|  | /* | 
|  | * Copyright 1995, Russell King. | 
|  | * Various bits and pieces copyrights include: | 
|  | *  Linus Torvalds (test_bit). | 
|  | * Big endian support: Copyright 2001, Nicolas Pitre | 
|  | *  reworked by rmk. | 
|  | * | 
|  | * bit 0 is the LSB of an "unsigned long" quantity. | 
|  | * | 
|  | * Please note that the code in this file should never be included | 
|  | * from user space.  Many of these are not implemented in assembler | 
|  | * since they would be too costly.  Also, they require privileged | 
|  | * instructions (which are not available from user mode) to ensure | 
|  | * that they are atomic. | 
|  | */ | 
|  |  | 
|  | #ifndef __ASM_ARM_BITOPS_H | 
|  | #define __ASM_ARM_BITOPS_H | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | #ifndef _LINUX_BITOPS_H | 
|  | #error only <linux/bitops.h> can be included directly | 
|  | #endif | 
|  |  | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/irqflags.h> | 
|  | #include <asm/barrier.h> | 
|  |  | 
|  | /* | 
|  | * These functions are the basis of our bit ops. | 
|  | * | 
|  | * First, the atomic bitops. These use native endian. | 
|  | */ | 
|  | static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long mask = BIT_MASK(bit); | 
|  |  | 
|  | p += BIT_WORD(bit); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | *p |= mask; | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long mask = BIT_MASK(bit); | 
|  |  | 
|  | p += BIT_WORD(bit); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | *p &= ~mask; | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long mask = BIT_MASK(bit); | 
|  |  | 
|  | p += BIT_WORD(bit); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | *p ^= mask; | 
|  | raw_local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int res; | 
|  | unsigned long mask = BIT_MASK(bit); | 
|  |  | 
|  | p += BIT_WORD(bit); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | res = *p; | 
|  | *p = res | mask; | 
|  | raw_local_irq_restore(flags); | 
|  |  | 
|  | return (res & mask) != 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int res; | 
|  | unsigned long mask = BIT_MASK(bit); | 
|  |  | 
|  | p += BIT_WORD(bit); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | res = *p; | 
|  | *p = res & ~mask; | 
|  | raw_local_irq_restore(flags); | 
|  |  | 
|  | return (res & mask) != 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int res; | 
|  | unsigned long mask = BIT_MASK(bit); | 
|  |  | 
|  | p += BIT_WORD(bit); | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | res = *p; | 
|  | *p = res ^ mask; | 
|  | raw_local_irq_restore(flags); | 
|  |  | 
|  | return (res & mask) != 0; | 
|  | } | 
|  |  | 
|  | #include <asm-generic/bitops/non-atomic.h> | 
|  |  | 
|  | /* | 
|  | *  A note about Endian-ness. | 
|  | *  ------------------------- | 
|  | * | 
|  | * When the ARM is put into big endian mode via CR15, the processor | 
|  | * merely swaps the order of bytes within words, thus: | 
|  | * | 
|  | *          ------------ physical data bus bits ----------- | 
|  | *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0 | 
|  | * little     byte 3       byte 2       byte 1      byte 0 | 
|  | * big        byte 0       byte 1       byte 2      byte 3 | 
|  | * | 
|  | * This means that reading a 32-bit word at address 0 returns the same | 
|  | * value irrespective of the endian mode bit. | 
|  | * | 
|  | * Peripheral devices should be connected with the data bus reversed in | 
|  | * "Big Endian" mode.  ARM Application Note 61 is applicable, and is | 
|  | * available from http://www.arm.com/. | 
|  | * | 
|  | * The following assumes that the data bus connectivity for big endian | 
|  | * mode has been followed. | 
|  | * | 
|  | * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Native endian assembly bitops.  nr = 0 -> word 0 bit 0. | 
|  | */ | 
|  | extern void _set_bit(int nr, volatile unsigned long * p); | 
|  | extern void _clear_bit(int nr, volatile unsigned long * p); | 
|  | extern void _change_bit(int nr, volatile unsigned long * p); | 
|  | extern int _test_and_set_bit(int nr, volatile unsigned long * p); | 
|  | extern int _test_and_clear_bit(int nr, volatile unsigned long * p); | 
|  | extern int _test_and_change_bit(int nr, volatile unsigned long * p); | 
|  |  | 
|  | /* | 
|  | * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0. | 
|  | */ | 
|  | extern int _find_first_zero_bit_le(const void * p, unsigned size); | 
|  | extern int _find_next_zero_bit_le(const void * p, int size, int offset); | 
|  | extern int _find_first_bit_le(const unsigned long *p, unsigned size); | 
|  | extern int _find_next_bit_le(const unsigned long *p, int size, int offset); | 
|  |  | 
|  | /* | 
|  | * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0. | 
|  | */ | 
|  | extern int _find_first_zero_bit_be(const void * p, unsigned size); | 
|  | extern int _find_next_zero_bit_be(const void * p, int size, int offset); | 
|  | extern int _find_first_bit_be(const unsigned long *p, unsigned size); | 
|  | extern int _find_next_bit_be(const unsigned long *p, int size, int offset); | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | /* | 
|  | * The __* form of bitops are non-atomic and may be reordered. | 
