function verifies the link state of the NIC and updates the input | 
|  | * argument 'data' appropriately. | 
|  | * Return value: | 
|  | * 0 on success. | 
|  | */ | 
|  |  | 
|  | static int s2io_link_test(struct s2io_nic * sp, uint64_t * data) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64; | 
|  |  | 
|  | val64 = readq(&bar0->adapter_status); | 
|  | if(!(LINK_IS_UP(val64))) | 
|  | *data = 1; | 
|  | else | 
|  | *data = 0; | 
|  |  | 
|  | return *data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_rldram_test - offline test for access to the RldRam chip on the NIC | 
|  | * @sp - private member of the device structure, which is a pointer to the | 
|  | * s2io_nic structure. | 
|  | * @data - variable that returns the result of each of the test | 
|  | * conducted by the driver. | 
|  | * Description: | 
|  | *  This is one of the offline test that tests the read and write | 
|  | *  access to the RldRam chip on the NIC. | 
|  | * Return value: | 
|  | *  0 on success. | 
|  | */ | 
|  |  | 
|  | static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64; | 
|  | int cnt, iteration = 0, test_fail = 0; | 
|  |  | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | val64 &= ~ADAPTER_ECC_EN; | 
|  | writeq(val64, &bar0->adapter_control); | 
|  |  | 
|  | val64 = readq(&bar0->mc_rldram_test_ctrl); | 
|  | val64 |= MC_RLDRAM_TEST_MODE; | 
|  | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); | 
|  |  | 
|  | val64 = readq(&bar0->mc_rldram_mrs); | 
|  | val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; | 
|  | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | 
|  |  | 
|  | val64 |= MC_RLDRAM_MRS_ENABLE; | 
|  | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | 
|  |  | 
|  | while (iteration < 2) { | 
|  | val64 = 0x55555555aaaa0000ULL; | 
|  | if (iteration == 1) { | 
|  | val64 ^= 0xFFFFFFFFFFFF0000ULL; | 
|  | } | 
|  | writeq(val64, &bar0->mc_rldram_test_d0); | 
|  |  | 
|  | val64 = 0xaaaa5a5555550000ULL; | 
|  | if (iteration == 1) { | 
|  | val64 ^= 0xFFFFFFFFFFFF0000ULL; | 
|  | } | 
|  | writeq(val64, &bar0->mc_rldram_test_d1); | 
|  |  | 
|  | val64 = 0x55aaaaaaaa5a0000ULL; | 
|  | if (iteration == 1) { | 
|  | val64 ^= 0xFFFFFFFFFFFF0000ULL; | 
|  | } | 
|  | writeq(val64, &bar0->mc_rldram_test_d2); | 
|  |  | 
|  | val64 = (u64) (0x0000003ffffe0100ULL); | 
|  | writeq(val64, &bar0->mc_rldram_test_add); | 
|  |  | 
|  | val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE | | 
|  | MC_RLDRAM_TEST_GO; | 
|  | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); | 
|  |  | 
|  | for (cnt = 0; cnt < 5; cnt++) { | 
|  | val64 = readq(&bar0->mc_rldram_test_ctrl); | 
|  | if (val64 & MC_RLDRAM_TEST_DONE) | 
|  | break; | 
|  | msleep(200); | 
|  | } | 
|  |  | 
|  | if (cnt == 5) | 
|  | break; | 
|  |  | 
|  | val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; | 
|  | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); | 
|  |  | 
|  | for (cnt = 0; cnt < 5; cnt++) { | 
|  | val64 = readq(&bar0->mc_rldram_test_ctrl); | 
|  | if (val64 & MC_RLDRAM_TEST_DONE) | 
|  | break; | 
|  | msleep(500); | 
|  | } | 
|  |  | 
|  | if (cnt == 5) | 
|  | break; | 
|  |  | 
|  | val64 = readq(&bar0->mc_rldram_test_ctrl); | 
|  | if (!(val64 & MC_RLDRAM_TEST_PASS)) | 
|  | test_fail = 1; | 
|  |  | 
|  | iteration++; | 
|  | } | 
|  |  | 
|  | *data = test_fail; | 
|  |  | 
|  | /* Bring the adapter out of test mode */ | 
|  | SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); | 
|  |  | 
|  | return test_fail; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_ethtool_test - conducts 6 tsets to determine the health of card. | 
|  | *  @sp : private member of the device structure, which is a pointer to the | 
|  | *  s2io_nic structure. | 
|  | *  @ethtest : pointer to a ethtool command specific structure that will be | 
|  | *  returned to the user. | 
|  | *  @data : variable that returns the result of each of the test | 
|  | * conducted by the driver. | 
|  | * Description: | 
|  | *  This function conducts 6 tests ( 4 offline and 2 online) to determine | 
|  | *  the health of the card. | 
|  | * Return value: | 
|  | *  void | 
|  | */ | 
|  |  | 
|  | static void s2io_ethtool_test(struct net_device *dev, | 
|  | struct ethtool_test *ethtest, | 
|  | uint64_t * data) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | int orig_state = netif_running(sp->dev); | 
|  |  | 
|  | if (ethtest->flags == ETH_TEST_FL_OFFLINE) { | 
|  | /* Offline Tests. */ | 
|  | if (orig_state) | 
|  | s2io_close(sp->dev); | 
|  |  | 
|  | if (s2io_register_test(sp, &data[0])) | 
|  | ethtest->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | s2io_reset(sp); | 
|  |  | 
|  | if (s2io_rldram_test(sp, &data[3])) | 
|  | ethtest->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | s2io_reset(sp); | 
|  |  | 
|  | if (s2io_eeprom_test(sp, &data[1])) | 
|  | ethtest->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | if (s2io_bist_test(sp, &data[4])) | 
|  | ethtest->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | if (orig_state) | 
|  | s2io_open(sp->dev); | 
|  |  | 
|  | data[2] = 0; | 
|  | } else { | 
|  | /* Online Tests. */ | 
|  | if (!orig_state) { | 
|  | DBG_PRINT(ERR_DBG, | 
|  | "%s: is not up, cannot run test\n", | 
|  | dev->name); | 
|  | data[0] = -1; | 
|  | data[1] = -1; | 
|  | data[2] = -1; | 
|  | data[3] = -1; | 
|  | data[4] = -1; | 
|  | } | 
|  |  | 
|  | if (s2io_link_test(sp, &data[2])) | 
|  | ethtest->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | data[0] = 0; | 
|  | data[1] = 0; | 
|  | data[3] = 0; | 
|  | data[4] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void s2io_get_ethtool_stats(struct net_device *dev, | 
|  | struct ethtool_stats *estats, | 
|  | u64 * tmp_stats) | 
|  | { | 
|  | int i = 0, k; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | struct stat_block *stat_info = sp->mac_control.stats_info; | 
|  |  | 
|  | s2io_updt_stats(sp); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  | | 
|  | le32_to_cpu(stat_info->tmac_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_data_octets); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_mcst_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_bcst_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_ttl_octets); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_ucst_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_nucst_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_any_err_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_vld_ip); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_drop_ip); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_icmp); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_rst_tcp); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp); | 
|  | tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->tmac_udp); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_vld_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_data_octets); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_vld_mcst_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_vld_bcst_frms); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_ttl_octets); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow) | 
|  | << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow) | 
|  | << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_discarded_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow) | 
|  | << 32 | le32_to_cpu(stat_info->rmac_drop_events); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_usized_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_osized_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_frag_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_jabber_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_ip); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_drop_ip); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_icmp); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_udp); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_err_drp_udp); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7); | 
|  | tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0); | 
|  | tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1); | 
|  | tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2); | 
|  | tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3); | 
|  | tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4); | 
|  | tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5); | 
|  | tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6); | 
|  | tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_pause_cnt); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt); | 
|  | tmp_stats[i++] = | 
|  | (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 | | 
|  | le32_to_cpu(stat_info->rmac_accepted_ip); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt); | 
|  |  | 
|  | /* Enhanced statistics exist only for Hercules */ | 
|  | if(sp->device_type == XFRAME_II_DEVICE) { | 
|  | tmp_stats[i++] = | 
|  | le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms); | 
|  | tmp_stats[i++] = | 
|  | le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms); | 
|  | tmp_stats[i++] = | 
|  | le64_to_cpu(stat_info->rmac_ttl_8192_max_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms); | 
|  | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard); | 
|  | tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt); | 
|  | } | 
|  |  | 
|  | tmp_stats[i++] = 0; | 
|  | tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs; | 
|  | tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs; | 
|  | tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt; | 
|  | for (k = 0; k < MAX_RX_RINGS; k++) | 
