| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. |
| */ |
| |
| /* |
| * This code implements the DMA subsystem. It provides a HW-neutral interface |
| * for other kernel code to use asynchronous memory copy capabilities, |
| * if present, and allows different HW DMA drivers to register as providing |
| * this capability. |
| * |
| * Due to the fact we are accelerating what is already a relatively fast |
| * operation, the code goes to great lengths to avoid additional overhead, |
| * such as locking. |
| * |
| * LOCKING: |
| * |
| * The subsystem keeps a global list of dma_device structs it is protected by a |
| * mutex, dma_list_mutex. |
| * |
| * A subsystem can get access to a channel by calling dmaengine_get() followed |
| * by dma_find_channel(), or if it has need for an exclusive channel it can call |
| * dma_request_channel(). Once a channel is allocated a reference is taken |
| * against its corresponding driver to disable removal. |
| * |
| * Each device has a channels list, which runs unlocked but is never modified |
| * once the device is registered, it's just setup by the driver. |
| * |
| * See Documentation/driver-api/dmaengine for more details |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/hardirq.h> |
| #include <linux/spinlock.h> |
| #include <linux/percpu.h> |
| #include <linux/rcupdate.h> |
| #include <linux/mutex.h> |
| #include <linux/jiffies.h> |
| #include <linux/rculist.h> |
| #include <linux/idr.h> |
| #include <linux/slab.h> |
| #include <linux/acpi.h> |
| #include <linux/acpi_dma.h> |
| #include <linux/of_dma.h> |
| #include <linux/mempool.h> |
| #include <linux/numa.h> |
| |
| #include "dmaengine.h" |
| |
| static DEFINE_MUTEX(dma_list_mutex); |
| static DEFINE_IDA(dma_ida); |
| static LIST_HEAD(dma_device_list); |
| static long dmaengine_ref_count; |
| |
| /* --- debugfs implementation --- */ |
| #ifdef CONFIG_DEBUG_FS |
| #include <linux/debugfs.h> |
| |
| static struct dentry *rootdir; |
| |
| static void dmaengine_debug_register(struct dma_device *dma_dev) |
| { |
| dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev), |
| rootdir); |
| if (IS_ERR(dma_dev->dbg_dev_root)) |
| dma_dev->dbg_dev_root = NULL; |
| } |
| |
| static void dmaengine_debug_unregister(struct dma_device *dma_dev) |
| { |
| debugfs_remove_recursive(dma_dev->dbg_dev_root); |
| dma_dev->dbg_dev_root = NULL; |
| } |
| |
| static void dmaengine_dbg_summary_show(struct seq_file *s, |
| struct dma_device *dma_dev) |
| { |
| struct dma_chan *chan; |
| |
| list_for_each_entry(chan, &dma_dev->channels, device_node) { |
| if (chan->client_count) { |
| seq_printf(s, " %-13s| %s", dma_chan_name(chan), |
| chan->dbg_client_name ?: "in-use"); |
| |
| if (chan->router) |
| seq_printf(s, " (via router: %s)\n", |
| dev_name(chan->router->dev)); |
| else |
| seq_puts(s, "\n"); |
| } |
| } |
| } |
| |
| static int dmaengine_summary_show(struct seq_file *s, void *data) |
| { |
| struct dma_device *dma_dev = NULL; |
| |
| mutex_lock(&dma_list_mutex); |
| list_for_each_entry(dma_dev, &dma_device_list, global_node) { |
| seq_printf(s, "dma%d (%s): number of channels: %u\n", |
| dma_dev->dev_id, dev_name(dma_dev->dev), |
| dma_dev->chancnt); |
| |
| if (dma_dev->dbg_summary_show) |
| dma_dev->dbg_summary_show(s, dma_dev); |
| else |
| dmaengine_dbg_summary_show(s, dma_dev); |
| |
| if (!list_is_last(&dma_dev->global_node, &dma_device_list)) |
| seq_puts(s, "\n"); |
| } |
| mutex_unlock(&dma_list_mutex); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(dmaengine_summary); |
| |
| static void __init dmaengine_debugfs_init(void) |
| { |
| rootdir = debugfs_create_dir("dmaengine", NULL); |
| |
| /* /sys/kernel/debug/dmaengine/summary */ |
| debugfs_create_file("summary", 0444, rootdir, NULL, |
| &dmaengine_summary_fops); |
| } |
| #else |
| static inline void dmaengine_debugfs_init(void) { } |
| static inline int dmaengine_debug_register(struct dma_device *dma_dev) |
| { |
| return 0; |
| } |
| |
| static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { } |
| #endif /* DEBUG_FS */ |
| |
| /* --- sysfs implementation --- */ |
| |
| #define DMA_SLAVE_NAME "slave" |
| |
| /** |
| * dev_to_dma_chan - convert a device pointer to its sysfs container object |
| * @dev: device node |
| * |
| * Must be called under dma_list_mutex. |
| */ |
| static struct dma_chan *dev_to_dma_chan(struct device *dev) |
| { |
| struct dma_chan_dev *chan_dev; |
| |
| chan_dev = container_of(dev, typeof(*chan_dev), device); |
| return chan_dev->chan; |
| } |
| |
| static ssize_t memcpy_count_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct dma_chan *chan; |
| unsigned long count = 0; |
| int i; |
| int err; |
| |
| mutex_lock(&dma_list_mutex); |
| chan = dev_to_dma_chan(dev); |
| if (chan) { |
| for_each_possible_cpu(i) |
| count += per_cpu_ptr(chan->local, i)->memcpy_count; |
| err = sprintf(buf, "%lu\n", count); |
| } else |
| err = -ENODEV; |
| mutex_unlock(&dma_list_mutex); |
| |
| return err; |
| } |
| static DEVICE_ATTR_RO(memcpy_count); |
| |
| static ssize_t bytes_transferred_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct dma_chan *chan; |
| unsigned long count = 0; |
| int i; |
| int err; |
| |
| mutex_lock(&dma_list_mutex); |
| chan = dev_to_dma_chan(dev); |
| if (chan) { |
| for_each_possible_cpu(i) |
| count += per_cpu_ptr(chan->local, i)->bytes_transferred; |
| err = sprintf(buf, "%lu\n", count); |
| } else |
| err = -ENODEV; |
| mutex_unlock(&dma_list_mutex); |
| |
| return err; |
| } |
| static DEVICE_ATTR_RO(bytes_transferred); |
| |
| static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct dma_chan *chan; |
| int err; |
| |
| mutex_lock(&dma_list_mutex); |
