blob: 22fe7b5f5236da08fb9cb2ba6991c4a07f4f904a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Qualcomm self-authenticating modem subsystem remoteproc driver
*
* Copyright (C) 2016 Linaro Ltd.
* Copyright (C) 2014 Sony Mobile Communications AB
* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/devcoredump.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_reserved_mem.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/soc/qcom/mdt_loader.h>
#include <linux/iopoll.h>
#include <linux/slab.h>
#include "remoteproc_internal.h"
#include "qcom_common.h"
#include "qcom_pil_info.h"
#include "qcom_q6v5.h"
#include <linux/firmware/qcom/qcom_scm.h>
#define MPSS_CRASH_REASON_SMEM 421
#define MBA_LOG_SIZE SZ_4K
#define MPSS_PAS_ID 5
/* RMB Status Register Values */
#define RMB_PBL_SUCCESS 0x1
#define RMB_MBA_XPU_UNLOCKED 0x1
#define RMB_MBA_XPU_UNLOCKED_SCRIBBLED 0x2
#define RMB_MBA_META_DATA_AUTH_SUCCESS 0x3
#define RMB_MBA_AUTH_COMPLETE 0x4
/* PBL/MBA interface registers */
#define RMB_MBA_IMAGE_REG 0x00
#define RMB_PBL_STATUS_REG 0x04
#define RMB_MBA_COMMAND_REG 0x08
#define RMB_MBA_STATUS_REG 0x0C
#define RMB_PMI_META_DATA_REG 0x10
#define RMB_PMI_CODE_START_REG 0x14
#define RMB_PMI_CODE_LENGTH_REG 0x18
#define RMB_MBA_MSS_STATUS 0x40
#define RMB_MBA_ALT_RESET 0x44
#define RMB_CMD_META_DATA_READY 0x1
#define RMB_CMD_LOAD_READY 0x2
/* QDSP6SS Register Offsets */
#define QDSP6SS_RESET_REG 0x014
#define QDSP6SS_GFMUX_CTL_REG 0x020
#define QDSP6SS_PWR_CTL_REG 0x030
#define QDSP6SS_MEM_PWR_CTL 0x0B0
#define QDSP6V6SS_MEM_PWR_CTL 0x034
#define QDSP6SS_STRAP_ACC 0x110
#define QDSP6V62SS_BHS_STATUS 0x0C4
/* AXI Halt Register Offsets */
#define AXI_HALTREQ_REG 0x0
#define AXI_HALTACK_REG 0x4
#define AXI_IDLE_REG 0x8
#define AXI_GATING_VALID_OVERRIDE BIT(0)
#define HALT_ACK_TIMEOUT_US 100000
/* QACCEPT Register Offsets */
#define QACCEPT_ACCEPT_REG 0x0
#define QACCEPT_ACTIVE_REG 0x4
#define QACCEPT_DENY_REG 0x8
#define QACCEPT_REQ_REG 0xC
#define QACCEPT_TIMEOUT_US 50
/* QDSP6SS_RESET */
#define Q6SS_STOP_CORE BIT(0)
#define Q6SS_CORE_ARES BIT(1)
#define Q6SS_BUS_ARES_ENABLE BIT(2)
/* QDSP6SS CBCR */
#define Q6SS_CBCR_CLKEN BIT(0)
#define Q6SS_CBCR_CLKOFF BIT(31)
#define Q6SS_CBCR_TIMEOUT_US 200
/* QDSP6SS_GFMUX_CTL */
#define Q6SS_CLK_ENABLE BIT(1)
/* QDSP6SS_PWR_CTL */
#define Q6SS_L2DATA_SLP_NRET_N_0 BIT(0)
#define Q6SS_L2DATA_SLP_NRET_N_1 BIT(1)
#define Q6SS_L2DATA_SLP_NRET_N_2 BIT(2)
#define Q6SS_L2TAG_SLP_NRET_N BIT(16)
#define Q6SS_ETB_SLP_NRET_N BIT(17)
#define Q6SS_L2DATA_STBY_N BIT(18)
#define Q6SS_SLP_RET_N BIT(19)
#define Q6SS_CLAMP_IO BIT(20)
#define QDSS_BHS_ON BIT(21)
#define QDSS_LDO_BYP BIT(22)
/* QDSP6v55 parameters */
#define QDSP6V55_MEM_BITS GENMASK(16, 8)
/* QDSP6v56 parameters */
#define QDSP6v56_LDO_BYP BIT(25)
#define QDSP6v56_BHS_ON BIT(24)
#define QDSP6v56_CLAMP_WL BIT(21)
#define QDSP6v56_CLAMP_QMC_MEM BIT(22)
#define QDSP6SS_XO_CBCR 0x0038
#define QDSP6SS_ACC_OVERRIDE_VAL 0x20
#define QDSP6v55_BHS_EN_REST_ACK BIT(0)
/* QDSP6v65 parameters */
#define QDSP6SS_CORE_CBCR 0x20
#define QDSP6SS_SLEEP 0x3C
#define QDSP6SS_BOOT_CORE_START 0x400
#define QDSP6SS_BOOT_CMD 0x404
#define BOOT_FSM_TIMEOUT 10000
#define BHS_CHECK_MAX_LOOPS 200
struct reg_info {
struct regulator *reg;
int uV;
int uA;
};
struct qcom_mss_reg_res {
const char *supply;
int uV;
int uA;
};
struct rproc_hexagon_res {
const char *hexagon_mba_image;
struct qcom_mss_reg_res *proxy_supply;
struct qcom_mss_reg_res *fallback_proxy_supply;
struct qcom_mss_reg_res *active_supply;
char **proxy_clk_names;
char **reset_clk_names;
char **active_clk_names;
char **proxy_pd_names;
int version;
bool need_mem_protection;
bool has_alt_reset;
bool has_mba_logs;
bool has_spare_reg;
bool has_qaccept_regs;
bool has_ext_cntl_regs;
bool has_vq6;
};
struct q6v5 {
struct device *dev;
struct rproc *rproc;
void __iomem *reg_base;
void __iomem *rmb_base;
struct regmap *halt_map;
struct regmap *conn_map;
u32 halt_q6;
u32 halt_modem;
u32 halt_nc;
u32 halt_vq6;
u32 conn_box;
u32 qaccept_mdm;
u32 qaccept_cx;
u32 qaccept_axi;
u32 axim1_clk_off;
u32 crypto_clk_off;
u32 force_clk_on;
u32 rscc_disable;
struct reset_control *mss_restart;
struct reset_control *pdc_reset;
struct qcom_q6v5 q6v5;
struct clk *active_clks[8];
struct clk *reset_clks[4];
struct clk *proxy_clks[4];
struct device *proxy_pds[3];
int active_clk_count;
int reset_clk_count;
int proxy_clk_count;
int proxy_pd_count;
struct reg_info active_regs[1];
struct reg_info proxy_regs[1];
struct reg_info fallback_proxy_regs[2];
int active_reg_count;
int proxy_reg_count;
int fallback_proxy_reg_count;
bool dump_mba_loaded;
size_t current_dump_size;
size_t total_dump_size;
phys_addr_t mba_phys;
size_t mba_size;
size_t dp_size;
phys_addr_t mdata_phys;
size_t mdata_size;
phys_addr_t mpss_phys;
phys_addr_t mpss_reloc;
size_t mpss_size;
struct qcom_rproc_glink glink_subdev;
struct qcom_rproc_subdev smd_subdev;
struct qcom_rproc_ssr ssr_subdev;
struct qcom_sysmon *sysmon;
struct platform_device *bam_dmux;
bool need_mem_protection;
bool has_alt_reset;
bool has_mba_logs;
bool has_spare_reg;
bool has_qaccept_regs;
bool has_ext_cntl_regs;
bool has_vq6;
u64 mpss_perm;
u64 mba_perm;
const char *hexagon_mdt_image;
int version;
};
enum {
MSS_MSM8909,
MSS_MSM8916,
MSS_MSM8953,
MSS_MSM8974,
MSS_MSM8996,
MSS_MSM8998,
MSS_SC7180,
MSS_SC7280,
MSS_SDM660,
MSS_SDM845,
};
static int q6v5_regulator_init(struct device *dev, struct reg_info *regs,
const struct qcom_mss_reg_res *reg_res)
{
int rc;
int i;
if (!reg_res)
return 0;
for (i = 0; reg_res[i].supply; i++) {
regs[i].reg = devm_regulator_get(dev, reg_res[i].supply);
if (IS_ERR(regs[i].reg)) {
rc = PTR_ERR(regs[i].reg);
if (rc != -EPROBE_DEFER)
dev_err(dev, "Failed to get %s\n regulator",
reg_res[i].supply);
return rc;
}
regs[i].uV = reg_res[i].uV;
regs[i].uA = reg_res[i].uA;
}
return i;
}
static int q6v5_regulator_enable(struct q6v5 *qproc,
struct reg_info *regs, int count)
{
int ret;
int i;
for (i = 0; i < count; i++) {
if (regs[i].uV > 0) {
ret = regulator_set_voltage(regs[i].reg,
regs[i].uV, INT_MAX);
if (ret) {
dev_err(qproc->dev,
"Failed to request voltage for %d.\n",
i);
goto err;
}
}
if (regs[i].uA > 0) {
ret = regulator_set_load(regs[i].reg,
regs[i].uA);
if (ret < 0) {
dev_err(qproc->dev,
"Failed to set regulator mode\n");
goto err;
}
}
ret = regulator_enable(regs[i].reg);
if (ret) {
dev_err(qproc->dev, "Regulator enable failed\n");
goto err;
}
}
return 0;
err:
for (; i >= 0; i--) {
if (regs[i].uV > 0)
regulator_set_voltage(regs[i].reg, 0, INT_MAX);
if (regs[i].uA > 0)
regulator_set_load(regs[i].reg, 0);
regulator_disable(regs[i].reg);
}
return ret;
}
static void q6v5_regulator_disable(struct q6v5 *qproc,
struct reg_info *regs, int count)
{
int i;
for (i = 0; i < count; i++) {
if (regs[i].uV > 0)
regulator_set_voltage(regs[i].reg, 0, INT_MAX);
if (regs[i].uA > 0)
regulator_set_load(regs[i].reg, 0);
regulator_disable(regs[i].reg);
}
}
static int q6v5_clk_enable(struct device *dev,
struct clk **clks, int count)
{
int rc;
int i;
for (i = 0; i < count; i++) {
rc = clk_prepare_enable(clks[i]);
if (rc) {