|  | tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k]; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high; | 
|  | tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low; | 
|  | tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.sending_both; | 
|  | tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts; | 
|  | tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts; | 
|  | if (stat_info->sw_stat.num_aggregations) { | 
|  | u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated; | 
|  | int count = 0; | 
|  | /* | 
|  | * Since 64-bit divide does not work on all platforms, | 
|  | * do repeated subtraction. | 
|  | */ | 
|  | while (tmp >= stat_info->sw_stat.num_aggregations) { | 
|  | tmp -= stat_info->sw_stat.num_aggregations; | 
|  | count++; | 
|  | } | 
|  | tmp_stats[i++] = count; | 
|  | } | 
|  | else | 
|  | tmp_stats[i++] = 0; | 
|  | tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.mem_allocated; | 
|  | tmp_stats[i++] = stat_info->sw_stat.mem_freed; | 
|  | tmp_stats[i++] = stat_info->sw_stat.link_up_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.link_down_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.link_up_time; | 
|  | tmp_stats[i++] = stat_info->sw_stat.link_down_time; | 
|  |  | 
|  | tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt; | 
|  |  | 
|  | tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt; | 
|  | tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt; | 
|  | } | 
|  |  | 
|  | static int s2io_ethtool_get_regs_len(struct net_device *dev) | 
|  | { | 
|  | return (XENA_REG_SPACE); | 
|  | } | 
|  |  | 
|  |  | 
|  | static u32 s2io_ethtool_get_rx_csum(struct net_device * dev) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  |  | 
|  | return (sp->rx_csum); | 
|  | } | 
|  |  | 
|  | static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  |  | 
|  | if (data) | 
|  | sp->rx_csum = 1; | 
|  | else | 
|  | sp->rx_csum = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int s2io_get_eeprom_len(struct net_device *dev) | 
|  | { | 
|  | return (XENA_EEPROM_SPACE); | 
|  | } | 
|  |  | 
|  | static int s2io_get_sset_count(struct net_device *dev, int sset) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  |  | 
|  | switch (sset) { | 
|  | case ETH_SS_TEST: | 
|  | return S2IO_TEST_LEN; | 
|  | case ETH_SS_STATS: | 
|  | switch(sp->device_type) { | 
|  | case XFRAME_I_DEVICE: | 
|  | return XFRAME_I_STAT_LEN; | 
|  | case XFRAME_II_DEVICE: | 
|  | return XFRAME_II_STAT_LEN; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void s2io_ethtool_get_strings(struct net_device *dev, | 
|  | u32 stringset, u8 * data) | 
|  | { | 
|  | int stat_size = 0; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  |  | 
|  | switch (stringset) { | 
|  | case ETH_SS_TEST: | 
|  | memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); | 
|  | break; | 
|  | case ETH_SS_STATS: | 
|  | stat_size = sizeof(ethtool_xena_stats_keys); | 
|  | memcpy(data, ðtool_xena_stats_keys,stat_size); | 
|  | if(sp->device_type == XFRAME_II_DEVICE) { | 
|  | memcpy(data + stat_size, | 
|  | ðtool_enhanced_stats_keys, | 
|  | sizeof(ethtool_enhanced_stats_keys)); | 
|  | stat_size += sizeof(ethtool_enhanced_stats_keys); | 
|  | } | 
|  |  | 
|  | memcpy(data + stat_size, ðtool_driver_stats_keys, | 
|  | sizeof(ethtool_driver_stats_keys)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data) | 
|  | { | 
|  | if (data) | 
|  | dev->features |= NETIF_F_IP_CSUM; | 
|  | else | 
|  | dev->features &= ~NETIF_F_IP_CSUM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 s2io_ethtool_op_get_tso(struct net_device *dev) | 
|  | { | 
|  | return (dev->features & NETIF_F_TSO) != 0; | 
|  | } | 
|  | static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data) | 
|  | { | 
|  | if (data) | 
|  | dev->features |= (NETIF_F_TSO | NETIF_F_TSO6); | 
|  | else | 
|  | dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct ethtool_ops netdev_ethtool_ops = { | 
|  | .get_settings = s2io_ethtool_gset, | 
|  | .set_settings = s2io_ethtool_sset, | 
|  | .get_drvinfo = s2io_ethtool_gdrvinfo, | 
|  | .get_regs_len = s2io_ethtool_get_regs_len, | 
|  | .get_regs = s2io_ethtool_gregs, | 
|  | .get_link = ethtool_op_get_link, | 
|  | .get_eeprom_len = s2io_get_eeprom_len, | 
|  | .get_eeprom = s2io_ethtool_geeprom, | 
|  | .set_eeprom = s2io_ethtool_seeprom, | 
|  | .get_ringparam = s2io_ethtool_gringparam, | 
|  | .get_pauseparam = s2io_ethtool_getpause_data, | 
|  | .set_pauseparam = s2io_ethtool_setpause_data, | 
|  | .get_rx_csum = s2io_ethtool_get_rx_csum, | 
|  | .set_rx_csum = s2io_ethtool_set_rx_csum, | 
|  | .set_tx_csum = s2io_ethtool_op_set_tx_csum, | 
|  | .set_sg = ethtool_op_set_sg, | 
|  | .get_tso = s2io_ethtool_op_get_tso, | 
|  | .set_tso = s2io_ethtool_op_set_tso, | 
|  | .set_ufo = ethtool_op_set_ufo, | 
|  | .self_test = s2io_ethtool_test, | 
|  | .get_strings = s2io_ethtool_get_strings, | 
|  | .phys_id = s2io_ethtool_idnic, | 
|  | .get_ethtool_stats = s2io_get_ethtool_stats, | 
|  | .get_sset_count = s2io_get_sset_count, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | *  s2io_ioctl - Entry point for the Ioctl | 
|  | *  @dev :  Device pointer. | 
|  | *  @ifr :  An IOCTL specefic structure, that can contain a pointer to | 
|  | *  a proprietary structure used to pass information to the driver. | 
|  | *  @cmd :  This is used to distinguish between the different commands that | 
|  | *  can be passed to the IOCTL functions. | 
|  | *  Description: | 
|  | *  Currently there are no special functionality supported in IOCTL, hence | 
|  | *  function always return EOPNOTSUPPORTED | 
|  | */ | 
|  |  | 
|  | static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_change_mtu - entry point to change MTU size for the device. | 
|  | *   @dev : device pointer. | 
|  | *   @new_mtu : the new MTU size for the device. | 
|  | *   Description: A driver entry point to change MTU size for the device. | 
|  | *   Before changing the MTU the device must be stopped. | 
|  | *  Return value: | 
|  | *   0 on success and an appropriate (-)ve integer as defined in errno.h | 
|  | *   file on failure. | 
|  | */ | 
|  |  | 
|  | static int s2io_change_mtu(struct net_device *dev, int new_mtu) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | int ret = 0; | 
|  |  | 
|  | if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { | 
|  | DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", | 
|  | dev->name); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | dev->mtu = new_mtu; | 
|  | if (netif_running(dev)) { | 
|  | s2io_card_down(sp); | 
|  | netif_stop_queue(dev); | 
|  | ret = s2io_card_up(sp); | 
|  | if (ret) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", | 
|  | __FUNCTION__); | 
|  | return ret; | 
|  | } | 
|  | if (netif_queue_stopped(dev)) | 
|  | netif_wake_queue(dev); | 
|  | } else { /* Device is down */ | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | u64 val64 = new_mtu; | 
|  |  | 
|  | writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_tasklet - Bottom half of the ISR. | 
|  | *  @dev_adr : address of the device structure in dma_addr_t format. | 
|  | *  Description: | 
|  | *  This is the tasklet or the bottom half of the ISR. This is | 
|  | *  an extension of the ISR which is scheduled by the scheduler to be run | 
|  | *  when the load on the CPU is low. All low priority tasks of the ISR can | 
|  | *  be pushed into the tasklet. For now the tasklet is used only to | 
|  | *  replenish the Rx buffers in the Rx buffer descriptors. | 
|  | *  Return value: | 
|  | *  void. | 
|  | */ | 
|  |  | 
|  | static void s2io_tasklet(unsigned long dev_addr) | 
|  | { | 
|  | struct net_device *dev = (struct net_device *) dev_addr; | 
|  | struct s2io_nic *sp = dev->priv; | 
|  | int i, ret; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  |  | 
|  | mac_control = &sp->mac_control; | 
|  | config = &sp->config; | 
|  |  | 
|  | if (!TASKLET_IN_USE) { | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | ret = fill_rx_buffers(sp, i); | 
|  | if (ret == -ENOMEM) { | 
|  | DBG_PRINT(INFO_DBG, "%s: Out of ", | 
|  | dev->name); | 
|  | DBG_PRINT(INFO_DBG, "memory in tasklet\n"); | 
|  | break; | 
|  | } else if (ret == -EFILL) { | 
|  | DBG_PRINT(INFO_DBG, | 
|  | "%s: Rx Ring %d is full\n", | 
|  | dev->name, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | clear_bit(0, (&sp->tasklet_status)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_set_link - Set the LInk status | 
|  | * @data: long pointer to device private structue | 
|  | * Description: Sets the link status for the adapter | 
|  | */ | 
|  |  | 
|  | static void s2io_set_link(struct work_struct *work) | 
|  | { | 
|  | struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task); | 
|  | struct net_device *dev = nic->dev; | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | register u64 val64; | 
|  | u16 subid; | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | if (!netif_running(dev)) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { | 
|  | /* The card is being reset, no point doing anything */ | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | subid = nic->pdev->subsystem_device; | 
|  | if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { | 
|  | /* | 
|  | * Allow a small delay for the NICs self initiated | 
|  | * cleanup to complete. | 
|  | */ | 
|  | msleep(100); | 
|  | } | 
|  |  | 
|  | val64 = readq(&bar0->adapter_status); | 
|  | if (LINK_IS_UP(val64)) { | 
|  | if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { | 
|  | if (verify_xena_quiescence(nic)) { | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | val64 |= ADAPTER_CNTL_EN; | 
|  | writeq(val64, &bar0->adapter_control); | 
|  | if (CARDS_WITH_FAULTY_LINK_INDICATORS( | 