| chan = dev_to_dma_chan(dev); |
| if (chan) |
| err = sprintf(buf, "%d\n", chan->client_count); |
| else |
| err = -ENODEV; |
| mutex_unlock(&dma_list_mutex); |
| |
| return err; |
| } |
| static DEVICE_ATTR_RO(in_use); |
| |
| static struct attribute *dma_dev_attrs[] = { |
| &dev_attr_memcpy_count.attr, |
| &dev_attr_bytes_transferred.attr, |
| &dev_attr_in_use.attr, |
| NULL, |
| }; |
| ATTRIBUTE_GROUPS(dma_dev); |
| |
| static void chan_dev_release(struct device *dev) |
| { |
| struct dma_chan_dev *chan_dev; |
| |
| chan_dev = container_of(dev, typeof(*chan_dev), device); |
| kfree(chan_dev); |
| } |
| |
| static struct class dma_devclass = { |
| .name = "dma", |
| .dev_groups = dma_dev_groups, |
| .dev_release = chan_dev_release, |
| }; |
| |
| /* --- client and device registration --- */ |
| |
| /* enable iteration over all operation types */ |
| static dma_cap_mask_t dma_cap_mask_all; |
| |
| /** |
| * struct dma_chan_tbl_ent - tracks channel allocations per core/operation |
| * @chan: associated channel for this entry |
| */ |
| struct dma_chan_tbl_ent { |
| struct dma_chan *chan; |
| }; |
| |
| /* percpu lookup table for memory-to-memory offload providers */ |
| static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; |
| |
| static int __init dma_channel_table_init(void) |
| { |
| enum dma_transaction_type cap; |
| int err = 0; |
| |
| bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); |
| |
| /* 'interrupt', 'private', and 'slave' are channel capabilities, |
| * but are not associated with an operation so they do not need |
| * an entry in the channel_table |
| */ |
| clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); |
| clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); |
| clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); |
| |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) { |
| channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); |
| if (!channel_table[cap]) { |
| err = -ENOMEM; |
| break; |
| } |
| } |
| |
| if (err) { |
| pr_err("dmaengine dma_channel_table_init failure: %d\n", err); |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) |
| free_percpu(channel_table[cap]); |
| } |
| |
| return err; |
| } |
| arch_initcall(dma_channel_table_init); |
| |
| /** |
| * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU |
| * @chan: DMA channel to test |
| * @cpu: CPU index which the channel should be close to |
| * |
| * Returns true if the channel is in the same NUMA-node as the CPU. |
| */ |
| static bool dma_chan_is_local(struct dma_chan *chan, int cpu) |
| { |
| int node = dev_to_node(chan->device->dev); |
| return node == NUMA_NO_NODE || |
| cpumask_test_cpu(cpu, cpumask_of_node(node)); |
| } |
| |
| /** |
| * min_chan - finds the channel with min count and in the same NUMA-node as the CPU |
| * @cap: capability to match |
| * @cpu: CPU index which the channel should be close to |
| * |
| * If some channels are close to the given CPU, the one with the lowest |
| * reference count is returned. Otherwise, CPU is ignored and only the |
| * reference count is taken into account. |
| * |
| * Must be called under dma_list_mutex. |
| */ |
| static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) |
| { |
| struct dma_device *device; |
| struct dma_chan *chan; |
| struct dma_chan *min = NULL; |
| struct dma_chan *localmin = NULL; |
| |
| list_for_each_entry(device, &dma_device_list, global_node) { |
| if (!dma_has_cap(cap, device->cap_mask) || |
| dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| continue; |
| list_for_each_entry(chan, &device->channels, device_node) { |
| if (!chan->client_count) |
| continue; |
| if (!min || chan->table_count < min->table_count) |
| min = chan; |
| |
| if (dma_chan_is_local(chan, cpu)) |
| if (!localmin || |
| chan->table_count < localmin->table_count) |
| localmin = chan; |
| } |
| } |
| |
| chan = localmin ? localmin : min; |
| |
| if (chan) |
| chan->table_count++; |
| |
| return chan; |
| } |
| |
| /** |
| * dma_channel_rebalance - redistribute the available channels |
| * |
| * Optimize for CPU isolation (each CPU gets a dedicated channel for an |
| * operation type) in the SMP case, and operation isolation (avoid |
| * multi-tasking channels) in the non-SMP case. |
| * |
| * Must be called under dma_list_mutex. |
| */ |
| static void dma_channel_rebalance(void) |
| { |
| struct dma_chan *chan; |
| struct dma_device *device; |
| int cpu; |
| int cap; |
| |
| /* undo the last distribution */ |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) |
| for_each_possible_cpu(cpu) |
| per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; |
| |
| list_for_each_entry(device, &dma_device_list, global_node) { |
| if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| continue; |
| list_for_each_entry(chan, &device->channels, device_node) |
| chan->table_count = 0; |
| } |
| |
| /* don't populate the channel_table if no clients are available */ |
| if (!dmaengine_ref_count) |
| return; |
| |
| /* redistribute available channels */ |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) |
| for_each_online_cpu(cpu) { |
| chan = min_chan(cap, cpu); |
| per_cpu_ptr(channel_table[cap], cpu)->chan = chan; |
| } |
| } |
| |
| static int dma_device_satisfies_mask(struct dma_device *device, |
| const dma_cap_mask_t *want) |
| { |
| dma_cap_mask_t has; |
| |
| bitmap_and(has.bits, want->bits, device->cap_mask.bits, |
| DMA_TX_TYPE_END); |
| return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); |
| } |
| |
| static struct module *dma_chan_to_owner(struct dma_chan *chan) |
| { |
| return chan->device->owner; |
| } |
| |
| /** |
| * balance_ref_count - catch up the channel reference count |
