| /* |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/page.h> |
| #include <asm/mmu.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pte-walk.h> |
| |
| /* |
| * