| /* |
| * Driver for mt2063 Micronas tuner |
| * |
| * Copyright (c) 2011 Mauro Carvalho Chehab |
| * |
| * This driver came from a driver originally written by: |
| * Henry Wang <Henry.wang@AzureWave.com> |
| * Made publicly available by Terratec, at: |
| * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz |
| * The original driver's license is GPL, as declared with MODULE_LICENSE() |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation under version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/string.h> |
| #include <linux/videodev2.h> |
| #include <linux/gcd.h> |
| |
| #include "mt2063.h" |
| |
| static unsigned int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Set Verbosity level"); |
| |
| #define dprintk(level, fmt, arg...) do { \ |
| if (debug >= level) \ |
| printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \ |
| } while (0) |
| |
| |
| /* positive error codes used internally */ |
| |
| /* Info: Unavoidable LO-related spur may be present in the output */ |
| #define MT2063_SPUR_PRESENT_ERR (0x00800000) |
| |
| /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */ |
| #define MT2063_SPUR_CNT_MASK (0x001f0000) |
| #define MT2063_SPUR_SHIFT (16) |
| |
| /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */ |
| #define MT2063_UPC_RANGE (0x04000000) |
| |
| /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */ |
| #define MT2063_DNC_RANGE (0x08000000) |
| |
| /* |
| * Constant defining the version of the following structure |
| * and therefore the API for this code. |
| * |
| * When compiling the tuner driver, the preprocessor will |
| * check against this version number to make sure that |
| * it matches the version that the tuner driver knows about. |
| */ |
| |
| /* DECT Frequency Avoidance */ |
| #define MT2063_DECT_AVOID_US_FREQS 0x00000001 |
| |
| #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002 |
| |
| #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0) |
| |
| #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0) |
| |
| enum MT2063_DECT_Avoid_Type { |
| MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */ |
| MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */ |
| MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */ |
| MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */ |
| }; |
| |
| #define MT2063_MAX_ZONES 48 |
| |
| struct MT2063_ExclZone_t { |
| u32 min_; |
| u32 max_; |
| struct MT2063_ExclZone_t *next_; |
| }; |
| |
| /* |
| * Structure of data needed for Spur Avoidance |
| */ |
| struct MT2063_AvoidSpursData_t { |
| u32 f_ref; |
| u32 f_in; |
| u32 f_LO1; |
| u32 f_if1_Center; |
| u32 f_if1_Request; |
| u32 f_if1_bw; |
| u32 f_LO2; |
| u32 f_out; |
| u32 f_out_bw; |
| u32 f_LO1_Step; |
| u32 f_LO2_Step; |
| u32 f_LO1_FracN_Avoid; |
| u32 f_LO2_FracN_Avoid; |
| u32 f_zif_bw; |
| u32 f_min_LO_Separation; |
| u32 maxH1; |
| u32 maxH2; |
| enum MT2063_DECT_Avoid_Type avoidDECT; |
| u32 bSpurPresent; |
| u32 bSpurAvoided; |
| u32 nSpursFound; |
| u32 nZones; |
| struct MT2063_ExclZone_t *freeZones; |
| struct MT2063_ExclZone_t *usedZones; |
| struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES]; |
| }; |
| |
| /* |
| * Parameter for function MT2063_SetPowerMask that specifies the power down |
| * of various sections of the MT2063. |
| */ |
| enum MT2063_Mask_Bits { |
| MT2063_REG_SD = 0x0040, /* Shutdown regulator */ |
| MT2063_SRO_SD = 0x0020, /* Shutdown SRO */ |
| MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */ |
| MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */ |
| MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */ |
| MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */ |
| MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */ |
| MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */ |
| MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */ |
| MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */ |
| MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */ |
| MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */ |
| MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */ |
| MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */ |
| MT2063_NONE_SD = 0x0000 /* No shutdown bits */ |
| }; |
| |
| /* |
| * Possible values for MT2063_DNC_OUTPUT |
| */ |
| enum MT2063_DNC_Output_Enable { |
| MT2063_DNC_NONE = 0, |
| MT2063_DNC_1, |
| MT2063_DNC_2, |
| MT2063_DNC_BOTH |
| }; |
| |
| /* |
| * Two-wire serial bus subaddresses of the tuner registers. |
| * Also known as the tuner's register addresses. |
| */ |
| enum MT2063_Register_Offsets { |
| MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */ |
| MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */ |
| MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */ |
| MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */ |
| MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */ |
| MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */ |
| MT2063_REG_RSVD_06, /* 0x06: Reserved */ |
| MT2063_REG_LO_STATUS, /* 0x07: LO Status */ |
| MT2063_REG_FIFFC, /* 0x08: FIFF Center */ |
| MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */ |
| MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */ |
| MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */ |
| MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */ |
| MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */ |
| MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */ |
| MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */ |
| MT2063_REG_RSVD_10, /* 0x10: Reserved */ |
| MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */ |
| MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */ |
| MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */ |
| MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */ |
| MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */ |
| MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */ |
| MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */ |
| MT2063_REG_RF_OV, /* 0x18: RF Attn Override */ |
| MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */ |
| MT2063_REG_LNA_TGT, /* 0x1A: Reserved */ |
| MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */ |
| MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */ |
| MT2063_REG_RSVD_1D, /* 0x1D: Reserved */ |
| MT2063_REG_RSVD_1E, /* 0x1E: Reserved */ |
| MT2063_REG_RSVD_1F, /* 0x1F: Reserved */ |
| MT2063_REG_RSVD_20, /* 0x20: Reserved */ |
| MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */ |
| MT2063_REG_RSVD_22, /* 0x22: Reserved */ |
| MT2063_REG_RSVD_23, /* 0x23: Reserved */ |
| MT2063_REG_RSVD_24, /* 0x24: Reserved */ |
| MT2063_REG_RSVD_25, /* 0x25: Reserved */ |
| MT2063_REG_RSVD_26, /* 0x26: Reserved */ |
| MT2063_REG_RSVD_27, /* 0x27: Reserved */ |
| MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */ |
| MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */ |
| MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */ |
| MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */ |
| MT2063_REG_CTRL_2C, /* 0x2C: Reserved */ |
| MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */ |
| MT2063_REG_RSVD_2E, /* 0x2E: Reserved */ |
| MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */ |
| MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */ |
| MT2063_REG_RSVD_31, /* 0x31: Reserved */ |
| MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */ |
| MT2063_REG_RSVD_33, /* 0x33: Reserved */ |
| MT2063_REG_RSVD_34, /* 0x34: Reserved */ |
| MT2063_REG_RSVD_35, /* 0x35: Reserved */ |
| MT2063_REG_RSVD_36, /* 0x36: Reserved */ |
| MT2063_REG_RSVD_37, /* 0x37: Reserved */ |
| MT2063_REG_RSVD_38, /* 0x38: Reserved */ |
| MT2063_REG_RSVD_39, /* 0x39: Reserved */ |
| MT2063_REG_RSVD_3A, /* 0x3A: Reserved */ |
| MT2063_REG_RSVD_3B, /* 0x3B: Reserved */ |
| MT2063_REG_RSVD_3C, /* 0x3C: Reserved */ |
| MT2063_REG_END_REGS |
| }; |
| |
| struct mt2063_state { |
| struct i2c_adapter *i2c; |
| |
| bool init; |
| |
| const struct mt2063_config *config; |
| struct dvb_tuner_ops ops; |
| struct dvb_frontend *frontend; |
| |
| u32 frequency; |
| u32 srate; |
| u32 bandwidth; |
| u32 reference; |
| |
| u32 tuner_id; |
| struct MT2063_AvoidSpursData_t AS_Data; |
| u32 f_IF1_actual; |
| u32 rcvr_mode; |
| u32 ctfilt_sw; |
| u32 CTFiltMax[31]; |
| u32 num_regs; |
| u8 reg[MT2063_REG_END_REGS]; |
| }; |
| |
| /* |
| * mt2063_write - Write data into the I2C bus |