| * @chan: channel to balance ->client_count versus dmaengine_ref_count |
| * |
| * Must be called under dma_list_mutex. |
| */ |
| static void balance_ref_count(struct dma_chan *chan) |
| { |
| struct module *owner = dma_chan_to_owner(chan); |
| |
| while (chan->client_count < dmaengine_ref_count) { |
| __module_get(owner); |
| chan->client_count++; |
| } |
| } |
| |
| static void dma_device_release(struct kref *ref) |
| { |
| struct dma_device *device = container_of(ref, struct dma_device, ref); |
| |
| list_del_rcu(&device->global_node); |
| dma_channel_rebalance(); |
| |
| if (device->device_release) |
| device->device_release(device); |
| } |
| |
| static void dma_device_put(struct dma_device *device) |
| { |
| lockdep_assert_held(&dma_list_mutex); |
| kref_put(&device->ref, dma_device_release); |
| } |
| |
| /** |
| * dma_chan_get - try to grab a DMA channel's parent driver module |
| * @chan: channel to grab |
| * |
| * Must be called under dma_list_mutex. |
| */ |
| static int dma_chan_get(struct dma_chan *chan) |
| { |
| struct module *owner = dma_chan_to_owner(chan); |
| int ret; |
| |
| /* The channel is already in use, update client count */ |
| if (chan->client_count) { |
| __module_get(owner); |
| goto out; |
| } |
| |
| if (!try_module_get(owner)) |
| return -ENODEV; |
| |
| ret = kref_get_unless_zero(&chan->device->ref); |
| if (!ret) { |
| ret = -ENODEV; |
| goto module_put_out; |
| } |
| |
| /* allocate upon first client reference */ |
| if (chan->device->device_alloc_chan_resources) { |
| ret = chan->device->device_alloc_chan_resources(chan); |
| if (ret < 0) |
| goto err_out; |
| } |
| |
| if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) |
| balance_ref_count(chan); |
| |
| out: |
| chan->client_count++; |
| return 0; |
| |
| err_out: |
| dma_device_put(chan->device); |
| module_put_out: |
| module_put(owner); |
| return ret; |
| } |
| |
| /** |
| * dma_chan_put - drop a reference to a DMA channel's parent driver module |
| * @chan: channel to release |
| * |
| * Must be called under dma_list_mutex. |
| */ |
| static void dma_chan_put(struct dma_chan *chan) |
| { |
| /* This channel is not in use, bail out */ |
| if (!chan->client_count) |
| return; |
| |
| chan->client_count--; |
| |
| /* This channel is not in use anymore, free it */ |
| if (!chan->client_count && chan->device->device_free_chan_resources) { |
| /* Make sure all operations have completed */ |
| dmaengine_synchronize(chan); |
| chan->device->device_free_chan_resources(chan); |
| } |
| |
| /* If the channel is used via a DMA request router, free the mapping */ |
| if (chan->router && chan->router->route_free) { |
| chan->router->route_free(chan->router->dev, chan->route_data); |
| chan->router = NULL; |
| chan->route_data = NULL; |
| } |
| |
| dma_device_put(chan->device); |
| module_put(dma_chan_to_owner(chan)); |
| } |
| |
| enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) |
| { |
| enum dma_status status; |
| unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); |
| |
| dma_async_issue_pending(chan); |
| do { |
| status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); |
| if (time_after_eq(jiffies, dma_sync_wait_timeout)) { |
| dev_err(chan->device->dev, "%s: timeout!\n", __func__); |
| return DMA_ERROR; |
| } |
| if (status != DMA_IN_PROGRESS) |
| break; |
| cpu_relax(); |
| } while (1); |
| |
| return status; |
| } |
| EXPORT_SYMBOL(dma_sync_wait); |
| |
| /** |
| * dma_find_channel - find a channel to carry out the operation |
| * @tx_type: transaction type |
| */ |
| struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) |
| { |
| return this_cpu_read(channel_table[tx_type]->chan); |
| } |
| EXPORT_SYMBOL(dma_find_channel); |
| |
| /** |
| * dma_issue_pending_all - flush all pending operations across all channels |
| */ |
| void dma_issue_pending_all(void) |
| { |
| struct dma_device *device; |
| struct dma_chan *chan; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(device, &dma_device_list, global_node) { |
| if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| continue; |
| list_for_each_entry(chan, &device->channels, device_node) |
| if (chan->client_count) |
| device->device_issue_pending(chan); |
| } |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL(dma_issue_pending_all); |
| |
| int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) |
| { |
| struct dma_device *device; |
| |
| if (!chan || !caps) |
| return -EINVAL; |
| |
| device = chan->device; |
| |
| /* check if the channel supports slave transactions */ |
| if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || |
| test_bit(DMA_CYCLIC, device->cap_mask.bits))) |
| return -ENXIO; |
| |
| /* |
| * Check whether it reports it uses the generic slave |
| * capabilities, if not, that means it doesn't support any |
| * kind of slave capabilities reporting. |
| */ |
| if (!device->directions) |
| return -ENXIO; |
| |
| caps->src_addr_widths = device->src_addr_widths; |
| caps->dst_addr_widths = device->dst_addr_widths; |
| caps->directions = device->directions; |
| caps->min_burst = device->min_burst; |
| caps->max_burst = device->max_burst; |
| caps->max_sg_burst = device->max_sg_burst; |
| caps->residue_granularity = device->residue_granularity; |
| caps->descriptor_reuse = device->descriptor_reuse; |
| caps->cmd_pause = !!device->device_pause; |
| caps->cmd_resume = !!device->device_resume; |
| caps->cmd_terminate = !!device->device_terminate_all; |
| |
| /* |
| * DMA engine device might be configured with non-uniformly |
| * distributed slave capabilities per device channels. In this |
| * case the corresponding driver may provide the device_caps |
