blob: df76493faa75698040e584984ef3f31adcd16f36 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright (C) 2023 Intel Corporation */
#ifndef _IDPF_TXRX_H_
#define _IDPF_TXRX_H_
#include <net/page_pool/helpers.h>
#include <net/tcp.h>
#include <net/netdev_queues.h>
#define IDPF_LARGE_MAX_Q 256
#define IDPF_MAX_Q 16
#define IDPF_MIN_Q 2
/* Mailbox Queue */
#define IDPF_MAX_MBXQ 1
#define IDPF_MIN_TXQ_DESC 64
#define IDPF_MIN_RXQ_DESC 64
#define IDPF_MIN_TXQ_COMPLQ_DESC 256
#define IDPF_MAX_QIDS 256
/* Number of descriptors in a queue should be a multiple of 32. RX queue
* descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE
* to achieve BufQ descriptors aligned to 32
*/
#define IDPF_REQ_DESC_MULTIPLE 32
#define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32)
#define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6)
#define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2)
#define IDPF_MAX_DESCS 8160
#define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE)
#define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE)
#define MIN_SUPPORT_TXDID (\
VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\
VIRTCHNL2_TXDID_FLEX_TSO_CTX)
#define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS 1
#define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS 1
#define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP 4
#define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP 4
#define IDPF_COMPLQ_PER_GROUP 1
#define IDPF_SINGLE_BUFQ_PER_RXQ_GRP 1
#define IDPF_MAX_BUFQS_PER_RXQ_GRP 2
#define IDPF_BUFQ2_ENA 1
#define IDPF_NUMQ_PER_CHUNK 1
#define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP 1
#define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP 1
/* Default vector sharing */
#define IDPF_MBX_Q_VEC 1
#define IDPF_MIN_Q_VEC 1
#define IDPF_DFLT_TX_Q_DESC_COUNT 512
#define IDPF_DFLT_TX_COMPLQ_DESC_COUNT 512
#define IDPF_DFLT_RX_Q_DESC_COUNT 512
/* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a
* given RX completion queue has descriptors. This includes _ALL_ buffer
* queues. E.g.: If you have two buffer queues of 512 descriptors and buffers,
* you have a total of 1024 buffers so your RX queue _must_ have at least that
* many descriptors. This macro divides a given number of RX descriptors by
* number of buffer queues to calculate how many descriptors each buffer queue
* can have without overrunning the RX queue.
*
* If you give hardware more buffers than completion descriptors what will
* happen is that if hardware gets a chance to post more than ring wrap of
* descriptors before SW gets an interrupt and overwrites SW head, the gen bit
* in the descriptor will be wrong. Any overwritten descriptors' buffers will
* be gone forever and SW has no reasonable way to tell that this has happened.
* From SW perspective, when we finally get an interrupt, it looks like we're
* still waiting for descriptor to be done, stalling forever.
*/
#define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ) ((RXD) / (NUM_BUFQ))
#define IDPF_RX_BUFQ_WORKING_SET(rxq) ((rxq)->desc_count - 1)
#define IDPF_RX_BUMP_NTC(rxq, ntc) \
do { \
if (unlikely(++(ntc) == (rxq)->desc_count)) { \
ntc = 0; \
change_bit(__IDPF_Q_GEN_CHK, (rxq)->flags); \
} \
} while (0)
#define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx) \
do { \
if (unlikely(++(idx) == (q)->desc_count)) \
idx = 0; \
} while (0)
#define IDPF_RX_HDR_SIZE 256
#define IDPF_RX_BUF_2048 2048
#define IDPF_RX_BUF_4096 4096
#define IDPF_RX_BUF_STRIDE 32
#define IDPF_RX_BUF_POST_STRIDE 16
#define IDPF_LOW_WATERMARK 64
/* Size of header buffer specifically for header split */
#define IDPF_HDR_BUF_SIZE 256
#define IDPF_PACKET_HDR_PAD \