| */ |
| static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len) |
| { |
| struct dvb_frontend *fe = state->frontend; |
| int ret; |
| u8 buf[60]; |
| struct i2c_msg msg = { |
| .addr = state->config->tuner_address, |
| .flags = 0, |
| .buf = buf, |
| .len = len + 1 |
| }; |
| |
| dprintk(2, "\n"); |
| |
| msg.buf[0] = reg; |
| memcpy(msg.buf + 1, data, len); |
| |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 1); |
| ret = i2c_transfer(state->i2c, &msg, 1); |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 0); |
| |
| if (ret < 0) |
| printk(KERN_ERR "%s error ret=%d\n", __func__, ret); |
| |
| return ret; |
| } |
| |
| /* |
| * mt2063_write - Write register data into the I2C bus, caching the value |
| */ |
| static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val) |
| { |
| int status; |
| |
| dprintk(2, "\n"); |
| |
| if (reg >= MT2063_REG_END_REGS) |
| return -ERANGE; |
| |
| status = mt2063_write(state, reg, &val, 1); |
| if (status < 0) |
| return status; |
| |
| state->reg[reg] = val; |
| |
| return 0; |
| } |
| |
| /* |
| * mt2063_read - Read data from the I2C bus |
| */ |
| static int mt2063_read(struct mt2063_state *state, |
| u8 subAddress, u8 *pData, u32 cnt) |
| { |
| int status = 0; /* Status to be returned */ |
| struct dvb_frontend *fe = state->frontend; |
| u32 i = 0; |
| |
| dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt); |
| |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 1); |
| |
| for (i = 0; i < cnt; i++) { |
| u8 b0[] = { subAddress + i }; |
| struct i2c_msg msg[] = { |
| { |
| .addr = state->config->tuner_address, |
| .flags = 0, |
| .buf = b0, |
| .len = 1 |
| }, { |
| .addr = state->config->tuner_address, |
| .flags = I2C_M_RD, |
| .buf = pData + i, |
| .len = 1 |
| } |
| }; |
| |
| status = i2c_transfer(state->i2c, msg, 2); |
| dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n", |
| subAddress + i, status, *(pData + i)); |
| if (status < 0) |
| break; |
| } |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 0); |
| |
| if (status < 0) |
| printk(KERN_ERR "Can't read from address 0x%02x,\n", |
| subAddress + i); |
| |
| return status; |
| } |
| |
| /* |
| * FIXME: Is this really needed? |
| */ |
| static int MT2063_Sleep(struct dvb_frontend *fe) |
| { |
| /* |
| * ToDo: Add code here to implement a OS blocking |
| */ |
| msleep(100); |
| |
| return 0; |
| } |
| |
| /* |
| * Microtune spur avoidance |
| */ |
| |
| /* Implement ceiling, floor functions. */ |
| #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0)) |
| #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d)) |
| |
| struct MT2063_FIFZone_t { |
| s32 min_; |
| s32 max_; |
| }; |
| |
| static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t |
| *pAS_Info, |
| struct MT2063_ExclZone_t *pPrevNode) |
| { |
| struct MT2063_ExclZone_t *pNode; |
| |
| dprintk(2, "\n"); |
| |
| /* Check for a node in the free list */ |
| if (pAS_Info->freeZones != NULL) { |
| /* Use one from the free list */ |
| pNode = pAS_Info->freeZones; |
| pAS_Info->freeZones = pNode->next_; |
| } else { |
| /* Grab a node from the array */ |
| pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones]; |
| } |
| |
| if (pPrevNode != NULL) { |
| pNode->next_ = pPrevNode->next_; |
| pPrevNode->next_ = pNode; |
| } else { /* insert at the beginning of the list */ |
| |
| pNode->next_ = pAS_Info->usedZones; |
| pAS_Info->usedZones = pNode; |
| } |
| |
| pAS_Info->nZones++; |
| return pNode; |
| } |
| |
| static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t |
| *pAS_Info, |
| struct MT2063_ExclZone_t *pPrevNode, |
| struct MT2063_ExclZone_t |
| *pNodeToRemove) |
| { |
| struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_; |
| |
| dprintk(2, "\n"); |
| |
| /* Make previous node point to the subsequent node */ |
| if (pPrevNode != NULL) |
| pPrevNode->next_ = pNext; |
| |
| /* Add pNodeToRemove to the beginning of the freeZones */ |
| pNodeToRemove->next_ = pAS_Info->freeZones; |
| pAS_Info->freeZones = pNodeToRemove; |
| |
| /* Decrement node count */ |
| pAS_Info->nZones--; |
| |
| return pNext; |
| } |
| |
| /* |
| * MT_AddExclZone() |
| * |
| * Add (and merge) an exclusion zone into the list. |
| * If the range (f_min, f_max) is totally outside the |
| * 1st IF BW, ignore the entry. |
| * If the range (f_min, f_max) is negative, ignore the entry. |
| */ |
| static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info, |
| u32 f_min, u32 f_max) |
| { |
| struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; |
| struct MT2063_ExclZone_t *pPrev = NULL; |
| struct MT2063_ExclZone_t *pNext = NULL; |
| |
| dprintk(2, "\n"); |
| |
| /* Check to see if this overlaps the 1st IF filter */ |
| if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2))) |
| && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2))) |
| && (f_min < f_max)) { |
| /* |
| * 1 2 3 4 5 6 |
| * |
| * New entry: |---| |--| |--| |-| |---| |--| |
| * or or or or or |
| * Existing: |--| |--| |--| |---| |-| |--| |
| */ |
| |
| /* Check for our place in the list */ |
| while ((pNode != NULL) && (pNode->max_ < f_min)) { |
| pPrev = pNode; |
| pNode = pNode->next_; |
| } |
| |
| if ((pNode != NULL) && (pNode->min_ < f_max)) { |
| /* Combine me with pNode */ |
| if (f_min < pNode->min_) |
| pNode->min_ = f_min; |
| if (f_max > pNode->max_) |
| pNode->max_ = f_max; |
| } else { |
| pNode = InsertNode(pAS_Info, pPrev); |
| pNode->min_ = f_min; |
| pNode->max_ = f_max; |
| } |
| |
| /* Look for merging possibilities */ |
| pNext = pNode->next_; |
| while ((pNext != NULL) && (pNext->min_ < pNode->max_)) { |
| if (pNext->max_ > pNode->max_) |
| pNode->max_ = pNext->max_; |
| /* Remove pNext, return ptr to pNext->next */ |
| pNext = RemoveNode(pAS_Info, pNode, pNext); |
| } |
| } |
| } |
| |
| /* |
| * Reset all exclusion zones. |
| * Add zones to protect the PLL FracN regions near zero |
| */ |
| static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info) |
| { |
| u32 center; |
| |
| dprintk(2, "\n"); |
| |
| pAS_Info->nZones = 0; /* this clears the used list */ |
| pAS_Info->usedZones = NULL; /* reset ptr */ |
| pAS_Info->freeZones = NULL; /* reset ptr */ |
| |
| center = |
| pAS_Info->f_ref * |
| ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 + |
| pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in; |
| while (center < |
| pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + |
| pAS_Info->f_LO1_FracN_Avoid) { |
| /* Exclude LO1 FracN */ |
| MT2063_AddExclZone(pAS_Info, |
| center - pAS_Info->f_LO1_FracN_Avoid, |
| center - 1); |
| MT2063_AddExclZone(pAS_Info, center + 1, |
| center + pAS_Info->f_LO1_FracN_Avoid); |
| center += pAS_Info->f_ref; |
| } |
| |
| center = |
| pAS_Info->f_ref * |
| ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 - |
| pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out; |
| while (center < |
| pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + |
| pAS_Info->f_LO2_FracN_Avoid) { |
| /* Exclude LO2 FracN */ |
| MT2063_AddExclZone(pAS_Info, |
| center - pAS_Info->f_LO2_FracN_Avoid, |
| center - 1); |
| MT2063_AddExclZone(pAS_Info, center + 1, |
| center + pAS_Info->f_LO2_FracN_Avoid); |
| center += pAS_Info->f_ref; |
| } |
| |
| if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { |
| /* Exclude LO1 values that conflict with DECT channels */ |
| MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */ |
| MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */ |
| MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */ |
| MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */ |
| MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */ |
| } |
| |
| if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { |
| MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */ |
| MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */ |
| MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */ |
| MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */ |
| MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */ |
| MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */ |
| MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */ |
| MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */ |
| MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */ |
| MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */ |
| } |
| } |
| |
| /* |
| * MT_ChooseFirstIF - Choose the best available 1st IF |