|  | nic->device_type, subid)) { | 
|  | val64 = readq(&bar0->gpio_control); | 
|  | val64 |= GPIO_CTRL_GPIO_0; | 
|  | writeq(val64, &bar0->gpio_control); | 
|  | val64 = readq(&bar0->gpio_control); | 
|  | } else { | 
|  | val64 |= ADAPTER_LED_ON; | 
|  | writeq(val64, &bar0->adapter_control); | 
|  | } | 
|  | nic->device_enabled_once = TRUE; | 
|  | } else { | 
|  | DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name); | 
|  | DBG_PRINT(ERR_DBG, "device is not Quiescent\n"); | 
|  | netif_stop_queue(dev); | 
|  | } | 
|  | } | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | val64 |= ADAPTER_LED_ON; | 
|  | writeq(val64, &bar0->adapter_control); | 
|  | s2io_link(nic, LINK_UP); | 
|  | } else { | 
|  | if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, | 
|  | subid)) { | 
|  | val64 = readq(&bar0->gpio_control); | 
|  | val64 &= ~GPIO_CTRL_GPIO_0; | 
|  | writeq(val64, &bar0->gpio_control); | 
|  | val64 = readq(&bar0->gpio_control); | 
|  | } | 
|  | /* turn off LED */ | 
|  | val64 = readq(&bar0->adapter_control); | 
|  | val64 = val64 &(~ADAPTER_LED_ON); | 
|  | writeq(val64, &bar0->adapter_control); | 
|  | s2io_link(nic, LINK_DOWN); | 
|  | } | 
|  | clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); | 
|  |  | 
|  | out_unlock: | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, | 
|  | struct buffAdd *ba, | 
|  | struct sk_buff **skb, u64 *temp0, u64 *temp1, | 
|  | u64 *temp2, int size) | 
|  | { | 
|  | struct net_device *dev = sp->dev; | 
|  | struct swStat *stats = &sp->mac_control.stats_info->sw_stat; | 
|  |  | 
|  | if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { | 
|  | struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; | 
|  | /* allocate skb */ | 
|  | if (*skb) { | 
|  | DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); | 
|  | /* | 
|  | * As Rx frame are not going to be processed, | 
|  | * using same mapped address for the Rxd | 
|  | * buffer pointer | 
|  | */ | 
|  | rxdp1->Buffer0_ptr = *temp0; | 
|  | } else { | 
|  | *skb = dev_alloc_skb(size); | 
|  | if (!(*skb)) { | 
|  | DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name); | 
|  | DBG_PRINT(INFO_DBG, "memory to allocate "); | 
|  | DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n"); | 
|  | sp->mac_control.stats_info->sw_stat. \ | 
|  | mem_alloc_fail_cnt++; | 
|  | return -ENOMEM ; | 
|  | } | 
|  | sp->mac_control.stats_info->sw_stat.mem_allocated | 
|  | += (*skb)->truesize; | 
|  | /* storing the mapped addr in a temp variable | 
|  | * such it will be used for next rxd whose | 
|  | * Host Control is NULL | 
|  | */ | 
|  | rxdp1->Buffer0_ptr = *temp0 = | 
|  | pci_map_single( sp->pdev, (*skb)->data, | 
|  | size - NET_IP_ALIGN, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if( (rxdp1->Buffer0_ptr == 0) || | 
|  | (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) { | 
|  | goto memalloc_failed; | 
|  | } | 
|  | rxdp->Host_Control = (unsigned long) (*skb); | 
|  | } | 
|  | } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { | 
|  | struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; | 
|  | /* Two buffer Mode */ | 
|  | if (*skb) { | 
|  | rxdp3->Buffer2_ptr = *temp2; | 
|  | rxdp3->Buffer0_ptr = *temp0; | 
|  | rxdp3->Buffer1_ptr = *temp1; | 
|  | } else { | 
|  | *skb = dev_alloc_skb(size); | 
|  | if (!(*skb)) { | 
|  | DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name); | 
|  | DBG_PRINT(INFO_DBG, "memory to allocate "); | 
|  | DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n"); | 
|  | sp->mac_control.stats_info->sw_stat. \ | 
|  | mem_alloc_fail_cnt++; | 
|  | return -ENOMEM; | 
|  | } | 
|  | sp->mac_control.stats_info->sw_stat.mem_allocated | 
|  | += (*skb)->truesize; | 
|  | rxdp3->Buffer2_ptr = *temp2 = | 
|  | pci_map_single(sp->pdev, (*skb)->data, | 
|  | dev->mtu + 4, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if( (rxdp3->Buffer2_ptr == 0) || | 
|  | (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) { | 
|  | goto memalloc_failed; | 
|  | } | 
|  | rxdp3->Buffer0_ptr = *temp0 = | 
|  | pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if( (rxdp3->Buffer0_ptr == 0) || | 
|  | (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) { | 
|  | pci_unmap_single (sp->pdev, | 
|  | (dma_addr_t)rxdp3->Buffer2_ptr, | 
|  | dev->mtu + 4, PCI_DMA_FROMDEVICE); | 
|  | goto memalloc_failed; | 
|  | } | 
|  | rxdp->Host_Control = (unsigned long) (*skb); | 
|  |  | 
|  | /* Buffer-1 will be dummy buffer not used */ | 
|  | rxdp3->Buffer1_ptr = *temp1 = | 
|  | pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if( (rxdp3->Buffer1_ptr == 0) || | 
|  | (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) { | 
|  | pci_unmap_single (sp->pdev, | 
|  | (dma_addr_t)rxdp3->Buffer0_ptr, | 
|  | BUF0_LEN, PCI_DMA_FROMDEVICE); | 
|  | pci_unmap_single (sp->pdev, | 
|  | (dma_addr_t)rxdp3->Buffer2_ptr, | 
|  | dev->mtu + 4, PCI_DMA_FROMDEVICE); | 
|  | goto memalloc_failed; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | memalloc_failed: | 
|  | stats->pci_map_fail_cnt++; | 
|  | stats->mem_freed += (*skb)->truesize; | 
|  | dev_kfree_skb(*skb); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, | 
|  | int size) | 
|  | { | 
|  | struct net_device *dev = sp->dev; | 
|  | if (sp->rxd_mode == RXD_MODE_1) { | 
|  | rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN); | 
|  | } else if (sp->rxd_mode == RXD_MODE_3B) { | 
|  | rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); | 
|  | rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); | 
|  | rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | static  int rxd_owner_bit_reset(struct s2io_nic *sp) | 
|  | { | 
|  | int i, j, k, blk_cnt = 0, size; | 
|  | struct mac_info * mac_control = &sp->mac_control; | 
|  | struct config_param *config = &sp->config; | 
|  | struct net_device *dev = sp->dev; | 
|  | struct RxD_t *rxdp = NULL; | 
|  | struct sk_buff *skb = NULL; | 
|  | struct buffAdd *ba = NULL; | 
|  | u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; | 
|  |  | 
|  | /* Calculate the size based on ring mode */ | 
|  | size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + | 
|  | HEADER_802_2_SIZE + HEADER_SNAP_SIZE; | 
|  | if (sp->rxd_mode == RXD_MODE_1) | 
|  | size += NET_IP_ALIGN; | 
|  | else if (sp->rxd_mode == RXD_MODE_3B) | 
|  | size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; | 
|  |  | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | blk_cnt = config->rx_cfg[i].num_rxd / | 
|  | (rxd_count[sp->rxd_mode] +1); | 
|  |  | 
|  | for (j = 0; j < blk_cnt; j++) { | 
|  | for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { | 
|  | rxdp = mac_control->rings[i]. | 
|  | rx_blocks[j].rxds[k].virt_addr; | 
|  | if(sp->rxd_mode == RXD_MODE_3B) | 
|  | ba = &mac_control->rings[i].ba[j][k]; | 
|  | if (set_rxd_buffer_pointer(sp, rxdp, ba, | 
|  | &skb,(u64 *)&temp0_64, | 
|  | (u64 *)&temp1_64, | 
|  | (u64 *)&temp2_64, | 
|  | size) == ENOMEM) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | set_rxd_buffer_size(sp, rxdp, size); | 
|  | wmb(); | 
|  | /* flip the Ownership bit to Hardware */ | 
|  | rxdp->Control_1 |= RXD_OWN_XENA; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int s2io_add_isr(struct s2io_nic * sp) | 
|  | { | 
|  | int ret = 0; | 
|  | struct net_device *dev = sp->dev; | 
|  | int err = 0; | 
|  |  | 
|  | if (sp->config.intr_type == MSI_X) | 
|  | ret = s2io_enable_msi_x(sp); | 
|  | if (ret) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); | 
|  | sp->config.intr_type = INTA; | 
|  | } | 
|  |  | 
|  | /* Store the values of the MSIX table in the struct s2io_nic structure */ | 
|  | store_xmsi_data(sp); | 
|  |  | 
|  | /* After proper initialization of H/W, register ISR */ | 
|  | if (sp->config.intr_type == MSI_X) { | 
|  | int i, msix_tx_cnt=0,msix_rx_cnt=0; | 
|  |  | 
|  | for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) { | 
|  | if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) { | 
|  | sprintf(sp->desc[i], "%s:MSI-X-%d-TX", | 
|  | dev->name, i); | 
|  | err = request_irq(sp->entries[i].vector, | 
|  | s2io_msix_fifo_handle, 0, sp->desc[i], | 
|  | sp->s2io_entries[i].arg); | 
|  | /* If either data or addr is zero print it */ | 
|  | if(!(sp->msix_info[i].addr && | 
|  | sp->msix_info[i].data)) { | 
|  | DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx " | 
|  | "Data:0x%lx\n",sp->desc[i], | 
|  | (unsigned long long) | 
|  | sp->msix_info[i].addr, | 
|  | (unsigned long) | 
|  | ntohl(sp->msix_info[i].data)); | 
|  | } else { | 
|  | msix_tx_cnt++; | 
|  | } | 
|  | } else { | 
|  | sprintf(sp->desc[i], "%s:MSI-X-%d-RX", | 
|  | dev->name, i); | 
|  | err = request_irq(sp->entries[i].vector, | 
|  | s2io_msix_ring_handle, 0, sp->desc[i], | 
|  | sp->s2io_entries[i].arg); | 
|  | /* If either data or addr is zero print it */ | 
|  | if(!(sp->msix_info[i].addr && | 
|  | sp->msix_info[i].data)) { | 
|  | DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx " | 
|  | "Data:0x%lx\n",sp->desc[i], | 
|  | (unsigned long long) | 
|  | sp->msix_info[i].addr, | 
|  | (unsigned long) | 
|  | ntohl(sp->msix_info[i].data)); | 
|  | } else { | 
|  | msix_rx_cnt++; | 
|  | } | 
|  | } | 
|  | if (err) { | 
|  | remove_msix_isr(sp); | 
|  | DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration " | 
|  | "failed\n", dev->name, i); | 
|  | DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n", | 
|  | dev->name); | 
|  | sp->config.intr_type = INTA; | 
|  | break; | 
|  | } | 
|  | sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS; | 
|  | } | 
|  | if (!err) { | 
|  | printk(KERN_INFO "MSI-X-TX %d entries enabled\n", | 
|  | msix_tx_cnt); | 
|  | printk(KERN_INFO "MSI-X-RX %d entries enabled\n", | 