(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN * 2)
#define IDPF_TX_TSO_MIN_MSS 88
/* Minimum number of descriptors between 2 descriptors with the RE bit set;
* only relevant in flow scheduling mode
*/
#define IDPF_TX_SPLITQ_RE_MIN_GAP 64
#define IDPF_RX_BI_BUFID_S 0
#define IDPF_RX_BI_BUFID_M GENMASK(14, 0)
#define IDPF_RX_BI_GEN_S 15
#define IDPF_RX_BI_GEN_M BIT(IDPF_RX_BI_GEN_S)
#define IDPF_RXD_EOF_SPLITQ VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M
#define IDPF_RXD_EOF_SINGLEQ VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M
#define IDPF_SINGLEQ_RX_BUF_DESC(rxq, i) \
(&(((struct virtchnl2_singleq_rx_buf_desc *)((rxq)->desc_ring))[i]))
#define IDPF_SPLITQ_RX_BUF_DESC(rxq, i) \
(&(((struct virtchnl2_splitq_rx_buf_desc *)((rxq)->desc_ring))[i]))
#define IDPF_SPLITQ_RX_BI_DESC(rxq, i) ((((rxq)->ring))[i])
#define IDPF_BASE_TX_DESC(txq, i) \
(&(((struct idpf_base_tx_desc *)((txq)->desc_ring))[i]))
#define IDPF_BASE_TX_CTX_DESC(txq, i) \
(&(((struct idpf_base_tx_ctx_desc *)((txq)->desc_ring))[i]))
#define IDPF_SPLITQ_TX_COMPLQ_DESC(txcq, i) \
(&(((struct idpf_splitq_tx_compl_desc *)((txcq)->desc_ring))[i]))
#define IDPF_FLEX_TX_DESC(txq, i) \
(&(((union idpf_tx_flex_desc *)((txq)->desc_ring))[i]))
#define IDPF_FLEX_TX_CTX_DESC(txq, i) \
(&(((struct idpf_flex_tx_ctx_desc *)((txq)->desc_ring))[i]))
#define IDPF_DESC_UNUSED(txq) \
((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \
(txq)->next_to_clean - (txq)->next_to_use - 1)
#define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->buf_stack.top)
#define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \
(txq)->desc_count >> 2)
#define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1)
/* Determine the absolute number of completions pending, i.e. the number of
* completions that are expected to arrive on the TX completion queue.
*/
#define IDPF_TX_COMPLQ_PENDING(txq) \
(((txq)->num_completions_pending >= (txq)->complq->num_completions ? \
0 : U64_MAX) + \
(txq)->num_completions_pending - (txq)->complq->num_completions)
#define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16
#define IDPF_SPLITQ_TX_INVAL_COMPL_TAG -1
/* Adjust the generation for the completion tag and wrap if necessary */
#define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \
((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \
0 : (txq)->compl_tag_cur_gen)
#define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS)
#define IDPF_TX_FLAGS_TSO BIT(0)
#define IDPF_TX_FLAGS_IPV4 BIT(1)
#define IDPF_TX_FLAGS_IPV6 BIT(2)
#define IDPF_TX_FLAGS_TUNNEL BIT(3)
union idpf_tx_flex_desc {
struct idpf_flex_tx_desc q; /* queue based scheduling */
struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */
};
/**
* struct idpf_tx_buf
* @next_to_watch: Next descriptor to clean
* @skb: Pointer to the skb
* @dma: DMA address
* @len: DMA length
* @bytecount: Number of bytes
* @gso_segs: Number of GSO segments
* @compl_tag: Splitq only, unique identifier for a buffer. Used to compare
* with completion tag returned in buffer completion event.
* Because the completion tag is expected to be the same in all
* data descriptors for a given packet, and a single packet can
* span multiple buffers, we need this field to track all
* buffers associated with this completion tag independently of
* the buf_id. The tag consists of a N bit buf_id and M upper
* order "generation bits". See compl_tag_bufid_m and
* compl_tag_gen_s in struct idpf_queue. We'll use a value of -1
* to indicate the tag is not valid.
* @ctx_entry: Singleq only. Used to indicate the corresponding entry
* in the descriptor ring was used for a context descriptor and
* this buffer entry should be skipped.