| * callback to override the generic capabilities with |
| * channel-specific ones. |
| */ |
| if (device->device_caps) |
| device->device_caps(chan, caps); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(dma_get_slave_caps); |
| |
| static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, |
| struct dma_device *dev, |
| dma_filter_fn fn, void *fn_param) |
| { |
| struct dma_chan *chan; |
| |
| if (mask && !dma_device_satisfies_mask(dev, mask)) { |
| dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); |
| return NULL; |
| } |
| /* devices with multiple channels need special handling as we need to |
| * ensure that all channels are either private or public. |
| */ |
| if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) |
| list_for_each_entry(chan, &dev->channels, device_node) { |
| /* some channels are already publicly allocated */ |
| if (chan->client_count) |
| return NULL; |
| } |
| |
| list_for_each_entry(chan, &dev->channels, device_node) { |
| if (chan->client_count) { |
| dev_dbg(dev->dev, "%s: %s busy\n", |
| __func__, dma_chan_name(chan)); |
| continue; |
| } |
| if (fn && !fn(chan, fn_param)) { |
| dev_dbg(dev->dev, "%s: %s filter said false\n", |
| __func__, dma_chan_name(chan)); |
| continue; |
| } |
| return chan; |
| } |
| |
| return NULL; |
| } |
| |
| static struct dma_chan *find_candidate(struct dma_device *device, |
| const dma_cap_mask_t *mask, |
| dma_filter_fn fn, void *fn_param) |
| { |
| struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); |
| int err; |
| |
| if (chan) { |
| /* Found a suitable channel, try to grab, prep, and return it. |
| * We first set DMA_PRIVATE to disable balance_ref_count as this |
| * channel will not be published in the general-purpose |
| * allocator |
| */ |
| dma_cap_set(DMA_PRIVATE, device->cap_mask); |
| device->privatecnt++; |
| err = dma_chan_get(chan); |
| |
| if (err) { |
| if (err == -ENODEV) { |
| dev_dbg(device->dev, "%s: %s module removed\n", |
| __func__, dma_chan_name(chan)); |
| list_del_rcu(&device->global_node); |
| } else |
| dev_dbg(device->dev, |
| "%s: failed to get %s: (%d)\n", |
| __func__, dma_chan_name(chan), err); |
| |
| if (--device->privatecnt == 0) |
| dma_cap_clear(DMA_PRIVATE, device->cap_mask); |
| |
| chan = ERR_PTR(err); |
| } |
| } |
| |
| return chan ? chan : ERR_PTR(-EPROBE_DEFER); |
| } |
| |
| /** |
| * dma_get_slave_channel - try to get specific channel exclusively |
| * @chan: target channel |
| */ |
| struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) |
| { |
| int err = -EBUSY; |
| |
| /* lock against __dma_request_channel */ |
| mutex_lock(&dma_list_mutex); |
| |
| if (chan->client_count == 0) { |
| struct dma_device *device = chan->device; |
| |
| dma_cap_set(DMA_PRIVATE, device->cap_mask); |
| device->privatecnt++; |
| err = dma_chan_get(chan); |
| if (err) { |
| dev_dbg(chan->device->dev, |
| "%s: failed to get %s: (%d)\n", |
| __func__, dma_chan_name(chan), err); |
| chan = NULL; |
| if (--device->privatecnt == 0) |
| dma_cap_clear(DMA_PRIVATE, device->cap_mask); |
| } |
| } else |
| chan = NULL; |
| |
| mutex_unlock(&dma_list_mutex); |
| |
| |
| return chan; |
| } |
| EXPORT_SYMBOL_GPL(dma_get_slave_channel); |
| |
| struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) |
| { |
| dma_cap_mask_t mask; |
| struct dma_chan *chan; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| /* lock against __dma_request_channel */ |
| mutex_lock(&dma_list_mutex); |
| |
| chan = find_candidate(device, &mask, NULL, NULL); |
| |
| mutex_unlock(&dma_list_mutex); |
| |
| return IS_ERR(chan) ? NULL : chan; |
| } |
| EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); |
| |
| /** |
| * __dma_request_channel - try to allocate an exclusive channel |
| * @mask: capabilities that the channel must satisfy |
| * @fn: optional callback to disposition available channels |
| * @fn_param: opaque parameter to pass to dma_filter_fn() |
| * @np: device node to look for DMA channels |
| * |
| * Returns pointer to appropriate DMA channel on success or NULL. |
| */ |
| struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, |
| dma_filter_fn fn, void *fn_param, |
| struct device_node *np) |
| { |
| struct dma_device *device, *_d; |
| struct dma_chan *chan = NULL; |
| |
| /* Find a channel */ |
| mutex_lock(&dma_list_mutex); |
| list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { |
| /* Finds a DMA controller with matching device node */ |
| if (np && device->dev->of_node && np != device->dev->of_node) |
| continue; |
| |
| chan = find_candidate(device, mask, fn, fn_param); |
| if (!IS_ERR(chan)) |
| break; |
| |
| chan = NULL; |
| } |
| mutex_unlock(&dma_list_mutex); |
| |
| pr_debug("%s: %s (%s)\n", |
| __func__, |
| chan ? "success" : "fail", |
| chan ? dma_chan_name(chan) : NULL); |
| |
| return chan; |
| } |
| EXPORT_SYMBOL_GPL(__dma_request_channel); |
| |
| static const struct dma_slave_map *dma_filter_match(struct dma_device *device, |
| const char *name, |
| struct device *dev) |
| { |
| int i; |
| |
| if (!device->filter.mapcnt) |
| return NULL; |
| |
| for (i = 0; i < device->filter.mapcnt; i++) { |
| const struct dma_slave_map *map = &device->filter.map[i]; |
| |
| if (!strcmp(map->devname, dev_name(dev)) && |
| !strcmp(map->slave, name)) |
| return map; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * dma_request_chan - try to allocate an exclusive slave channel |
| * @dev: pointer to client device structure |
| * @name: slave channel name |
| * |
| * Returns pointer to appropriate DMA channel on success or an error pointer. |
| */ |
| struct dma_chan *dma_request_chan(struct device *dev, const char *name) |
| { |
| struct dma_device *d, *_d; |
| struct dma_chan *chan = NULL; |