|  | msix_rx_cnt); | 
|  | } | 
|  | } | 
|  | if (sp->config.intr_type == INTA) { | 
|  | err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED, | 
|  | sp->name, dev); | 
|  | if (err) { | 
|  | DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", | 
|  | dev->name); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | static void s2io_rem_isr(struct s2io_nic * sp) | 
|  | { | 
|  | if (sp->config.intr_type == MSI_X) | 
|  | remove_msix_isr(sp); | 
|  | else | 
|  | remove_inta_isr(sp); | 
|  | } | 
|  |  | 
|  | static void do_s2io_card_down(struct s2io_nic * sp, int do_io) | 
|  | { | 
|  | int cnt = 0; | 
|  | struct XENA_dev_config __iomem *bar0 = sp->bar0; | 
|  | unsigned long flags; | 
|  | register u64 val64 = 0; | 
|  | struct config_param *config; | 
|  | config = &sp->config; | 
|  |  | 
|  | if (!is_s2io_card_up(sp)) | 
|  | return; | 
|  |  | 
|  | del_timer_sync(&sp->alarm_timer); | 
|  | /* If s2io_set_link task is executing, wait till it completes. */ | 
|  | while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) { | 
|  | msleep(50); | 
|  | } | 
|  | clear_bit(__S2IO_STATE_CARD_UP, &sp->state); | 
|  |  | 
|  | /* Disable napi */ | 
|  | if (config->napi) | 
|  | napi_disable(&sp->napi); | 
|  |  | 
|  | /* disable Tx and Rx traffic on the NIC */ | 
|  | if (do_io) | 
|  | stop_nic(sp); | 
|  |  | 
|  | s2io_rem_isr(sp); | 
|  |  | 
|  | /* Kill tasklet. */ | 
|  | tasklet_kill(&sp->task); | 
|  |  | 
|  | /* Check if the device is Quiescent and then Reset the NIC */ | 
|  | while(do_io) { | 
|  | /* As per the HW requirement we need to replenish the | 
|  | * receive buffer to avoid the ring bump. Since there is | 
|  | * no intention of processing the Rx frame at this pointwe are | 
|  | * just settting the ownership bit of rxd in Each Rx | 
|  | * ring to HW and set the appropriate buffer size | 
|  | * based on the ring mode | 
|  | */ | 
|  | rxd_owner_bit_reset(sp); | 
|  |  | 
|  | val64 = readq(&bar0->adapter_status); | 
|  | if (verify_xena_quiescence(sp)) { | 
|  | if(verify_pcc_quiescent(sp, sp->device_enabled_once)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | msleep(50); | 
|  | cnt++; | 
|  | if (cnt == 10) { | 
|  | DBG_PRINT(ERR_DBG, | 
|  | "s2io_close:Device not Quiescent "); | 
|  | DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n", | 
|  | (unsigned long long) val64); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (do_io) | 
|  | s2io_reset(sp); | 
|  |  | 
|  | /* Free all Tx buffers */ | 
|  | free_tx_buffers(sp); | 
|  |  | 
|  | /* Free all Rx buffers */ | 
|  | spin_lock_irqsave(&sp->rx_lock, flags); | 
|  | free_rx_buffers(sp); | 
|  | spin_unlock_irqrestore(&sp->rx_lock, flags); | 
|  |  | 
|  | clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); | 
|  | } | 
|  |  | 
|  | static void s2io_card_down(struct s2io_nic * sp) | 
|  | { | 
|  | do_s2io_card_down(sp, 1); | 
|  | } | 
|  |  | 
|  | static int s2io_card_up(struct s2io_nic * sp) | 
|  | { | 
|  | int i, ret = 0; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  | struct net_device *dev = (struct net_device *) sp->dev; | 
|  | u16 interruptible; | 
|  |  | 
|  | /* Initialize the H/W I/O registers */ | 
|  | ret = init_nic(sp); | 
|  | if (ret != 0) { | 
|  | DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", | 
|  | dev->name); | 
|  | if (ret != -EIO) | 
|  | s2io_reset(sp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initializing the Rx buffers. For now we are considering only 1 | 
|  | * Rx ring and initializing buffers into 30 Rx blocks | 
|  | */ | 
|  | mac_control = &sp->mac_control; | 
|  | config = &sp->config; | 
|  |  | 
|  | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | if ((ret = fill_rx_buffers(sp, i))) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", | 
|  | dev->name); | 
|  | s2io_reset(sp); | 
|  | free_rx_buffers(sp); | 
|  | return -ENOMEM; | 
|  | } | 
|  | DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, | 
|  | atomic_read(&sp->rx_bufs_left[i])); | 
|  | } | 
|  |  | 
|  | /* Initialise napi */ | 
|  | if (config->napi) | 
|  | napi_enable(&sp->napi); | 
|  |  | 
|  | /* Maintain the state prior to the open */ | 
|  | if (sp->promisc_flg) | 
|  | sp->promisc_flg = 0; | 
|  | if (sp->m_cast_flg) { | 
|  | sp->m_cast_flg = 0; | 
|  | sp->all_multi_pos= 0; | 
|  | } | 
|  |  | 
|  | /* Setting its receive mode */ | 
|  | s2io_set_multicast(dev); | 
|  |  | 
|  | if (sp->lro) { | 
|  | /* Initialize max aggregatable pkts per session based on MTU */ | 
|  | sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; | 
|  | /* Check if we can use(if specified) user provided value */ | 
|  | if (lro_max_pkts < sp->lro_max_aggr_per_sess) | 
|  | sp->lro_max_aggr_per_sess = lro_max_pkts; | 
|  | } | 
|  |  | 
|  | /* Enable Rx Traffic and interrupts on the NIC */ | 
|  | if (start_nic(sp)) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); | 
|  | s2io_reset(sp); | 
|  | free_rx_buffers(sp); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Add interrupt service routine */ | 
|  | if (s2io_add_isr(sp) != 0) { | 
|  | if (sp->config.intr_type == MSI_X) | 
|  | s2io_rem_isr(sp); | 
|  | s2io_reset(sp); | 
|  | free_rx_buffers(sp); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); | 
|  |  | 
|  | /* Enable tasklet for the device */ | 
|  | tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev); | 
|  |  | 
|  | /*  Enable select interrupts */ | 
|  | en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); | 
|  | if (sp->config.intr_type != INTA) | 
|  | en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS); | 
|  | else { | 
|  | interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; | 
|  | interruptible |= TX_PIC_INTR; | 
|  | en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); | 
|  | } | 
|  |  | 
|  | set_bit(__S2IO_STATE_CARD_UP, &sp->state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_restart_nic - Resets the NIC. | 
|  | * @data : long pointer to the device private structure | 
|  | * Description: | 
|  | * This function is scheduled to be run by the s2io_tx_watchdog | 
|  | * function after 0.5 secs to reset the NIC. The idea is to reduce | 
|  | * the run time of the watch dog routine which is run holding a | 
|  | * spin lock. | 
|  | */ | 
|  |  | 
|  | static void s2io_restart_nic(struct work_struct *work) | 
|  | { | 
|  | struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); | 
|  | struct net_device *dev = sp->dev; | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | if (!netif_running(dev)) | 
|  | goto out_unlock; | 
|  |  | 
|  | s2io_card_down(sp); | 
|  | if (s2io_card_up(sp)) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", | 
|  | dev->name); | 
|  | } | 
|  | netif_wake_queue(dev); | 
|  | DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", | 
|  | dev->name); | 
|  | out_unlock: | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_tx_watchdog - Watchdog for transmit side. | 
|  | *  @dev : Pointer to net device structure | 
|  | *  Description: | 
|  | *  This function is triggered if the Tx Queue is stopped | 
|  | *  for a pre-defined amount of time when the Interface is still up. | 
|  | *  If the Interface is jammed in such a situation, the hardware is | 
|  | *  reset (by s2io_close) and restarted again (by s2io_open) to | 
|  | *  overcome any problem that might have been caused in the hardware. | 
|  | *  Return value: | 
|  | *  void | 
|  | */ | 
|  |  | 
|  | static void s2io_tx_watchdog(struct net_device *dev) | 
|  | { | 
|  | struct s2io_nic *sp = dev->priv; | 
|  |  | 
|  | if (netif_carrier_ok(dev)) { | 
|  | sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++; | 
|  | schedule_work(&sp->rst_timer_task); | 
|  | sp->mac_control.stats_info->sw_stat.soft_reset_cnt++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *   rx_osm_handler - To perform some OS related operations on SKB. | 
|  | *   @sp: private member of the device structure,pointer to s2io_nic structure. | 
|  | *   @skb : the socket buffer pointer. | 
|  | *   @len : length of the packet | 
|  | *   @cksum : FCS checksum of the frame. | 
|  | *   @ring_no : the ring from which this RxD was extracted. | 
|  | *   Description: | 
|  | *   This function is called by the Rx interrupt serivce routine to perform | 
|  | *   some OS related operations on the SKB before passing it to the upper | 
|  | *   layers. It mainly checks if the checksum is OK, if so adds it to the | 
|  | *   SKBs cksum variable, increments the Rx packet count and passes the SKB | 
|  | *   to the upper layer. If the checksum is wrong, it increments the Rx | 
|  | *   packet error count, frees the SKB and returns error. | 
|  | *   Return value: | 
|  | *   SUCCESS on success and -1 on failure. | 
|  | */ | 
|  | static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) | 
|  | { | 
|  | struct s2io_nic *sp = ring_data->nic; | 
|  | struct net_device *dev = (struct net_device *) sp->dev; | 
|  | struct sk_buff *skb = (struct sk_buff *) | 
|  | ((unsigned long) rxdp->Host_Control); | 
|  | int ring_no = ring_data->ring_no; | 
|  | u16 l3_csum, l4_csum; | 
|  | unsigned long long err = rxdp->Control_1 & RXD_T_CODE; | 
|  | struct lro *lro; | 
|  | u8 err_mask; | 
|  |  | 
|  | skb->dev = dev; | 
|  |  | 
|  | if (err) { | 
|  | /* Check for parity error */ | 
|  | if (err & 0x1) { | 
|  | sp->mac_control.stats_info->sw_stat.parity_err_cnt++; | 
|  | } | 
|  | err_mask = err >> 48; | 
|  | switch(err_mask) { | 
|  | case 1: | 
|  | sp->mac_control.stats_info->sw_stat. | 
|  | rx_parity_err_cnt++; | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | sp->mac_control.stats_info->sw_stat. | 
|  | rx_abort_cnt++; | 
|  | break; | 
|  |  | 
|  | case 3: | 