dev_err(dev, "Clock enable failed\n");
goto err;
}
}
return 0;
err:
for (i--; i >= 0; i--)
clk_disable_unprepare(clks[i]);
return rc;
}
static void q6v5_clk_disable(struct device *dev,
struct clk **clks, int count)
{
int i;
for (i = 0; i < count; i++)
clk_disable_unprepare(clks[i]);
}
static int q6v5_pds_enable(struct q6v5 *qproc, struct device **pds,
size_t pd_count)
{
int ret;
int i;
for (i = 0; i < pd_count; i++) {
dev_pm_genpd_set_performance_state(pds[i], INT_MAX);
ret = pm_runtime_get_sync(pds[i]);
if (ret < 0) {
pm_runtime_put_noidle(pds[i]);
dev_pm_genpd_set_performance_state(pds[i], 0);
goto unroll_pd_votes;
}
}
return 0;
unroll_pd_votes:
for (i--; i >= 0; i--) {
dev_pm_genpd_set_performance_state(pds[i], 0);
pm_runtime_put(pds[i]);
}
return ret;
}
static void q6v5_pds_disable(struct q6v5 *qproc, struct device **pds,
size_t pd_count)
{
int i;
for (i = 0; i < pd_count; i++) {
dev_pm_genpd_set_performance_state(pds[i], 0);
pm_runtime_put(pds[i]);
}
}
static int q6v5_xfer_mem_ownership(struct q6v5 *qproc, u64 *current_perm,
bool local, bool remote, phys_addr_t addr,
size_t size)
{
struct qcom_scm_vmperm next[2];
int perms = 0;
if (!qproc->need_mem_protection)
return 0;
if (local == !!(*current_perm & BIT(QCOM_SCM_VMID_HLOS)) &&
remote == !!(*current_perm & BIT(QCOM_SCM_VMID_MSS_MSA)))
return 0;
if (local) {
next[perms].vmid = QCOM_SCM_VMID_HLOS;
next[perms].perm = QCOM_SCM_PERM_RWX;
perms++;
}
if (remote) {
next[perms].vmid = QCOM_SCM_VMID_MSS_MSA;
next[perms].perm = QCOM_SCM_PERM_RW;
perms++;
}
return qcom_scm_assign_mem(addr, ALIGN(size, SZ_4K),
current_perm, next, perms);
}
static void q6v5_debug_policy_load(struct q6v5 *qproc, void *mba_region)
{
const struct firmware *dp_fw;
if (request_firmware_direct(&dp_fw, "msadp", qproc->dev))
return;
if (SZ_1M + dp_fw->size <= qproc->mba_size) {
memcpy(mba_region + SZ_1M, dp_fw->data, dp_fw->size);
qproc->dp_size = dp_fw->size;
}
release_firmware(dp_fw);
}
static int q6v5_load(struct rproc *rproc, const struct firmware *fw)
{
struct q6v5 *qproc = rproc->priv;
void *mba_region;
/* MBA is restricted to a maximum size of 1M */
if (fw->size > qproc->mba_size || fw->size > SZ_1M) {
dev_err(qproc->dev, "MBA firmware load failed\n");
return -EINVAL;
}
mba_region = memremap(qproc->mba_phys, qproc->mba_size, MEMREMAP_WC);
if (!mba_region) {
dev_err(qproc->dev, "unable to map memory region: %pa+%zx\n",
&qproc->mba_phys, qproc->mba_size);
return -EBUSY;
}
memcpy(mba_region, fw->data, fw->size);
q6v5_debug_policy_load(qproc, mba_region);
memunmap(mba_region);
return 0;
}
static int q6v5_reset_assert(struct q6v5 *qproc)
{
int ret;
if (qproc->has_alt_reset) {
reset_control_assert(qproc->pdc_reset);
ret = reset_control_reset(qproc->mss_restart);
reset_control_deassert(qproc->pdc_reset);
} else if (qproc->has_spare_reg) {
/*
* When the AXI pipeline is being reset with the Q6 modem partly
* operational there is possibility of AXI valid signal to
* glitch, leading to spurious transactions and Q6 hangs. A work
* around is employed by asserting the AXI_GATING_VALID_OVERRIDE
* BIT before triggering Q6 MSS reset. AXI_GATING_VALID_OVERRIDE
* is withdrawn post MSS assert followed by a MSS deassert,
* while holding the PDC reset.
*/
reset_control_assert(qproc->pdc_reset);
regmap_update_bits(qproc->conn_map, qproc->conn_box,
AXI_GATING_VALID_OVERRIDE, 1);
reset_control_assert(qproc->mss_restart);
reset_control_deassert(qproc->pdc_reset);
regmap_update_bits(qproc->conn_map, qproc->conn_box,
AXI_GATING_VALID_OVERRIDE, 0);
ret = reset_control_deassert(qproc->mss_restart);
} else if (qproc->has_ext_cntl_regs) {
regmap_write(qproc->conn_map, qproc->rscc_disable, 0);
reset_control_assert(qproc->pdc_reset);
reset_control_assert(qproc->mss_restart);
reset_control_deassert(qproc->pdc_reset);
ret = reset_control_deassert(qproc->mss_restart);
} else {
ret = reset_control_assert(qproc->mss_restart);
}
return ret;
}
static int q6v5_reset_deassert(struct q6v5 *qproc)
{
int ret;
if (qproc->has_alt_reset) {
reset_control_assert(qproc->pdc_reset);
writel(1, qproc->rmb_base + RMB_MBA_ALT_RESET);
ret = reset_control_reset(qproc->mss_restart);
writel(0, qproc->rmb_base + RMB_MBA_ALT_RESET);
reset_control_deassert(qproc->pdc_reset);
} else if (qproc->has_spare_reg || qproc->has_ext_cntl_regs) {
ret = reset_control_reset(qproc->mss_restart);
} else {
ret = reset_control_deassert(qproc->mss_restart);
}
return ret;
}
static int q6v5_rmb_pbl_wait(struct q6v5 *qproc, int ms)
{
unsigned long timeout;
s32 val;
timeout = jiffies + msecs_to_jiffies(ms);
for (;;) {
val = readl(qproc->rmb_base + RMB_PBL_STATUS_REG);
if (val)
break;
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
msleep(1);
}
return val;
}
static int q6v5_rmb_mba_wait(struct q6v5 *qproc, u32 status, int ms)
{
unsigned long timeout;
s32 val;
timeout = jiffies + msecs_to_jiffies(ms);
for (;;) {
val = readl(qproc->rmb_base + RMB_MBA_STATUS_REG);
if (val < 0)
break;
if (!status && val)
break;
else if (status && val == status)
break;
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
msleep(1);
}
return val;
}
static void q6v5_dump_mba_logs(struct q6v5 *qproc)
{
struct rproc *rproc = qproc->rproc;
void *data;
void *mba_region;
if (!qproc->has_mba_logs)
return;
if (q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys,
qproc->mba_size))
return;
mba_region = memremap(qproc->mba_phys, qproc->mba_size, MEMREMAP_WC);
if (!mba_region)
return;
data = vmalloc(MBA_LOG_SIZE);
if (data) {
memcpy(data, mba_region, MBA_LOG_SIZE);
dev_coredumpv(&rproc->dev, data, MBA_LOG_SIZE, GFP_KERNEL);
}
memunmap(mba_region);
}
static int q6v5proc_reset(struct q6v5 *qproc)
{
u32 val;
int ret;
int i;
if (qproc->version == MSS_SDM845) {
val = readl(qproc->reg_base + QDSP6SS_SLEEP);
val |= Q6SS_CBCR_CLKEN;
writel(val, qproc->reg_base + QDSP6SS_SLEEP);
ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_SLEEP,
val, !(val & Q6SS_CBCR_CLKOFF), 1,
Q6SS_CBCR_TIMEOUT_US);
if (ret) {
dev_err(qproc->dev, "QDSP6SS Sleep clock timed out\n");
return -ETIMEDOUT;
}
/* De-assert QDSP6 stop core */
writel(1, qproc->reg_base + QDSP6SS_BOOT_CORE_START);
/* Trigger boot FSM */
writel(1, qproc->reg_base + QDSP6SS_BOOT_CMD);
ret = readl_poll_timeout(qproc->rmb_base + RMB_MBA_MSS_STATUS,
val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT);
if (ret) {
dev_err(qproc->dev, "Boot FSM failed to complete.\n");
/* Reset the modem so that boot FSM is in reset state */
q6v5_reset_deassert(qproc);
return ret;
}
goto pbl_wait;
} else if (qproc->version == MSS_SC7180 || qproc->version == MSS_SC7280) {
val = readl(qproc->reg_base + QDSP6SS_SLEEP);
val |= Q6SS_CBCR_CLKEN;
writel(val, qproc->reg_base + QDSP6SS_SLEEP);
ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_SLEEP,
val, !(val & Q6SS_CBCR_CLKOFF), 1,
Q6SS_CBCR_TIMEOUT_US);
if (ret) {
dev_err(qproc->dev, "QDSP6SS Sleep clock timed out\n");
return -ETIMEDOUT;
}
/* Turn on the XO clock needed for PLL setup */
val = readl(qproc->reg_base + QDSP6SS_XO_CBCR);
val |= Q6SS_CBCR_CLKEN;
writel(val, qproc->reg_base + QDSP6SS_XO_CBCR);
ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_XO_CBCR,