*/
struct idpf_tx_buf {
void *next_to_watch;
struct sk_buff *skb;
DEFINE_DMA_UNMAP_ADDR(dma);
DEFINE_DMA_UNMAP_LEN(len);
unsigned int bytecount;
unsigned short gso_segs;
union {
int compl_tag;
bool ctx_entry;
};
};
struct idpf_tx_stash {
struct hlist_node hlist;
struct idpf_tx_buf buf;
};
/**
* struct idpf_buf_lifo - LIFO for managing OOO completions
* @top: Used to know how many buffers are left
* @size: Total size of LIFO
* @bufs: Backing array
*/
struct idpf_buf_lifo {
u16 top;
u16 size;
struct idpf_tx_stash **bufs;
};
/**
* struct idpf_tx_offload_params - Offload parameters for a given packet
* @tx_flags: Feature flags enabled for this packet
* @hdr_offsets: Offset parameter for single queue model
* @cd_tunneling: Type of tunneling enabled for single queue model
* @tso_len: Total length of payload to segment
* @mss: Segment size
* @tso_segs: Number of segments to be sent
* @tso_hdr_len: Length of headers to be duplicated
* @td_cmd: Command field to be inserted into descriptor
*/
struct idpf_tx_offload_params {
u32 tx_flags;
u32 hdr_offsets;
u32 cd_tunneling;
u32 tso_len;
u16 mss;
u16 tso_segs;
u16 tso_hdr_len;
u16 td_cmd;
};
/**
* struct idpf_tx_splitq_params
* @dtype: General descriptor info
* @eop_cmd: Type of EOP
* @compl_tag: Associated tag for completion
* @td_tag: Descriptor tunneling tag
* @offload: Offload parameters
*/
struct idpf_tx_splitq_params {
enum idpf_tx_desc_dtype_value dtype;
u16 eop_cmd;
union {
u16 compl_tag;
u16 td_tag;
};
struct idpf_tx_offload_params offload;
};
enum idpf_tx_ctx_desc_eipt_offload {
IDPF_TX_CTX_EXT_IP_NONE = 0x0,
IDPF_TX_CTX_EXT_IP_IPV6 = 0x1,
IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2,
IDPF_TX_CTX_EXT_IP_IPV4 = 0x3
};
/* Checksum offload bits decoded from the receive descriptor. */
struct idpf_rx_csum_decoded {
u32 l3l4p : 1;
u32 ipe : 1;
u32 eipe : 1;
u32 eudpe : 1;
u32 ipv6exadd : 1;
u32 l4e : 1;
u32 pprs : 1;
u32 nat : 1;
u32 raw_csum_inv : 1;
u32 raw_csum : 16;
};
struct idpf_rx_extracted {
unsigned int size;
u16 rx_ptype;
};
#define IDPF_TX_COMPLQ_CLEAN_BUDGET 256
#define IDPF_TX_MIN_PKT_LEN 17
#define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1
#define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \
sizeof(struct idpf_flex_tx_desc))
#define IDPF_TX_DESCS_FOR_CTX 1
/* TX descriptors needed, worst case */
#define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \
IDPF_TX_DESCS_PER_CACHE_LINE + \
IDPF_TX_DESCS_FOR_SKB_DATA_PTR)
/* The size limit for a transmit buffer in a descriptor is (16K - 1).
* In order to align with the read requests we will align the value to
* the nearest 4K which represents our maximum read request size.
*/
#define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K
#define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1)
#define IDPF_TX_MAX_DESC_DATA_ALIGNED \
ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE)
#define IDPF_RX_DMA_ATTR \
(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
#define IDPF_RX_DESC(rxq, i) \
(&(((union virtchnl2_rx_desc *)((rxq)->desc_ring))[i]))
struct idpf_rx_buf {
struct page *page;
unsigned int page_offset;
u16 truesize;
};
#define IDPF_RX_MAX_PTYPE_PROTO_IDS 32
#define IDPF_RX_MAX_PTYPE_SZ (sizeof(struct virtchnl2_ptype) + \
(sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS))
#define IDPF_RX_PTYPE_HDR_SZ sizeof(struct virtchnl2_get_ptype_info)
#define IDPF_RX_MAX_PTYPES_PER_BUF \
DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \
IDPF_RX_MAX_PTYPE_SZ)
#define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count)
#define IDPF_TUN_IP_GRE (\
IDPF_PTYPE_TUNNEL_IP |\
IDPF_PTYPE_TUNNEL_IP_GRENAT)
#define IDPF_TUN_IP_GRE_MAC (\
IDPF_TUN_IP_GRE |\
IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC)
#define IDPF_RX_MAX_PTYPE 1024
#define IDPF_RX_MAX_BASE_PTYPE 256
#define IDPF_INVALID_PTYPE_ID 0xFFFF
/* Packet type non-ip values */
enum idpf_rx_ptype_l2 {
IDPF_RX_PTYPE_L2_RESERVED = 0,
IDPF_RX_PTYPE_L2_MAC_PAY2 = 1,
IDPF_RX_PTYPE_L2_TIMESYNC_PAY2 = 2,
IDPF_RX_PTYPE_L2_FIP_PAY2 = 3,
IDPF_RX_PTYPE_L2_OUI_PAY2 = 4,
IDPF_RX_PTYPE_L2_MACCNTRL_PAY2 = 5,
IDPF_RX_PTYPE_L2_LLDP_PAY2 = 6,
IDPF_RX_PTYPE_L2_ECP_PAY2 = 7,
IDPF_RX_PTYPE_L2_EVB_PAY2 = 8,
IDPF_RX_PTYPE_L2_QCN_PAY2 = 9,
IDPF_RX_PTYPE_L2_EAPOL_PAY2 = 10,
IDPF_RX_PTYPE_L2_ARP = 11,
};
enum idpf_rx_ptype_outer_ip {
IDPF_RX_PTYPE_OUTER_L2 = 0,
IDPF_RX_PTYPE_OUTER_IP = 1,
};
#define IDPF_RX_PTYPE_TO_IPV(ptype, ipv) \
(((ptype)->outer_ip == IDPF_RX_PTYPE_OUTER_IP) && \
((ptype)->outer_ip_ver == (ipv)))
enum idpf_rx_ptype_outer_ip_ver {
IDPF_RX_PTYPE_OUTER_NONE = 0,
IDPF_RX_PTYPE_OUTER_IPV4 = 1,
IDPF_RX_PTYPE_OUTER_IPV6 = 2,
};
enum idpf_rx_ptype_outer_fragmented {
IDPF_RX_PTYPE_NOT_FRAG = 0,
IDPF_RX_PTYPE_FRAG = 1,
};
enum idpf_rx_ptype_tunnel_type {
IDPF_RX_PTYPE_TUNNEL_NONE = 0,
IDPF_RX_PTYPE_TUNNEL_IP_IP = 1,
IDPF_RX_PTYPE_TUNNEL_IP_GRENAT = 2,
IDPF_RX_PTYPE_TUNNEL_IP_GRENAT_MAC = 3,
IDPF_RX_PTYPE_TUNNEL_IP_GRENAT_MAC_VLAN = 4,
};
enum idpf_rx_ptype_tunnel_end_prot {
IDPF_RX_PTYPE_TUNNEL_END_NONE = 0,
IDPF_RX_PTYPE_TUNNEL_END_IPV4 = 1,
IDPF_RX_PTYPE_TUNNEL_END_IPV6 = 2,
};
enum idpf_rx_ptype_inner_prot {
IDPF_RX_PTYPE_INNER_PROT_NONE = 0,
IDPF_RX_PTYPE_INNER_PROT_UDP = 1,
IDPF_RX_PTYPE_INNER_PROT_TCP = 2,
IDPF_RX_PTYPE_INNER_PROT_SCTP = 3,
IDPF_RX_PTYPE_INNER_PROT_ICMP = 4,
IDPF_RX_PTYPE_INNER_PROT_TIMESYNC = 5,
};
enum idpf_rx_ptype_payload_layer {
IDPF_RX_PTYPE_PAYLOAD_LAYER_NONE = 0,
IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY2 = 1,
IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY3 = 2,
IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY4 = 3,
};
enum idpf_tunnel_state {
IDPF_PTYPE_TUNNEL_IP = BIT(0),
IDPF_PTYPE_TUNNEL_IP_GRENAT = BIT(1),
IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC = BIT(2),
};
struct idpf_ptype_state {
bool outer_ip;
bool outer_frag;
u8 tunnel_state;
};
struct idpf_rx_ptype_decoded {
u32 ptype:10;
u32 known:1;
u32 outer_ip:1;
u32 outer_ip_ver:2;
u32 outer_frag:1;
u32 tunnel_type:3;
u32 tunnel_end_prot:2;
u32 tunnel_end_frag:1;
u32 inner_prot:4;
u32 payload_layer:3;
};
/**
* enum idpf_queue_flags_t
* @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to
* identify new descriptor writebacks on the ring. HW sets
* the gen bit to 1 on the first writeback of any given
* descriptor. After the ring wraps, HW sets the gen bit of
* those descriptors to 0, and continues flipping
* 0->1 or 1->0 on each ring wrap. SW maintains its own
* gen bit to know what value will indicate writebacks on
* the next pass around the ring. E.g. it is initialized
* to 1 and knows that reading a gen bit of 1 in any
* descriptor on the initial pass of the ring indicates a
* writeback. It also flips on every ring wrap.
* @__IDPF_RFLQ_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW bit
* and RFLGQ_GEN is the SW bit.
