blob: e3f0de020a40c964750f564fe1a0e25267f63f59 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* MPRLS0025PA - Honeywell MicroPressure pressure sensor series driver
*
* Copyright (c) Andreas Klinger <ak@it-klinger.de>
*
* Data sheet:
* https://prod-edam.honeywell.com/content/dam/honeywell-edam/sps/siot/en-us/
* products/sensors/pressure-sensors/board-mount-pressure-sensors/
* micropressure-mpr-series/documents/
* sps-siot-mpr-series-datasheet-32332628-ciid-172626.pdf
*
* 7-bit I2C default slave address: 0x18
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/units.h>
#include <linux/gpio/consumer.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/regulator/consumer.h>
#include <asm/unaligned.h>
/* bits in i2c status byte */
#define MPR_I2C_POWER BIT(6) /* device is powered */
#define MPR_I2C_BUSY BIT(5) /* device is busy */
#define MPR_I2C_MEMORY BIT(2) /* integrity test passed */
#define MPR_I2C_MATH BIT(0) /* internal math saturation */
/*
* support _RAW sysfs interface:
*
* Calculation formula from the datasheet:
* pressure = (press_cnt - outputmin) * scale + pmin
* with:
* * pressure - measured pressure in Pascal
* * press_cnt - raw value read from sensor
* * pmin - minimum pressure range value of sensor (data->pmin)
* * pmax - maximum pressure range value of sensor (data->pmax)
* * outputmin - minimum numerical range raw value delivered by sensor
* (mpr_func_spec.output_min)
* * outputmax - maximum numerical range raw value delivered by sensor
* (mpr_func_spec.output_max)
* * scale - (pmax - pmin) / (outputmax - outputmin)
*
* formula of the userspace:
* pressure = (raw + offset) * scale
*
* Values given to the userspace in sysfs interface:
* * raw - press_cnt
* * offset - (-1 * outputmin) - pmin / scale
* note: With all sensors from the datasheet pmin = 0
* which reduces the offset to (-1 * outputmin)
*/
/*
* transfer function A: 10% to 90% of 2^24
* transfer function B: 2.5% to 22.5% of 2^24
* transfer function C: 20% to 80% of 2^24
*/
enum mpr_func_id {
MPR_FUNCTION_A,
MPR_FUNCTION_B,
MPR_FUNCTION_C,
};
struct mpr_func_spec {
u32 output_min;
u32 output_max;
};
static const struct mpr_func_spec mpr_func_spec[] = {
[MPR_FUNCTION_A] = {.output_min = 1677722, .output_max = 15099494},
[MPR_FUNCTION_B] = {.output_min = 419430, .output_max = 3774874},
[MPR_FUNCTION_C] = {.output_min = 3355443, .output_max = 13421773},
};
struct mpr_chan {
s32 pres; /* pressure value */
s64 ts; /* timestamp */
};
struct mpr_data {
struct i2c_client *client;
struct mutex lock; /*
* access to device during read
*/
u32 pmin; /* minimal pressure in pascal */
u32 pmax; /* maximal pressure in pascal */
enum mpr_func_id function; /* transfer function */
u32 outmin; /*
* minimal numerical range raw
* value from sensor
*/
u32 outmax; /*
* maximal numerical range raw
* value from sensor
*/
int scale; /* int part of scale */
int scale2; /* nano part of scale */
int offset; /* int part of offset */
int offset2; /* nano part of offset */
struct gpio_desc *gpiod_reset; /* reset */
int irq; /*
* end of conversion irq;
* used to distinguish between
* irq mode and reading in a
* loop until data is ready
*/
struct completion completion; /* handshake from irq to read */
struct mpr_chan chan; /*
* channel values for buffered
* mode
*/
};
static const struct iio_chan_spec mpr_channels[] = {
{
.type = IIO_PRESSURE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.scan_index = 0,
.scan_type = {
.sign = 's',
.realbits = 32,
.storagebits = 32,
.endianness = IIO_CPU,
},
},
IIO_CHAN_SOFT_TIMESTAMP(1),
};
static void mpr_reset(struct mpr_data *data)
{
if (data->gpiod_reset) {
gpiod_set_value(data->gpiod_reset, 0);
udelay(10);
gpiod_set_value(data->gpiod_reset, 1);
}
}
/**
* mpr_read_pressure() - Read pressure value from sensor via I2C
* @data: Pointer to private data struct.