val, !(val & Q6SS_CBCR_CLKOFF), 1,
Q6SS_CBCR_TIMEOUT_US);
if (ret) {
dev_err(qproc->dev, "QDSP6SS XO clock timed out\n");
return -ETIMEDOUT;
}
/* Configure Q6 core CBCR to auto-enable after reset sequence */
val = readl(qproc->reg_base + QDSP6SS_CORE_CBCR);
val |= Q6SS_CBCR_CLKEN;
writel(val, qproc->reg_base + QDSP6SS_CORE_CBCR);
/* De-assert the Q6 stop core signal */
writel(1, qproc->reg_base + QDSP6SS_BOOT_CORE_START);
/* Wait for 10 us for any staggering logic to settle */
usleep_range(10, 20);
/* Trigger the boot FSM to start the Q6 out-of-reset sequence */
writel(1, qproc->reg_base + QDSP6SS_BOOT_CMD);
/* Poll the MSS_STATUS for FSM completion */
ret = readl_poll_timeout(qproc->rmb_base + RMB_MBA_MSS_STATUS,
val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT);
if (ret) {
dev_err(qproc->dev, "Boot FSM failed to complete.\n");
/* Reset the modem so that boot FSM is in reset state */
q6v5_reset_deassert(qproc);
return ret;
}
goto pbl_wait;
} else if (qproc->version == MSS_MSM8909 ||
qproc->version == MSS_MSM8953 ||
qproc->version == MSS_MSM8996 ||
qproc->version == MSS_MSM8998 ||
qproc->version == MSS_SDM660) {
if (qproc->version != MSS_MSM8909 &&
qproc->version != MSS_MSM8953)
/* Override the ACC value if required */
writel(QDSP6SS_ACC_OVERRIDE_VAL,
qproc->reg_base + QDSP6SS_STRAP_ACC);
/* Assert resets, stop core */
val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE;
writel(val, qproc->reg_base + QDSP6SS_RESET_REG);
/* BHS require xo cbcr to be enabled */
val = readl(qproc->reg_base + QDSP6SS_XO_CBCR);
val |= Q6SS_CBCR_CLKEN;
writel(val, qproc->reg_base + QDSP6SS_XO_CBCR);
/* Read CLKOFF bit to go low indicating CLK is enabled */
ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_XO_CBCR,
val, !(val & Q6SS_CBCR_CLKOFF), 1,
Q6SS_CBCR_TIMEOUT_US);
if (ret) {
dev_err(qproc->dev,
"xo cbcr enabling timed out (rc:%d)\n", ret);
return ret;
}
/* Enable power block headswitch and wait for it to stabilize */
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= QDSP6v56_BHS_ON;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
udelay(1);
if (qproc->version == MSS_SDM660) {
ret = readl_relaxed_poll_timeout(qproc->reg_base + QDSP6V62SS_BHS_STATUS,
i, (i & QDSP6v55_BHS_EN_REST_ACK),
1, BHS_CHECK_MAX_LOOPS);
if (ret == -ETIMEDOUT) {
dev_err(qproc->dev, "BHS_EN_REST_ACK not set!\n");
return -ETIMEDOUT;
}
}
/* Put LDO in bypass mode */
val |= QDSP6v56_LDO_BYP;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
if (qproc->version != MSS_MSM8909) {
int mem_pwr_ctl;
/* Deassert QDSP6 compiler memory clamp */
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val &= ~QDSP6v56_CLAMP_QMC_MEM;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
/* Deassert memory peripheral sleep and L2 memory standby */
val |= Q6SS_L2DATA_STBY_N | Q6SS_SLP_RET_N;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
/* Turn on L1, L2, ETB and JU memories 1 at a time */
if (qproc->version == MSS_MSM8953 ||
qproc->version == MSS_MSM8996) {
mem_pwr_ctl = QDSP6SS_MEM_PWR_CTL;
i = 19;
} else {
/* MSS_MSM8998, MSS_SDM660 */
mem_pwr_ctl = QDSP6V6SS_MEM_PWR_CTL;
i = 28;
}
val = readl(qproc->reg_base + mem_pwr_ctl);
for (; i >= 0; i--) {
val |= BIT(i);
writel(val, qproc->reg_base + mem_pwr_ctl);
/*
* Read back value to ensure the write is done then
* wait for 1us for both memory peripheral and data
* array to turn on.
*/
val |= readl(qproc->reg_base + mem_pwr_ctl);
udelay(1);
}
} else {
/* Turn on memories */
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_SLP_RET_N | Q6SS_L2DATA_STBY_N |
Q6SS_ETB_SLP_NRET_N | QDSP6V55_MEM_BITS;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
/* Turn on L2 banks 1 at a time */
for (i = 0; i <= 7; i++) {
val |= BIT(i);
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
}
}
/* Remove word line clamp */
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val &= ~QDSP6v56_CLAMP_WL;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
} else {
/* Assert resets, stop core */
val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE;
writel(val, qproc->reg_base + QDSP6SS_RESET_REG);
/* Enable power block headswitch and wait for it to stabilize */
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= QDSS_BHS_ON | QDSS_LDO_BYP;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
udelay(1);
/*
* Turn on memories. L2 banks should be done individually
* to minimize inrush current.
*/
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_SLP_RET_N | Q6SS_L2TAG_SLP_NRET_N |
Q6SS_ETB_SLP_NRET_N | Q6SS_L2DATA_STBY_N;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_L2DATA_SLP_NRET_N_2;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_L2DATA_SLP_NRET_N_1;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_L2DATA_SLP_NRET_N_0;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
}
/* Remove IO clamp */
val &= ~Q6SS_CLAMP_IO;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
/* Bring core out of reset */
val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
val &= ~Q6SS_CORE_ARES;
writel(val, qproc->reg_base + QDSP6SS_RESET_REG);
/* Turn on core clock */
val = readl(qproc->reg_base + QDSP6SS_GFMUX_CTL_REG);
val |= Q6SS_CLK_ENABLE;
writel(val, qproc->reg_base + QDSP6SS_GFMUX_CTL_REG);
/* Start core execution */
val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
val &= ~Q6SS_STOP_CORE;
writel(val, qproc->reg_base + QDSP6SS_RESET_REG);
pbl_wait:
/* Wait for PBL status */
ret = q6v5_rmb_pbl_wait(qproc, 1000);
if (ret == -ETIMEDOUT) {
dev_err(qproc->dev, "PBL boot timed out\n");
} else if (ret != RMB_PBL_SUCCESS) {
dev_err(qproc->dev, "PBL returned unexpected status %d\n", ret);
ret = -EINVAL;
} else {
ret = 0;
}
return ret;
}
static int q6v5proc_enable_qchannel(struct q6v5 *qproc, struct regmap *map, u32 offset)
{
unsigned int val;
int ret;
if (!qproc->has_qaccept_regs)
return 0;
if (qproc->has_ext_cntl_regs) {
regmap_write(qproc->conn_map, qproc->rscc_disable, 0);
regmap_write(qproc->conn_map, qproc->force_clk_on, 1);
ret = regmap_read_poll_timeout(qproc->halt_map, qproc->axim1_clk_off, val,
!val, 1, Q6SS_CBCR_TIMEOUT_US);
if (ret) {
dev_err(qproc->dev, "failed to enable axim1 clock\n");
return -ETIMEDOUT;
}
}
regmap_write(map, offset + QACCEPT_REQ_REG, 1);
/* Wait for accept */
ret = regmap_read_poll_timeout(map, offset + QACCEPT_ACCEPT_REG, val, val, 5,
QACCEPT_TIMEOUT_US);
if (ret) {
dev_err(qproc->dev, "qchannel enable failed\n");
return -ETIMEDOUT;
}
return 0;
}
static void q6v5proc_disable_qchannel(struct q6v5 *qproc, struct regmap *map, u32 offset)
{
int ret;
unsigned int val, retry;
unsigned int nretry = 10;
bool takedown_complete = false;
if (!qproc->has_qaccept_regs)
return;
while (!takedown_complete && nretry) {
nretry--;
/* Wait for active transactions to complete */
regmap_read_poll_timeout(map, offset + QACCEPT_ACTIVE_REG, val, !val, 5,
QACCEPT_TIMEOUT_US);
/* Request Q-channel transaction takedown */
regmap_write(map, offset + QACCEPT_REQ_REG, 0);
/*
* If the request is denied, reset the Q-channel takedown request,
* wait for active transactions to complete and retry takedown.