| * If f_Desired is not excluded, choose that first. |
| * Otherwise, return the value closest to f_Center that is |
| * not excluded |
| */ |
| static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info) |
| { |
| /* |
| * Update "f_Desired" to be the nearest "combinational-multiple" of |
| * "f_LO1_Step". |
| * The resulting number, F_LO1 must be a multiple of f_LO1_Step. |
| * And F_LO1 is the arithmetic sum of f_in + f_Center. |
| * Neither f_in, nor f_Center must be a multiple of f_LO1_Step. |
| * However, the sum must be. |
| */ |
| const u32 f_Desired = |
| pAS_Info->f_LO1_Step * |
| ((pAS_Info->f_if1_Request + pAS_Info->f_in + |
| pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) - |
| pAS_Info->f_in; |
| const u32 f_Step = |
| (pAS_Info->f_LO1_Step > |
| pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info-> |
| f_LO2_Step; |
| u32 f_Center; |
| s32 i; |
| s32 j = 0; |
| u32 bDesiredExcluded = 0; |
| u32 bZeroExcluded = 0; |
| s32 tmpMin, tmpMax; |
| s32 bestDiff; |
| struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; |
| struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES]; |
| |
| dprintk(2, "\n"); |
| |
| if (pAS_Info->nZones == 0) |
| return f_Desired; |
| |
| /* |
| * f_Center needs to be an integer multiple of f_Step away |
| * from f_Desired |
| */ |
| if (pAS_Info->f_if1_Center > f_Desired) |
| f_Center = |
| f_Desired + |
| f_Step * |
| ((pAS_Info->f_if1_Center - f_Desired + |
| f_Step / 2) / f_Step); |
| else |
| f_Center = |
| f_Desired - |
| f_Step * |
| ((f_Desired - pAS_Info->f_if1_Center + |
| f_Step / 2) / f_Step); |
| |
| /* |
| * Take MT_ExclZones, center around f_Center and change the |
| * resolution to f_Step |
| */ |
| while (pNode != NULL) { |
| /* floor function */ |
| tmpMin = |
| floor((s32) (pNode->min_ - f_Center), (s32) f_Step); |
| |
| /* ceil function */ |
| tmpMax = |
| ceil((s32) (pNode->max_ - f_Center), (s32) f_Step); |
| |
| if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired)) |
| bDesiredExcluded = 1; |
| |
| if ((tmpMin < 0) && (tmpMax > 0)) |
| bZeroExcluded = 1; |
| |
| /* See if this zone overlaps the previous */ |
| if ((j > 0) && (tmpMin < zones[j - 1].max_)) |
| zones[j - 1].max_ = tmpMax; |
| else { |
| /* Add new zone */ |
| zones[j].min_ = tmpMin; |
| zones[j].max_ = tmpMax; |
| j++; |
| } |
| pNode = pNode->next_; |
| } |
| |
| /* |
| * If the desired is okay, return with it |
| */ |
| if (bDesiredExcluded == 0) |
| return f_Desired; |
| |
| /* |
| * If the desired is excluded and the center is okay, return with it |
| */ |
| if (bZeroExcluded == 0) |
| return f_Center; |
| |
| /* Find the value closest to 0 (f_Center) */ |
| bestDiff = zones[0].min_; |
| for (i = 0; i < j; i++) { |
| if (abs(zones[i].min_) < abs(bestDiff)) |
| bestDiff = zones[i].min_; |
| if (abs(zones[i].max_) < abs(bestDiff)) |
| bestDiff = zones[i].max_; |
| } |
| |
| if (bestDiff < 0) |
| return f_Center - ((u32) (-bestDiff) * f_Step); |
| |
| return f_Center + (bestDiff * f_Step); |
| } |
| |
| /** |
| * IsSpurInBand() - Checks to see if a spur will be present within the IF's |
| * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW) |
| * |
| * ma mb mc md |
| * <--+-+-+-------------------+-------------------+-+-+--> |
| * | ^ 0 ^ | |
| * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^ |
| * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2 |
| * |
| * Note that some equations are doubled to prevent round-off |
| * problems when calculating fIFBW/2 |
| * |
| * @pAS_Info: Avoid Spurs information block |
| * @fm: If spur, amount f_IF1 has to move negative |
| * @fp: If spur, amount f_IF1 has to move positive |
| * |
| * Returns 1 if an LO spur would be present, otherwise 0. |
| */ |
| static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info, |
| u32 *fm, u32 * fp) |
| { |
| /* |
| ** Calculate LO frequency settings. |
| */ |
| u32 n, n0; |
| const u32 f_LO1 = pAS_Info->f_LO1; |
| const u32 f_LO2 = pAS_Info->f_LO2; |
| const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2; |
| const u32 c = d - pAS_Info->f_out_bw; |
| const u32 f = pAS_Info->f_zif_bw / 2; |
| const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1; |
| s32 f_nsLO1, f_nsLO2; |
| s32 f_Spur; |
| u32 ma, mb, mc, md, me, mf; |
| u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs; |
| |
| dprintk(2, "\n"); |
| |
| *fm = 0; |
| |
| /* |
| ** For each edge (d, c & f), calculate a scale, based on the gcd |
| ** of f_LO1, f_LO2 and the edge value. Use the larger of this |
| ** gcd-based scale factor or f_Scale. |
| */ |
| lo_gcd = gcd(f_LO1, f_LO2); |
| gd_Scale = max((u32) gcd(lo_gcd, d), f_Scale); |
| hgds = gd_Scale / 2; |
| gc_Scale = max((u32) gcd(lo_gcd, c), f_Scale); |
| hgcs = gc_Scale / 2; |
| gf_Scale = max((u32) gcd(lo_gcd, f), f_Scale); |
| hgfs = gf_Scale / 2; |
| |
| n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2); |
| |
| /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */ |
| for (n = n0; n <= pAS_Info->maxH1; ++n) { |
| md = (n * ((f_LO1 + hgds) / gd_Scale) - |
| ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); |
| |
| /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */ |
| if (md >= pAS_Info->maxH1) |
| break; |
| |
| ma = (n * ((f_LO1 + hgds) / gd_Scale) + |
| ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); |
| |
| /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */ |
| if (md == ma) |
| continue; |
| |
| mc = (n * ((f_LO1 + hgcs) / gc_Scale) - |
| ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); |
| if (mc != md) { |
| f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale)); |
| f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale)); |
| f_Spur = |
| (gc_Scale * (f_nsLO1 - f_nsLO2)) + |
| n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale); |
| |
| *fp = ((f_Spur - (s32) c) / (mc - n)) + 1; |
| *fm = (((s32) d - f_Spur) / (mc - n)) + 1; |
| return 1; |
| } |
| |
| /* Location of Zero-IF-spur to be checked */ |
| me = (n * ((f_LO1 + hgfs) / gf_Scale) + |
| ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); |
| mf = (n * ((f_LO1 + hgfs) / gf_Scale) - |
| ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); |
| if (me != mf) { |
| f_nsLO1 = n * (f_LO1 / gf_Scale); |
| f_nsLO2 = me * (f_LO2 / gf_Scale); |
| f_Spur = |
| (gf_Scale * (f_nsLO1 - f_nsLO2)) + |
| n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale); |
| |
| *fp = ((f_Spur + (s32) f) / (me - n)) + 1; |
| *fm = (((s32) f - f_Spur) / (me - n)) + 1; |
| return 1; |
| } |
| |
| mb = (n * ((f_LO1 + hgcs) / gc_Scale) + |
| ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); |
| if (ma != mb) { |
| f_nsLO1 = n * (f_LO1 / gc_Scale); |
| f_nsLO2 = ma * (f_LO2 / gc_Scale); |
| f_Spur = |
| (gc_Scale * (f_nsLO1 - f_nsLO2)) + |
| n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale); |
| |
| *fp = (((s32) d + f_Spur) / (ma - n)) + 1; |
| *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1; |
| return 1; |
| } |
| } |
| |
| /* No spurs found */ |
| return 0; |
| } |
| |
| /* |
| * MT_AvoidSpurs() - Main entry point to avoid spurs. |
| * Checks for existing spurs in present LO1, LO2 freqs |
| * and if present, chooses spur-free LO1, LO2 combination |
| * that tunes the same input/output frequencies. |
| */ |
| static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info) |
| { |
| int status = 0; |
| u32 fm, fp; /* restricted range on LO's */ |
| pAS_Info->bSpurAvoided = 0; |
| pAS_Info->nSpursFound = 0; |
| |
| dprintk(2, "\n"); |
| |
| if (pAS_Info->maxH1 == 0) |
| return 0; |
| |
| /* |
| * Avoid LO Generated Spurs |
| * |
| * Make sure that have no LO-related spurs within the IF output |
| * bandwidth. |
| * |
| * If there is an LO spur in this band, start at the current IF1 frequency |
| * and work out until we find a spur-free frequency or run up against the |
| * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they |
| * will be unchanged if a spur-free setting is not found. |
| */ |
| pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); |
| if (pAS_Info->bSpurPresent) { |
| u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */ |
| u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */ |
| u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */ |
| u32 delta_IF1; |
| u32 new_IF1; |
| |
| /* |
| ** Spur was found, attempt to find a spur-free 1st IF |
| */ |
| do { |
| pAS_Info->nSpursFound++; |