| |
| /* If device-tree is present get slave info from here */ |
| if (dev->of_node) |
| chan = of_dma_request_slave_channel(dev->of_node, name); |
| |
| /* If device was enumerated by ACPI get slave info from here */ |
| if (has_acpi_companion(dev) && !chan) |
| chan = acpi_dma_request_slave_chan_by_name(dev, name); |
| |
| if (PTR_ERR(chan) == -EPROBE_DEFER) |
| return chan; |
| |
| if (!IS_ERR_OR_NULL(chan)) |
| goto found; |
| |
| /* Try to find the channel via the DMA filter map(s) */ |
| mutex_lock(&dma_list_mutex); |
| list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { |
| dma_cap_mask_t mask; |
| const struct dma_slave_map *map = dma_filter_match(d, name, dev); |
| |
| if (!map) |
| continue; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| chan = find_candidate(d, &mask, d->filter.fn, map->param); |
| if (!IS_ERR(chan)) |
| break; |
| } |
| mutex_unlock(&dma_list_mutex); |
| |
| if (IS_ERR(chan)) |
| return chan; |
| if (!chan) |
| return ERR_PTR(-EPROBE_DEFER); |
| |
| found: |
| #ifdef CONFIG_DEBUG_FS |
| chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev), |
| name); |
| #endif |
| |
| chan->name = kasprintf(GFP_KERNEL, "dma:%s", name); |
| if (!chan->name) |
| return chan; |
| chan->slave = dev; |
| |
| if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj, |
| DMA_SLAVE_NAME)) |
| dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME); |
| if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name)) |
| dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name); |
| |
| return chan; |
| } |
| EXPORT_SYMBOL_GPL(dma_request_chan); |
| |
| /** |
| * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities |
| * @mask: capabilities that the channel must satisfy |
| * |
| * Returns pointer to appropriate DMA channel on success or an error pointer. |
| */ |
| struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) |
| { |
| struct dma_chan *chan; |
| |
| if (!mask) |
| return ERR_PTR(-ENODEV); |
| |
| chan = __dma_request_channel(mask, NULL, NULL, NULL); |
| if (!chan) { |
| mutex_lock(&dma_list_mutex); |
| if (list_empty(&dma_device_list)) |
| chan = ERR_PTR(-EPROBE_DEFER); |
| else |
| chan = ERR_PTR(-ENODEV); |
| mutex_unlock(&dma_list_mutex); |
| } |
| |
| return chan; |
| } |
| EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); |
| |
| void dma_release_channel(struct dma_chan *chan) |
| { |
| mutex_lock(&dma_list_mutex); |
| WARN_ONCE(chan->client_count != 1, |
| "chan reference count %d != 1\n", chan->client_count); |
| dma_chan_put(chan); |
| /* drop PRIVATE cap enabled by __dma_request_channel() */ |
| if (--chan->device->privatecnt == 0) |
| dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); |
| |
| if (chan->slave) { |
| sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME); |
| sysfs_remove_link(&chan->slave->kobj, chan->name); |
| kfree(chan->name); |
| chan->name = NULL; |
| chan->slave = NULL; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| kfree(chan->dbg_client_name); |
| chan->dbg_client_name = NULL; |
| #endif |
| mutex_unlock(&dma_list_mutex); |
| } |
| EXPORT_SYMBOL_GPL(dma_release_channel); |
| |
| /** |
| * dmaengine_get - register interest in dma_channels |
| */ |
| void dmaengine_get(void) |
| { |
| struct dma_device *device, *_d; |
| struct dma_chan *chan; |
| int err; |
| |
| mutex_lock(&dma_list_mutex); |
| dmaengine_ref_count++; |
| |
| /* try to grab channels */ |
| list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { |
| if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| continue; |
| list_for_each_entry(chan, &device->channels, device_node) { |
| err = dma_chan_get(chan); |
| if (err == -ENODEV) { |
| /* module removed before we could use it */ |
| list_del_rcu(&device->global_node); |
| break; |
| } else if (err) |
| dev_dbg(chan->device->dev, |
| "%s: failed to get %s: (%d)\n", |
| __func__, dma_chan_name(chan), err); |
| } |
| } |
| |
| /* if this is the first reference and there were channels |
| * waiting we need to rebalance to get those channels |
| * incorporated into the channel table |
| */ |
| if (dmaengine_ref_count == 1) |
| dma_channel_rebalance(); |
| mutex_unlock(&dma_list_mutex); |
| } |
| EXPORT_SYMBOL(dmaengine_get); |
| |
| /** |
| * dmaengine_put - let DMA drivers be removed when ref_count == 0 |
| */ |
| void dmaengine_put(void) |
| { |
| struct dma_device *device, *_d; |
| struct dma_chan *chan; |
| |
| mutex_lock(&dma_list_mutex); |
| dmaengine_ref_count--; |
| BUG_ON(dmaengine_ref_count < 0); |
| /* drop channel references */ |
| list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { |
| if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| continue; |
| list_for_each_entry(chan, &device->channels, device_node) |
| dma_chan_put(chan); |
| } |
| mutex_unlock(&dma_list_mutex); |
| } |
| EXPORT_SYMBOL(dmaengine_put); |
| |
| static bool device_has_all_tx_types(struct dma_device *device) |
| { |
| /* A device that satisfies this test has channels that will never cause |
| * an async_tx channel switch event as all possible operation types can |
| * be handled. |
| */ |
| #ifdef CONFIG_ASYNC_TX_DMA |
| if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) |
| return false; |
| #endif |
| |
| #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) |
| if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) |
| return false; |
| #endif |
| |
| #if IS_ENABLED(CONFIG_ASYNC_XOR) |
| if (!dma_has_cap(DMA_XOR, device->cap_mask)) |
| return false; |
| |
| #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA |
| if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) |
| return false; |
| #endif |
| #endif |
| |
| #if IS_ENABLED(CONFIG_ASYNC_PQ) |