|  | sp->mac_control.stats_info->sw_stat. | 
|  | rx_parity_abort_cnt++; | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | sp->mac_control.stats_info->sw_stat. | 
|  | rx_rda_fail_cnt++; | 
|  | break; | 
|  |  | 
|  | case 5: | 
|  | sp->mac_control.stats_info->sw_stat. | 
|  | rx_unkn_prot_cnt++; | 
|  | break; | 
|  |  | 
|  | case 6: | 
|  | sp->mac_control.stats_info->sw_stat. | 
|  | rx_fcs_err_cnt++; | 
|  | break; | 
|  |  | 
|  | case 7: | 
|  | sp->mac_control.stats_info->sw_stat. | 
|  | rx_buf_size_err_cnt++; | 
|  | break; | 
|  |  | 
|  | case 8: | 
|  | sp->mac_control.stats_info->sw_stat. | 
|  | rx_rxd_corrupt_cnt++; | 
|  | break; | 
|  |  | 
|  | case 15: | 
|  | sp->mac_control.stats_info->sw_stat. | 
|  | rx_unkn_err_cnt++; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Drop the packet if bad transfer code. Exception being | 
|  | * 0x5, which could be due to unsupported IPv6 extension header. | 
|  | * In this case, we let stack handle the packet. | 
|  | * Note that in this case, since checksum will be incorrect, | 
|  | * stack will validate the same. | 
|  | */ | 
|  | if (err_mask != 0x5) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", | 
|  | dev->name, err_mask); | 
|  | sp->stats.rx_crc_errors++; | 
|  | sp->mac_control.stats_info->sw_stat.mem_freed | 
|  | += skb->truesize; | 
|  | dev_kfree_skb(skb); | 
|  | atomic_dec(&sp->rx_bufs_left[ring_no]); | 
|  | rxdp->Host_Control = 0; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Updating statistics */ | 
|  | sp->stats.rx_packets++; | 
|  | rxdp->Host_Control = 0; | 
|  | if (sp->rxd_mode == RXD_MODE_1) { | 
|  | int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); | 
|  |  | 
|  | sp->stats.rx_bytes += len; | 
|  | skb_put(skb, len); | 
|  |  | 
|  | } else if (sp->rxd_mode == RXD_MODE_3B) { | 
|  | int get_block = ring_data->rx_curr_get_info.block_index; | 
|  | int get_off = ring_data->rx_curr_get_info.offset; | 
|  | int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); | 
|  | int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); | 
|  | unsigned char *buff = skb_push(skb, buf0_len); | 
|  |  | 
|  | struct buffAdd *ba = &ring_data->ba[get_block][get_off]; | 
|  | sp->stats.rx_bytes += buf0_len + buf2_len; | 
|  | memcpy(buff, ba->ba_0, buf0_len); | 
|  | skb_put(skb, buf2_len); | 
|  | } | 
|  |  | 
|  | if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) || | 
|  | (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) && | 
|  | (sp->rx_csum)) { | 
|  | l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); | 
|  | l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); | 
|  | if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { | 
|  | /* | 
|  | * NIC verifies if the Checksum of the received | 
|  | * frame is Ok or not and accordingly returns | 
|  | * a flag in the RxD. | 
|  | */ | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | if (sp->lro) { | 
|  | u32 tcp_len; | 
|  | u8 *tcp; | 
|  | int ret = 0; | 
|  |  | 
|  | ret = s2io_club_tcp_session(skb->data, &tcp, | 
|  | &tcp_len, &lro, | 
|  | rxdp, sp); | 
|  | switch (ret) { | 
|  | case 3: /* Begin anew */ | 
|  | lro->parent = skb; | 
|  | goto aggregate; | 
|  | case 1: /* Aggregate */ | 
|  | { | 
|  | lro_append_pkt(sp, lro, | 
|  | skb, tcp_len); | 
|  | goto aggregate; | 
|  | } | 
|  | case 4: /* Flush session */ | 
|  | { | 
|  | lro_append_pkt(sp, lro, | 
|  | skb, tcp_len); | 
|  | queue_rx_frame(lro->parent); | 
|  | clear_lro_session(lro); | 
|  | sp->mac_control.stats_info-> | 
|  | sw_stat.flush_max_pkts++; | 
|  | goto aggregate; | 
|  | } | 
|  | case 2: /* Flush both */ | 
|  | lro->parent->data_len = | 
|  | lro->frags_len; | 
|  | sp->mac_control.stats_info-> | 
|  | sw_stat.sending_both++; | 
|  | queue_rx_frame(lro->parent); | 
|  | clear_lro_session(lro); | 
|  | goto send_up; | 
|  | case 0: /* sessions exceeded */ | 
|  | case -1: /* non-TCP or not | 
|  | * L2 aggregatable | 
|  | */ | 
|  | case 5: /* | 
|  | * First pkt in session not | 
|  | * L3/L4 aggregatable | 
|  | */ | 
|  | break; | 
|  | default: | 
|  | DBG_PRINT(ERR_DBG, | 
|  | "%s: Samadhana!!\n", | 
|  | __FUNCTION__); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Packet with erroneous checksum, let the | 
|  | * upper layers deal with it. | 
|  | */ | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | } | 
|  | } else { | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | } | 
|  | sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize; | 
|  | if (!sp->lro) { | 
|  | skb->protocol = eth_type_trans(skb, dev); | 
|  | if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) && | 
|  | vlan_strip_flag)) { | 
|  | /* Queueing the vlan frame to the upper layer */ | 
|  | if (napi) | 
|  | vlan_hwaccel_receive_skb(skb, sp->vlgrp, | 
|  | RXD_GET_VLAN_TAG(rxdp->Control_2)); | 
|  | else | 
|  | vlan_hwaccel_rx(skb, sp->vlgrp, | 
|  | RXD_GET_VLAN_TAG(rxdp->Control_2)); | 
|  | } else { | 
|  | if (napi) | 
|  | netif_receive_skb(skb); | 
|  | else | 
|  | netif_rx(skb); | 
|  | } | 
|  | } else { | 
|  | send_up: | 
|  | queue_rx_frame(skb); | 
|  | } | 
|  | dev->last_rx = jiffies; | 
|  | aggregate: | 
|  | atomic_dec(&sp->rx_bufs_left[ring_no]); | 
|  | return SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_link - stops/starts the Tx queue. | 
|  | *  @sp : private member of the device structure, which is a pointer to the | 
|  | *  s2io_nic structure. | 
|  | *  @link : inidicates whether link is UP/DOWN. | 
|  | *  Description: | 
|  | *  This function stops/starts the Tx queue depending on whether the link | 
|  | *  status of the NIC is is down or up. This is called by the Alarm | 
|  | *  interrupt handler whenever a link change interrupt comes up. | 
|  | *  Return value: | 
|  | *  void. | 
|  | */ | 
|  |  | 
|  | static void s2io_link(struct s2io_nic * sp, int link) | 
|  | { | 
|  | struct net_device *dev = (struct net_device *) sp->dev; | 
|  |  | 
|  | if (link != sp->last_link_state) { | 
|  | init_tti(sp, link); | 
|  | if (link == LINK_DOWN) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); | 
|  | netif_carrier_off(dev); | 
|  | if(sp->mac_control.stats_info->sw_stat.link_up_cnt) | 
|  | sp->mac_control.stats_info->sw_stat.link_up_time = | 
|  | jiffies - sp->start_time; | 
|  | sp->mac_control.stats_info->sw_stat.link_down_cnt++; | 
|  | } else { | 
|  | DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); | 
|  | if (sp->mac_control.stats_info->sw_stat.link_down_cnt) | 
|  | sp->mac_control.stats_info->sw_stat.link_down_time = | 
|  | jiffies - sp->start_time; | 
|  | sp->mac_control.stats_info->sw_stat.link_up_cnt++; | 
|  | netif_carrier_on(dev); | 
|  | } | 
|  | } | 
|  | sp->last_link_state = link; | 
|  | sp->start_time = jiffies; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers . | 
|  | *  @sp : private member of the device structure, which is a pointer to the | 
|  | *  s2io_nic structure. | 
|  | *  Description: | 
|  | *  This function initializes a few of the PCI and PCI-X configuration registers | 
|  | *  with recommended values. | 
|  | *  Return value: | 
|  | *  void | 
|  | */ | 
|  |  | 
|  | static void s2io_init_pci(struct s2io_nic * sp) | 
|  | { | 
|  | u16 pci_cmd = 0, pcix_cmd = 0; | 
|  |  | 
|  | /* Enable Data Parity Error Recovery in PCI-X command register. */ | 
|  | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | &(pcix_cmd)); | 
|  | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | (pcix_cmd | 1)); | 
|  | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | &(pcix_cmd)); | 
|  |  | 
|  | /* Set the PErr Response bit in PCI command register. */ | 
|  | pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); | 
|  | pci_write_config_word(sp->pdev, PCI_COMMAND, | 
|  | (pci_cmd | PCI_COMMAND_PARITY)); | 
|  | pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); | 
|  | } | 
|  |  | 
|  | static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type) | 
|  | { | 
|  | if ((tx_fifo_num > MAX_TX_FIFOS) || | 
|  | (tx_fifo_num < FIFO_DEFAULT_NUM)) { | 
|  | DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos " | 
|  | "(%d) not supported\n", tx_fifo_num); | 
|  | tx_fifo_num = | 
|  | ((tx_fifo_num > MAX_TX_FIFOS)? MAX_TX_FIFOS : | 
|  | ((tx_fifo_num < FIFO_DEFAULT_NUM) ? FIFO_DEFAULT_NUM : | 
|  | tx_fifo_num)); | 
|  | DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num); | 
|  | DBG_PRINT(ERR_DBG, "tx fifos\n"); | 
|  | } | 
|  |  | 
|  | if ( rx_ring_num > 8) { | 
|  | DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not " | 
|  | "supported\n"); | 
|  | DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n"); | 
|  | rx_ring_num = 8; | 
|  | } | 
|  | if (*dev_intr_type != INTA) | 
|  | napi = 0; | 
|  |  | 
|  | if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { | 
|  | DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. " | 
|  | "Defaulting to INTA\n"); | 
|  | *dev_intr_type = INTA; | 
|  | } | 
|  |  | 
|  | if ((*dev_intr_type == MSI_X) && | 
|  | ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && | 
|  | (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { | 
|  | DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. " | 
|  | "Defaulting to INTA\n"); | 
|  | *dev_intr_type = INTA; | 
|  | } | 
|  |  | 
|  | if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { | 
|  | DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n"); | 
|  | DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n"); | 
|  | rx_ring_mode = 1; | 
|  | } | 
|  | return SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS | 
|  | * or Traffic class respectively. | 
|  | * @nic: device private variable | 
|  | * Description: The function configures the receive steering to | 
|  | * desired receive ring. | 