*/
retry = 10;
while (retry) {
usleep_range(5, 10);
retry--;
ret = regmap_read(map, offset + QACCEPT_DENY_REG, &val);
if (!ret && val) {
regmap_write(map, offset + QACCEPT_REQ_REG, 1);
break;
}
ret = regmap_read(map, offset + QACCEPT_ACCEPT_REG, &val);
if (!ret && !val) {
takedown_complete = true;
break;
}
}
if (!retry)
break;
}
/* Rely on mss_restart to clear out pending transactions on takedown failure */
if (!takedown_complete)
dev_err(qproc->dev, "qchannel takedown failed\n");
}
static void q6v5proc_halt_axi_port(struct q6v5 *qproc,
struct regmap *halt_map,
u32 offset)
{
unsigned int val;
int ret;
/* Check if we're already idle */
ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val);
if (!ret && val)
return;
/* Assert halt request */
regmap_write(halt_map, offset + AXI_HALTREQ_REG, 1);
/* Wait for halt */
regmap_read_poll_timeout(halt_map, offset + AXI_HALTACK_REG, val,
val, 1000, HALT_ACK_TIMEOUT_US);
ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val);
if (ret || !val)
dev_err(qproc->dev, "port failed halt\n");
/* Clear halt request (port will remain halted until reset) */
regmap_write(halt_map, offset + AXI_HALTREQ_REG, 0);
}
static int q6v5_mpss_init_image(struct q6v5 *qproc, const struct firmware *fw,
const char *fw_name)
{
unsigned long dma_attrs = DMA_ATTR_FORCE_CONTIGUOUS;
dma_addr_t phys;
void *metadata;
u64 mdata_perm;
int xferop_ret;
size_t size;
void *ptr;
int ret;
metadata = qcom_mdt_read_metadata(fw, &size, fw_name, qproc->dev);
if (IS_ERR(metadata))
return PTR_ERR(metadata);
if (qproc->mdata_phys) {
if (size > qproc->mdata_size) {
ret = -EINVAL;
dev_err(qproc->dev, "metadata size outside memory range\n");
goto free_metadata;
}
phys = qproc->mdata_phys;
ptr = memremap(qproc->mdata_phys, size, MEMREMAP_WC);
if (!ptr) {
ret = -EBUSY;
dev_err(qproc->dev, "unable to map memory region: %pa+%zx\n",
&qproc->mdata_phys, size);
goto free_metadata;
}
} else {
ptr = dma_alloc_attrs(qproc->dev, size, &phys, GFP_KERNEL, dma_attrs);
if (!ptr) {
ret = -ENOMEM;
dev_err(qproc->dev, "failed to allocate mdt buffer\n");
goto free_metadata;
}
}
memcpy(ptr, metadata, size);
if (qproc->mdata_phys)
memunmap(ptr);
/* Hypervisor mapping to access metadata by modem */
mdata_perm = BIT(QCOM_SCM_VMID_HLOS);
ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, false, true,
phys, size);
if (ret) {
dev_err(qproc->dev,
"assigning Q6 access to metadata failed: %d\n", ret);
ret = -EAGAIN;
goto free_dma_attrs;
}
writel(phys, qproc->rmb_base + RMB_PMI_META_DATA_REG);
writel(RMB_CMD_META_DATA_READY, qproc->rmb_base + RMB_MBA_COMMAND_REG);
ret = q6v5_rmb_mba_wait(qproc, RMB_MBA_META_DATA_AUTH_SUCCESS, 1000);
if (ret == -ETIMEDOUT)
dev_err(qproc->dev, "MPSS header authentication timed out\n");
else if (ret < 0)
dev_err(qproc->dev, "MPSS header authentication failed: %d\n", ret);
/* Metadata authentication done, remove modem access */
xferop_ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, true, false,
phys, size);
if (xferop_ret)
dev_warn(qproc->dev,
"mdt buffer not reclaimed system may become unstable\n");
free_dma_attrs:
if (!qproc->mdata_phys)
dma_free_attrs(qproc->dev, size, ptr, phys, dma_attrs);
free_metadata:
kfree(metadata);
return ret < 0 ? ret : 0;
}
static bool q6v5_phdr_valid(const struct elf32_phdr *phdr)
{
if (phdr->p_type != PT_LOAD)
return false;
if ((phdr->p_flags & QCOM_MDT_TYPE_MASK) == QCOM_MDT_TYPE_HASH)
return false;
if (!phdr->p_memsz)
return false;
return true;
}
static int q6v5_mba_load(struct q6v5 *qproc)
{
int ret;
int xfermemop_ret;
bool mba_load_err = false;
ret = qcom_q6v5_prepare(&qproc->q6v5);
if (ret)
return ret;
ret = q6v5_pds_enable(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
if (ret < 0) {
dev_err(qproc->dev, "failed to enable proxy power domains\n");
goto disable_irqs;
}
ret = q6v5_regulator_enable(qproc, qproc->fallback_proxy_regs,
qproc->fallback_proxy_reg_count);
if (ret) {
dev_err(qproc->dev, "failed to enable fallback proxy supplies\n");
goto disable_proxy_pds;
}
ret = q6v5_regulator_enable(qproc, qproc->proxy_regs,
qproc->proxy_reg_count);
if (ret) {
dev_err(qproc->dev, "failed to enable proxy supplies\n");
goto disable_fallback_proxy_reg;
}
ret = q6v5_clk_enable(qproc->dev, qproc->proxy_clks,
qproc->proxy_clk_count);
if (ret) {
dev_err(qproc->dev, "failed to enable proxy clocks\n");
goto disable_proxy_reg;
}
ret = q6v5_regulator_enable(qproc, qproc->active_regs,
qproc->active_reg_count);
if (ret) {
dev_err(qproc->dev, "failed to enable supplies\n");
goto disable_proxy_clk;
}
ret = q6v5_clk_enable(qproc->dev, qproc->reset_clks,
qproc->reset_clk_count);
if (ret) {
dev_err(qproc->dev, "failed to enable reset clocks\n");
goto disable_vdd;
}
ret = q6v5_reset_deassert(qproc);
if (ret) {
dev_err(qproc->dev, "failed to deassert mss restart\n");
goto disable_reset_clks;
}
ret = q6v5_clk_enable(qproc->dev, qproc->active_clks,
qproc->active_clk_count);
if (ret) {
dev_err(qproc->dev, "failed to enable clocks\n");
goto assert_reset;
}
ret = q6v5proc_enable_qchannel(qproc, qproc->halt_map, qproc->qaccept_axi);
if (ret) {
dev_err(qproc->dev, "failed to enable axi bridge\n");
goto disable_active_clks;
}
/*
* Some versions of the MBA firmware will upon boot wipe the MPSS region as well, so provide
* the Q6 access to this region.
*/
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true,
qproc->mpss_phys, qproc->mpss_size);
if (ret) {
dev_err(qproc->dev, "assigning Q6 access to mpss memory failed: %d\n", ret);
goto disable_active_clks;
}
/* Assign MBA image access in DDR to q6 */
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, false, true,
qproc->mba_phys, qproc->mba_size);
if (ret) {
dev_err(qproc->dev,
"assigning Q6 access to mba memory failed: %d\n", ret);
goto disable_active_clks;
}
writel(qproc->mba_phys, qproc->rmb_base + RMB_MBA_IMAGE_REG);
if (qproc->dp_size) {
writel(qproc->mba_phys + SZ_1M, qproc->rmb_base + RMB_PMI_CODE_START_REG);
writel(qproc->dp_size, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);
}
ret = q6v5proc_reset(qproc);
if (ret)
goto reclaim_mba;
if (qproc->has_mba_logs)
qcom_pil_info_store("mba", qproc->mba_phys, MBA_LOG_SIZE);
ret = q6v5_rmb_mba_wait(qproc, 0, 5000);
if (ret == -ETIMEDOUT) {
dev_err(qproc->dev, "MBA boot timed out\n");
goto halt_axi_ports;
} else if (ret != RMB_MBA_XPU_UNLOCKED &&
ret != RMB_MBA_XPU_UNLOCKED_SCRIBBLED) {
dev_err(qproc->dev, "MBA returned unexpected status %d\n", ret);
ret = -EINVAL;
goto halt_axi_ports;
}
qproc->dump_mba_loaded = true;
return 0;
halt_axi_ports:
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_q6);
if (qproc->has_vq6)
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_vq6);
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_modem);
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_nc);
q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_mdm);
q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_cx);
q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_axi);
mba_load_err = true;
reclaim_mba:
xfermemop_ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true,
false, qproc->mba_phys,
qproc->mba_size);
if (xfermemop_ret) {
dev_err(qproc->dev,
"Failed to reclaim mba buffer, system may become unstable\n");
} else if (mba_load_err) {
q6v5_dump_mba_logs(qproc);
}
disable_active_clks:
q6v5_clk_disable(qproc->dev, qproc->active_clks,
qproc->active_clk_count);
assert_reset:
q6v5_reset_assert(qproc);
disable_reset_clks:
q6v5_clk_disable(qproc->dev, qproc->reset_clks,
qproc->reset_clk_count);
disable_vdd:
q6v5_regulator_disable(qproc, qproc->active_regs,
qproc->active_reg_count);
disable_proxy_clk:
q6v5_clk_disable(qproc->dev, qproc->proxy_clks,
qproc->proxy_clk_count);
disable_proxy_reg:
q6v5_regulator_disable(qproc, qproc->proxy_regs,
qproc->proxy_reg_count);
disable_fallback_proxy_reg:
q6v5_regulator_disable(qproc, qproc->fallback_proxy_regs,
qproc->fallback_proxy_reg_count);
disable_proxy_pds:
q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
disable_irqs:
qcom_q6v5_unprepare(&qproc->q6v5);
return ret;
}
static void q6v5_mba_reclaim(struct q6v5 *qproc)
{
int ret;
u32 val;
qproc->dump_mba_loaded = false;
qproc->dp_size = 0;
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_q6);
if (qproc->has_vq6)
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_vq6);
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_modem);
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_nc);
if (qproc->version == MSS_MSM8996) {
/*
* To avoid high MX current during LPASS/MSS restart.
*/
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_CLAMP_IO | QDSP6v56_CLAMP_WL |
QDSP6v56_CLAMP_QMC_MEM;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
}
if (qproc->has_ext_cntl_regs) {
regmap_write(qproc->conn_map, qproc->rscc_disable, 1);
ret = regmap_read_poll_timeout(qproc->halt_map, qproc->axim1_clk_off, val,
!val, 1, Q6SS_CBCR_TIMEOUT_US);
if (ret)
dev_err(qproc->dev, "failed to enable axim1 clock\n");
ret = regmap_read_poll_timeout(qproc->halt_map, qproc->crypto_clk_off, val,
!val, 1, Q6SS_CBCR_TIMEOUT_US);
if (ret)
dev_err(qproc->dev, "failed to enable crypto clock\n");
}
q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_mdm);
q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_cx);
q6v5proc_disable_qchannel(qproc, qproc->halt_map, qproc->qaccept_axi);
q6v5_reset_assert(qproc);
q6v5_clk_disable(qproc->dev, qproc->reset_clks,
qproc->reset_clk_count);
q6v5_clk_disable(qproc->dev, qproc->active_clks,
qproc->active_clk_count);
q6v5_regulator_disable(qproc, qproc->active_regs,
qproc->active_reg_count);
/* In case of failure or coredump scenario where reclaiming MBA memory
* could not happen reclaim it here.
*/
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false,
qproc->mba_phys,
qproc->mba_size);
WARN_ON(ret);
ret = qcom_q6v5_unprepare(&qproc->q6v5);
if (ret) {
q6v5_pds_disable(qproc, qproc->proxy_pds,
qproc->proxy_pd_count);
q6v5_clk_disable(qproc->dev, qproc->proxy_clks,
qproc->proxy_clk_count);
q6v5_regulator_disable(qproc, qproc->fallback_proxy_regs,
qproc->fallback_proxy_reg_count);
q6v5_regulator_disable(qproc, qproc->proxy_regs,
qproc->proxy_reg_count);
}
}
static int q6v5_reload_mba(struct rproc *rproc)
{
struct q6v5 *qproc = rproc->priv;
const struct firmware *fw;
int ret;
ret = request_firmware(&fw, rproc->firmware, qproc->dev);
if (ret < 0)
return ret;
q6v5_load(rproc, fw);
ret = q6v5_mba_load(qproc);
release_firmware(fw);
return ret;
}
static int q6v5_mpss_load(struct q6v5 *qproc)
{
const struct elf32_phdr *phdrs;
const struct elf32_phdr *phdr;
const struct firmware *seg_fw;
const struct firmware *fw;
struct elf32_hdr *ehdr;
phys_addr_t mpss_reloc;
phys_addr_t boot_addr;
phys_addr_t min_addr = PHYS_ADDR_MAX;
phys_addr_t max_addr = 0;
u32 code_length;
bool relocate = false;
char *fw_name;
size_t fw_name_len;
ssize_t offset;
size_t size = 0;
void *ptr;
int ret;
int i;
fw_name_len = strlen(qproc->hexagon_mdt_image);
if (fw_name_len <= 4)
return -EINVAL;
fw_name = kstrdup(qproc->hexagon_mdt_image, GFP_KERNEL);
if (!fw_name)
return -ENOMEM;
ret = request_firmware(&fw, fw_name, qproc->dev);
if (ret < 0) {
dev_err(qproc->dev, "unable to load %s\n", fw_name);
goto out;
}
/* Initialize the RMB validator */
writel(0, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);
ret = q6v5_mpss_init_image(qproc, fw, qproc->hexagon_mdt_image);
if (ret)
goto release_firmware;
ehdr = (struct elf32_hdr *)fw->data;
phdrs = (struct elf32_phdr *)(ehdr + 1);
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!q6v5_phdr_valid(phdr))
continue;
if (phdr->p_flags & QCOM_MDT_RELOCATABLE)
relocate = true;
if (phdr->p_paddr < min_addr)
min_addr = phdr->p_paddr;
if (phdr->p_paddr + phdr->p_memsz > max_addr)
max_addr = ALIGN(phdr->p_paddr + phdr->p_memsz, SZ_4K);
}
if (qproc->version == MSS_MSM8953) {
ret = qcom_scm_pas_mem_setup(MPSS_PAS_ID, qproc->mpss_phys, qproc->mpss_size);
if (ret) {
dev_err(qproc->dev,
"setting up mpss memory failed: %d\n", ret);
goto release_firmware;
}
}
/*
* In case of a modem subsystem restart on secure devices, the modem
* memory can be reclaimed only after MBA is loaded.