| |
| /* Raise f_IF1_upper, if needed */ |
| MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp); |
| |
| /* Choose next IF1 that is closest to f_IF1_CENTER */ |
| new_IF1 = MT2063_ChooseFirstIF(pAS_Info); |
| |
| if (new_IF1 > zfIF1) { |
| pAS_Info->f_LO1 += (new_IF1 - zfIF1); |
| pAS_Info->f_LO2 += (new_IF1 - zfIF1); |
| } else { |
| pAS_Info->f_LO1 -= (zfIF1 - new_IF1); |
| pAS_Info->f_LO2 -= (zfIF1 - new_IF1); |
| } |
| zfIF1 = new_IF1; |
| |
| if (zfIF1 > pAS_Info->f_if1_Center) |
| delta_IF1 = zfIF1 - pAS_Info->f_if1_Center; |
| else |
| delta_IF1 = pAS_Info->f_if1_Center - zfIF1; |
| |
| pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); |
| /* |
| * Continue while the new 1st IF is still within the 1st IF bandwidth |
| * and there is a spur in the band (again) |
| */ |
| } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent); |
| |
| /* |
| * Use the LO-spur free values found. If the search went all |
| * the way to the 1st IF band edge and always found spurs, just |
| * leave the original choice. It's as "good" as any other. |
| */ |
| if (pAS_Info->bSpurPresent == 1) { |
| status |= MT2063_SPUR_PRESENT_ERR; |
| pAS_Info->f_LO1 = zfLO1; |
| pAS_Info->f_LO2 = zfLO2; |
| } else |
| pAS_Info->bSpurAvoided = 1; |
| } |
| |
| status |= |
| ((pAS_Info-> |
| nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK); |
| |
| return status; |
| } |
| |
| /* |
| * Constants used by the tuning algorithm |
| */ |
| #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */ |
| #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */ |
| #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */ |
| #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */ |
| #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */ |
| #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */ |
| #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */ |
| #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */ |
| #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */ |
| #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */ |
| #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */ |
| #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */ |
| #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */ |
| #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */ |
| #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */ |
| #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */ |
| #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */ |
| #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */ |
| |
| /* |
| * Define the supported Part/Rev codes for the MT2063 |
| */ |
| #define MT2063_B0 (0x9B) |
| #define MT2063_B1 (0x9C) |
| #define MT2063_B2 (0x9D) |
| #define MT2063_B3 (0x9E) |
| |
| /** |
| * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked |
| * |
| * @state: struct mt2063_state pointer |
| * |
| * This function returns 0, if no lock, 1 if locked and a value < 1 if error |
| */ |
| static int mt2063_lockStatus(struct mt2063_state *state) |
| { |
| const u32 nMaxWait = 100; /* wait a maximum of 100 msec */ |
| const u32 nPollRate = 2; /* poll status bits every 2 ms */ |
| const u32 nMaxLoops = nMaxWait / nPollRate; |
| const u8 LO1LK = 0x80; |
| u8 LO2LK = 0x08; |
| int status; |
| u32 nDelays = 0; |
| |
| dprintk(2, "\n"); |
| |
| /* LO2 Lock bit was in a different place for B0 version */ |
| if (state->tuner_id == MT2063_B0) |
| LO2LK = 0x40; |
| |
| do { |
| status = mt2063_read(state, MT2063_REG_LO_STATUS, |
| &state->reg[MT2063_REG_LO_STATUS], 1); |
| |
| if (status < 0) |
| return status; |
| |
| if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) == |
| (LO1LK | LO2LK)) { |
| return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO; |
| } |
| msleep(nPollRate); /* Wait between retries */ |
| } while (++nDelays < nMaxLoops); |
| |
| /* |
| * Got no lock or partial lock |
| */ |
| return 0; |
| } |
| |
| /* |
| * Constants for setting receiver modes. |
| * (6 modes defined at this time, enumerated by mt2063_delivery_sys) |
| * (DNC1GC & DNC2GC are the values, which are used, when the specific |
| * DNC Output is selected, the other is always off) |
| * |
| * enum mt2063_delivery_sys |
| * -------------+---------------------------------------------- |
| * Mode 0 : | MT2063_CABLE_QAM |
| * Mode 1 : | MT2063_CABLE_ANALOG |
| * Mode 2 : | MT2063_OFFAIR_COFDM |
| * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS |
| * Mode 4 : | MT2063_OFFAIR_ANALOG |
| * Mode 5 : | MT2063_OFFAIR_8VSB |
| * --------------+---------------------------------------------- |
| * |
| * |<---------- Mode -------------->| |
| * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 | |
| * ------------+-----+-----+-----+-----+-----+-----+ |
| * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF |
| * LNARin | 0 | 0 | 3 | 3 | 3 | 3 |
| * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1 |
| * FIFFq | 0 | 0 | 0 | 0 | 0 | 0 |
| * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0 |
| * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0 |
| * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1 |
| * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31 |
| * LNA Target | 44 | 43 | 43 | 43 | 43 | 43 |
| * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0 |
| * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31 |
| * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38 |
| * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0 |
| * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5 |
| * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42 |
| */ |
| |
| enum mt2063_delivery_sys { |
| MT2063_CABLE_QAM = 0, |
| MT2063_CABLE_ANALOG, |
| MT2063_OFFAIR_COFDM, |
| MT2063_OFFAIR_COFDM_SAWLESS, |
| MT2063_OFFAIR_ANALOG, |
| MT2063_OFFAIR_8VSB, |
| MT2063_NUM_RCVR_MODES |
| }; |
| |
| static const char *mt2063_mode_name[] = { |
| [MT2063_CABLE_QAM] = "digital cable", |
| [MT2063_CABLE_ANALOG] = "analog cable", |
| [MT2063_OFFAIR_COFDM] = "digital offair", |
| [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW", |
| [MT2063_OFFAIR_ANALOG] = "analog offair", |
| [MT2063_OFFAIR_8VSB] = "analog offair 8vsb", |
| }; |
| |
| static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 }; |
| static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 }; |
| static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 }; |
| static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 }; |
| static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 }; |
| static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 }; |
| static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 }; |
| static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 }; |
| static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; |
| static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 }; |
| static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 }; |
| static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; |
| static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 }; |
| static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 }; |
| |
| /* |
| * mt2063_set_dnc_output_enable() |
| */ |
| static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state, |
| enum MT2063_DNC_Output_Enable *pValue) |
| { |
| dprintk(2, "\n"); |
| |
| if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */ |
| if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ |
| *pValue = MT2063_DNC_NONE; |
| else |
| *pValue = MT2063_DNC_2; |
| } else { /* DNC1 is on */ |
| if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ |
| *pValue = MT2063_DNC_1; |
| else |
| *pValue = MT2063_DNC_BOTH; |
| } |
| return 0; |
| } |
| |
| /* |
| * mt2063_set_dnc_output_enable() |
| */ |
| static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state, |
| enum MT2063_DNC_Output_Enable nValue) |
| { |
| int status = 0; /* Status to be returned */ |
| u8 val = 0; |
| |
| dprintk(2, "\n"); |
| |
| /* selects, which DNC output is used */ |
| switch (nValue) { |
| case MT2063_DNC_NONE: |
| val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ |
| if (state->reg[MT2063_REG_DNC_GAIN] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_DNC_GAIN, |
| val); |
| |
| val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ |
| if (state->reg[MT2063_REG_VGA_GAIN] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_VGA_GAIN, |
| val); |
| |
| val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ |
| if (state->reg[MT2063_REG_RSVD_20] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_RSVD_20, |
| val); |
| |
| break; |
| case MT2063_DNC_1: |
| val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ |
| if (state->reg[MT2063_REG_DNC_GAIN] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_DNC_GAIN, |
| val); |
| |
| val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ |
| if (state->reg[MT2063_REG_VGA_GAIN] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_VGA_GAIN, |
| val); |
| |
| val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ |
| if (state->reg[MT2063_REG_RSVD_20] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_RSVD_20, |
| val); |
| |
| break; |
| case MT2063_DNC_2: |
| val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ |
| if (state->reg[MT2063_REG_DNC_GAIN] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_DNC_GAIN, |
| val); |
| |
| val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ |
| if (state->reg[MT2063_REG_VGA_GAIN] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_VGA_GAIN, |
| val); |
| |
| val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ |
| if (state->reg[MT2063_REG_RSVD_20] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_RSVD_20, |
| val); |
| |
| break; |
| case MT2063_DNC_BOTH: |
| val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ |
| if (state->reg[MT2063_REG_DNC_GAIN] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_DNC_GAIN, |
| val); |
| |
| val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ |
| if (state->reg[MT2063_REG_VGA_GAIN] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_VGA_GAIN, |
| val); |
| |
| val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ |
| if (state->reg[MT2063_REG_RSVD_20] != |
| val) |
| status |= |
| mt2063_setreg(state, |
| MT2063_REG_RSVD_20, |
| val); |
| |
| break; |
| default: |
| break; |
| } |
| |
| return status; |
| } |
| |
| /* |
| * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with |
| * the selected enum mt2063_delivery_sys type. |
| * |
| * (DNC1GC & DNC2GC are the values, which are used, when the specific |
| * DNC Output is selected, the other is always off) |
| * |
| * @state: ptr to mt2063_state structure |
| * @Mode: desired receiver delivery system |
| * |
| * Note: Register cache must be valid for it to work |
| */ |
| |
| static u32 MT2063_SetReceiverMode(struct mt2063_state *state, |
| enum mt2063_delivery_sys Mode) |
| { |
| int status = 0; /* Status to be returned */ |
| u8 val; |
| u32 longval; |
| |
| dprintk(2, "\n"); |
| |
| if (Mode >= MT2063_NUM_RCVR_MODES) |
| status = -ERANGE; |
| |
| /* RFAGCen */ |
| if (status >= 0) { |
| val = |
| (state-> |
| reg[MT2063_REG_PD1_TGT] & ~0x40) | (RFAGCEN[Mode] |
| ? 0x40 : |
| 0x00); |
| if (state->reg[MT2063_REG_PD1_TGT] != val) |
| status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); |
| } |
| |
| /* LNARin */ |
| if (status >= 0) { |
| u8 val = (state->reg[MT2063_REG_CTRL_2C] & ~0x03) | |
| (LNARIN[Mode] & 0x03); |
| if (state->reg[MT2063_REG_CTRL_2C] != val) |
| status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val); |
| } |
| |
| /* FIFFQEN and FIFFQ */ |
| if (status >= 0) { |
| val = |
| (state-> |
| reg[MT2063_REG_FIFF_CTRL2] & ~0xF0) | |
| (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4); |
| if (state->reg[MT2063_REG_FIFF_CTRL2] != val) { |
| status |= |
| mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val); |
| /* trigger FIFF calibration, needed after changing FIFFQ */ |
| val = |
| (state->reg[MT2063_REG_FIFF_CTRL] | 0x01); |
| status |= |
| mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); |
| val = |
| (state-> |
| reg[MT2063_REG_FIFF_CTRL] & ~0x01); |
| status |= |
| mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); |
| } |
| } |
| |
| /* DNC1GC & DNC2GC */ |
| status |= mt2063_get_dnc_output_enable(state, &longval); |
| status |= mt2063_set_dnc_output_enable(state, longval); |
| |
| /* acLNAmax */ |
| if (status >= 0) { |
| u8 val = (state->reg[MT2063_REG_LNA_OV] & ~0x1F) | |
| (ACLNAMAX[Mode] & 0x1F); |
| if (state->reg[MT2063_REG_LNA_OV] != val) |
| status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val); |
| } |
| |
| /* LNATGT */ |
| if (status >= 0) { |
| u8 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x3F) | |
| (LNATGT[Mode] & 0x3F); |
| if (state->reg[MT2063_REG_LNA_TGT] != val) |
| status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); |
| } |
| |
| /* ACRF */ |
| if (status >= 0) { |
| u8 val = (state->reg[MT2063_REG_RF_OV] & ~0x1F) | |
| (ACRFMAX[Mode] & 0x1F); |
| if (state->reg[MT2063_REG_RF_OV] != val) |
| status |= mt2063_setreg(state, MT2063_REG_RF_OV, val); |
| } |
| |
| /* PD1TGT */ |
| if (status >= 0) { |
| u8 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x3F) | |
| (PD1TGT[Mode] & 0x3F); |
| if (state->reg[MT2063_REG_PD1_TGT] != val) |
| status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); |
| } |
| |
| /* FIFATN */ |
| if (status >= 0) { |
| u8 val = ACFIFMAX[Mode]; |
| if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5) |
| val = 5; |
| val = (state->reg[MT2063_REG_FIF_OV] & ~0x1F) | |
| (val & 0x1F); |
| if (state->reg[MT2063_REG_FIF_OV] != val) |
| status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val); |
| } |
| |
| /* PD2TGT */ |
| if (status >= 0) { |
| u8 val = (state->reg[MT2063_REG_PD2_TGT] & ~0x3F) | |
| (PD2TGT[Mode] & 0x3F); |
| if (state->reg[MT2063_REG_PD2_TGT] != val) |
| status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val); |
| } |
| |
| /* Ignore ATN Overload */ |
| if (status >= 0) { |
| val = (state->reg[MT2063_REG_LNA_TGT] & ~0x80) | |
| (RFOVDIS[Mode] ? 0x80 : 0x00); |
| if (state->reg[MT2063_REG_LNA_TGT] != val) |
| status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); |
| } |
| |
| /* Ignore FIF Overload */ |
| if (status >= 0) { |
| val = (state->reg[MT2063_REG_PD1_TGT] & ~0x80) | |
| (FIFOVDIS[Mode] ? 0x80 : 0x00); |
| if (state->reg[MT2063_REG_PD1_TGT] != val) |
| status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); |
| } |
| |
| if (status >= 0) { |
| state->rcvr_mode = Mode; |
| dprintk(1, "mt2063 mode changed to %s\n", |
| mt2063_mode_name[state->rcvr_mode]); |
| } |
| |
| return status; |
| } |
| |
| /* |
| * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various |
| * sections of the MT2063 |
| * |
| * @Bits: Mask bits to be cleared. |
| * |
| * See definition of MT2063_Mask_Bits type for description |
| * of each of the power bits. |
| */ |
| static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state, |
| enum MT2063_Mask_Bits Bits) |
| { |
| int status = 0; |
| |
| dprintk(2, "\n"); |
| Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */ |
| if ((Bits & 0xFF00) != 0) { |
| state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8); |
| status |= |
| mt2063_write(state, |
| MT2063_REG_PWR_2, |
| &state->reg[MT2063_REG_PWR_2], 1); |
| } |
| if ((Bits & 0xFF) != 0) { |
| state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF); |
| status |= |
| mt2063_write(state, |
| MT2063_REG_PWR_1, |
| &state->reg[MT2063_REG_PWR_1], 1); |
| } |
| |
| return status; |
| } |
| |
| /* |
| * MT2063_SoftwareShutdown() - Enables or disables software shutdown function. |
| * When Shutdown is 1, any section whose power |
| * mask is set will be shutdown. |
| */ |
| static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown) |
| { |
| int status; |
| |
| dprintk(2, "\n"); |
| if (Shutdown == 1) |
| state->reg[MT2063_REG_PWR_1] |= 0x04; |
| else |
| state->reg[MT2063_REG_PWR_1] &= ~0x04; |
| |
| status = mt2063_write(state, |
| MT2063_REG_PWR_1, |
| &state->reg[MT2063_REG_PWR_1], 1); |
| |
| if (Shutdown != 1) { |
| state->reg[MT2063_REG_BYP_CTRL] = |
| (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40; |
| status |= |
| mt2063_write(state, |
| MT2063_REG_BYP_CTRL, |
| &state->reg[MT2063_REG_BYP_CTRL], |
| 1); |
| state->reg[MT2063_REG_BYP_CTRL] = |
| (state->reg[MT2063_REG_BYP_CTRL] & 0x9F); |
| status |= |
| mt2063_write(state, |
| MT2063_REG_BYP_CTRL, |
| &state->reg[MT2063_REG_BYP_CTRL], |
| 1); |
| } |
| |
| return status; |
| } |
| |
| static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref) |
| { |
| return f_ref * (f_LO / f_ref) |
| + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step); |
| } |
| |
| /** |
| * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom. |
| * This function preserves maximum precision without |
| * risk of overflow. It accurately calculates |
| * f_ref * num / denom to within 1 HZ with fixed math. |
| * |
| * @f_ref: SRO frequency. |
| * @num: Fractional portion of the multiplier |
| * @denom: denominator portion of the ratio |
| * |
| * This calculation handles f_ref as two separate 14-bit fields. |
| * Therefore, a maximum value of 2^28-1 may safely be used for f_ref. |
| * This is the genesis of the magic number "14" and the magic mask value of |
| * 0x03FFF. |
| * |
| * This routine successfully handles denom values up to and including 2^18. |
| * Returns: f_ref * num / denom |
| */ |
| static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom) |
| { |
| u32 t1 = (f_ref >> 14) * num; |
| u32 term1 = t1 / denom; |
| u32 loss = t1 % denom; |
| u32 term2 = |
| (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom; |
| return (term1 << 14) + term2; |
| } |
| |
| /* |
| * CalcLO1Mult()- Calculates Integer divider value and the numerator |
| * value for a FracN PLL. |
| * |
| * This function assumes that the f_LO and f_Ref are |
| * evenly divisible by f_LO_Step. |
| * |
| * @Div: OUTPUT: Whole number portion of the multiplier |
| * @FracN: OUTPUT: Fractional portion of the multiplier |
| * @f_LO: desired LO frequency. |
| * @f_LO_Step: Minimum step size for the LO (in Hz). |
| * @f_Ref: SRO frequency. |
| * @f_Avoid: Range of PLL frequencies to avoid near integer multiples |
| * of f_Ref (in Hz). |
| * |
| * Returns: Recalculated LO frequency. |
| */ |
| static u32 MT2063_CalcLO1Mult(u32 *Div, |
| u32 *FracN, |
| u32 f_LO, |
| u32 f_LO_Step, u32 f_Ref) |
| { |
| /* Calculate the whole number portion of the divider */ |
| *Div = f_LO / f_Ref; |
| |
| /* Calculate the numerator value (round to nearest f_LO_Step) */ |
| *FracN = |
| (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + |
| (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); |
| |
| return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64); |
| } |
| |
| /** |
| * CalcLO2Mult() - Calculates Integer divider value and the numerator |
| * value for a FracN PLL. |
| * |
| * This function assumes that the f_LO and f_Ref are |
| * evenly divisible by f_LO_Step. |
| * |
| * @Div: OUTPUT: Whole number portion of the multiplier |
| * @FracN: OUTPUT: Fractional portion of the multiplier |
| * @f_LO: desired LO frequency. |
| * @f_LO_Step: Minimum step size for the LO (in Hz). |
| * @f_Ref: SRO frequency. |
| * |
| * Returns: Recalculated LO frequency. |
| */ |
| static u32 MT2063_CalcLO2Mult(u32 *Div, |
| u32 *FracN, |
| u32 f_LO, |
| u32 f_LO_Step, u32 f_Ref) |
| { |
| /* Calculate the whole number portion of the divider */ |
| *Div = f_LO / f_Ref; |
| |
| /* Calculate the numerator value (round to nearest f_LO_Step) */ |
| *FracN = |
| (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + |
| (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); |
| |
| return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, |
| 8191); |
| } |
| |
| /* |
| * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be |
| * used for a given input frequency. |
| * |
| * @state: ptr to tuner data structure |
| * @f_in: RF input center frequency (in Hz). |
| * |
| * Returns: ClearTune filter number (0-31) |
| */ |
| static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in) |
| { |
| u32 RFBand; |
| u32 idx; /* index loop */ |
| |
| /* |
| ** Find RF Band setting |
| */ |
| RFBand = 31; /* def when f_in > all */ |
| for (idx = 0; idx < 31; ++idx) { |
| if (state->CTFiltMax[idx] >= f_in) { |
| RFBand = idx; |
| break; |
| } |
| } |
| return RFBand; |
| } |
| |
| /* |
| * MT2063_Tune() - Change the tuner's tuned frequency to RFin. |
| */ |
| static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in) |
| { /* RF input center frequency */ |
| |
| int status = 0; |
| u32 LO1; /* 1st LO register value */ |
| u32 Num1; /* Numerator for LO1 reg. value */ |
| u32 f_IF1; /* 1st IF requested */ |
| u32 LO2; /* 2nd LO register value */ |
| u32 Num2; /* Numerator for LO2 reg. value */ |
| u32 ofLO1, ofLO2; /* last time's LO frequencies */ |
| u8 fiffc = 0x80; /* FIFF center freq from tuner */ |
| u32 fiffof; /* Offset from FIFF center freq */ |
| const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */ |
| u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */ |
| u8 val; |
| u32 RFBand; |
| |
| dprintk(2, "\n"); |
| /* Check the input and output frequency ranges */ |
| if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ)) |
| return -EINVAL; |
| |
| if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ) |
| || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ)) |
| return -EINVAL; |
| |
| /* |
| * Save original LO1 and LO2 register values |
| */ |
| ofLO1 = state->AS_Data.f_LO1; |
| ofLO2 = state->AS_Data.f_LO2; |
| |
| /* |
| * Find and set RF Band setting |
| */ |
| if (state->ctfilt_sw == 1) { |
| val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08); |
| if (state->reg[MT2063_REG_CTUNE_CTRL] != val) { |
| status |= |
| mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val); |
| } |
| val = state->reg[MT2063_REG_CTUNE_OV]; |
| RFBand = FindClearTuneFilter(state, f_in); |
| state->reg[MT2063_REG_CTUNE_OV] = |
| (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F) |
| | RFBand); |
| if (state->reg[MT2063_REG_CTUNE_OV] != val) { |
| status |= |
| mt2063_setreg(state, MT2063_REG_CTUNE_OV, val); |
| } |
| } |
| |
| /* |
| * Read the FIFF Center Frequency from the tuner |
| */ |
| if (status >= 0) { |
| status |= |
| mt2063_read(state, |
| MT2063_REG_FIFFC, |
| &state->reg[MT2063_REG_FIFFC], 1); |
| fiffc = state->reg[MT2063_REG_FIFFC]; |
| } |
| /* |
| * Assign in the requested values |
| */ |
| state->AS_Data.f_in = f_in; |
| /* Request a 1st IF such that LO1 is on a step size */ |
| state->AS_Data.f_if1_Request = |
| MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in, |
| state->AS_Data.f_LO1_Step, |
| state->AS_Data.f_ref) - f_in; |
| |
| /* |
| * Calculate frequency settings. f_IF1_FREQ + f_in is the |
| * desired LO1 frequency |
| */ |
| MT2063_ResetExclZones(&state->AS_Data); |
| |
| f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data); |
| |
| state->AS_Data.f_LO1 = |
| MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step, |
| state->AS_Data.f_ref); |
| |
| state->AS_Data.f_LO2 = |
| MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, |
| state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); |
| |
| /* |
| * Check for any LO spurs in the output bandwidth and adjust |
| * the LO settings to avoid them if needed |
| */ |
| status |= MT2063_AvoidSpurs(&state->AS_Data); |
| /* |
| * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values. |
| * Recalculate the LO frequencies and the values to be placed |
| * in the tuning registers. |
| */ |
| state->AS_Data.f_LO1 = |
| MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1, |
| state->AS_Data.f_LO1_Step, state->AS_Data.f_ref); |
| state->AS_Data.f_LO2 = |
| MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, |
| state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); |
| state->AS_Data.f_LO2 = |
| MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2, |
| state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); |
| |
| /* |
| * Check the upconverter and downconverter frequency ranges |
| */ |
| if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ) |
| || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ)) |
| status |= MT2063_UPC_RANGE; |
| if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ) |
| || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ)) |
| status |= MT2063_DNC_RANGE; |
| /* LO2 Lock bit was in a different place for B0 version */ |
| if (state->tuner_id == MT2063_B0) |
| LO2LK = 0x40; |
| |
| /* |
| * If we have the same LO frequencies and we're already locked, |
| * then skip re-programming the LO registers. |
| */ |
| if ((ofLO1 != state->AS_Data.f_LO1) |
| || (ofLO2 != state->AS_Data.f_LO2) |
| || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) != |
| (LO1LK | LO2LK))) { |
| /* |
| * Calculate the FIFFOF register value |
| * |
| * IF1_Actual |
| * FIFFOF = ------------ - 8 * FIFFC - 4992 |
| * f_ref/64 |
| */ |
| fiffof = |
| (state->AS_Data.f_LO1 - |
| f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc - |
| 4992; |
| if (fiffof > 0xFF) |
| fiffof = 0xFF; |
| |
| /* |
| * Place all of the calculated values into the local tuner |
| * register fields. |
| */ |
| if (status >= 0) { |
| state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */ |
| state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */ |
| state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */ |
| |(Num2 >> 12)); /* NUM2q (hi) */ |
| state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */ |
| state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */ |
| |
| /* |
| * Now write out the computed register values |
| * IMPORTANT: There is a required order for writing |
| * (0x05 must follow all the others). |
| */ |
| status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */ |
| if (state->tuner_id == MT2063_B0) { |
| /* Re-write the one-shot bits to trigger the tune operation */ |
| status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */ |
| } |
| /* Write out the FIFF offset only if it's changing */ |
| if (state->reg[MT2063_REG_FIFF_OFFSET] != |
| (u8) fiffof) { |
| state->reg[MT2063_REG_FIFF_OFFSET] = |
| (u8) fiffof; |
| status |= |
| mt2063_write(state, |
| MT2063_REG_FIFF_OFFSET, |
| &state-> |
| reg[MT2063_REG_FIFF_OFFSET], |
| 1); |
| } |
| } |
| |
| /* |
| * Check for LO's locking |
| */ |
| |
| if (status < 0) |
| return status; |
| |
| status = mt2063_lockStatus(state); |
| if (status < 0) |
| return status; |
| if (!status) |
| return -EINVAL; /* Couldn't lock */ |
| |
| /* |
| * If we locked OK, assign calculated data to mt2063_state structure |
| */ |
| state->f_IF1_actual = state->AS_Data.f_LO1 - f_in; |
| } |
| |
| return status; |
| } |
| |
| static const u8 MT2063B0_defaults[] = { |
| /* Reg, Value */ |
| 0x19, 0x05, |
| 0x1B, 0x1D, |
| 0x1C, 0x1F, |
| 0x1D, 0x0F, |
| 0x1E, 0x3F, |
| 0x1F, 0x0F, |
| 0x20, 0x3F, |
| 0x22, 0x21, |
| 0x23, 0x3F, |
| 0x24, 0x20, |
| 0x25, 0x3F, |
| 0x27, 0xEE, |
| 0x2C, 0x27, /* bit at 0x20 is cleared below */ |
| 0x30, 0x03, |
| 0x2C, 0x07, /* bit at 0x20 is cleared here */ |
| 0x2D, 0x87, |
| 0x2E, 0xAA, |
| 0x28, 0xE1, /* Set the FIFCrst bit here */ |
| 0x28, 0xE0, /* Clear the FIFCrst bit here */ |
| 0x00 |
| }; |
| |
| /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ |
| static const u8 MT2063B1_defaults[] = { |
| /* Reg, Value */ |
| 0x05, 0xF0, |
| 0x11, 0x10, /* New Enable AFCsd */ |
| 0x19, 0x05, |
| 0x1A, 0x6C, |
| 0x1B, 0x24, |
| 0x1C, 0x28, |
| 0x1D, 0x8F, |
| 0x1E, 0x14, |
| 0x1F, 0x8F, |
| 0x20, 0x57, |
| 0x22, 0x21, /* New - ver 1.03 */ |
| 0x23, 0x3C, /* New - ver 1.10 */ |
| 0x24, 0x20, /* New - ver 1.03 */ |
| 0x2C, 0x24, /* bit at 0x20 is cleared below */ |
| 0x2D, 0x87, /* FIFFQ=0 */ |
| 0x2F, 0xF3, |
| 0x30, 0x0C, /* New - ver 1.11 */ |
| 0x31, 0x1B, /* New - ver 1.11 */ |
| 0x2C, 0x04, /* bit at 0x20 is cleared here */ |
| 0x28, 0xE1, /* Set the FIFCrst bit here */ |
| 0x28, 0xE0, /* Clear the FIFCrst bit here */ |
| 0x00 |
| }; |
| |
| /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ |
| static const u8 MT2063B3_defaults[] = { |
| /* Reg, Value */ |
| 0x05, 0xF0, |
| 0x19, 0x3D, |
| 0x2C, 0x24, /* bit at 0x20 is cleared below */ |
| 0x2C, 0x04, /* bit at 0x20 is cleared here */ |
| 0x28, 0xE1, /* Set the FIFCrst bit here */ |
| 0x28, 0xE0, /* Clear the FIFCrst bit here */ |
| 0x00 |
| }; |
| |
| static int mt2063_init(struct dvb_frontend *fe) |
| { |
| int status; |
| struct mt2063_state *state = fe->tuner_priv; |
| u8 all_resets = 0xF0; /* reset/load bits */ |
| const u8 *def = NULL; |
| char *step; |
| u32 FCRUN; |
| s32 maxReads; |
| u32 fcu_osc; |
| u32 i; |
| |
| dprintk(2, "\n"); |
| |
| state->rcvr_mode = MT2063_CABLE_QAM; |
| |
| /* Read the Part/Rev code from the tuner */ |
| status = mt2063_read(state, MT2063_REG_PART_REV, |
| &state->reg[MT2063_REG_PART_REV], 1); |
| if (status < 0) { |
| printk(KERN_ERR "Can't read mt2063 part ID\n"); |
| return status; |
| } |
| |
| /* Check the part/rev code */ |
| switch (state->reg[MT2063_REG_PART_REV]) { |
| case MT2063_B0: |
| step = "B0"; |
| break; |
| case MT2063_B1: |
| step = "B1"; |
| break; |
| case MT2063_B2: |
| step = "B2"; |
| break; |
| case MT2063_B3: |
| step = "B3"; |
| break; |
| default: |
| printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n", |
| state->reg[MT2063_REG_PART_REV]); |
| return -ENODEV; /* Wrong tuner Part/Rev code */ |
| } |
| |
| /* Check the 2nd byte of the Part/Rev code from the tuner */ |
| status = mt2063_read(state, MT2063_REG_RSVD_3B, |
| &state->reg[MT2063_REG_RSVD_3B], 1); |
| |
| /* b7 != 0 ==> NOT MT2063 */ |
| if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) { |
| printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n", |
| state->reg[MT2063_REG_PART_REV], |
| state->reg[MT2063_REG_RSVD_3B]); |
| return -ENODEV; /* Wrong tuner Part/Rev code */ |
| } |
| |
| printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step); |
| |
| /* Reset the tuner */ |
| status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1); |
| if (status < 0) |
| return status; |
| |
| /* change all of the default values that vary from the HW reset values */ |
| /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */ |
| switch (state->reg[MT2063_REG_PART_REV]) { |
| case MT2063_B3: |
| def = MT2063B3_defaults; |
| break; |
| |
| case MT2063_B1: |
| def = MT2063B1_defaults; |
| break; |
| |
| case MT2063_B0: |
| def = MT2063B0_defaults; |
| break; |
| |
| default: |
| return -ENODEV; |
| break; |
| } |
| |
| while (status >= 0 && *def) { |
| u8 reg = *def++; |
| u8 val = *def++; |
| status = mt2063_write(state, reg, &val, 1); |
| } |
| if (status < 0) |
| return status; |
| |
| /* Wait for FIFF location to complete. */ |
| FCRUN = 1; |
| maxReads = 10; |
| while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) { |
| msleep(2); |
| status = mt2063_read(state, |
| MT2063_REG_XO_STATUS, |
| &state-> |
| reg[MT2063_REG_XO_STATUS], 1); |
| FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6; |
| } |
| |
| if (FCRUN != 0 || status < 0) |
| return -ENODEV; |
| |
| status = mt2063_read(state, |
| MT2063_REG_FIFFC, |
| &state->reg[MT2063_REG_FIFFC], 1); |
| if (status < 0) |
| return status; |
| |
| /* Read back all the registers from the tuner */ |
| status = mt2063_read(state, |
| MT2063_REG_PART_REV, |
| state->reg, MT2063_REG_END_REGS); |
| if (status < 0) |
| return status; |
| |
| /* Initialize the tuner state. */ |
| state->tuner_id = state->reg[MT2063_REG_PART_REV]; |
| state->AS_Data.f_ref = MT2063_REF_FREQ; |
| state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) * |
| ((u32) state->reg[MT2063_REG_FIFFC] + 640); |
| state->AS_Data.f_if1_bw = MT2063_IF1_BW; |
| state->AS_Data.f_out = 43750000UL; |
| state->AS_Data.f_out_bw = 6750000UL; |
| state->AS_Data.f_zif_bw = MT2063_ZIF_BW; |
| state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64; |
| state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE; |
| state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1; |
| state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2; |
| state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP; |
| state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center; |
| state->AS_Data.f_LO1 = 2181000000UL; |
| state->AS_Data.f_LO2 = 1486249786UL; |
| state->f_IF1_actual = state->AS_Data.f_if1_Center; |
| state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual; |
| state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID; |
| state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID; |
| state->num_regs = MT2063_REG_END_REGS; |
| state->AS_Data.avoidDECT = MT2063_AVOID_BOTH; |
| state->ctfilt_sw = 0; |
| |
| state->CTFiltMax[0] = 69230000; |
| state->CTFiltMax[1] = 105770000; |
| state->CTFiltMax[2] = 140350000; |
| state->CTFiltMax[3] = 177110000; |
| state->CTFiltMax[4] = 212860000; |
| state->CTFiltMax[5] = 241130000; |
| state->CTFiltMax[6] = 274370000; |
| state->CTFiltMax[7] = 309820000; |
| state->CTFiltMax[8] = 342450000; |
| state->CTFiltMax[9] = 378870000; |
| state->CTFiltMax[10] = 416210000; |
| state->CTFiltMax[11] = 456500000; |
| state->CTFiltMax[12] = 495790000; |
| state->CTFiltMax[13] = 534530000; |
| state->CTFiltMax[14] = 572610000; |
| state->CTFiltMax[15] = 598970000; |
| state->CTFiltMax[16] = 635910000; |
| state->CTFiltMax[17] = 672130000; |
| state->CTFiltMax[18] = 714840000; |
| state->CTFiltMax[19] = 739660000; |
| state->CTFiltMax[20] = 770410000; |