* @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling
* @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions
* @__IDPF_Q_POLL_MODE: Enable poll mode
* @__IDPF_Q_FLAGS_NBITS: Must be last
*/
enum idpf_queue_flags_t {
__IDPF_Q_GEN_CHK,
__IDPF_RFLQ_GEN_CHK,
__IDPF_Q_FLOW_SCH_EN,
__IDPF_Q_SW_MARKER,
__IDPF_Q_POLL_MODE,
__IDPF_Q_FLAGS_NBITS,
};
/**
* struct idpf_vec_regs
* @dyn_ctl_reg: Dynamic control interrupt register offset
* @itrn_reg: Interrupt Throttling Rate register offset
* @itrn_index_spacing: Register spacing between ITR registers of the same
* vector
*/
struct idpf_vec_regs {
u32 dyn_ctl_reg;
u32 itrn_reg;
u32 itrn_index_spacing;
};
/**
* struct idpf_intr_reg
* @dyn_ctl: Dynamic control interrupt register
* @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable
* @dyn_ctl_itridx_s: Register bit offset for ITR index
* @dyn_ctl_itridx_m: Mask for ITR index
* @dyn_ctl_intrvl_s: Register bit offset for ITR interval
* @rx_itr: RX ITR register
* @tx_itr: TX ITR register
* @icr_ena: Interrupt cause register offset
* @icr_ena_ctlq_m: Mask for ICR
*/
struct idpf_intr_reg {
void __iomem *dyn_ctl;
u32 dyn_ctl_intena_m;
u32 dyn_ctl_itridx_s;
u32 dyn_ctl_itridx_m;
u32 dyn_ctl_intrvl_s;
void __iomem *rx_itr;
void __iomem *tx_itr;
void __iomem *icr_ena;
u32 icr_ena_ctlq_m;
};
/**
* struct idpf_q_vector
* @vport: Vport back pointer
* @affinity_mask: CPU affinity mask
* @napi: napi handler
* @v_idx: Vector index
* @intr_reg: See struct idpf_intr_reg
* @num_txq: Number of TX queues
* @tx: Array of TX queues to service
* @tx_dim: Data for TX net_dim algorithm
* @tx_itr_value: TX interrupt throttling rate
* @tx_intr_mode: Dynamic ITR or not
* @tx_itr_idx: TX ITR index
* @num_rxq: Number of RX queues
* @rx: Array of RX queues to service
* @rx_dim: Data for RX net_dim algorithm
* @rx_itr_value: RX interrupt throttling rate
* @rx_intr_mode: Dynamic ITR or not
* @rx_itr_idx: RX ITR index
* @num_bufq: Number of buffer queues
* @bufq: Array of buffer queues to service
* @total_events: Number of interrupts processed
* @name: Queue vector name
*/
struct idpf_q_vector {
struct idpf_vport *vport;
cpumask_t affinity_mask;
struct napi_struct napi;
u16 v_idx;
struct idpf_intr_reg intr_reg;
u16 num_txq;
struct idpf_queue **tx;
struct dim tx_dim;
u16 tx_itr_value;
bool tx_intr_mode;
u32 tx_itr_idx;
u16 num_rxq;
struct idpf_queue **rx;
struct dim rx_dim;
u16 rx_itr_value;
bool rx_intr_mode;
u32 rx_itr_idx;
u16 num_bufq;
struct idpf_queue **bufq;
u16 total_events;
char *name;
};
struct idpf_rx_queue_stats {
u64_stats_t packets;
u64_stats_t bytes;
u64_stats_t rsc_pkts;
u64_stats_t hw_csum_err;
u64_stats_t hsplit_pkts;
u64_stats_t hsplit_buf_ovf;
u64_stats_t bad_descs;
};
struct idpf_tx_queue_stats {
u64_stats_t packets;
u64_stats_t bytes;
u64_stats_t lso_pkts;
u64_stats_t linearize;
u64_stats_t q_busy;
u64_stats_t skb_drops;
u64_stats_t dma_map_errs;
};
struct idpf_cleaned_stats {
u32 packets;
u32 bytes;
};
union idpf_queue_stats {
struct idpf_rx_queue_stats rx;
struct idpf_tx_queue_stats tx;
};
#define IDPF_ITR_DYNAMIC 1
#define IDPF_ITR_MAX 0x1FE0
#define IDPF_ITR_20K 0x0032
#define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */
#define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */
#define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK)
#define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode)
#define IDPF_ITR_TX_DEF IDPF_ITR_20K
#define IDPF_ITR_RX_DEF IDPF_ITR_20K
/* Index used for 'No ITR' update in DYN_CTL register */
#define IDPF_NO_ITR_UPDATE_IDX 3
#define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt)
#define IDPF_DIM_DEFAULT_PROFILE_IX 1
/**
* struct idpf_queue
* @dev: Device back pointer for DMA mapping
* @vport: Back pointer to associated vport
* @txq_grp: See struct idpf_txq_group
* @rxq_grp: See struct idpf_rxq_group
* @idx: For buffer queue, it is used as group id, either 0 or 1. On clean,
* buffer queue uses this index to determine which group of refill queues
* to clean.
* For TX queue, it is used as index to map between TX queue group and
* hot path TX pointers stored in vport. Used in both singleq/splitq.
* For RX queue, it is used to index to total RX queue across groups and
* used for skb reporting.
* @tail: Tail offset. Used for both queue models single and split. In splitq
* model relevant only for TX queue and RX queue.
* @tx_buf: See struct idpf_tx_buf
* @rx_buf: Struct with RX buffer related members
* @rx_buf.buf: See struct idpf_rx_buf
* @rx_buf.hdr_buf_pa: DMA handle
* @rx_buf.hdr_buf_va: Virtual address
* @pp: Page pool pointer
* @skb: Pointer to the skb
* @q_type: Queue type (TX, RX, TX completion, RX buffer)
* @q_id: Queue id
* @desc_count: Number of descriptors
* @next_to_use: Next descriptor to use. Relevant in both split & single txq
* and bufq.