| if (!dma_has_cap(DMA_PQ, device->cap_mask)) |
| return false; |
| |
| #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA |
| if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) |
| return false; |
| #endif |
| #endif |
| |
| return true; |
| } |
| |
| static int get_dma_id(struct dma_device *device) |
| { |
| int rc = ida_alloc(&dma_ida, GFP_KERNEL); |
| |
| if (rc < 0) |
| return rc; |
| device->dev_id = rc; |
| return 0; |
| } |
| |
| static int __dma_async_device_channel_register(struct dma_device *device, |
| struct dma_chan *chan) |
| { |
| int rc; |
| |
| chan->local = alloc_percpu(typeof(*chan->local)); |
| if (!chan->local) |
| return -ENOMEM; |
| chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); |
| if (!chan->dev) { |
| rc = -ENOMEM; |
| goto err_free_local; |
| } |
| |
| /* |
| * When the chan_id is a negative value, we are dynamically adding |
| * the channel. Otherwise we are static enumerating. |
| */ |
| mutex_lock(&device->chan_mutex); |
| chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL); |
| mutex_unlock(&device->chan_mutex); |
| if (chan->chan_id < 0) { |
| pr_err("%s: unable to alloc ida for chan: %d\n", |
| __func__, chan->chan_id); |
| rc = chan->chan_id; |
| goto err_free_dev; |
| } |
| |
| chan->dev->device.class = &dma_devclass; |
| chan->dev->device.parent = device->dev; |
| chan->dev->chan = chan; |
| chan->dev->dev_id = device->dev_id; |
| dev_set_name(&chan->dev->device, "dma%dchan%d", |
| device->dev_id, chan->chan_id); |
| rc = device_register(&chan->dev->device); |
| if (rc) |
| goto err_out_ida; |
| chan->client_count = 0; |
| device->chancnt++; |
| |
| return 0; |
| |
| err_out_ida: |
| mutex_lock(&device->chan_mutex); |
| ida_free(&device->chan_ida, chan->chan_id); |
| mutex_unlock(&device->chan_mutex); |
| err_free_dev: |
| kfree(chan->dev); |
| err_free_local: |
| free_percpu(chan->local); |
| chan->local = NULL; |
| return rc; |
| } |
| |
| int dma_async_device_channel_register(struct dma_device *device, |
| struct dma_chan *chan) |
| { |
| int rc; |
| |
| rc = __dma_async_device_channel_register(device, chan); |
| if (rc < 0) |
| return rc; |
| |
| dma_channel_rebalance(); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(dma_async_device_channel_register); |
| |
| static void __dma_async_device_channel_unregister(struct dma_device *device, |
| struct dma_chan *chan) |
| { |
| WARN_ONCE(!device->device_release && chan->client_count, |
| "%s called while %d clients hold a reference\n", |
| __func__, chan->client_count); |
| mutex_lock(&dma_list_mutex); |
| device->chancnt--; |
| chan->dev->chan = NULL; |
| mutex_unlock(&dma_list_mutex); |
| mutex_lock(&device->chan_mutex); |
| ida_free(&device->chan_ida, chan->chan_id); |
| mutex_unlock(&device->chan_mutex); |
| device_unregister(&chan->dev->device); |
| free_percpu(chan->local); |
| } |
| |
| void dma_async_device_channel_unregister(struct dma_device *device, |
| struct dma_chan *chan) |
| { |
| __dma_async_device_channel_unregister(device, chan); |
| dma_channel_rebalance(); |
| } |
| EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister); |
| |
| /** |
| * dma_async_device_register - registers DMA devices found |
| * @device: pointer to &struct dma_device |
| * |
| * After calling this routine the structure should not be freed except in the |
| * device_release() callback which will be called after |
| * dma_async_device_unregister() is called and no further references are taken. |
| */ |
| int dma_async_device_register(struct dma_device *device) |
| { |
| int rc; |
| struct dma_chan* chan; |
| |
| if (!device) |
| return -ENODEV; |
| |
| /* validate device routines */ |
| if (!device->dev) { |
| pr_err("DMAdevice must have dev\n"); |
| return -EIO; |
| } |
| |
| device->owner = device->dev->driver->owner; |
| |
| if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) { |
| dev_err(device->dev, |
| "Device claims capability %s, but op is not defined\n", |
| "DMA_MEMCPY"); |
| return -EIO; |
| } |
| |
| if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { |
| dev_err(device->dev, |
| "Device claims capability %s, but op is not defined\n", |
| "DMA_XOR"); |
| return -EIO; |
| } |
| |
| if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) { |
| dev_err(device->dev, |
| "Device claims capability %s, but op is not defined\n", |
| "DMA_XOR_VAL"); |
| return -EIO; |
| } |
| |
| if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) { |
| dev_err(device->dev, |
| "Device claims capability %s, but op is not defined\n", |
| "DMA_PQ"); |
| return -EIO; |
| } |
| |
| if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) { |
| dev_err(device->dev, |
| "Device claims capability %s, but op is not defined\n", |
| "DMA_PQ_VAL"); |
| return -EIO; |
| } |
| |
| if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) { |
| dev_err(device->dev, |
| "Device claims capability %s, but op is not defined\n", |
| "DMA_MEMSET"); |
| return -EIO; |
| } |
| |
| if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) { |
| dev_err(device->dev, |
| "Device claims capability %s, but op is not defined\n", |
| "DMA_INTERRUPT"); |
| return -EIO; |
| } |
| |
| if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) { |
| dev_err(device->dev, |
| "Device claims capability %s, but op is not defined\n", |
| "DMA_CYCLIC"); |
| return -EIO; |
| } |
| |
| if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) { |
| dev_err(device->dev, |
| "Device claims capability %s, but op is not defined\n", |
| "DMA_INTERLEAVE"); |
| return -EIO; |
| } |
| |
| |
| if (!device->device_tx_status) { |
| dev_err(device->dev, "Device tx_status is not defined\n"); |
| return -EIO; |
| } |