| state->CTFiltMax[21] = 814660000; |
| state->CTFiltMax[22] = 846950000; |
| state->CTFiltMax[23] = 867820000; |
| state->CTFiltMax[24] = 915980000; |
| state->CTFiltMax[25] = 947450000; |
| state->CTFiltMax[26] = 983110000; |
| state->CTFiltMax[27] = 1021630000; |
| state->CTFiltMax[28] = 1061870000; |
| state->CTFiltMax[29] = 1098330000; |
| state->CTFiltMax[30] = 1138990000; |
| |
| /* |
| ** Fetch the FCU osc value and use it and the fRef value to |
| ** scale all of the Band Max values |
| */ |
| |
| state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A; |
| status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, |
| &state->reg[MT2063_REG_CTUNE_CTRL], 1); |
| if (status < 0) |
| return status; |
| |
| /* Read the ClearTune filter calibration value */ |
| status = mt2063_read(state, MT2063_REG_FIFFC, |
| &state->reg[MT2063_REG_FIFFC], 1); |
| if (status < 0) |
| return status; |
| |
| fcu_osc = state->reg[MT2063_REG_FIFFC]; |
| |
| state->reg[MT2063_REG_CTUNE_CTRL] = 0x00; |
| status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, |
| &state->reg[MT2063_REG_CTUNE_CTRL], 1); |
| if (status < 0) |
| return status; |
| |
| /* Adjust each of the values in the ClearTune filter cross-over table */ |
| for (i = 0; i < 31; i++) |
| state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640); |
| |
| status = MT2063_SoftwareShutdown(state, 1); |
| if (status < 0) |
| return status; |
| status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); |
| if (status < 0) |
| return status; |
| |
| state->init = true; |
| |
| return 0; |
| } |
| |
| static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status) |
| { |
| struct mt2063_state *state = fe->tuner_priv; |
| int status; |
| |
| dprintk(2, "\n"); |
| |
| if (!state->init) |
| return -ENODEV; |
| |
| *tuner_status = 0; |
| status = mt2063_lockStatus(state); |
| if (status < 0) |
| return status; |
| if (status) |
| *tuner_status = TUNER_STATUS_LOCKED; |
| |
| dprintk(1, "Tuner status: %d", *tuner_status); |
| |
| return 0; |
| } |
| |
| static void mt2063_release(struct dvb_frontend *fe) |
| { |
| struct mt2063_state *state = fe->tuner_priv; |
| |
| dprintk(2, "\n"); |
| |
| fe->tuner_priv = NULL; |
| kfree(state); |
| } |
| |
| static int mt2063_set_analog_params(struct dvb_frontend *fe, |
| struct analog_parameters *params) |
| { |
| struct mt2063_state *state = fe->tuner_priv; |
| s32 pict_car; |
| s32 pict2chanb_vsb; |
| s32 ch_bw; |
| s32 if_mid; |
| s32 rcvr_mode; |
| int status; |
| |
| dprintk(2, "\n"); |
| |
| if (!state->init) { |
| status = mt2063_init(fe); |
| if (status < 0) |
| return status; |
| } |
| |
| switch (params->mode) { |
| case V4L2_TUNER_RADIO: |
| pict_car = 38900000; |
| ch_bw = 8000000; |
| pict2chanb_vsb = -(ch_bw / 2); |
| rcvr_mode = MT2063_OFFAIR_ANALOG; |
| break; |
| case V4L2_TUNER_ANALOG_TV: |
| rcvr_mode = MT2063_CABLE_ANALOG; |
| if (params->std & ~V4L2_STD_MN) { |
| pict_car = 38900000; |
| ch_bw = 6000000; |
| pict2chanb_vsb = -1250000; |
| } else if (params->std & V4L2_STD_PAL_G) { |
| pict_car = 38900000; |
| ch_bw = 7000000; |
| pict2chanb_vsb = -1250000; |
| } else { /* PAL/SECAM standards */ |
| pict_car = 38900000; |
| ch_bw = 8000000; |
| pict2chanb_vsb = -1250000; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); |
| |
| state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ |
| state->AS_Data.f_out = if_mid; |
| state->AS_Data.f_out_bw = ch_bw + 750000; |
| status = MT2063_SetReceiverMode(state, rcvr_mode); |
| if (status < 0) |
| return status; |
| |
| dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", |
| params->frequency, ch_bw, pict2chanb_vsb); |
| |
| status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2)))); |
| if (status < 0) |
| return status; |
| |
| state->frequency = params->frequency; |
| return 0; |
| } |
| |
| /* |
| * As defined on EN 300 429, the DVB-C roll-off factor is 0.15. |
| * So, the amount of the needed bandwidth is given by: |
| * Bw = Symbol_rate * (1 + 0.15) |
| * As such, the maximum symbol rate supported by 6 MHz is given by: |
| * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds |
| */ |
| #define MAX_SYMBOL_RATE_6MHz 5217391 |
| |
| static int mt2063_set_params(struct dvb_frontend *fe) |
| { |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| struct mt2063_state *state = fe->tuner_priv; |
| int status; |
| s32 pict_car; |
| s32 pict2chanb_vsb; |
| s32 ch_bw; |
| s32 if_mid; |
| s32 rcvr_mode; |
| |
| if (!state->init) { |
| status = mt2063_init(fe); |
| if (status < 0) |
| return status; |
| } |
| |
| dprintk(2, "\n"); |
| |
| if (c->bandwidth_hz == 0) |
| return -EINVAL; |
| if (c->bandwidth_hz <= 6000000) |
| ch_bw = 6000000; |
| else if (c->bandwidth_hz <= 7000000) |
| ch_bw = 7000000; |
| else |
| ch_bw = 8000000; |
| |
| switch (c->delivery_system) { |
| case SYS_DVBT: |
| rcvr_mode = MT2063_OFFAIR_COFDM; |
| pict_car = 36125000; |
| pict2chanb_vsb = -(ch_bw / 2); |
| break; |
| case SYS_DVBC_ANNEX_A: |
| case SYS_DVBC_ANNEX_C: |
| rcvr_mode = MT2063_CABLE_QAM; |
| pict_car = 36125000; |
| pict2chanb_vsb = -(ch_bw / 2); |
| break; |
| default: |
| return -EINVAL; |
| } |
| if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); |
| |
| state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ |
| state->AS_Data.f_out = if_mid; |
| state->AS_Data.f_out_bw = ch_bw + 750000; |
| status = MT2063_SetReceiverMode(state, rcvr_mode); |
| if (status < 0) |
| return status; |
| |
| dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", |
| c->frequency, ch_bw, pict2chanb_vsb); |
| |
| status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2)))); |
| |
| if (status < 0) |
| return status; |
| |
| state->frequency = c->frequency; |
| return 0; |
| } |
| |
| static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq) |
| { |
| struct mt2063_state *state = fe->tuner_priv; |
| |
| dprintk(2, "\n"); |
| |
| if (!state->init) |
| return -ENODEV; |
| |
| *freq = state->AS_Data.f_out; |
| |
| dprintk(1, "IF frequency: %d\n", *freq); |
| |
| return 0; |
| } |
| |
| static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw) |
| { |
| struct mt2063_state *state = fe->tuner_priv; |
| |
| dprintk(2, "\n"); |
| |
| if (!state->init) |
| return -ENODEV; |
| |
| *bw = state->AS_Data.f_out_bw - 750000; |
| |
| dprintk(1, "bandwidth: %d\n", *bw); |
| |
| return 0; |
| } |
| |
| static const struct dvb_tuner_ops mt2063_ops = { |
| .info = { |
| .name = "MT2063 Silicon Tuner", |
| .frequency_min = 45000000, |
| .frequency_max = 865000000, |
| .frequency_step = 0, |
| }, |
| |
| .init = mt2063_init, |
| .sleep = MT2063_Sleep, |
| .get_status = mt2063_get_status, |
| .set_analog_params = mt2063_set_analog_params, |
| .set_params = mt2063_set_params, |
| .get_if_frequency = mt2063_get_if_frequency, |
| .get_bandwidth = mt2063_get_bandwidth, |
| .release = mt2063_release, |
| }; |
| |
| struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe, |
| struct mt2063_config *config, |
| struct i2c_adapter *i2c) |
| { |
| struct mt2063_state *state = NULL; |
| |
| dprintk(2, "\n"); |
| |
| state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| state->config = config; |
| state->i2c = i2c; |
| state->frontend = fe; |
| state->reference = config->refclock / 1000; /* kHz */ |
| fe->tuner_priv = state; |
| fe->ops.tuner_ops = mt2063_ops; |
| |
| printk(KERN_INFO "%s: Attaching MT2063\n", __func__); |
| return fe; |
| } |
| EXPORT_SYMBOL_GPL(mt2063_attach); |
| |
| #if 0 |
| /* |
| * Ancillary routines visible outside mt2063 |
| * FIXME: Remove them in favor of using standard tuner callbacks |
| */ |
| static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe) |
| { |
| struct mt2063_state *state = fe->tuner_priv; |
| int err = 0; |
| |
| dprintk(2, "\n"); |
| |
| err = MT2063_SoftwareShutdown(state, 1); |
| if (err < 0) |
| printk(KERN_ERR "%s: Couldn't shutdown\n", __func__); |
| |
| return err; |
| } |
| |
| static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe) |
| { |
| struct mt2063_state *state = fe->tuner_priv; |
| int err = 0; |
| |
| dprintk(2, "\n"); |
| |
| err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); |
| if (err < 0) |
| printk(KERN_ERR "%s: Invalid parameter\n", __func__); |
| |
| return err; |
| } |
| #endif |
| |
| MODULE_AUTHOR("Mauro Carvalho Chehab"); |
| MODULE_DESCRIPTION("MT2063 Silicon tuner"); |
| MODULE_LICENSE("GPL"); |