| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * RTC Driver for X-Powers AC100 |
| * |
| * Copyright (c) 2016 Chen-Yu Tsai |
| * |
| * Chen-Yu Tsai <wens@csie.org> |
| */ |
| |
| #include <linux/bcd.h> |
| #include <linux/clk-provider.h> |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/mfd/ac100.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| #include <linux/rtc.h> |
| #include <linux/types.h> |
| |
| /* Control register */ |
| #define AC100_RTC_CTRL_24HOUR BIT(0) |
| |
| /* Clock output register bits */ |
| #define AC100_CLKOUT_PRE_DIV_SHIFT 5 |
| #define AC100_CLKOUT_PRE_DIV_WIDTH 3 |
| #define AC100_CLKOUT_MUX_SHIFT 4 |
| #define AC100_CLKOUT_MUX_WIDTH 1 |
| #define AC100_CLKOUT_DIV_SHIFT 1 |
| #define AC100_CLKOUT_DIV_WIDTH 3 |
| #define AC100_CLKOUT_EN BIT(0) |
| |
| /* RTC */ |
| #define AC100_RTC_SEC_MASK GENMASK(6, 0) |
| #define AC100_RTC_MIN_MASK GENMASK(6, 0) |
| #define AC100_RTC_HOU_MASK GENMASK(5, 0) |
| #define AC100_RTC_WEE_MASK GENMASK(2, 0) |
| #define AC100_RTC_DAY_MASK GENMASK(5, 0) |
| #define AC100_RTC_MON_MASK GENMASK(4, 0) |
| #define AC100_RTC_YEA_MASK GENMASK(7, 0) |
| #define AC100_RTC_YEA_LEAP BIT(15) |
| #define AC100_RTC_UPD_TRIGGER BIT(15) |
| |
| /* Alarm (wall clock) */ |
| #define AC100_ALM_INT_ENABLE BIT(0) |
| |
| #define AC100_ALM_SEC_MASK GENMASK(6, 0) |
| #define AC100_ALM_MIN_MASK GENMASK(6, 0) |
| #define AC100_ALM_HOU_MASK GENMASK(5, 0) |
| #define AC100_ALM_WEE_MASK GENMASK(2, 0) |
| #define AC100_ALM_DAY_MASK GENMASK(5, 0) |
| #define AC100_ALM_MON_MASK GENMASK(4, 0) |
| #define AC100_ALM_YEA_MASK GENMASK(7, 0) |
| #define AC100_ALM_ENABLE_FLAG BIT(15) |
| #define AC100_ALM_UPD_TRIGGER BIT(15) |
| |
| /* |
| * The year parameter passed to the driver is usually an offset relative to |
| * the year 1900. This macro is used to convert this offset to another one |
| * relative to the minimum year allowed by the hardware. |
| * |
| * The year range is 1970 - 2069. This range is selected to match Allwinner's |
| * driver. |
| */ |
| #define AC100_YEAR_MIN 1970 |
| #define AC100_YEAR_MAX 2069 |
| #define AC100_YEAR_OFF (AC100_YEAR_MIN - 1900) |
| |
| struct ac100_clkout { |
| struct clk_hw hw; |
| struct regmap *regmap; |
| u8 offset; |
| }; |
| |
| #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw) |
| |
| #define AC100_RTC_32K_NAME "ac100-rtc-32k" |
| #define AC100_RTC_32K_RATE 32768 |
| #define AC100_CLKOUT_NUM 3 |
| |
| static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = { |
| "ac100-cko1-rtc", |
| "ac100-cko2-rtc", |
| "ac100-cko3-rtc", |
| }; |
| |
| struct ac100_rtc_dev { |
| struct rtc_device *rtc; |
| struct device *dev; |
| struct regmap *regmap; |
| int irq; |
| unsigned long alarm; |
| |
| struct clk_hw *rtc_32k_clk; |
| struct ac100_clkout clks[AC100_CLKOUT_NUM]; |
| struct clk_hw_onecell_data *clk_data; |
| }; |
| |
| /** |
| * Clock controls for 3 clock output pins |
| */ |
| |
| static const struct clk_div_table ac100_clkout_prediv[] = { |
| { .val = 0, .div = 1 }, |
| { .val = 1, .div = 2 }, |
| { .val = 2, .div = 4 }, |
| { .val = 3, .div = 8 }, |
| { .val = 4, .div = 16 }, |
| { .val = 5, .div = 32 }, |
| { .val = 6, .div = 64 }, |
| { .val = 7, .div = 122 }, |
| { }, |
| }; |
| |
| /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */ |
| static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw, |
| unsigned long prate) |
| { |
| struct ac100_clkout *clk = to_ac100_clkout(hw); |
| unsigned int reg, div; |
| |
| regmap_read(clk->regmap, clk->offset, ®); |
| |
| /* Handle pre-divider first */ |
| if (prate != AC100_RTC_32K_RATE) { |
| div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) & |
| ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1); |