* @next_to_clean: Next descriptor to clean. In split queue model, only
* relevant to TX completion queue and RX queue.
* @next_to_alloc: RX buffer to allocate at. Used only for RX. In splitq model
* only relevant to RX queue.
* @flags: See enum idpf_queue_flags_t
* @q_stats: See union idpf_queue_stats
* @stats_sync: See struct u64_stats_sync
* @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on
* the TX completion queue, it can be for any TXQ associated
* with that completion queue. This means we can clean up to
* N TXQs during a single call to clean the completion queue.
* cleaned_bytes|pkts tracks the clean stats per TXQ during
* that single call to clean the completion queue. By doing so,
* we can update BQL with aggregate cleaned stats for each TXQ
* only once at the end of the cleaning routine.
* @cleaned_pkts: Number of packets cleaned for the above said case
* @rx_hsplit_en: RX headsplit enable
* @rx_hbuf_size: Header buffer size
* @rx_buf_size: Buffer size
* @rx_max_pkt_size: RX max packet size
* @rx_buf_stride: RX buffer stride
* @rx_buffer_low_watermark: RX buffer low watermark
* @rxdids: Supported RX descriptor ids
* @q_vector: Backreference to associated vector
* @size: Length of descriptor ring in bytes
* @dma: Physical address of ring
* @desc_ring: Descriptor ring memory
* @tx_max_bufs: Max buffers that can be transmitted with scatter-gather
* @tx_min_pkt_len: Min supported packet length
* @num_completions: Only relevant for TX completion queue. It tracks the
* number of completions received to compare against the
* number of completions pending, as accumulated by the
* TX queues.
* @buf_stack: Stack of empty buffers to store buffer info for out of order
* buffer completions. See struct idpf_buf_lifo.
* @compl_tag_bufid_m: Completion tag buffer id mask
* @compl_tag_gen_s: Completion tag generation bit
* The format of the completion tag will change based on the TXQ
* descriptor ring size so that we can maintain roughly the same level
* of "uniqueness" across all descriptor sizes. For example, if the
* TXQ descriptor ring size is 64 (the minimum size supported), the
* completion tag will be formatted as below:
* 15 6 5 0
* --------------------------------
* | GEN=0-1023 |IDX = 0-63|
* --------------------------------
*
* This gives us 64*1024 = 65536 possible unique values. Similarly, if
* the TXQ descriptor ring size is 8160 (the maximum size supported),
* the completion tag will be formatted as below:
* 15 13 12 0
* --------------------------------
* |GEN | IDX = 0-8159 |
* --------------------------------
*
* This gives us 8*8160 = 65280 possible unique values.
* @compl_tag_cur_gen: Used to keep track of current completion tag generation
* @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset
* @sched_buf_hash: Hash table to stores buffers
*/
struct idpf_queue {
struct device *dev;
struct idpf_vport *vport;
union {
struct idpf_txq_group *txq_grp;
struct idpf_rxq_group *rxq_grp;
};
u16 idx;
void __iomem *tail;
union {
struct idpf_tx_buf *tx_buf;
struct {
struct idpf_rx_buf *buf;
dma_addr_t hdr_buf_pa;
void *hdr_buf_va;
} rx_buf;
};
struct page_pool *pp;
struct sk_buff *skb;
u16 q_type;
u32 q_id;
u16 desc_count;
u16 next_to_use;
u16 next_to_clean;
u16 next_to_alloc;
DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
union idpf_queue_stats q_stats;
struct u64_stats_sync stats_sync;
u32 cleaned_bytes;
u16 cleaned_pkts;
bool rx_hsplit_en;
u16 rx_hbuf_size;
u16 rx_buf_size;
u16 rx_max_pkt_size;
u16 rx_buf_stride;
u8 rx_buffer_low_watermark;
u64 rxdids;
struct idpf_q_vector *q_vector;
unsigned int size;
dma_addr_t dma;
void *desc_ring;
u16 tx_max_bufs;
u8 tx_min_pkt_len;
u32 num_completions;
struct idpf_buf_lifo buf_stack;
u16 compl_tag_bufid_m;
u16 compl_tag_gen_s;
u16 compl_tag_cur_gen;
u16 compl_tag_gen_max;
DECLARE_HASHTABLE(sched_buf_hash, 12);
} ____cacheline_internodealigned_in_smp;
/**
* struct idpf_sw_queue
* @next_to_clean: Next descriptor to clean
* @next_to_alloc: Buffer to allocate at
* @flags: See enum idpf_queue_flags_t
* @ring: Pointer to the ring
* @desc_count: Descriptor count
* @dev: Device back pointer for DMA mapping
*
* Software queues are used in splitq mode to manage buffers between rxq
* producer and the bufq consumer. These are required in order to maintain a
* lockless buffer management system and are strictly software only constructs.