| |
| |
| if (!device->device_issue_pending) { |
| dev_err(device->dev, "Device issue_pending is not defined\n"); |
| return -EIO; |
| } |
| |
| if (!device->device_release) |
| dev_dbg(device->dev, |
| "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n"); |
| |
| kref_init(&device->ref); |
| |
| /* note: this only matters in the |
| * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case |
| */ |
| if (device_has_all_tx_types(device)) |
| dma_cap_set(DMA_ASYNC_TX, device->cap_mask); |
| |
| rc = get_dma_id(device); |
| if (rc != 0) |
| return rc; |
| |
| mutex_init(&device->chan_mutex); |
| ida_init(&device->chan_ida); |
| |
| /* represent channels in sysfs. Probably want devs too */ |
| list_for_each_entry(chan, &device->channels, device_node) { |
| rc = __dma_async_device_channel_register(device, chan); |
| if (rc < 0) |
| goto err_out; |
| } |
| |
| mutex_lock(&dma_list_mutex); |
| /* take references on public channels */ |
| if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| list_for_each_entry(chan, &device->channels, device_node) { |
| /* if clients are already waiting for channels we need |
| * to take references on their behalf |
| */ |
| if (dma_chan_get(chan) == -ENODEV) { |
| /* note we can only get here for the first |
| * channel as the remaining channels are |
| * guaranteed to get a reference |
| */ |
| rc = -ENODEV; |
| mutex_unlock(&dma_list_mutex); |
| goto err_out; |
| } |
| } |
| list_add_tail_rcu(&device->global_node, &dma_device_list); |
| if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) |
| device->privatecnt++; /* Always private */ |
| dma_channel_rebalance(); |
| mutex_unlock(&dma_list_mutex); |
| |
| dmaengine_debug_register(device); |
| |
| return 0; |
| |
| err_out: |
| /* if we never registered a channel just release the idr */ |
| if (!device->chancnt) { |
| ida_free(&dma_ida, device->dev_id); |
| return rc; |
| } |
| |
| list_for_each_entry(chan, &device->channels, device_node) { |
| if (chan->local == NULL) |
| continue; |
| mutex_lock(&dma_list_mutex); |
| chan->dev->chan = NULL; |
| mutex_unlock(&dma_list_mutex); |
| device_unregister(&chan->dev->device); |
| free_percpu(chan->local); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(dma_async_device_register); |
| |
| /** |
| * dma_async_device_unregister - unregister a DMA device |
| * @device: pointer to &struct dma_device |
| * |
| * This routine is called by dma driver exit routines, dmaengine holds module |
| * references to prevent it being called while channels are in use. |
| */ |
| void dma_async_device_unregister(struct dma_device *device) |
| { |
| struct dma_chan *chan, *n; |
| |
| dmaengine_debug_unregister(device); |
| |
| list_for_each_entry_safe(chan, n, &device->channels, device_node) |
| __dma_async_device_channel_unregister(device, chan); |
| |
| mutex_lock(&dma_list_mutex); |
| /* |
| * setting DMA_PRIVATE ensures the device being torn down will not |
| * be used in the channel_table |
| */ |
| dma_cap_set(DMA_PRIVATE, device->cap_mask); |
| dma_channel_rebalance(); |
| ida_free(&dma_ida, device->dev_id); |
| dma_device_put(device); |
| mutex_unlock(&dma_list_mutex); |
| } |
| EXPORT_SYMBOL(dma_async_device_unregister); |
| |
| static void dmam_device_release(struct device *dev, void *res) |
| { |
| struct dma_device *device; |
| |
| device = *(struct dma_device **)res; |
| dma_async_device_unregister(device); |
| } |
| |
| /** |
| * dmaenginem_async_device_register - registers DMA devices found |
| * @device: pointer to &struct dma_device |
| * |
| * The operation is managed and will be undone on driver detach. |
| */ |
| int dmaenginem_async_device_register(struct dma_device *device) |
| { |
| void *p; |
| int ret; |
| |
| p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL); |
| if (!p) |
| return -ENOMEM; |
| |
| ret = dma_async_device_register(device); |
| if (!ret) { |
| *(struct dma_device **)p = device; |
| devres_add(device->dev, p); |
| } else { |
| devres_free(p); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(dmaenginem_async_device_register); |
| |
| struct dmaengine_unmap_pool { |
| struct kmem_cache *cache; |
| const char *name; |
| mempool_t *pool; |
| size_t size; |
| }; |
| |
| #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } |
| static struct dmaengine_unmap_pool unmap_pool[] = { |
| __UNMAP_POOL(2), |
| #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) |
| __UNMAP_POOL(16), |
| __UNMAP_POOL(128), |
| __UNMAP_POOL(256), |
| #endif |
| }; |
| |
| static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) |
| { |
| int order = get_count_order(nr); |
| |
| switch (order) { |
| case 0 ... 1: |
| return &unmap_pool[0]; |
| #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) |
| case 2 ... 4: |
| return &unmap_pool[1]; |
| case 5 ... 7: |
| return &unmap_pool[2]; |
| case 8: |
| return &unmap_pool[3]; |
| #endif |
| default: |
| BUG(); |
| return NULL; |
| } |
| } |
| |
| static void dmaengine_unmap(struct kref *kref) |
| { |
| struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); |
| struct device *dev = unmap->dev; |
| int cnt, i; |
| |
| cnt = unmap->to_cnt; |
| for (i = 0; i < cnt; i++) |
| dma_unmap_page(dev, unmap->addr[i], unmap->len, |
| DMA_TO_DEVICE); |
| cnt += unmap->from_cnt; |
| for (; i < cnt; i++) |
| dma_unmap_page(dev, unmap->addr[i], unmap->len, |
| DMA_FROM_DEVICE); |
| cnt += unmap->bidi_cnt; |
| for (; i < cnt; i++) { |
| if (unmap->addr[i] == 0) |
| continue; |
| dma_unmap_page(dev, unmap->addr[i], unmap->len, |
| DMA_BIDIRECTIONAL); |
| } |
| cnt = unmap->map_cnt; |
| mempool_free(unmap, __get_unmap_pool(cnt)->pool); |
| } |
| |
| void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) |