| prate = divider_recalc_rate(hw, prate, div, |
| ac100_clkout_prediv, 0, |
| AC100_CLKOUT_PRE_DIV_WIDTH); |
| } |
| |
| div = (reg >> AC100_CLKOUT_DIV_SHIFT) & |
| (BIT(AC100_CLKOUT_DIV_WIDTH) - 1); |
| return divider_recalc_rate(hw, prate, div, NULL, |
| CLK_DIVIDER_POWER_OF_TWO, |
| AC100_CLKOUT_DIV_WIDTH); |
| } |
| |
| static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate) |
| { |
| unsigned long best_rate = 0, tmp_rate, tmp_prate; |
| int i; |
| |
| if (prate == AC100_RTC_32K_RATE) |
| return divider_round_rate(hw, rate, &prate, NULL, |
| AC100_CLKOUT_DIV_WIDTH, |
| CLK_DIVIDER_POWER_OF_TWO); |
| |
| for (i = 0; ac100_clkout_prediv[i].div; i++) { |
| tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val); |
| tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL, |
| AC100_CLKOUT_DIV_WIDTH, |
| CLK_DIVIDER_POWER_OF_TWO); |
| |
| if (tmp_rate > rate) |
| continue; |
| if (rate - tmp_rate < best_rate - tmp_rate) |
| best_rate = tmp_rate; |
| } |
| |
| return best_rate; |
| } |
| |
| static int ac100_clkout_determine_rate(struct clk_hw *hw, |
| struct clk_rate_request *req) |
| { |
| struct clk_hw *best_parent; |
| unsigned long best = 0; |
| int i, num_parents = clk_hw_get_num_parents(hw); |
| |
| for (i = 0; i < num_parents; i++) { |
| struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i); |
| unsigned long tmp, prate; |
| |
| /* |
| * The clock has two parents, one is a fixed clock which is |
| * internally registered by the ac100 driver. The other parent |
| * is a clock from the codec side of the chip, which we |
| * properly declare and reference in the devicetree and is |
| * not implemented in any driver right now. |
| * If the clock core looks for the parent of that second |
| * missing clock, it can't find one that is registered and |
| * returns NULL. |
| * So we end up in a situation where clk_hw_get_num_parents |
| * returns the amount of clocks we can be parented to, but |
| * clk_hw_get_parent_by_index will not return the orphan |
| * clocks. |
| * Thus we need to check if the parent exists before |
| * we get the parent rate, so we could use the RTC |
| * without waiting for the codec to be supported. |
| */ |
| if (!parent) |
| continue; |
| |
| prate = clk_hw_get_rate(parent); |
| |
| tmp = ac100_clkout_round_rate(hw, req->rate, prate); |
| |
| if (tmp > req->rate) |
| continue; |
| if (req->rate - tmp < req->rate - best) { |
| best = tmp; |
| best_parent = parent; |
| } |
| } |
| |
| if (!best) |
| return -EINVAL; |
| |
| req->best_parent_hw = best_parent; |
| req->best_parent_rate = best; |
| req->rate = best; |
| |
| return 0; |
| } |
| |
| static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate) |
| { |
| struct ac100_clkout *clk = to_ac100_clkout(hw); |
| int div = 0, pre_div = 0; |
| |
| do { |
| div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div, |
| prate, NULL, AC100_CLKOUT_DIV_WIDTH, |
| CLK_DIVIDER_POWER_OF_TWO); |
| if (div >= 0) |
| break; |
| } while (prate != AC100_RTC_32K_RATE && |
| ac100_clkout_prediv[++pre_div].div); |
| |
| if (div < 0) |
| return div; |
| |
| pre_div = ac100_clkout_prediv[pre_div].val; |
| |
| regmap_update_bits(clk->regmap, clk->offset, |
| ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT | |
| ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT, |
| (div - 1) << AC100_CLKOUT_DIV_SHIFT | |
| (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT); |
| |
| return 0; |
| } |
| |
| static int ac100_clkout_prepare(struct clk_hw *hw) |
| { |
| struct ac100_clkout *clk = to_ac100_clkout(hw); |
| |
| return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, |
| AC100_CLKOUT_EN); |
| } |
| |
| static void ac100_clkout_unprepare(struct clk_hw *hw) |
| { |