|  | * Return Value:  SUCCESS on success and | 
|  | * '-1' on failure (endian settings incorrect). | 
|  | */ | 
|  | static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) | 
|  | { | 
|  | struct XENA_dev_config __iomem *bar0 = nic->bar0; | 
|  | register u64 val64 = 0; | 
|  |  | 
|  | if (ds_codepoint > 63) | 
|  | return FAILURE; | 
|  |  | 
|  | val64 = RTS_DS_MEM_DATA(ring); | 
|  | writeq(val64, &bar0->rts_ds_mem_data); | 
|  |  | 
|  | val64 = RTS_DS_MEM_CTRL_WE | | 
|  | RTS_DS_MEM_CTRL_STROBE_NEW_CMD | | 
|  | RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); | 
|  |  | 
|  | writeq(val64, &bar0->rts_ds_mem_ctrl); | 
|  |  | 
|  | return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, | 
|  | RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, | 
|  | S2IO_BIT_RESET); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  s2io_init_nic - Initialization of the adapter . | 
|  | *  @pdev : structure containing the PCI related information of the device. | 
|  | *  @pre: List of PCI devices supported by the driver listed in s2io_tbl. | 
|  | *  Description: | 
|  | *  The function initializes an adapter identified by the pci_dec structure. | 
|  | *  All OS related initialization including memory and device structure and | 
|  | *  initlaization of the device private variable is done. Also the swapper | 
|  | *  control register is initialized to enable read and write into the I/O | 
|  | *  registers of the device. | 
|  | *  Return value: | 
|  | *  returns 0 on success and negative on failure. | 
|  | */ | 
|  |  | 
|  | static int __devinit | 
|  | s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) | 
|  | { | 
|  | struct s2io_nic *sp; | 
|  | struct net_device *dev; | 
|  | int i, j, ret; | 
|  | int dma_flag = FALSE; | 
|  | u32 mac_up, mac_down; | 
|  | u64 val64 = 0, tmp64 = 0; | 
|  | struct XENA_dev_config __iomem *bar0 = NULL; | 
|  | u16 subid; | 
|  | struct mac_info *mac_control; | 
|  | struct config_param *config; | 
|  | int mode; | 
|  | u8 dev_intr_type = intr_type; | 
|  | DECLARE_MAC_BUF(mac); | 
|  |  | 
|  | if ((ret = s2io_verify_parm(pdev, &dev_intr_type))) | 
|  | return ret; | 
|  |  | 
|  | if ((ret = pci_enable_device(pdev))) { | 
|  | DBG_PRINT(ERR_DBG, | 
|  | "s2io_init_nic: pci_enable_device failed\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { | 
|  | DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n"); | 
|  | dma_flag = TRUE; | 
|  | if (pci_set_consistent_dma_mask | 
|  | (pdev, DMA_64BIT_MASK)) { | 
|  | DBG_PRINT(ERR_DBG, | 
|  | "Unable to obtain 64bit DMA for \ | 
|  | consistent allocations\n"); | 
|  | pci_disable_device(pdev); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { | 
|  | DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n"); | 
|  | } else { | 
|  | pci_disable_device(pdev); | 
|  | return -ENOMEM; | 
|  | } | 
|  | if ((ret = pci_request_regions(pdev, s2io_driver_name))) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret); | 
|  | pci_disable_device(pdev); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | dev = alloc_etherdev(sizeof(struct s2io_nic)); | 
|  | if (dev == NULL) { | 
|  | DBG_PRINT(ERR_DBG, "Device allocation failed\n"); | 
|  | pci_disable_device(pdev); | 
|  | pci_release_regions(pdev); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | pci_set_master(pdev); | 
|  | pci_set_drvdata(pdev, dev); | 
|  | SET_NETDEV_DEV(dev, &pdev->dev); | 
|  |  | 
|  | /*  Private member variable initialized to s2io NIC structure */ | 
|  | sp = dev->priv; | 
|  | memset(sp, 0, sizeof(struct s2io_nic)); | 
|  | sp->dev = dev; | 
|  | sp->pdev = pdev; | 
|  | sp->high_dma_flag = dma_flag; | 
|  | sp->device_enabled_once = FALSE; | 
|  | if (rx_ring_mode == 1) | 
|  | sp->rxd_mode = RXD_MODE_1; | 
|  | if (rx_ring_mode == 2) | 
|  | sp->rxd_mode = RXD_MODE_3B; | 
|  |  | 
|  | sp->config.intr_type = dev_intr_type; | 
|  |  | 
|  | if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || | 
|  | (pdev->device == PCI_DEVICE_ID_HERC_UNI)) | 
|  | sp->device_type = XFRAME_II_DEVICE; | 
|  | else | 
|  | sp->device_type = XFRAME_I_DEVICE; | 
|  |  | 
|  | sp->lro = lro_enable; | 
|  |  | 
|  | /* Initialize some PCI/PCI-X fields of the NIC. */ | 
|  | s2io_init_pci(sp); | 
|  |  | 
|  | /* | 
|  | * Setting the device configuration parameters. | 
|  | * Most of these parameters can be specified by the user during | 
|  | * module insertion as they are module loadable parameters. If | 
|  | * these parameters are not not specified during load time, they | 
|  | * are initialized with default values. | 
|  | */ | 
|  | mac_control = &sp->mac_control; | 
|  | config = &sp->config; | 
|  |  | 
|  | config->napi = napi; | 
|  |  | 
|  | /* Tx side parameters. */ | 
|  | config->tx_fifo_num = tx_fifo_num; | 
|  | for (i = 0; i < MAX_TX_FIFOS; i++) { | 
|  | config->tx_cfg[i].fifo_len = tx_fifo_len[i]; | 
|  | config->tx_cfg[i].fifo_priority = i; | 
|  | } | 
|  |  | 
|  | /* mapping the QoS priority to the configured fifos */ | 
|  | for (i = 0; i < MAX_TX_FIFOS; i++) | 
|  | config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i]; | 
|  |  | 
|  | config->tx_intr_type = TXD_INT_TYPE_UTILZ; | 
|  | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | config->tx_cfg[i].f_no_snoop = | 
|  | (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); | 
|  | if (config->tx_cfg[i].fifo_len < 65) { | 
|  | config->tx_intr_type = TXD_INT_TYPE_PER_LIST; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* + 2 because one Txd for skb->data and one Txd for UFO */ | 
|  | config->max_txds = MAX_SKB_FRAGS + 2; | 
|  |  | 
|  | /* Rx side parameters. */ | 
|  | config->rx_ring_num = rx_ring_num; | 
|  | for (i = 0; i < MAX_RX_RINGS; i++) { | 
|  | config->rx_cfg[i].num_rxd = rx_ring_sz[i] * | 
|  | (rxd_count[sp->rxd_mode] + 1); | 
|  | config->rx_cfg[i].ring_priority = i; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < rx_ring_num; i++) { | 
|  | config->rx_cfg[i].ring_org = RING_ORG_BUFF1; | 
|  | config->rx_cfg[i].f_no_snoop = | 
|  | (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); | 
|  | } | 
|  |  | 
|  | /*  Setting Mac Control parameters */ | 
|  | mac_control->rmac_pause_time = rmac_pause_time; | 
|  | mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; | 
|  | mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; | 
|  |  | 
|  |  | 
|  | /* Initialize Ring buffer parameters. */ | 
|  | for (i = 0; i < config->rx_ring_num; i++) | 
|  | atomic_set(&sp->rx_bufs_left[i], 0); | 
|  |  | 
|  | /*  initialize the shared memory used by the NIC and the host */ | 
|  | if (init_shared_mem(sp)) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", | 
|  | dev->name); | 
|  | ret = -ENOMEM; | 
|  | goto mem_alloc_failed; | 
|  | } | 
|  |  | 
|  | sp->bar0 = ioremap(pci_resource_start(pdev, 0), | 
|  | pci_resource_len(pdev, 0)); | 
|  | if (!sp->bar0) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", | 
|  | dev->name); | 
|  | ret = -ENOMEM; | 
|  | goto bar0_remap_failed; | 
|  | } | 
|  |  | 
|  | sp->bar1 = ioremap(pci_resource_start(pdev, 2), | 
|  | pci_resource_len(pdev, 2)); | 
|  | if (!sp->bar1) { | 
|  | DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", | 
|  | dev->name); | 
|  | ret = -ENOMEM; | 
|  | goto bar1_remap_failed; | 
|  | } | 
|  |  | 
|  | dev->irq = pdev->irq; | 
|  | dev->base_addr = (unsigned long) sp->bar0; | 
|  |  | 
|  | /* Initializing the BAR1 address as the start of the FIFO pointer. */ | 
|  | for (j = 0; j < MAX_TX_FIFOS; j++) { | 
|  | mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *) | 
|  | (sp->bar1 + (j * 0x00020000)); | 
|  | } | 
|  |  | 
|  | /*  Driver entry points */ | 
|  | dev->open = &s2io_open; | 
|  | dev->stop = &s2io_close; | 
|  | dev->hard_start_xmit = &s2io_xmit; | 
|  | dev->get_stats = &s2io_get_stats; | 
|  | dev->set_multicast_list = &s2io_set_multicast; | 
|  | dev->do_ioctl = &s2io_ioctl; | 
|  | dev->set_mac_address = &s2io_set_mac_addr; | 
|  | dev->change_mtu = &s2io_change_mtu; | 
|  | SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); | 
|  | dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | 
|  | dev->vlan_rx_register = s2io_vlan_rx_register; | 
|  |  | 
|  | /* | 
|  | * will use eth_mac_addr() for  dev->set_mac_address | 
|  | * mac address will be set every time dev->open() is called | 
|  | */ | 
|  | netif_napi_add(dev, &sp->napi, s2io_poll, 32); | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | dev->poll_controller = s2io_netpoll; | 
|  | #endif | 
|  |  | 
|  | dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; | 
|  | if (sp->high_dma_flag == TRUE) | 
|  | dev->features |= NETIF_F_HIGHDMA; | 
|  | dev->features |= NETIF_F_TSO; | 
|  | dev->features |= NETIF_F_TSO6; | 
|  | if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  { | 
|  | dev->features |= NETIF_F_UFO; | 
|  | dev->features |= NETIF_F_HW_CSUM; | 
|  | } | 
|  |  | 
|  | dev->tx_timeout = &s2io_tx_watchdog; | 
|  | dev->watchdog_timeo = WATCH_DOG_TIMEOUT; | 
|  | INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); | 
|  | INIT_WORK(&sp->set_link_task, s2io_set_link); | 
|  |  | 
|  | pci_save_state(sp->pdev); | 
|  |  | 
|  | /* Setting swapper control on the NIC, for proper reset operation */ | 
|  | if (s2io_set_swapper(sp)) { | 
|  | DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n", | 
|  | dev->name); | 
|  | ret = -EAGAIN; | 
|  | goto set_swap_failed; | 
|  | } | 
|  |  | 
|  | /* Verify if the Herc works on the slot its placed into */ | 
|  | if (sp->device_type & XFRAME_II_DEVICE) { | 
|  | mode = s2io_verify_pci_mode(sp); | 
|  | if (mode < 0) { | 
|  | DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__); | 
|  | DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n"); | 
|  | ret = -EBADSLT; | 
|  | goto set_swap_failed; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Not needed for Herc */ | 
|  | if (sp->device_type & XFRAME_I_DEVICE) { | 
|  | /* | 
|  | * Fix for all "FFs" MAC address problems observed on | 
|  | * Alpha platforms | 
|  | */ | 
|  | fix_mac_address(sp); | 
|  | s2io_reset(sp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MAC address initialization. | 
|  | * For now only one mac address will be read and used. | 
|  | */ | 
|  | bar0 = sp->bar0; | 
|  | val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); | 
|  | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  | wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, | 
|  | RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET); | 
|  | tmp64 = readq(&bar0->rmac_addr_data0_mem); | 
|  | mac_down = (u32) tmp64; | 
|  | mac_up = (u32) (tmp64 >> 32); | 
|  |  | 
|  | sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); | 
|  | sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); | 
|  | sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); | 
|  | sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); | 
|  | sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); | 
|  | sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); | 
|  |  | 
|  | /*  Set the factory defined MAC address initially   */ | 
|  | dev->addr_len = ETH_ALEN; | 
|  | memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); | 
|  | memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN); | 
|  |  | 
|  | /* initialize number of multicast & unicast MAC entries variables */ | 
|  | if (sp->device_type == XFRAME_I_DEVICE) { | 
|  | config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; | 
|  | config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; | 
|  | config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; | 
|  | } else if (sp->device_type == XFRAME_II_DEVICE) { | 
|  | config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; | 
|  | config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; | 
|  | config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; | 
|  | } | 
|  |  | 
|  | /* store mac addresses from CAM to s2io_nic structure */ | 
|  | do_s2io_store_unicast_mc(sp); | 
|  |  | 
|  | /* Store the values of the MSIX table in the s2io_nic structure */ | 
|  | store_xmsi_data(sp); | 
|  | /* reset Nic and bring it to known state */ | 
|  | s2io_reset(sp); | 
|  |  | 
|  | /* | 
|  | * Initialize the tasklet status and link state flags | 
|  | * and the card state parameter | 
|  | */ | 
|  | sp->tasklet_status = 0; | 
|  | sp->state = 0; | 
|  |  | 
|  | /* Initialize spinlocks */ | 
|  | for (i = 0; i < sp->config.tx_fifo_num; i++) | 
|  | spin_lock_init(&mac_control->fifos[i].tx_lock); | 
|  |  | 
|  | if (!napi) | 
|  | spin_lock_init(&sp->put_lock); | 
|  | spin_lock_init(&sp->rx_lock); | 
|  |  | 
|  | /* | 
|  | * SXE-002: Configure link and activity LED to init state | 
|  | * on driver load. | 
|  | */ | 
|  | subid = sp->pdev->subsystem_device; | 
|  | if ((subid & 0xFF) >= 0x07) { | 
|  | val64 = readq(&bar0->gpio_control); | 
|  | val64 |= 0x0000800000000000ULL; | 
|  | writeq(val64, &bar0->gpio_control); | 
|  | val64 = 0x0411040400000000ULL; | 
|  | writeq(val64, (void __iomem *) bar0 + 0x2700); | 
|  | val64 = readq(&bar0->gpio_control); | 
|  | } | 
|  |  | 
|  | sp->rx_csum = 1;	/* Rx chksum verify enabled by default */ | 
|  |  | 
|  | if (register_netdev(dev)) { | 
|  | DBG_PRINT(ERR_DBG, "Device registration failed\n"); | 
|  | ret = -ENODEV; | 
|  | goto register_failed; | 
|  | } | 
|  | s2io_vpd_read(sp); | 
|  | DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n"); | 
|  | DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name, | 
|  | sp->product_name, pdev->revision); | 
|  | DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, | 
|  | s2io_driver_version); | 
|  | DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n", | 
|  | dev->name, print_mac(mac, dev->dev_addr)); | 
|  | DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num); | 
|  | if (sp->device_type & XFRAME_II_DEVICE) { | 
|  | mode = s2io_print_pci_mode(sp); | 
|  | if (mode < 0) { | 
|  | DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n"); | 
|  | ret = -EBADSLT; | 
|  | unregister_netdev(dev); | 
|  | goto set_swap_failed; | 
|  | } | 
|  | } | 
|  | switch(sp->rxd_mode) { | 
|  | case RXD_MODE_1: | 
|  | DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", | 
|  | dev->name); | 
|  | break; | 
|  | case RXD_MODE_3B: | 
|  | DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", | 
|  | dev->name); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (napi) | 
|  | DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); | 
|  | switch(sp->config.intr_type) { | 
|  | case INTA: | 
|  | DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); | 
|  | break; | 
|  | case MSI_X: | 
|  | DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); | 
|  | break; | 
|  | } | 
|  | if (sp->lro) | 
|  | DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", | 
|  | dev->name); | 
|  | if (ufo) | 
|  | DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)" | 
|  | " enabled\n", dev->name); | 
|  | /* Initialize device name */ | 
|  | sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name); | 
|  |  | 
|  | /* | 
|  | * Make Link state as off at this point, when the Link change | 
|  | * interrupt comes the state will be automatically changed to | 
|  | * the right state. | 
|  | */ | 
|  | netif_carrier_off(dev); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | register_failed: | 
|  | set_swap_failed: | 
|  | iounmap(sp->bar1); | 
|  | bar1_remap_failed: | 
|  | iounmap(sp->bar0); | 
|  | bar0_remap_failed: | 
|  | mem_alloc_failed: | 
|  | free_shared_mem(sp); | 
|  | pci_disable_device(pdev); | 
|  | pci_release_regions(pdev); | 
|  | pci_set_drvdata(pdev, NULL); | 
|  | free_netdev(dev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_rem_nic - Free the PCI device | 
|  | * @pdev: structure containing the PCI related information of the device. | 
|  | * Description: This function is called by the Pci subsystem to release a | 
|  | * PCI device and free up all resource held up by the device. This could | 
|  | * be in response to a Hot plug event or when the driver is to be removed | 
|  | * from memory. | 
|  | */ | 
|  |  | 
|  | static void __devexit s2io_rem_nic(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *dev = | 
|  | (struct net_device *) pci_get_drvdata(pdev); | 
|  | struct s2io_nic *sp; | 
|  |  | 
|  | if (dev == NULL) { | 
|  | DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | flush_scheduled_work(); | 
|  |  | 
|  | sp = dev->priv; | 
|  | unregister_netdev(dev); | 
|  |  | 
|  | free_shared_mem(sp); | 
|  | iounmap(sp->bar0); | 
|  | iounmap(sp->bar1); | 
|  | pci_release_regions(pdev); | 
|  | pci_set_drvdata(pdev, NULL); | 
|  | free_netdev(dev); | 
|  | pci_disable_device(pdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_starter - Entry point for the driver | 
|  | * Description: This function is the entry point for the driver. It verifies | 
|  | * the module loadable parameters and initializes PCI configuration space. | 
|  | */ | 
|  |  | 
|  | static int __init s2io_starter(void) | 
|  | { | 
|  | return pci_register_driver(&s2io_driver); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_closer - Cleanup routine for the driver | 
|  | * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. | 
|  | */ | 
|  |  | 
|  | static __exit void s2io_closer(void) | 
|  | { | 
|  | pci_unregister_driver(&s2io_driver); | 
|  | DBG_PRINT(INIT_DBG, "cleanup done\n"); | 
|  | } | 
|  |  | 
|  | module_init(s2io_starter); | 
|  | module_exit(s2io_closer); | 
|  |  | 
|  | static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, | 
|  | struct tcphdr **tcp, struct RxD_t *rxdp) | 
|  | { | 
|  | int ip_off; | 
|  | u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; | 
|  |  | 
|  | if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { | 
|  | DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n", | 
|  | __FUNCTION__); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* TODO: | 
|  | * By default the VLAN field in the MAC is stripped by the card, if this | 
|  | * feature is turned off in rx_pa_cfg register, then the ip_off field | 
|  | * has to be shifted by a further 2 bytes | 
|  | */ | 
|  | switch (l2_type) { | 
|  | case 0: /* DIX type */ | 
|  | case 4: /* DIX type with VLAN */ | 
|  | ip_off = HEADER_ETHERNET_II_802_3_SIZE; | 
|  | break; | 
|  | /* LLC, SNAP etc are considered non-mergeable */ | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *ip = (struct iphdr *)((u8 *)buffer + ip_off); | 
|  | ip_len = (u8)((*ip)->ihl); | 
|  | ip_len <<= 2; | 
|  | *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_for_socket_match(struct lro *lro, struct iphdr *ip, | 
|  | struct tcphdr *tcp) | 
|  | { | 
|  | DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__); | 
|  | if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) || | 
|  | (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest)) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) | 
|  | { | 
|  | return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2)); | 
|  | } | 
|  |  | 
|  | static void initiate_new_session(struct lro *lro, u8 *l2h, | 
|  | struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len) | 
|  | { | 
|  | DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__); | 
|  | lro->l2h = l2h; | 
|  | lro->iph = ip; | 
|  | lro->tcph = tcp; | 
|  | lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); | 
|  | lro->tcp_ack = tcp->ack_seq; | 
|  | lro->sg_num = 1; | 