*/
q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, false,
qproc->mpss_phys, qproc->mpss_size);
/* Share ownership between Linux and MSS, during segment loading */
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, true,
qproc->mpss_phys, qproc->mpss_size);
if (ret) {
dev_err(qproc->dev,
"assigning Q6 access to mpss memory failed: %d\n", ret);
ret = -EAGAIN;
goto release_firmware;
}
mpss_reloc = relocate ? min_addr : qproc->mpss_phys;
qproc->mpss_reloc = mpss_reloc;
/* Load firmware segments */
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!q6v5_phdr_valid(phdr))
continue;
offset = phdr->p_paddr - mpss_reloc;
if (offset < 0 || offset + phdr->p_memsz > qproc->mpss_size) {
dev_err(qproc->dev, "segment outside memory range\n");
ret = -EINVAL;
goto release_firmware;
}
if (phdr->p_filesz > phdr->p_memsz) {
dev_err(qproc->dev,
"refusing to load segment %d with p_filesz > p_memsz\n",
i);
ret = -EINVAL;
goto release_firmware;
}
ptr = memremap(qproc->mpss_phys + offset, phdr->p_memsz, MEMREMAP_WC);
if (!ptr) {
dev_err(qproc->dev,
"unable to map memory region: %pa+%zx-%x\n",
&qproc->mpss_phys, offset, phdr->p_memsz);
goto release_firmware;
}
if (phdr->p_filesz && phdr->p_offset < fw->size) {
/* Firmware is large enough to be non-split */
if (phdr->p_offset + phdr->p_filesz > fw->size) {
dev_err(qproc->dev,
"failed to load segment %d from truncated file %s\n",
i, fw_name);
ret = -EINVAL;
memunmap(ptr);
goto release_firmware;
}
memcpy(ptr, fw->data + phdr->p_offset, phdr->p_filesz);
} else if (phdr->p_filesz) {
/* Replace "xxx.xxx" with "xxx.bxx" */
sprintf(fw_name + fw_name_len - 3, "b%02d", i);
ret = request_firmware_into_buf(&seg_fw, fw_name, qproc->dev,
ptr, phdr->p_filesz);
if (ret) {
dev_err(qproc->dev, "failed to load %s\n", fw_name);
memunmap(ptr);
goto release_firmware;
}
if (seg_fw->size != phdr->p_filesz) {
dev_err(qproc->dev,
"failed to load segment %d from truncated file %s\n",
i, fw_name);
ret = -EINVAL;
release_firmware(seg_fw);
memunmap(ptr);
goto release_firmware;
}
release_firmware(seg_fw);
}
if (phdr->p_memsz > phdr->p_filesz) {
memset(ptr + phdr->p_filesz, 0,
phdr->p_memsz - phdr->p_filesz);
}
memunmap(ptr);
size += phdr->p_memsz;
code_length = readl(qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);
if (!code_length) {
boot_addr = relocate ? qproc->mpss_phys : min_addr;
writel(boot_addr, qproc->rmb_base + RMB_PMI_CODE_START_REG);
writel(RMB_CMD_LOAD_READY, qproc->rmb_base + RMB_MBA_COMMAND_REG);
}
writel(size, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);
ret = readl(qproc->rmb_base + RMB_MBA_STATUS_REG);
if (ret < 0) {
dev_err(qproc->dev, "MPSS authentication failed: %d\n",
ret);
goto release_firmware;
}
}
/* Transfer ownership of modem ddr region to q6 */
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true,
qproc->mpss_phys, qproc->mpss_size);
if (ret) {
dev_err(qproc->dev,
"assigning Q6 access to mpss memory failed: %d\n", ret);
ret = -EAGAIN;
goto release_firmware;
}
ret = q6v5_rmb_mba_wait(qproc, RMB_MBA_AUTH_COMPLETE, 10000);
if (ret == -ETIMEDOUT)
dev_err(qproc->dev, "MPSS authentication timed out\n");
else if (ret < 0)
dev_err(qproc->dev, "MPSS authentication failed: %d\n", ret);
qcom_pil_info_store("modem", qproc->mpss_phys, qproc->mpss_size);
release_firmware:
release_firmware(fw);
out:
kfree(fw_name);
return ret < 0 ? ret : 0;
}
static void qcom_q6v5_dump_segment(struct rproc *rproc,
struct rproc_dump_segment *segment,
void *dest, size_t cp_offset, size_t size)
{
int ret = 0;
struct q6v5 *qproc = rproc->priv;
int offset = segment->da - qproc->mpss_reloc;
void *ptr = NULL;
/* Unlock mba before copying segments */
if (!qproc->dump_mba_loaded) {
ret = q6v5_reload_mba(rproc);
if (!ret) {
/* Reset ownership back to Linux to copy segments */
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm,
true, false,
qproc->mpss_phys,
qproc->mpss_size);
}
}
if (!ret)
ptr = memremap(qproc->mpss_phys + offset + cp_offset, size, MEMREMAP_WC);
if (ptr) {
memcpy(dest, ptr, size);
memunmap(ptr);
} else {
memset(dest, 0xff, size);
}
qproc->current_dump_size += size;
/* Reclaim mba after copying segments */
if (qproc->current_dump_size == qproc->total_dump_size) {
if (qproc->dump_mba_loaded) {
/* Try to reset ownership back to Q6 */
q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm,
false, true,
qproc->mpss_phys,
qproc->mpss_size);
q6v5_mba_reclaim(qproc);
}
}
}
static int q6v5_start(struct rproc *rproc)
{
struct q6v5 *qproc = rproc->priv;
int xfermemop_ret;
int ret;
ret = q6v5_mba_load(qproc);
if (ret)
return ret;
dev_info(qproc->dev, "MBA booted with%s debug policy, loading mpss\n",
qproc->dp_size ? "" : "out");
ret = q6v5_mpss_load(qproc);
if (ret)
goto reclaim_mpss;
ret = qcom_q6v5_wait_for_start(&qproc->q6v5, msecs_to_jiffies(5000));
if (ret == -ETIMEDOUT) {
dev_err(qproc->dev, "start timed out\n");
goto reclaim_mpss;
}
xfermemop_ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true,
false, qproc->mba_phys,
qproc->mba_size);
if (xfermemop_ret)
dev_err(qproc->dev,
"Failed to reclaim mba buffer system may become unstable\n");
/* Reset Dump Segment Mask */
qproc->current_dump_size = 0;
return 0;
reclaim_mpss:
q6v5_mba_reclaim(qproc);
q6v5_dump_mba_logs(qproc);
return ret;
}
static int q6v5_stop(struct rproc *rproc)
{
struct q6v5 *qproc = rproc->priv;
int ret;
ret = qcom_q6v5_request_stop(&qproc->q6v5, qproc->sysmon);
if (ret == -ETIMEDOUT)
dev_err(qproc->dev, "timed out on wait\n");
q6v5_mba_reclaim(qproc);
return 0;
}
static int qcom_q6v5_register_dump_segments(struct rproc *rproc,
const struct firmware *mba_fw)
{
const struct firmware *fw;
const struct elf32_phdr *phdrs;
const struct elf32_phdr *phdr;
const struct elf32_hdr *ehdr;
struct q6v5 *qproc = rproc->priv;
unsigned long i;
int ret;
ret = request_firmware(&fw, qproc->hexagon_mdt_image, qproc->dev);
if (ret < 0) {
dev_err(qproc->dev, "unable to load %s\n",
qproc->hexagon_mdt_image);
return ret;
}
rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE);
ehdr = (struct elf32_hdr *)fw->data;
phdrs = (struct elf32_phdr *)(ehdr + 1);
qproc->total_dump_size = 0;
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!q6v5_phdr_valid(phdr))
continue;
ret = rproc_coredump_add_custom_segment(rproc, phdr->p_paddr,
phdr->p_memsz,
qcom_q6v5_dump_segment,
NULL);
if (ret)
break;
qproc->total_dump_size += phdr->p_memsz;
}
release_firmware(fw);
return ret;
}
static unsigned long q6v5_panic(struct rproc *rproc)
{
struct q6v5 *qproc = rproc->priv;
return qcom_q6v5_panic(&qproc->q6v5);
}
static const struct rproc_ops q6v5_ops = {
.start = q6v5_start,
.stop = q6v5_stop,
.parse_fw = qcom_q6v5_register_dump_segments,
.load = q6v5_load,
.panic = q6v5_panic,
};
static void qcom_msa_handover(struct qcom_q6v5 *q6v5)
{
struct q6v5 *qproc = container_of(q6v5, struct q6v5, q6v5);
q6v5_clk_disable(qproc->dev, qproc->proxy_clks,
qproc->proxy_clk_count);
q6v5_regulator_disable(qproc, qproc->proxy_regs,
qproc->proxy_reg_count);
q6v5_regulator_disable(qproc, qproc->fallback_proxy_regs,
qproc->fallback_proxy_reg_count);
q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
}
static int q6v5_init_mem(struct q6v5 *qproc, struct platform_device *pdev)
{
struct of_phandle_args args;
int halt_cell_cnt = 3;
int ret;
qproc->reg_base = devm_platform_ioremap_resource_byname(pdev, "qdsp6");
if (IS_ERR(qproc->reg_base))
return PTR_ERR(qproc->reg_base);
qproc->rmb_base = devm_platform_ioremap_resource_byname(pdev, "rmb");
if (IS_ERR(qproc->rmb_base))
return PTR_ERR(qproc->rmb_base);
if (qproc->has_vq6)
halt_cell_cnt++;
ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
"qcom,halt-regs", halt_cell_cnt, 0, &args);
if (ret < 0) {
dev_err(&pdev->dev, "failed to parse qcom,halt-regs\n");
return -EINVAL;
}
qproc->halt_map = syscon_node_to_regmap(args.np);
of_node_put(args.np);
if (IS_ERR(qproc->halt_map))
return PTR_ERR(qproc->halt_map);
qproc->halt_q6 = args.args[0];
qproc->halt_modem = args.args[1];
qproc->halt_nc = args.args[2];
if (qproc->has_vq6)
qproc->halt_vq6 = args.args[3];