|  | */ | 
|  | #define ATOMIC_BITOP(name,nr,p)			\ | 
|  | (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p)) | 
|  | #else | 
|  | #define ATOMIC_BITOP(name,nr,p)		_##name(nr,p) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Native endian atomic definitions. | 
|  | */ | 
|  | #define set_bit(nr,p)			ATOMIC_BITOP(set_bit,nr,p) | 
|  | #define clear_bit(nr,p)			ATOMIC_BITOP(clear_bit,nr,p) | 
|  | #define change_bit(nr,p)		ATOMIC_BITOP(change_bit,nr,p) | 
|  | #define test_and_set_bit(nr,p)		ATOMIC_BITOP(test_and_set_bit,nr,p) | 
|  | #define test_and_clear_bit(nr,p)	ATOMIC_BITOP(test_and_clear_bit,nr,p) | 
|  | #define test_and_change_bit(nr,p)	ATOMIC_BITOP(test_and_change_bit,nr,p) | 
|  |  | 
|  | #ifndef __ARMEB__ | 
|  | /* | 
|  | * These are the little endian, atomic definitions. | 
|  | */ | 
|  | #define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz) | 
|  | #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off) | 
|  | #define find_first_bit(p,sz)		_find_first_bit_le(p,sz) | 
|  | #define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off) | 
|  |  | 
|  | #else | 
|  | /* | 
|  | * These are the big endian, atomic definitions. | 
|  | */ | 
|  | #define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz) | 
|  | #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off) | 
|  | #define find_first_bit(p,sz)		_find_first_bit_be(p,sz) | 
|  | #define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if __LINUX_ARM_ARCH__ < 5 | 
|  |  | 
|  | #include <asm-generic/bitops/ffz.h> | 
|  | #include <asm-generic/bitops/__fls.h> | 
|  | #include <asm-generic/bitops/__ffs.h> | 
|  | #include <asm-generic/bitops/fls.h> | 
|  | #include <asm-generic/bitops/ffs.h> | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline int constant_fls(int x) | 
|  | { | 
|  | int r = 32; | 
|  |  | 
|  | if (!x) | 
|  | return 0; | 
|  | if (!(x & 0xffff0000u)) { | 
|  | x <<= 16; | 
|  | r -= 16; | 
|  | } | 
|  | if (!(x & 0xff000000u)) { | 
|  | x <<= 8; | 
|  | r -= 8; | 
|  | } | 
|  | if (!(x & 0xf0000000u)) { | 
|  | x <<= 4; | 
|  | r -= 4; | 
|  | } | 
|  | if (!(x & 0xc0000000u)) { | 
|  | x <<= 2; | 
|  | r -= 2; | 
|  | } | 
|  | if (!(x & 0x80000000u)) { | 
|  | x <<= 1; | 
|  | r -= 1; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On ARMv5 and above those functions can be implemented around the | 
|  | * clz instruction for much better code efficiency.  __clz returns | 
|  | * the number of leading zeros, zero input will return 32, and | 
|  | * 0x80000000 will return 0. | 
|  | */ | 
|  | static inline unsigned int __clz(unsigned int x) | 
|  | { | 
|  | unsigned int ret; | 
|  |  | 
|  | asm("clz\t%0, %1" : "=r" (ret) : "r" (x)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fls() returns zero if the input is zero, otherwise returns the bit | 
|  | * position of the last set bit, where the LSB is 1 and MSB is 32. | 
|  | */ | 
|  | static inline int fls(int x) | 
|  | { | 
|  | if (__builtin_constant_p(x)) | 
|  | return constant_fls(x); | 
|  |  | 
|  | return 32 - __clz(x); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __fls() returns the bit position of the last bit set, where the | 
|  | * LSB is 0 and MSB is 31.  Zero input is undefined. | 
|  | */ | 
|  | static inline unsigned long __fls(unsigned long x) | 
|  | { | 
|  | return fls(x) - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ffs() returns zero if the input was zero, otherwise returns the bit | 
|  | * position of the first set bit, where the LSB is 1 and MSB is 32. | 
|  | */ | 
|  | static inline int ffs(int x) | 
|  | { | 
|  | return fls(x & -x); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __ffs() returns the bit position of the first bit set, where the | 
|  | * LSB is 0 and MSB is 31.  Zero input is undefined. | 
|  | */ | 
|  | static inline unsigned long __ffs(unsigned long x) | 
|  | { | 
|  | return ffs(x) - 1; | 
|  | } | 
|  |  | 
|  | #define ffz(x) __ffs( ~(x) ) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #include <asm-generic/bitops/fls64.h> | 
|  |  | 
|  | #include <asm-generic/bitops/sched.h> | 
|  | #include <asm-generic/bitops/hweight.h> | 
|  | #include <asm-generic/bitops/lock.h> | 
|  |  | 
|  | #ifdef __ARMEB__ | 
|  |  | 
|  | static inline int find_first_zero_bit_le(const void *p, unsigned size) | 
|  | { | 
|  | return _find_first_zero_bit_le(p, size); | 
|  | } | 
|  | #define find_first_zero_bit_le find_first_zero_bit_le | 
|  |  | 
|  | static inline int find_next_zero_bit_le(const void *p, int size, int offset) | 
|  | { | 
|  | return _find_next_zero_bit_le(p, size, offset); | 
|  | } | 
|  | #define find_next_zero_bit_le find_next_zero_bit_le | 
|  |  | 
|  | static inline int find_next_bit_le(const void *p, int size, int offset) | 
|  | { | 
|  | return _find_next_bit_le(p, size, offset); | 
|  | } | 
|  | #define find_next_bit_le find_next_bit_le | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #include <asm-generic/bitops/le.h> | 
|  |  | 
|  | /* | 
|  | * Ext2 is defined to use little-endian byte ordering. | 
|  | */ | 
|  | #include <asm-generic/bitops/ext2-atomic-setbit.h> | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #endif /* _ARM_BITOPS_H */ |