blob: 933b685e7ab68d93d20704df4b0fb96bb0c63a4e [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Memory copy functions for 32-bit PowerPC.
*
* Copyright (C) 1996-2005 Paul Mackerras.
*/
#include <linux/export.h>
#include <asm/processor.h>
#include <asm/cache.h>
#include <asm/errno.h>
#include <asm/ppc_asm.h>
#include <asm/code-patching-asm.h>
#include <asm/kasan.h>
#define COPY_16_BYTES \
lwz r7,4(r4); \
lwz r8,8(r4); \
lwz r9,12(r4); \
lwzu r10,16(r4); \
stw r7,4(r6); \
stw r8,8(r6); \
stw r9,12(r6); \
stwu r10,16(r6)
#define COPY_16_BYTES_WITHEX(n) \
8 ## n ## 0: \
lwz r7,4(r4); \
8 ## n ## 1: \
lwz r8,8(r4); \
8 ## n ## 2: \
lwz r9,12(r4); \
8 ## n ## 3: \
lwzu r10,16(r4); \
8 ## n ## 4: \
stw r7,4(r6); \
8 ## n ## 5: \
stw r8,8(r6); \
8 ## n ## 6: \
stw r9,12(r6); \
8 ## n ## 7: \
stwu r10,16(r6)
#define COPY_16_BYTES_EXCODE(n) \
9 ## n ## 0: \
addi r5,r5,-(16 * n); \
b 104f; \
9 ## n ## 1: \
addi r5,r5,-(16 * n); \
b 105f; \
EX_TABLE(8 ## n ## 0b,9 ## n ## 0b); \
EX_TABLE(8 ## n ## 1b,9 ## n ## 0b); \
EX_TABLE(8 ## n ## 2b,9 ## n ## 0b); \
EX_TABLE(8 ## n ## 3b,9 ## n ## 0b); \
EX_TABLE(8 ## n ## 4b,9 ## n ## 1b); \
EX_TABLE(8 ## n ## 5b,9 ## n ## 1b); \
EX_TABLE(8 ## n ## 6b,9 ## n ## 1b); \
EX_TABLE(8 ## n ## 7b,9 ## n ## 1b)
.text
CACHELINE_BYTES = L1_CACHE_BYTES
LG_CACHELINE_BYTES = L1_CACHE_SHIFT
CACHELINE_MASK = (L1_CACHE_BYTES-1)
#ifndef CONFIG_KASAN
_GLOBAL(memset16)
rlwinm. r0 ,r5, 31, 1, 31
addi r6, r3, -4
beq- 2f
rlwimi r4 ,r4 ,16 ,0 ,15
mtctr r0
1: stwu r4, 4(r6)
bdnz 1b
2: andi. r0, r5, 1
beqlr
sth r4, 4(r6)
blr
EXPORT_SYMBOL(memset16)
#endif
/*
* Use dcbz on the complete cache lines in the destination
* to set them to zero. This requires that the destination
* area is cacheable. -- paulus
*
* During early init, cache might not be active yet, so dcbz cannot be used.
* We therefore skip the optimised bloc that uses dcbz. This jump is
* replaced by a nop once cache is active. This is done in machine_init()
*/
_GLOBAL_KASAN(memset)
cmplwi 0,r5,4
blt 7f
rlwimi r4,r4,8,16,23
rlwimi r4,r4,16,0,15
stw r4,0(r3)
beqlr
andi. r0,r3,3
add r5,r0,r5
subf r6,r0,r3
cmplwi 0,r4,0
/*
* Skip optimised bloc until cache is enabled. Will be replaced
* by 'bne' during boot to use normal procedure if r4 is not zero
*/
5: b 2f
patch_site 5b, patch__memset_nocache
clrlwi r7,r6,32-LG_CACHELINE_BYTES
add r8,r7,r5
srwi r9,r8,LG_CACHELINE_BYTES
addic. r9,r9,-1 /* total number of complete cachelines */
ble 2f
xori r0,r7,CACHELINE_MASK & ~3
srwi. r0,r0,2
beq 3f
mtctr r0
4: stwu r4,4(r6)
bdnz 4b
3: mtctr r9
li r7,4
10: dcbz r7,r6
addi r6,r6,CACHELINE_BYTES
bdnz 10b
clrlwi r5,r8,32-LG_CACHELINE_BYTES
addi r5,r5,4
2: srwi r0,r5,2
mtctr r0
bdz 6f
1: stwu r4,4(r6)
bdnz 1b
6: andi. r5,r5,3
beqlr
mtctr r5
addi r6,r6,3
8: stbu r4,1(r6)
bdnz 8b
blr
7: cmpwi 0,r5,0
beqlr
mtctr r5
addi r6,r3,-1
9: stbu r4,1(r6)
bdnz 9b
blr
EXPORT_SYMBOL(memset)
EXPORT_SYMBOL_KASAN(memset)
/*
* This version uses dcbz on the complete cache lines in the
* destination area to reduce memory traffic. This requires that
* the destination area is cacheable.
* We only use this version if the source and dest don't overlap.
* -- paulus.
*
* During early init, cache might not be active yet, so dcbz cannot be used.
* We therefore jump to generic_memcpy which doesn't use dcbz. This jump is
* replaced by a nop once cache is active. This is done in machine_init()
*/
_GLOBAL_KASAN(memmove)
cmplw 0,r3,r4
bgt backwards_memcpy
/* fall through */
_GLOBAL_KASAN(memcpy)
1: b generic_memcpy
patch_site 1b, patch__memcpy_nocache
add r7,r3,r5 /* test if the src & dst overlap */
add r8,r4,r5
cmplw 0,r4,r7
cmplw 1,r3,r8
crand 0,0,4 /* cr0.lt &= cr1.lt */
blt generic_memcpy /* if regions overlap */
addi r4,r4,-4
addi r6,r3,-4
neg r0,r3
andi. r0,r0,CACHELINE_MASK /* # bytes to start of cache line */
beq 58f
cmplw 0,r5,r0 /* is this more than total to do? */
blt 63f /* if not much to do */
andi. r8,r0,3 /* get it word-aligned first */
subf r5,r0,r5
mtctr r8
beq+ 61f
70: lbz r9,4(r4) /* do some bytes */
addi r4,r4,1
addi r6,r6,1
stb r9,3(r6)
bdnz 70b
61: srwi. r0,r0,2
mtctr r0
beq 58f
72: lwzu r9,4(r4) /* do some words */
stwu r9,4(r6)
bdnz 72b
58: srwi. r0,r5,LG_CACHELINE_BYTES /* # complete cachelines */
clrlwi r5,r5,32-LG_CACHELINE_BYTES
li r11,4
mtctr r0
beq 63f
53:
dcbz r11,r6
COPY_16_BYTES
#if L1_CACHE_BYTES >= 32
COPY_16_BYTES
#if L1_CACHE_BYTES >= 64
COPY_16_BYTES
COPY_16_BYTES
#if L1_CACHE_BYTES >= 128
COPY_16_BYTES
COPY_16_BYTES
COPY_16_BYTES
COPY_16_BYTES
#endif
#endif
#endif
bdnz 53b
63: srwi. r0,r5,2
mtctr r0
beq 64f
30: lwzu r0,4(r4)
stwu r0,4(r6)
bdnz 30b
64: andi. r0,r5,3
mtctr r0
beq+ 65f
addi r4,r4,3
addi r6,r6,3
40: lbzu r0,1(r4)
stbu r0,1(r6)
bdnz 40b
65: blr
EXPORT_SYMBOL(memcpy)
EXPORT_SYMBOL(memmove)
EXPORT_SYMBOL_KASAN(memcpy)
EXPORT_SYMBOL_KASAN(memmove)
generic_memcpy:
srwi. r7,r5,3
addi r6,r3,-4
addi r4,r4,-4
beq 2f /* if less than 8 bytes to do */
andi. r0,r6,3 /* get dest word aligned */
mtctr r7
bne 5f
1: lwz r7,4(r4)
lwzu r8,8(r4)
stw r7,4(r6)
stwu r8,8(r6)
bdnz 1b
andi. r5,r5,7
2: cmplwi 0,r5,4
blt 3f
lwzu r0,4(r4)
addi r5,r5,-4
stwu r0,4(r6)
3: cmpwi 0,r5,0
beqlr
mtctr r5
addi r4,r4,3
addi r6,r6,3
4: lbzu r0,1(r4)
stbu r0,1(r6)
bdnz 4b
blr
5: subfic r0,r0,4
mtctr r0
6: lbz r7,4(r4)
addi r4,r4,1
stb r7,4(r6)
addi r6,r6,1
bdnz 6b
subf r5,r0,r5
rlwinm. r7,r5,32-3,3,31
beq 2b
mtctr r7
b 1b
_GLOBAL(backwards_memcpy)
rlwinm. r7,r5,32-3,3,31 /* r0 = r5 >> 3 */
add r6,r3,r5
add r4,r4,r5
beq 2f
andi. r0,r6,3
mtctr r7
bne 5f
1: lwz r7,-4(r4)
lwzu r8,-8(r4)
stw r7,-4(r6)
stwu r8,-8(r6)
bdnz 1b
andi. r5,r5,7
2: cmplwi 0,r5,4
blt 3f
lwzu r0,-4(r4)
subi r5,r5,4
stwu r0,-4(r6)
3: cmpwi 0,r5,0
beqlr
mtctr r5
4: lbzu r0,-1(r4)
stbu r0,-1(r6)
bdnz 4b
blr
5: mtctr r0
6: lbzu r7,-1(r4)
stbu r7,-1(r6)
bdnz 6b
subf r5,r0,r5
rlwinm. r7,r5,32-3,3,31
beq 2b
mtctr r7
b 1b
_GLOBAL(__copy_tofrom_user)
addi r4,r4,-4
addi r6,r3,-4
neg r0,r3
andi. r0,r0,CACHELINE_MASK /* # bytes to start of cache line */
beq 58f
cmplw 0,r5,r0 /* is this more than total to do? */
blt 63f /* if not much to do */
andi. r8,r0,3 /* get it word-aligned first */
mtctr r8
beq+ 61f
70: lbz r9,4(r4) /* do some bytes */
71: stb r9,4(r6)
addi r4,r4,1
addi r6,r6,1
bdnz 70b
61: subf r5,r0,r5
srwi. r0,r0,2
mtctr r0
beq 58f
72: lwzu r9,4(r4) /* do some words */
73: stwu r9,4(r6)
bdnz 72b
EX_TABLE(70b,100f)
EX_TABLE(71b,101f)
EX_TABLE(72b,102f)
EX_TABLE(73b,103f)
58: srwi. r0,r5,LG_CACHELINE_BYTES /* # complete cachelines */
clrlwi r5,r5,32-LG_CACHELINE_BYTES
li r11,4
beq 63f
/* Here we decide how far ahead to prefetch the source */
li r3,4
cmpwi r0,1
li r7,0
ble 114f
li r7,1
#if MAX_COPY_PREFETCH > 1
/* Heuristically, for large transfers we prefetch
MAX_COPY_PREFETCH cachelines ahead. For small transfers
we prefetch 1 cacheline ahead. */
cmpwi r0,MAX_COPY_PREFETCH
ble 112f
li r7,MAX_COPY_PREFETCH
112: mtctr r7
111: dcbt r3,r4
addi r3,r3,CACHELINE_BYTES
bdnz 111b
#else
dcbt r3,r4
addi r3,r3,CACHELINE_BYTES
#endif /* MAX_COPY_PREFETCH > 1 */
114: subf r8,r7,r0
mr r0,r7
mtctr r8
53: dcbt r3,r4
54: dcbz r11,r6
EX_TABLE(54b,105f)
/* the main body of the cacheline loop */
COPY_16_BYTES_WITHEX(0)
#if L1_CACHE_BYTES >= 32
COPY_16_BYTES_WITHEX(1)
#if L1_CACHE_BYTES >= 64
COPY_16_BYTES_WITHEX(2)
COPY_16_BYTES_WITHEX(3)
#if L1_CACHE_BYTES >= 128
COPY_16_BYTES_WITHEX(4)
COPY_16_BYTES_WITHEX(5)
COPY_16_BYTES_WITHEX(6)
COPY_16_BYTES_WITHEX(7)
#endif
#endif
#endif
bdnz 53b
cmpwi r0,0
li r3,4
li r7,0
bne 114b
63: srwi. r0,r5,2
mtctr r0
beq 64f
30: lwzu r0,4(r4)
31: stwu r0,4(r6)
bdnz 30b
64: andi. r0,r5,3
mtctr r0
beq+ 65f
40: lbz r0,4(r4)
41: stb r0,4(r6)
addi r4,r4,1
addi r6,r6,1
bdnz 40b
65: li r3,0
blr
/* read fault, initial single-byte copy */
100: li r9,0
b 90f
/* write fault, initial single-byte copy */
101: li r9,1
90: subf r5,r8,r5
li r3,0
b 99f
/* read fault, initial word copy */
102: li r9,0
b 91f
/* write fault, initial word copy */
103: li r9,1
91: li r3,2
b 99f
/*
* this stuff handles faults in the cacheline loop and branches to either
* 104f (if in read part) or 105f (if in write part), after updating r5
*/
COPY_16_BYTES_EXCODE(0)
#if L1_CACHE_BYTES >= 32
COPY_16_BYTES_EXCODE(1)
#if L1_CACHE_BYTES >= 64
COPY_16_BYTES_EXCODE(2)
COPY_16_BYTES_EXCODE(3)
#if L1_CACHE_BYTES >= 128
COPY_16_BYTES_EXCODE(4)
COPY_16_BYTES_EXCODE(5)
COPY_16_BYTES_EXCODE(6)
COPY_16_BYTES_EXCODE(7)
#endif
#endif
#endif
/* read fault in cacheline loop */
104: li r9,0
b 92f
/* fault on dcbz (effectively a write fault) */
/* or write fault in cacheline loop */
105: li r9,1
92: li r3,LG_CACHELINE_BYTES
mfctr r8
add r0,r0,r8
b 106f
/* read fault in final word loop */
108: li r9,0
b 93f
/* write fault in final word loop */
109: li r9,1
93: andi. r5,r5,3
li r3,2
b 99f
/* read fault in final byte loop */
110: li r9,0
b 94f
/* write fault in final byte loop */
111: li r9,1
94: li r5,0
li r3,0
/*
* At this stage the number of bytes not copied is
* r5 + (ctr << r3), and r9 is 0 for read or 1 for write.
*/
99: mfctr r0
106: slw r3,r0,r3
add. r3,r3,r5
beq 120f /* shouldn't happen */
cmpwi 0,r9,0
bne 120f
/* for a read fault, first try to continue the copy one byte at a time */
mtctr r3
130: lbz r0,4(r4)
131: stb r0,4(r6)
addi r4,r4,1
addi r6,r6,1
bdnz 130b
/* then clear out the destination: r3 bytes starting at 4(r6) */
132: mfctr r3
120: blr
EX_TABLE(30b,108b)
EX_TABLE(31b,109b)
EX_TABLE(40b,110b)
EX_TABLE(41b,111b)
EX_TABLE(130b,132b)
EX_TABLE(131b,120b)
EXPORT_SYMBOL(__copy_tofrom_user)