if (qproc->has_qaccept_regs) {
ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
"qcom,qaccept-regs",
3, 0, &args);
if (ret < 0) {
dev_err(&pdev->dev, "failed to parse qaccept-regs\n");
return -EINVAL;
}
qproc->qaccept_mdm = args.args[0];
qproc->qaccept_cx = args.args[1];
qproc->qaccept_axi = args.args[2];
}
if (qproc->has_ext_cntl_regs) {
ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
"qcom,ext-regs",
2, 0, &args);
if (ret < 0) {
dev_err(&pdev->dev, "failed to parse ext-regs index 0\n");
return -EINVAL;
}
qproc->conn_map = syscon_node_to_regmap(args.np);
of_node_put(args.np);
if (IS_ERR(qproc->conn_map))
return PTR_ERR(qproc->conn_map);
qproc->force_clk_on = args.args[0];
qproc->rscc_disable = args.args[1];
ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
"qcom,ext-regs",
2, 1, &args);
if (ret < 0) {
dev_err(&pdev->dev, "failed to parse ext-regs index 1\n");
return -EINVAL;
}
qproc->axim1_clk_off = args.args[0];
qproc->crypto_clk_off = args.args[1];
}
if (qproc->has_spare_reg) {
ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
"qcom,spare-regs",
1, 0, &args);
if (ret < 0) {
dev_err(&pdev->dev, "failed to parse spare-regs\n");
return -EINVAL;
}
qproc->conn_map = syscon_node_to_regmap(args.np);
of_node_put(args.np);
if (IS_ERR(qproc->conn_map))
return PTR_ERR(qproc->conn_map);
qproc->conn_box = args.args[0];
}
return 0;
}
static int q6v5_init_clocks(struct device *dev, struct clk **clks,
char **clk_names)
{
int i;
if (!clk_names)
return 0;
for (i = 0; clk_names[i]; i++) {
clks[i] = devm_clk_get(dev, clk_names[i]);
if (IS_ERR(clks[i])) {
int rc = PTR_ERR(clks[i]);
if (rc != -EPROBE_DEFER)
dev_err(dev, "Failed to get %s clock\n",
clk_names[i]);
return rc;
}
}
return i;
}
static int q6v5_pds_attach(struct device *dev, struct device **devs,
char **pd_names)
{
size_t num_pds = 0;
int ret;
int i;
if (!pd_names)
return 0;
while (pd_names[num_pds])
num_pds++;
for (i = 0; i < num_pds; i++) {
devs[i] = dev_pm_domain_attach_by_name(dev, pd_names[i]);
if (IS_ERR_OR_NULL(devs[i])) {
ret = PTR_ERR(devs[i]) ? : -ENODATA;
goto unroll_attach;
}
}
return num_pds;
unroll_attach:
for (i--; i >= 0; i--)
dev_pm_domain_detach(devs[i], false);
return ret;
}
static void q6v5_pds_detach(struct q6v5 *qproc, struct device **pds,
size_t pd_count)
{
int i;
for (i = 0; i < pd_count; i++)
dev_pm_domain_detach(pds[i], false);
}
static int q6v5_init_reset(struct q6v5 *qproc)
{
qproc->mss_restart = devm_reset_control_get_exclusive(qproc->dev,
"mss_restart");
if (IS_ERR(qproc->mss_restart)) {
dev_err(qproc->dev, "failed to acquire mss restart\n");
return PTR_ERR(qproc->mss_restart);
}
if (qproc->has_alt_reset || qproc->has_spare_reg || qproc->has_ext_cntl_regs) {
qproc->pdc_reset = devm_reset_control_get_exclusive(qproc->dev,
"pdc_reset");
if (IS_ERR(qproc->pdc_reset)) {
dev_err(qproc->dev, "failed to acquire pdc reset\n");
return PTR_ERR(qproc->pdc_reset);
}
}
return 0;
}
static int q6v5_alloc_memory_region(struct q6v5 *qproc)
{
struct device_node *child;
struct reserved_mem *rmem;
struct device_node *node;
/*
* In the absence of mba/mpss sub-child, extract the mba and mpss
* reserved memory regions from device's memory-region property.
*/
child = of_get_child_by_name(qproc->dev->of_node, "mba");
if (!child) {
node = of_parse_phandle(qproc->dev->of_node,
"memory-region", 0);
} else {
node = of_parse_phandle(child, "memory-region", 0);
of_node_put(child);
}
if (!node) {
dev_err(qproc->dev, "no mba memory-region specified\n");
return -EINVAL;
}
rmem = of_reserved_mem_lookup(node);
of_node_put(node);
if (!rmem) {
dev_err(qproc->dev, "unable to resolve mba region\n");
return -EINVAL;
}
qproc->mba_phys = rmem->base;
qproc->mba_size = rmem->size;
if (!child) {
node = of_parse_phandle(qproc->dev->of_node,
"memory-region", 1);
} else {
child = of_get_child_by_name(qproc->dev->of_node, "mpss");
node = of_parse_phandle(child, "memory-region", 0);
of_node_put(child);
}
if (!node) {
dev_err(qproc->dev, "no mpss memory-region specified\n");
return -EINVAL;
}
rmem = of_reserved_mem_lookup(node);
of_node_put(node);
if (!rmem) {
dev_err(qproc->dev, "unable to resolve mpss region\n");
return -EINVAL;
}
qproc->mpss_phys = qproc->mpss_reloc = rmem->base;
qproc->mpss_size = rmem->size;
if (!child) {
node = of_parse_phandle(qproc->dev->of_node, "memory-region", 2);
} else {
child = of_get_child_by_name(qproc->dev->of_node, "metadata");
node = of_parse_phandle(child, "memory-region", 0);
of_node_put(child);
}
if (!node)
return 0;
rmem = of_reserved_mem_lookup(node);
if (!rmem) {
dev_err(qproc->dev, "unable to resolve metadata region\n");
return -EINVAL;
}
qproc->mdata_phys = rmem->base;
qproc->mdata_size = rmem->size;
return 0;
}
static int q6v5_probe(struct platform_device *pdev)
{
const struct rproc_hexagon_res *desc;
struct device_node *node;
struct q6v5 *qproc;
struct rproc *rproc;
const char *mba_image;
int ret;
desc = of_device_get_match_data(&pdev->dev);
if (!desc)
return -EINVAL;
if (desc->need_mem_protection && !qcom_scm_is_available())
return -EPROBE_DEFER;
mba_image = desc->hexagon_mba_image;
ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name",
0, &mba_image);
if (ret < 0 && ret != -EINVAL) {
dev_err(&pdev->dev, "unable to read mba firmware-name\n");
return ret;
}
rproc = rproc_alloc(&pdev->dev, pdev->name, &q6v5_ops,
mba_image, sizeof(*qproc));
if (!rproc) {
dev_err(&pdev->dev, "failed to allocate rproc\n");
return -ENOMEM;
}
rproc->auto_boot = false;
rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE);
qproc = rproc->priv;
qproc->dev = &pdev->dev;
qproc->rproc = rproc;
qproc->hexagon_mdt_image = "modem.mdt";
ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name",
1, &qproc->hexagon_mdt_image);
if (ret < 0 && ret != -EINVAL) {
dev_err(&pdev->dev, "unable to read mpss firmware-name\n");
goto free_rproc;
}
platform_set_drvdata(pdev, qproc);
qproc->has_qaccept_regs = desc->has_qaccept_regs;
qproc->has_ext_cntl_regs = desc->has_ext_cntl_regs;
qproc->has_vq6 = desc->has_vq6;
qproc->has_spare_reg = desc->has_spare_reg;
ret = q6v5_init_mem(qproc, pdev);
if (ret)
goto free_rproc;
ret = q6v5_alloc_memory_region(qproc);
if (ret)
goto free_rproc;
ret = q6v5_init_clocks(&pdev->dev, qproc->proxy_clks,
desc->proxy_clk_names);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get proxy clocks.\n");
goto free_rproc;
}
qproc->proxy_clk_count = ret;
ret = q6v5_init_clocks(&pdev->dev, qproc->reset_clks,
desc->reset_clk_names);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get reset clocks.\n");
goto free_rproc;
}
qproc->reset_clk_count = ret;
ret = q6v5_init_clocks(&pdev->dev, qproc->active_clks,
desc->active_clk_names);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get active clocks.\n");
goto free_rproc;
}
qproc->active_clk_count = ret;
ret = q6v5_regulator_init(&pdev->dev, qproc->proxy_regs,
desc->proxy_supply);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get proxy regulators.\n");
goto free_rproc;
}
qproc->proxy_reg_count = ret;
ret = q6v5_regulator_init(&pdev->dev, qproc->active_regs,
desc->active_supply);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get active regulators.\n");
goto free_rproc;
}
qproc->active_reg_count = ret;
ret = q6v5_pds_attach(&pdev->dev, qproc->proxy_pds,
desc->proxy_pd_names);
/* Fallback to regulators for old device trees */
if (ret == -ENODATA && desc->fallback_proxy_supply) {
ret = q6v5_regulator_init(&pdev->dev,
qproc->fallback_proxy_regs,
desc->fallback_proxy_supply);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get fallback proxy regulators.\n");
goto free_rproc;
}
qproc->fallback_proxy_reg_count = ret;
} else if (ret < 0) {
dev_err(&pdev->dev, "Failed to init power domains\n");
goto free_rproc;
} else {
qproc->proxy_pd_count = ret;
}
qproc->has_alt_reset = desc->has_alt_reset;
ret = q6v5_init_reset(qproc);
if (ret)
goto detach_proxy_pds;
qproc->version = desc->version;
qproc->need_mem_protection = desc->need_mem_protection;
qproc->has_mba_logs = desc->has_mba_logs;