| struct ac100_clkout *clk = to_ac100_clkout(hw); |
| |
| regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0); |
| } |
| |
| static int ac100_clkout_is_prepared(struct clk_hw *hw) |
| { |
| struct ac100_clkout *clk = to_ac100_clkout(hw); |
| unsigned int reg; |
| |
| regmap_read(clk->regmap, clk->offset, ®); |
| |
| return reg & AC100_CLKOUT_EN; |
| } |
| |
| static u8 ac100_clkout_get_parent(struct clk_hw *hw) |
| { |
| struct ac100_clkout *clk = to_ac100_clkout(hw); |
| unsigned int reg; |
| |
| regmap_read(clk->regmap, clk->offset, ®); |
| |
| return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1; |
| } |
| |
| static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index) |
| { |
| struct ac100_clkout *clk = to_ac100_clkout(hw); |
| |
| return regmap_update_bits(clk->regmap, clk->offset, |
| BIT(AC100_CLKOUT_MUX_SHIFT), |
| index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0); |
| } |
| |
| static const struct clk_ops ac100_clkout_ops = { |
| .prepare = ac100_clkout_prepare, |
| .unprepare = ac100_clkout_unprepare, |
| .is_prepared = ac100_clkout_is_prepared, |
| .recalc_rate = ac100_clkout_recalc_rate, |
| .determine_rate = ac100_clkout_determine_rate, |
| .get_parent = ac100_clkout_get_parent, |
| .set_parent = ac100_clkout_set_parent, |
| .set_rate = ac100_clkout_set_rate, |
| }; |
| |
| static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip) |
| { |
| struct device_node *np = chip->dev->of_node; |
| const char *parents[2] = {AC100_RTC_32K_NAME}; |
| int i, ret; |
| |
| chip->clk_data = devm_kzalloc(chip->dev, |
| struct_size(chip->clk_data, hws, |
| AC100_CLKOUT_NUM), |
| GFP_KERNEL); |
| if (!chip->clk_data) |
| return -ENOMEM; |
| |
| chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev, |
| AC100_RTC_32K_NAME, |
| NULL, 0, |
| AC100_RTC_32K_RATE); |
| if (IS_ERR(chip->rtc_32k_clk)) { |
| ret = PTR_ERR(chip->rtc_32k_clk); |
| dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n", |
| ret); |
| return ret; |
| } |
| |
| parents[1] = of_clk_get_parent_name(np, 0); |
| if (!parents[1]) { |
| dev_err(chip->dev, "Failed to get ADDA 4M clock\n"); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < AC100_CLKOUT_NUM; i++) { |
| struct ac100_clkout *clk = &chip->clks[i]; |
| struct clk_init_data init = { |
| .name = ac100_clkout_names[i], |
| .ops = &ac100_clkout_ops, |
| .parent_names = parents, |
| .num_parents = ARRAY_SIZE(parents), |
| .flags = 0, |
| }; |
| |
| of_property_read_string_index(np, "clock-output-names", |
| i, &init.name); |
| clk->regmap = chip->regmap; |
| clk->offset = AC100_CLKOUT_CTRL1 + i; |
| clk->hw.init = &init; |
| |
| ret = devm_clk_hw_register(chip->dev, &clk->hw); |
| if (ret) { |
| dev_err(chip->dev, "Failed to register clk '%s': %d\n", |
| init.name, ret); |
| goto err_unregister_rtc_32k; |
| } |
| |
| chip->clk_data->hws[i] = &clk->hw; |
| } |
| |
| chip->clk_data->num = i; |
| ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data); |
| if (ret) |
| goto err_unregister_rtc_32k; |
| |
| return 0; |
| |
| err_unregister_rtc_32k: |
| clk_unregister_fixed_rate(chip->rtc_32k_clk->clk); |
| |
| return ret; |
| } |
| |
| static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip) |
| { |
| of_clk_del_provider(chip->dev->of_node); |
| clk_unregister_fixed_rate(chip->rtc_32k_clk->clk); |
| } |
| |
| /** |
| * RTC related bits |
| */ |
| static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm) |
| { |
| struct ac100_rtc_dev *chip = dev_get_drvdata(dev); |
| struct regmap *regmap = chip->regmap; |
| u16 reg[7]; |
| int ret; |
| |
| ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7); |
| if (ret) |
| return ret; |
| |
| rtc_tm->tm_sec = bcd2bin(reg[0] & AC100_RTC_SEC_MASK); |
| rtc_tm->tm_min = bcd2bin(reg[1] & AC100_RTC_MIN_MASK); |
| rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK); |
| rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK); |
| rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK); |
| rtc_tm->tm_mon = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1; |
| rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) + |
| AC100_YEAR_OFF; |
| |
| return 0; |
| } |
| |
| static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm) |
| { |
| struct ac100_rtc_dev *chip = dev_get_drvdata(dev); |
| struct regmap *regmap = chip->regmap; |
| int year; |
| u16 reg[8]; |
| |
| /* our RTC has a limited year range... */ |
| year = rtc_tm->tm_year - AC100_YEAR_OFF; |
| if (year < 0 || year > (AC100_YEAR_MAX - 1900)) { |
| dev_err(dev, "rtc only supports year in range %d - %d\n", |
| AC100_YEAR_MIN, AC100_YEAR_MAX); |
| return -EINVAL; |
| } |
| |
| /* convert to BCD */ |
| reg[0] = bin2bcd(rtc_tm->tm_sec) & AC100_RTC_SEC_MASK; |
| reg[1] = bin2bcd(rtc_tm->tm_min) & AC100_RTC_MIN_MASK; |
| reg[2] = bin2bcd(rtc_tm->tm_hour) & AC100_RTC_HOU_MASK; |
| reg[3] = bin2bcd(rtc_tm->tm_wday) & AC100_RTC_WEE_MASK; |
| reg[4] = bin2bcd(rtc_tm->tm_mday) & AC100_RTC_DAY_MASK; |
| reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK; |
| reg[6] = bin2bcd(year) & AC100_RTC_YEA_MASK; |
| /* trigger write */ |
| reg[7] = AC100_RTC_UPD_TRIGGER; |
| |
| /* Is it a leap year? */ |
| if (is_leap_year(year + AC100_YEAR_OFF + 1900)) |
| reg[6] |= AC100_RTC_YEA_LEAP; |
| |
| return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8); |
| } |
| |
| static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en) |
| { |
| struct ac100_rtc_dev *chip = dev_get_drvdata(dev); |
| struct regmap *regmap = chip->regmap; |
| unsigned int val; |
| |
| val = en ? AC100_ALM_INT_ENABLE : 0; |
| |
| return regmap_write(regmap, AC100_ALM_INT_ENA, val); |
| } |
| |
| static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct ac100_rtc_dev *chip = dev_get_drvdata(dev); |
| struct regmap *regmap = chip->regmap; |
| struct rtc_time *alrm_tm = &alrm->time; |
| u16 reg[7]; |
| unsigned int val; |
| int ret; |
| |
| ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val); |
| if (ret) |
| return ret; |
| |
| alrm->enabled = !!(val & AC100_ALM_INT_ENABLE); |
| |
| ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7); |
| if (ret) |
| return ret; |
| |
| alrm_tm->tm_sec = bcd2bin(reg[0] & AC100_ALM_SEC_MASK); |
| alrm_tm->tm_min = bcd2bin(reg[1] & AC100_ALM_MIN_MASK); |
| alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK); |
| alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK); |
| alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK); |
| alrm_tm->tm_mon = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1; |
| alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) + |
| AC100_YEAR_OFF; |
| |
| return 0; |
| } |
| |
| static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct ac100_rtc_dev *chip = dev_get_drvdata(dev); |
| struct regmap *regmap = chip->regmap; |
| struct rtc_time *alrm_tm = &alrm->time; |
| u16 reg[8]; |
| int year; |
| int ret; |
| |
| /* our alarm has a limited year range... */ |
| year = alrm_tm->tm_year - AC100_YEAR_OFF; |
| if (year < 0 || year > (AC100_YEAR_MAX - 1900)) { |
| dev_err(dev, "alarm only supports year in range %d - %d\n", |
| AC100_YEAR_MIN, AC100_YEAR_MAX); |
| return -EINVAL; |
| } |
| |
| /* convert to BCD */ |
| reg[0] = (bin2bcd(alrm_tm->tm_sec) & AC100_ALM_SEC_MASK) | |
| AC100_ALM_ENABLE_FLAG; |
| reg[1] = (bin2bcd(alrm_tm->tm_min) & AC100_ALM_MIN_MASK) | |
| AC100_ALM_ENABLE_FLAG; |
| reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) | |
| AC100_ALM_ENABLE_FLAG; |
| /* Do not enable weekday alarm */ |
| reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK; |
| reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) | |
| AC100_ALM_ENABLE_FLAG; |
| reg[5] = (bin2bcd(alrm_tm->tm_mon + 1) & AC100_ALM_MON_MASK) | |
| AC100_ALM_ENABLE_FLAG; |
| reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) | |
| AC100_ALM_ENABLE_FLAG; |
| /* trigger write */ |
| reg[7] = AC100_ALM_UPD_TRIGGER; |
| |
| ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8); |
| if (ret) |
| return ret; |
| |
| return ac100_rtc_alarm_irq_enable(dev, alrm->enabled); |
| } |
| |
| static irqreturn_t ac100_rtc_irq(int irq, void *data) |
| { |
| struct ac100_rtc_dev *chip = data; |
| struct regmap *regmap = chip->regmap; |
| unsigned int val = 0; |
| int ret; |
| |
| rtc_lock(chip->rtc); |
| |
| /* read status */ |
| ret = regmap_read(regmap, AC100_ALM_INT_STA, &val); |
| if (ret) |
| goto out; |
| |
| if (val & AC100_ALM_INT_ENABLE) { |
| /* signal rtc framework */ |
| rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF); |
| |
| /* clear status */ |
| ret = regmap_write(regmap, AC100_ALM_INT_STA, val); |
| if (ret) |
| goto out; |
| |
| /* disable interrupt */ |
| ret = ac100_rtc_alarm_irq_enable(chip->dev, 0); |
| if (ret) |
| goto out; |
| } |
| |
| out: |
| rtc_unlock(chip->rtc); |
| return IRQ_HANDLED; |
| } |
| |
| static const struct rtc_class_ops ac100_rtc_ops = { |
| .read_time = ac100_rtc_get_time, |
| .set_time = ac100_rtc_set_time, |
| .read_alarm = ac100_rtc_get_alarm, |
| .set_alarm = ac100_rtc_set_alarm, |
| .alarm_irq_enable = ac100_rtc_alarm_irq_enable, |
| }; |
| |
| static int ac100_rtc_probe(struct platform_device *pdev) |
| { |
| struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent); |
| struct ac100_rtc_dev *chip; |
| int ret; |
| |
| chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); |
| if (!chip) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, chip); |
| chip->dev = &pdev->dev; |
| chip->regmap = ac100->regmap; |
| |
| chip->irq = platform_get_irq(pdev, 0); |
| if (chip->irq < 0) |
| return chip->irq; |
| |
| chip->rtc = devm_rtc_allocate_device(&pdev->dev); |
| if (IS_ERR(chip->rtc)) |
| return PTR_ERR(chip->rtc); |
| |
| chip->rtc->ops = &ac100_rtc_ops; |
| |
| ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL, |
| ac100_rtc_irq, |
| IRQF_SHARED | IRQF_ONESHOT, |
| dev_name(&pdev->dev), chip); |
| if (ret) { |
| dev_err(&pdev->dev, "Could not request IRQ\n"); |
| return ret; |
| } |
| |
| /* always use 24 hour mode */ |
| regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR, |
| AC100_RTC_CTRL_24HOUR); |
| |
| /* disable counter alarm interrupt */ |
| regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0); |
| |
| /* clear counter alarm pending interrupts */ |
| regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE); |
| |
| ret = ac100_rtc_register_clks(chip); |
| if (ret) |
| return ret; |
| |
| return devm_rtc_register_device(chip->rtc); |
| } |
| |
| static void ac100_rtc_remove(struct platform_device *pdev) |
| { |
| struct ac100_rtc_dev *chip = platform_get_drvdata(pdev); |
| |
| ac100_rtc_unregister_clks(chip); |
| } |
| |
| static const struct of_device_id ac100_rtc_match[] = { |
| { .compatible = "x-powers,ac100-rtc" }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, ac100_rtc_match); |
| |
| static struct platform_driver ac100_rtc_driver = { |
| .probe = ac100_rtc_probe, |
| .remove_new = ac100_rtc_remove, |
| .driver = { |
| .name = "ac100-rtc", |
| .of_match_table = of_match_ptr(ac100_rtc_match), |
| }, |
| }; |
| module_platform_driver(ac100_rtc_driver); |
| |
| MODULE_DESCRIPTION("X-Powers AC100 RTC driver"); |
| MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>"); |
| MODULE_LICENSE("GPL v2"); |