| { |
| if (unmap) |
| kref_put(&unmap->kref, dmaengine_unmap); |
| } |
| EXPORT_SYMBOL_GPL(dmaengine_unmap_put); |
| |
| static void dmaengine_destroy_unmap_pool(void) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { |
| struct dmaengine_unmap_pool *p = &unmap_pool[i]; |
| |
| mempool_destroy(p->pool); |
| p->pool = NULL; |
| kmem_cache_destroy(p->cache); |
| p->cache = NULL; |
| } |
| } |
| |
| static int __init dmaengine_init_unmap_pool(void) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { |
| struct dmaengine_unmap_pool *p = &unmap_pool[i]; |
| size_t size; |
| |
| size = sizeof(struct dmaengine_unmap_data) + |
| sizeof(dma_addr_t) * p->size; |
| |
| p->cache = kmem_cache_create(p->name, size, 0, |
| SLAB_HWCACHE_ALIGN, NULL); |
| if (!p->cache) |
| break; |
| p->pool = mempool_create_slab_pool(1, p->cache); |
| if (!p->pool) |
| break; |
| } |
| |
| if (i == ARRAY_SIZE(unmap_pool)) |
| return 0; |
| |
| dmaengine_destroy_unmap_pool(); |
| return -ENOMEM; |
| } |
| |
| struct dmaengine_unmap_data * |
| dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) |
| { |
| struct dmaengine_unmap_data *unmap; |
| |
| unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); |
| if (!unmap) |
| return NULL; |
| |
| memset(unmap, 0, sizeof(*unmap)); |
| kref_init(&unmap->kref); |
| unmap->dev = dev; |
| unmap->map_cnt = nr; |
| |
| return unmap; |
| } |
| EXPORT_SYMBOL(dmaengine_get_unmap_data); |
| |
| void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, |
| struct dma_chan *chan) |
| { |
| tx->chan = chan; |
| #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH |
| spin_lock_init(&tx->lock); |
| #endif |
| } |
| EXPORT_SYMBOL(dma_async_tx_descriptor_init); |
| |
| static inline int desc_check_and_set_metadata_mode( |
| struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode) |
| { |
| /* Make sure that the metadata mode is not mixed */ |
| if (!desc->desc_metadata_mode) { |
| if (dmaengine_is_metadata_mode_supported(desc->chan, mode)) |
| desc->desc_metadata_mode = mode; |
| else |
| return -ENOTSUPP; |
| } else if (desc->desc_metadata_mode != mode) { |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, |
| void *data, size_t len) |
| { |
| int ret; |
| |
| if (!desc) |
| return -EINVAL; |
| |
| ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT); |
| if (ret) |
| return ret; |
| |
| if (!desc->metadata_ops || !desc->metadata_ops->attach) |
| return -ENOTSUPP; |
| |
| return desc->metadata_ops->attach(desc, data, len); |
| } |
| EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata); |
| |
| void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, |
| size_t *payload_len, size_t *max_len) |
| { |
| int ret; |
| |
| if (!desc) |
| return ERR_PTR(-EINVAL); |
| |
| ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| if (!desc->metadata_ops || !desc->metadata_ops->get_ptr) |
| return ERR_PTR(-ENOTSUPP); |
| |
| return desc->metadata_ops->get_ptr(desc, payload_len, max_len); |
| } |
| EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr); |
| |
| int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, |
| size_t payload_len) |
| { |
| int ret; |
| |
| if (!desc) |
| return -EINVAL; |
| |
| ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); |
| if (ret) |
| return ret; |
| |
| if (!desc->metadata_ops || !desc->metadata_ops->set_len) |
| return -ENOTSUPP; |
| |
| return desc->metadata_ops->set_len(desc, payload_len); |
| } |
| EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len); |
| |
| /** |
| * dma_wait_for_async_tx - spin wait for a transaction to complete |
| * @tx: in-flight transaction to wait on |
| */ |
| enum dma_status |
| dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) |
| { |
| unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); |
| |
| if (!tx) |
| return DMA_COMPLETE; |
| |
| while (tx->cookie == -EBUSY) { |
| if (time_after_eq(jiffies, dma_sync_wait_timeout)) { |
| dev_err(tx->chan->device->dev, |
| "%s timeout waiting for descriptor submission\n", |
| __func__); |
| return DMA_ERROR; |
| } |
| cpu_relax(); |
| } |
| return dma_sync_wait(tx->chan, tx->cookie); |
| } |
| EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); |
| |
| /** |
| * dma_run_dependencies - process dependent operations on the target channel |
| * @tx: transaction with dependencies |
| * |
| * Helper routine for DMA drivers to process (start) dependent operations |
| * on their target channel. |
| */ |
| void dma_run_dependencies(struct dma_async_tx_descriptor *tx) |
| { |
| struct dma_async_tx_descriptor *dep = txd_next(tx); |
| struct dma_async_tx_descriptor *dep_next; |
| struct dma_chan *chan; |
| |
| if (!dep) |
| return; |
| |
| /* we'll submit tx->next now, so clear the link */ |
| txd_clear_next(tx); |
| chan = dep->chan; |
| |
| /* keep submitting up until a channel switch is detected |
| * in that case we will be called again as a result of |
| * processing the interrupt from async_tx_channel_switch |
| */ |
| for (; dep; dep = dep_next) { |
| txd_lock(dep); |
| txd_clear_parent(dep); |
| dep_next = txd_next(dep); |
| if (dep_next && dep_next->chan == chan) |
| txd_clear_next(dep); /* ->next will be submitted */ |
| else |
| dep_next = NULL; /* submit current dep and terminate */ |
| txd_unlock(dep); |
| |
| dep->tx_submit(dep); |
| } |
| |
| chan->device->device_issue_pending(chan); |
| } |
| EXPORT_SYMBOL_GPL(dma_run_dependencies); |
| |
| static int __init dma_bus_init(void) |
| { |
| int err = dmaengine_init_unmap_pool(); |
| |
| if (err) |
| return err; |
| |
| err = class_register(&dma_devclass); |
| if (!err) |
| dmaengine_debugfs_init(); |
| |
| return err; |
| } |
| arch_initcall(dma_bus_init); |