ret = qcom_q6v5_init(&qproc->q6v5, pdev, rproc, MPSS_CRASH_REASON_SMEM, "modem",
qcom_msa_handover);
if (ret)
goto detach_proxy_pds;
qproc->mpss_perm = BIT(QCOM_SCM_VMID_HLOS);
qproc->mba_perm = BIT(QCOM_SCM_VMID_HLOS);
qcom_add_glink_subdev(rproc, &qproc->glink_subdev, "mpss");
qcom_add_smd_subdev(rproc, &qproc->smd_subdev);
qcom_add_ssr_subdev(rproc, &qproc->ssr_subdev, "mpss");
qproc->sysmon = qcom_add_sysmon_subdev(rproc, "modem", 0x12);
if (IS_ERR(qproc->sysmon)) {
ret = PTR_ERR(qproc->sysmon);
goto remove_subdevs;
}
ret = rproc_add(rproc);
if (ret)
goto remove_sysmon_subdev;
node = of_get_compatible_child(pdev->dev.of_node, "qcom,bam-dmux");
qproc->bam_dmux = of_platform_device_create(node, NULL, &pdev->dev);
of_node_put(node);
return 0;
remove_sysmon_subdev:
qcom_remove_sysmon_subdev(qproc->sysmon);
remove_subdevs:
qcom_remove_ssr_subdev(rproc, &qproc->ssr_subdev);
qcom_remove_smd_subdev(rproc, &qproc->smd_subdev);
qcom_remove_glink_subdev(rproc, &qproc->glink_subdev);
detach_proxy_pds:
q6v5_pds_detach(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
free_rproc:
rproc_free(rproc);
return ret;
}
static void q6v5_remove(struct platform_device *pdev)
{
struct q6v5 *qproc = platform_get_drvdata(pdev);
struct rproc *rproc = qproc->rproc;
if (qproc->bam_dmux)
of_platform_device_destroy(&qproc->bam_dmux->dev, NULL);
rproc_del(rproc);
qcom_q6v5_deinit(&qproc->q6v5);
qcom_remove_sysmon_subdev(qproc->sysmon);
qcom_remove_ssr_subdev(rproc, &qproc->ssr_subdev);
qcom_remove_smd_subdev(rproc, &qproc->smd_subdev);
qcom_remove_glink_subdev(rproc, &qproc->glink_subdev);
q6v5_pds_detach(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
rproc_free(rproc);
}
static const struct rproc_hexagon_res sc7180_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_clk_names = (char*[]){
"xo",
NULL
},
.reset_clk_names = (char*[]){
"iface",
"bus",
"snoc_axi",
NULL
},
.active_clk_names = (char*[]){
"mnoc_axi",
"nav",
NULL
},
.proxy_pd_names = (char*[]){
"cx",
"mx",
"mss",
NULL
},
.need_mem_protection = true,
.has_alt_reset = false,
.has_mba_logs = true,
.has_spare_reg = true,
.has_qaccept_regs = false,
.has_ext_cntl_regs = false,
.has_vq6 = false,
.version = MSS_SC7180,
};
static const struct rproc_hexagon_res sc7280_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_clk_names = (char*[]){
"xo",
"pka",
NULL
},
.active_clk_names = (char*[]){
"iface",
"offline",
"snoc_axi",
NULL
},
.proxy_pd_names = (char*[]){
"cx",
"mss",
NULL
},
.need_mem_protection = true,
.has_alt_reset = false,
.has_mba_logs = true,
.has_spare_reg = false,
.has_qaccept_regs = true,
.has_ext_cntl_regs = true,
.has_vq6 = true,
.version = MSS_SC7280,
};
static const struct rproc_hexagon_res sdm660_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_clk_names = (char*[]){
"xo",
"qdss",
"mem",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"gpll0_mss",
"mnoc_axi",
"snoc_axi",
NULL
},
.proxy_pd_names = (char*[]){
"cx",
"mx",
NULL
},
.need_mem_protection = true,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.has_qaccept_regs = false,
.has_ext_cntl_regs = false,
.has_vq6 = false,
.version = MSS_SDM660,
};
static const struct rproc_hexagon_res sdm845_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_clk_names = (char*[]){
"xo",
"prng",
NULL
},
.reset_clk_names = (char*[]){
"iface",
"snoc_axi",
NULL
},
.active_clk_names = (char*[]){
"bus",
"mem",
"gpll0_mss",
"mnoc_axi",
NULL
},
.proxy_pd_names = (char*[]){
"cx",
"mx",
"mss",
NULL
},
.need_mem_protection = true,
.has_alt_reset = true,
.has_mba_logs = false,
.has_spare_reg = false,
.has_qaccept_regs = false,
.has_ext_cntl_regs = false,
.has_vq6 = false,
.version = MSS_SDM845,
};
static const struct rproc_hexagon_res msm8998_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_clk_names = (char*[]){
"xo",
"qdss",
"mem",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"gpll0_mss",
"mnoc_axi",
"snoc_axi",
NULL
},
.proxy_pd_names = (char*[]){
"cx",
"mx",
NULL
},
.need_mem_protection = true,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.has_qaccept_regs = false,
.has_ext_cntl_regs = false,
.has_vq6 = false,
.version = MSS_MSM8998,
};
static const struct rproc_hexagon_res msm8996_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "pll",
.uA = 100000,
},
{}
},
.proxy_clk_names = (char*[]){
"xo",
"pnoc",
"qdss",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"mem",
"gpll0_mss",
"snoc_axi",
"mnoc_axi",
NULL
},
.proxy_pd_names = (char*[]){
"mx",
"cx",
NULL
},
.need_mem_protection = true,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.has_qaccept_regs = false,
.has_ext_cntl_regs = false,
.has_vq6 = false,
.version = MSS_MSM8996,
};
static const struct rproc_hexagon_res msm8909_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "pll",
.uA = 100000,
},
{}
},
.proxy_clk_names = (char*[]){
"xo",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"mem",
NULL
},
.proxy_pd_names = (char*[]){
"mx",
"cx",
NULL
},
.need_mem_protection = false,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.has_qaccept_regs = false,
.has_ext_cntl_regs = false,
.has_vq6 = false,
.version = MSS_MSM8909,
};
static const struct rproc_hexagon_res msm8916_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "pll",
.uA = 100000,
},
{}
},
.fallback_proxy_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "mx",
.uV = 1050000,
},
{
.supply = "cx",
.uA = 100000,
},
{}
},
.proxy_clk_names = (char*[]){
"xo",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"mem",
NULL
},
.proxy_pd_names = (char*[]){
"mx",
"cx",
NULL
},
.need_mem_protection = false,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.has_qaccept_regs = false,
.has_ext_cntl_regs = false,
.has_vq6 = false,
.version = MSS_MSM8916,
};
static const struct rproc_hexagon_res msm8953_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "pll",
.uA = 100000,
},
{}
},
.proxy_clk_names = (char*[]){
"xo",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"mem",
NULL
},
.proxy_pd_names = (char*[]) {
"cx",
"mx",
"mss",
NULL
},
.need_mem_protection = false,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.has_qaccept_regs = false,
.has_ext_cntl_regs = false,
.has_vq6 = false,
.version = MSS_MSM8953,
};
static const struct rproc_hexagon_res msm8974_mss = {
.hexagon_mba_image = "mba.b00",
.proxy_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "pll",
.uA = 100000,
},
{}
},
.fallback_proxy_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "mx",
.uV = 1050000,
},
{
.supply = "cx",
.uA = 100000,
},
{}
},
.active_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "mss",
.uV = 1050000,
.uA = 100000,
},
{}
},
.proxy_clk_names = (char*[]){
"xo",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"mem",
NULL
},
.proxy_pd_names = (char*[]){
"mx",
"cx",
NULL
},
.need_mem_protection = false,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.has_qaccept_regs = false,
.has_ext_cntl_regs = false,
.has_vq6 = false,
.version = MSS_MSM8974,
};
static const struct of_device_id q6v5_of_match[] = {
{ .compatible = "qcom,q6v5-pil", .data = &msm8916_mss},
{ .compatible = "qcom,msm8909-mss-pil", .data = &msm8909_mss},
{ .compatible = "qcom,msm8916-mss-pil", .data = &msm8916_mss},
{ .compatible = "qcom,msm8953-mss-pil", .data = &msm8953_mss},
{ .compatible = "qcom,msm8974-mss-pil", .data = &msm8974_mss},
{ .compatible = "qcom,msm8996-mss-pil", .data = &msm8996_mss},
{ .compatible = "qcom,msm8998-mss-pil", .data = &msm8998_mss},
{ .compatible = "qcom,sc7180-mss-pil", .data = &sc7180_mss},
{ .compatible = "qcom,sc7280-mss-pil", .data = &sc7280_mss},
{ .compatible = "qcom,sdm660-mss-pil", .data = &sdm660_mss},
{ .compatible = "qcom,sdm845-mss-pil", .data = &sdm845_mss},
{ },
};
MODULE_DEVICE_TABLE(of, q6v5_of_match);
static struct platform_driver q6v5_driver = {
.probe = q6v5_probe,
.remove_new = q6v5_remove,
.driver = {
.name = "qcom-q6v5-mss",
.of_match_table = q6v5_of_match,
},
};
module_platform_driver(q6v5_driver);
MODULE_DESCRIPTION("Qualcomm Self-authenticating modem remoteproc driver");
MODULE_LICENSE("GPL v2");