*/
struct idpf_sw_queue {
u16 next_to_clean;
u16 next_to_alloc;
DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
u16 *ring;
u16 desc_count;
struct device *dev;
} ____cacheline_internodealigned_in_smp;
/**
* struct idpf_rxq_set
* @rxq: RX queue
* @refillq0: Pointer to refill queue 0
* @refillq1: Pointer to refill queue 1
*
* Splitq only. idpf_rxq_set associates an rxq with at an array of refillqs.
* Each rxq needs a refillq to return used buffers back to the respective bufq.
* Bufqs then clean these refillqs for buffers to give to hardware.
*/
struct idpf_rxq_set {
struct idpf_queue rxq;
struct idpf_sw_queue *refillq0;
struct idpf_sw_queue *refillq1;
};
/**
* struct idpf_bufq_set
* @bufq: Buffer queue
* @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets
* in idpf_rxq_group.
* @refillqs: Pointer to refill queues array.
*
* Splitq only. idpf_bufq_set associates a bufq to an array of refillqs.
* In this bufq_set, there will be one refillq for each rxq in this rxq_group.
* Used buffers received by rxqs will be put on refillqs which bufqs will
* clean to return new buffers back to hardware.
*
* Buffers needed by some number of rxqs associated in this rxq_group are
* managed by at most two bufqs (depending on performance configuration).
*/
struct idpf_bufq_set {
struct idpf_queue bufq;
int num_refillqs;
struct idpf_sw_queue *refillqs;
};
/**
* struct idpf_rxq_group
* @vport: Vport back pointer
* @singleq: Struct with single queue related members
* @singleq.num_rxq: Number of RX queues associated
* @singleq.rxqs: Array of RX queue pointers
* @splitq: Struct with split queue related members
* @splitq.num_rxq_sets: Number of RX queue sets
* @splitq.rxq_sets: Array of RX queue sets
* @splitq.bufq_sets: Buffer queue set pointer
*
* In singleq mode, an rxq_group is simply an array of rxqs. In splitq, a
* rxq_group contains all the rxqs, bufqs and refillqs needed to
* manage buffers in splitq mode.
*/
struct idpf_rxq_group {
struct idpf_vport *vport;
union {
struct {
u16 num_rxq;
struct idpf_queue *rxqs[IDPF_LARGE_MAX_Q];
} singleq;
struct {
u16 num_rxq_sets;
struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q];
struct idpf_bufq_set *bufq_sets;
} splitq;
};
};
/**
* struct idpf_txq_group
* @vport: Vport back pointer
* @num_txq: Number of TX queues associated
* @txqs: Array of TX queue pointers
* @complq: Associated completion queue pointer, split queue only
* @num_completions_pending: Total number of completions pending for the
* completion queue, acculumated for all TX queues
* associated with that completion queue.
*
* Between singleq and splitq, a txq_group is largely the same except for the
* complq. In splitq a single complq is responsible for handling completions
* for some number of txqs associated in this txq_group.
*/
struct idpf_txq_group {
struct idpf_vport *vport;
u16 num_txq;
struct idpf_queue *txqs[IDPF_LARGE_MAX_Q];
struct idpf_queue *complq;
u32 num_completions_pending;
};
/**
* idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag
* @size: transmit request size in bytes
*
* In the case where a large frag (>= 16K) needs to be split across multiple
* descriptors, we need to assume that we can have no more than 12K of data
* per descriptor due to hardware alignment restrictions (4K alignment).
*/
static inline u32 idpf_size_to_txd_count(unsigned int size)
{
return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED);
}
/**
* idpf_tx_singleq_build_ctob - populate command tag offset and size
* @td_cmd: Command to be filled in desc
* @td_offset: Offset to be filled in desc
* @size: Size of the buffer
* @td_tag: td tag to be filled
*
* Returns the 64 bit value populated with the input parameters
*/
static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset,
unsigned int size, u64 td_tag)
{
return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA |
(td_cmd << IDPF_TXD_QW1_CMD_S) |
(td_offset << IDPF_TXD_QW1_OFFSET_S) |
((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) |
(td_tag << IDPF_TXD_QW1_L2TAG1_S));
}
void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
struct idpf_tx_splitq_params *params,
u16 td_cmd, u16 size);
void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
struct idpf_tx_splitq_params *params,
u16 td_cmd, u16 size);
/**
* idpf_tx_splitq_build_desc - determine which type of data descriptor to build
* @desc: descriptor to populate
* @params: pointer to tx params struct
* @td_cmd: command to be filled in desc
* @size: size of buffer
*/
static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc,
struct idpf_tx_splitq_params *params,
u16 td_cmd, u16 size)
{
if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2)
idpf_tx_splitq_build_ctb(desc, params, td_cmd, size);
else
idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size);
}
/**
* idpf_alloc_page - Allocate a new RX buffer from the page pool
* @pool: page_pool to allocate from
* @buf: metadata struct to populate with page info
* @buf_size: 2K or 4K
*
* Returns &dma_addr_t to be passed to HW for Rx, %DMA_MAPPING_ERROR otherwise.