|  | lro->total_len = ntohs(ip->tot_len); | 
|  | lro->frags_len = 0; | 
|  | /* | 
|  | * check if we saw TCP timestamp. Other consistency checks have | 
|  | * already been done. | 
|  | */ | 
|  | if (tcp->doff == 8) { | 
|  | __be32 *ptr; | 
|  | ptr = (__be32 *)(tcp+1); | 
|  | lro->saw_ts = 1; | 
|  | lro->cur_tsval = ntohl(*(ptr+1)); | 
|  | lro->cur_tsecr = *(ptr+2); | 
|  | } | 
|  | lro->in_use = 1; | 
|  | } | 
|  |  | 
|  | static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) | 
|  | { | 
|  | struct iphdr *ip = lro->iph; | 
|  | struct tcphdr *tcp = lro->tcph; | 
|  | __sum16 nchk; | 
|  | struct stat_block *statinfo = sp->mac_control.stats_info; | 
|  | DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__); | 
|  |  | 
|  | /* Update L3 header */ | 
|  | ip->tot_len = htons(lro->total_len); | 
|  | ip->check = 0; | 
|  | nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl); | 
|  | ip->check = nchk; | 
|  |  | 
|  | /* Update L4 header */ | 
|  | tcp->ack_seq = lro->tcp_ack; | 
|  | tcp->window = lro->window; | 
|  |  | 
|  | /* Update tsecr field if this session has timestamps enabled */ | 
|  | if (lro->saw_ts) { | 
|  | __be32 *ptr = (__be32 *)(tcp + 1); | 
|  | *(ptr+2) = lro->cur_tsecr; | 
|  | } | 
|  |  | 
|  | /* Update counters required for calculation of | 
|  | * average no. of packets aggregated. | 
|  | */ | 
|  | statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num; | 
|  | statinfo->sw_stat.num_aggregations++; | 
|  | } | 
|  |  | 
|  | static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, | 
|  | struct tcphdr *tcp, u32 l4_pyld) | 
|  | { | 
|  | DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__); | 
|  | lro->total_len += l4_pyld; | 
|  | lro->frags_len += l4_pyld; | 
|  | lro->tcp_next_seq += l4_pyld; | 
|  | lro->sg_num++; | 
|  |  | 
|  | /* Update ack seq no. and window ad(from this pkt) in LRO object */ | 
|  | lro->tcp_ack = tcp->ack_seq; | 
|  | lro->window = tcp->window; | 
|  |  | 
|  | if (lro->saw_ts) { | 
|  | __be32 *ptr; | 
|  | /* Update tsecr and tsval from this packet */ | 
|  | ptr = (__be32 *)(tcp+1); | 
|  | lro->cur_tsval = ntohl(*(ptr+1)); | 
|  | lro->cur_tsecr = *(ptr + 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, | 
|  | struct tcphdr *tcp, u32 tcp_pyld_len) | 
|  | { | 
|  | u8 *ptr; | 
|  |  | 
|  | DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__); | 
|  |  | 
|  | if (!tcp_pyld_len) { | 
|  | /* Runt frame or a pure ack */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (ip->ihl != 5) /* IP has options */ | 
|  | return -1; | 
|  |  | 
|  | /* If we see CE codepoint in IP header, packet is not mergeable */ | 
|  | if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) | 
|  | return -1; | 
|  |  | 
|  | /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ | 
|  | if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin || | 
|  | tcp->ece || tcp->cwr || !tcp->ack) { | 
|  | /* | 
|  | * Currently recognize only the ack control word and | 
|  | * any other control field being set would result in | 
|  | * flushing the LRO session | 
|  | */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow only one TCP timestamp option. Don't aggregate if | 
|  | * any other options are detected. | 
|  | */ | 
|  | if (tcp->doff != 5 && tcp->doff != 8) | 
|  | return -1; | 
|  |  | 
|  | if (tcp->doff == 8) { | 
|  | ptr = (u8 *)(tcp + 1); | 
|  | while (*ptr == TCPOPT_NOP) | 
|  | ptr++; | 
|  | if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) | 
|  | return -1; | 
|  |  | 
|  | /* Ensure timestamp value increases monotonically */ | 
|  | if (l_lro) | 
|  | if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) | 
|  | return -1; | 
|  |  | 
|  | /* timestamp echo reply should be non-zero */ | 
|  | if (*((__be32 *)(ptr+6)) == 0) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro, | 
|  | struct RxD_t *rxdp, struct s2io_nic *sp) | 
|  | { | 
|  | struct iphdr *ip; | 
|  | struct tcphdr *tcph; | 
|  | int ret = 0, i; | 
|  |  | 
|  | if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, | 
|  | rxdp))) { | 
|  | DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n", | 
|  | ip->saddr, ip->daddr); | 
|  | } else { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | tcph = (struct tcphdr *)*tcp; | 
|  | *tcp_len = get_l4_pyld_length(ip, tcph); | 
|  | for (i=0; i<MAX_LRO_SESSIONS; i++) { | 
|  | struct lro *l_lro = &sp->lro0_n[i]; | 
|  | if (l_lro->in_use) { | 
|  | if (check_for_socket_match(l_lro, ip, tcph)) | 
|  | continue; | 
|  | /* Sock pair matched */ | 
|  | *lro = l_lro; | 
|  |  | 
|  | if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { | 
|  | DBG_PRINT(INFO_DBG, "%s:Out of order. expected " | 
|  | "0x%x, actual 0x%x\n", __FUNCTION__, | 
|  | (*lro)->tcp_next_seq, | 
|  | ntohl(tcph->seq)); | 
|  |  | 
|  | sp->mac_control.stats_info-> | 
|  | sw_stat.outof_sequence_pkts++; | 
|  | ret = 2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len)) | 
|  | ret = 1; /* Aggregate */ | 
|  | else | 
|  | ret = 2; /* Flush both */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret == 0) { | 
|  | /* Before searching for available LRO objects, | 
|  | * check if the pkt is L3/L4 aggregatable. If not | 
|  | * don't create new LRO session. Just send this | 
|  | * packet up. | 
|  | */ | 
|  | if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) { | 
|  | return 5; | 
|  | } | 
|  |  | 
|  | for (i=0; i<MAX_LRO_SESSIONS; i++) { | 
|  | struct lro *l_lro = &sp->lro0_n[i]; | 
|  | if (!(l_lro->in_use)) { | 
|  | *lro = l_lro; | 
|  | ret = 3; /* Begin anew */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret == 0) { /* sessions exceeded */ | 
|  | DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n", | 
|  | __FUNCTION__); | 
|  | *lro = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | switch (ret) { | 
|  | case 3: | 
|  | initiate_new_session(*lro, buffer, ip, tcph, *tcp_len); | 
|  | break; | 
|  | case 2: | 
|  | update_L3L4_header(sp, *lro); | 
|  | break; | 
|  | case 1: | 
|  | aggregate_new_rx(*lro, ip, tcph, *tcp_len); | 
|  | if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { | 
|  | update_L3L4_header(sp, *lro); | 
|  | ret = 4; /* Flush the LRO */ | 
|  | } | 
|  | break; | 
|  | default: | 
|  | DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n", | 
|  | __FUNCTION__); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void clear_lro_session(struct lro *lro) | 
|  | { | 
|  | static u16 lro_struct_size = sizeof(struct lro); | 
|  |  | 
|  | memset(lro, 0, lro_struct_size); | 
|  | } | 
|  |  | 
|  | static void queue_rx_frame(struct sk_buff *skb) | 
|  | { | 
|  | struct net_device *dev = skb->dev; | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, dev); | 
|  | if (napi) | 
|  | netif_receive_skb(skb); | 
|  | else | 
|  | netif_rx(skb); | 
|  | } | 
|  |  | 
|  | static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, | 
|  | struct sk_buff *skb, | 
|  | u32 tcp_len) | 
|  | { | 
|  | struct sk_buff *first = lro->parent; | 
|  |  | 
|  | first->len += tcp_len; | 
|  | first->data_len = lro->frags_len; | 
|  | skb_pull(skb, (skb->len - tcp_len)); | 
|  | if (skb_shinfo(first)->frag_list) | 
|  | lro->last_frag->next = skb; | 
|  | else | 
|  | skb_shinfo(first)->frag_list = skb; | 
|  | first->truesize += skb->truesize; | 
|  | lro->last_frag = skb; | 
|  | sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_io_error_detected - called when PCI error is detected | 
|  | * @pdev: Pointer to PCI device | 
|  | * @state: The current pci connection state | 
|  | * | 
|  | * This function is called after a PCI bus error affecting | 
|  | * this device has been detected. | 
|  | */ | 
|  | static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, | 
|  | pci_channel_state_t state) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct s2io_nic *sp = netdev->priv; | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | /* Bring down the card, while avoiding PCI I/O */ | 
|  | do_s2io_card_down(sp, 0); | 
|  | } | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | return PCI_ERS_RESULT_NEED_RESET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_io_slot_reset - called after the pci bus has been reset. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * Restart the card from scratch, as if from a cold-boot. | 
|  | * At this point, the card has exprienced a hard reset, | 
|  | * followed by fixups by BIOS, and has its config space | 
|  | * set up identically to what it was at cold boot. | 
|  | */ | 
|  | static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct s2io_nic *sp = netdev->priv; | 
|  |  | 
|  | if (pci_enable_device(pdev)) { | 
|  | printk(KERN_ERR "s2io: " | 
|  | "Cannot re-enable PCI device after reset.\n"); | 
|  | return PCI_ERS_RESULT_DISCONNECT; | 
|  | } | 
|  |  | 
|  | pci_set_master(pdev); | 
|  | s2io_reset(sp); | 
|  |  | 
|  | return PCI_ERS_RESULT_RECOVERED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s2io_io_resume - called when traffic can start flowing again. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * This callback is called when the error recovery driver tells | 
|  | * us that its OK to resume normal operation. | 
|  | */ | 
|  | static void s2io_io_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct s2io_nic *sp = netdev->priv; | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | if (s2io_card_up(sp)) { | 
|  | printk(KERN_ERR "s2io: " | 
|  | "Can't bring device back up after reset.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) { | 
|  | s2io_card_down(sp); | 
|  | printk(KERN_ERR "s2io: " | 
|  | "Can't resetore mac addr after reset.\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  | netif_wake_queue(netdev); | 
|  | } |