* @press: Output value read from sensor.
*
* Reading from the sensor by sending and receiving I2C telegrams.
*
* If there is an end of conversion (EOC) interrupt registered the function
* waits for a maximum of one second for the interrupt.
*
* Context: The function can sleep and data->lock should be held when calling it
* Return:
* * 0 - OK, the pressure value could be read
* * -ETIMEDOUT - Timeout while waiting for the EOC interrupt or busy flag is
* still set after nloops attempts of reading
*/
static int mpr_read_pressure(struct mpr_data *data, s32 *press)
{
struct device *dev = &data->client->dev;
int ret, i;
u8 wdata[] = {0xAA, 0x00, 0x00};
s32 status;
int nloops = 10;
u8 buf[4];
reinit_completion(&data->completion);
ret = i2c_master_send(data->client, wdata, sizeof(wdata));
if (ret < 0) {
dev_err(dev, "error while writing ret: %d\n", ret);
return ret;
}
if (ret != sizeof(wdata)) {
dev_err(dev, "received size doesn't fit - ret: %d / %u\n", ret,
(u32)sizeof(wdata));
return -EIO;
}
if (data->irq > 0) {
ret = wait_for_completion_timeout(&data->completion, HZ);
if (!ret) {
dev_err(dev, "timeout while waiting for eoc irq\n");
return -ETIMEDOUT;
}
} else {
/* wait until status indicates data is ready */
for (i = 0; i < nloops; i++) {
/*
* datasheet only says to wait at least 5 ms for the
* data but leave the maximum response time open
* --> let's try it nloops (10) times which seems to be
* quite long
*/
usleep_range(5000, 10000);
status = i2c_smbus_read_byte(data->client);
if (status < 0) {
dev_err(dev,
"error while reading, status: %d\n",
status);
return status;
}
if (!(status & MPR_I2C_BUSY))
break;
}
if (i == nloops) {
dev_err(dev, "timeout while reading\n");
return -ETIMEDOUT;
}
}
ret = i2c_master_recv(data->client, buf, sizeof(buf));
if (ret < 0) {
dev_err(dev, "error in i2c_master_recv ret: %d\n", ret);
return ret;
}
if (ret != sizeof(buf)) {
dev_err(dev, "received size doesn't fit - ret: %d / %u\n", ret,
(u32)sizeof(buf));
return -EIO;
}
if (buf[0] & MPR_I2C_BUSY) {
/*
* it should never be the case that status still indicates
* business
*/
dev_err(dev, "data still not ready: %08x\n", buf[0]);
return -ETIMEDOUT;
}
*press = get_unaligned_be24(&buf[1]);
dev_dbg(dev, "received: %*ph cnt: %d\n", ret, buf, *press);
return 0;
}
static irqreturn_t mpr_eoc_handler(int irq, void *p)
{
struct mpr_data *data = p;
complete(&data->completion);
return IRQ_HANDLED;
}
static irqreturn_t mpr_trigger_handler(int irq, void *p)
{
int ret;
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct mpr_data *data = iio_priv(indio_dev);
mutex_lock(&data->lock);
ret = mpr_read_pressure(data, &data->chan.pres);
if (ret < 0)
goto err;
iio_push_to_buffers_with_timestamp(indio_dev, &data->chan,
iio_get_time_ns(indio_dev));
err:
mutex_unlock(&data->lock);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int mpr_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2, long mask)
{
int ret;
s32 pressure;
struct mpr_data *data = iio_priv(indio_dev);
if (chan->type != IIO_PRESSURE)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&data->lock);
ret = mpr_read_pressure(data, &pressure);
mutex_unlock(&data->lock);
if (ret < 0)
return ret;
*val = pressure;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = data->scale;
*val2 = data->scale2;
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_OFFSET:
*val = data->offset;
*val2 = data->offset2;
return IIO_VAL_INT_PLUS_NANO;
default:
return -EINVAL;
}
}
static const struct iio_info mpr_info = {
.read_raw = &mpr_read_raw,
};
static int mpr_probe(struct i2c_client *client)
{
int ret;
struct mpr_data *data;
struct iio_dev *indio_dev;
struct device *dev = &client->dev;
s64 scale, offset;
u32 func;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BYTE))
return dev_err_probe(dev, -EOPNOTSUPP,
"I2C functionality not supported\n");
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return dev_err_probe(dev, -ENOMEM, "couldn't get iio_dev\n");
data = iio_priv(indio_dev);
data->client = client;
data->irq = client->irq;
mutex_init(&data->lock);
init_completion(&data->completion);
indio_dev->name = "mprls0025pa";
indio_dev->info = &mpr_info;
indio_dev->channels = mpr_channels;
indio_dev->num_channels = ARRAY_SIZE(mpr_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret,
"can't get and enable vdd supply\n");
if (dev_fwnode(dev)) {
ret = device_property_read_u32(dev, "honeywell,pmin-pascal",
&data->pmin);
if (ret)
return dev_err_probe(dev, ret,
"honeywell,pmin-pascal could not be read\n");
ret = device_property_read_u32(dev, "honeywell,pmax-pascal",
&data->pmax);
if (ret)
return dev_err_probe(dev, ret,
"honeywell,pmax-pascal could not be read\n");
ret = device_property_read_u32(dev,
"honeywell,transfer-function", &func);
if (ret)
return dev_err_probe(dev, ret,
"honeywell,transfer-function could not be read\n");
data->function = func - 1;
if (data->function > MPR_FUNCTION_C)
return dev_err_probe(dev, -EINVAL,
"honeywell,transfer-function %d invalid\n",
data->function);
} else {
/* when loaded as i2c device we need to use default values */
dev_notice(dev, "firmware node not found; using defaults\n");
data->pmin = 0;
data->pmax = 172369; /* 25 psi */
data->function = MPR_FUNCTION_A;
}
data->outmin = mpr_func_spec[data->function].output_min;
data->outmax = mpr_func_spec[data->function].output_max;
/* use 64 bit calculation for preserving a reasonable precision */
scale = div_s64(((s64)(data->pmax - data->pmin)) * NANO,
data->outmax - data->outmin);
data->scale = div_s64_rem(scale, NANO, &data->scale2);
/*
* multiply with NANO before dividing by scale and later divide by NANO
* again.
*/
offset = ((-1LL) * (s64)data->outmin) * NANO -
div_s64(div_s64((s64)data->pmin * NANO, scale), NANO);
data->offset = div_s64_rem(offset, NANO, &data->offset2);
if (data->irq > 0) {
ret = devm_request_irq(dev, data->irq, mpr_eoc_handler,
IRQF_TRIGGER_RISING, client->name, data);
if (ret)
return dev_err_probe(dev, ret,
"request irq %d failed\n", data->irq);
}
data->gpiod_reset = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(data->gpiod_reset))
return dev_err_probe(dev, PTR_ERR(data->gpiod_reset),
"request reset-gpio failed\n");
mpr_reset(data);
ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
mpr_trigger_handler, NULL);
if (ret)
return dev_err_probe(dev, ret,
"iio triggered buffer setup failed\n");
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return dev_err_probe(dev, ret,
"unable to register iio device\n");
return 0;
}
static const struct of_device_id mpr_matches[] = {
{ .compatible = "honeywell,mprls0025pa" },
{ }
};
MODULE_DEVICE_TABLE(of, mpr_matches);
static const struct i2c_device_id mpr_id[] = {
{ "mprls0025pa" },
{ }
};
MODULE_DEVICE_TABLE(i2c, mpr_id);
static struct i2c_driver mpr_driver = {
.probe = mpr_probe,
.id_table = mpr_id,
.driver = {
.name = "mprls0025pa",
.of_match_table = mpr_matches,
},
};
module_i2c_driver(mpr_driver);
MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
MODULE_DESCRIPTION("Honeywell MPRLS0025PA I2C driver");
MODULE_LICENSE("GPL");