*/
static inline dma_addr_t idpf_alloc_page(struct page_pool *pool,
struct idpf_rx_buf *buf,
unsigned int buf_size)
{
if (buf_size == IDPF_RX_BUF_2048)
buf->page = page_pool_dev_alloc_frag(pool, &buf->page_offset,
buf_size);
else
buf->page = page_pool_dev_alloc_pages(pool);
if (!buf->page)
return DMA_MAPPING_ERROR;
buf->truesize = buf_size;
return page_pool_get_dma_addr(buf->page) + buf->page_offset +
pool->p.offset;
}
/**
* idpf_rx_put_page - Return RX buffer page to pool
* @rx_buf: RX buffer metadata struct
*/
static inline void idpf_rx_put_page(struct idpf_rx_buf *rx_buf)
{
page_pool_put_page(rx_buf->page->pp, rx_buf->page,
rx_buf->truesize, true);
rx_buf->page = NULL;
}
/**
* idpf_rx_sync_for_cpu - Synchronize DMA buffer
* @rx_buf: RX buffer metadata struct
* @len: frame length from descriptor
*/
static inline void idpf_rx_sync_for_cpu(struct idpf_rx_buf *rx_buf, u32 len)
{
struct page *page = rx_buf->page;
struct page_pool *pp = page->pp;
dma_sync_single_range_for_cpu(pp->p.dev,
page_pool_get_dma_addr(page),
rx_buf->page_offset + pp->p.offset, len,
page_pool_get_dma_dir(pp));
}
int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget);
void idpf_vport_init_num_qs(struct idpf_vport *vport,
struct virtchnl2_create_vport *vport_msg);
void idpf_vport_calc_num_q_desc(struct idpf_vport *vport);
int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index,
struct virtchnl2_create_vport *vport_msg,
struct idpf_vport_max_q *max_q);
void idpf_vport_calc_num_q_groups(struct idpf_vport *vport);
int idpf_vport_queues_alloc(struct idpf_vport *vport);
void idpf_vport_queues_rel(struct idpf_vport *vport);
void idpf_vport_intr_rel(struct idpf_vport *vport);
int idpf_vport_intr_alloc(struct idpf_vport *vport);
void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector);
void idpf_vport_intr_deinit(struct idpf_vport *vport);
int idpf_vport_intr_init(struct idpf_vport *vport);
enum pkt_hash_types idpf_ptype_to_htype(const struct idpf_rx_ptype_decoded *decoded);
int idpf_config_rss(struct idpf_vport *vport);
int idpf_init_rss(struct idpf_vport *vport);
void idpf_deinit_rss(struct idpf_vport *vport);
int idpf_rx_bufs_init_all(struct idpf_vport *vport);
void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
unsigned int size);
struct sk_buff *idpf_rx_construct_skb(struct idpf_queue *rxq,
struct idpf_rx_buf *rx_buf,
unsigned int size);
bool idpf_init_rx_buf_hw_alloc(struct idpf_queue *rxq, struct idpf_rx_buf *buf);
void idpf_rx_buf_hw_update(struct idpf_queue *rxq, u32 val);
void idpf_tx_buf_hw_update(struct idpf_queue *tx_q, u32 val,
bool xmit_more);
unsigned int idpf_size_to_txd_count(unsigned int size);
netdev_tx_t idpf_tx_drop_skb(struct idpf_queue *tx_q, struct sk_buff *skb);
void idpf_tx_dma_map_error(struct idpf_queue *txq, struct sk_buff *skb,
struct idpf_tx_buf *first, u16 ring_idx);
unsigned int idpf_tx_desc_count_required(struct idpf_queue *txq,
struct sk_buff *skb);
bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs,
unsigned int count);
int idpf_tx_maybe_stop_common(struct idpf_queue *tx_q, unsigned int size);
void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue);
netdev_tx_t idpf_tx_splitq_start(struct sk_buff *skb,
struct net_device *netdev);
netdev_tx_t idpf_tx_singleq_start(struct sk_buff *skb,
struct net_device *netdev);
bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_queue *rxq,
u16 cleaned_count);
int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off);
#endif /* !_IDPF_TXRX_H_ */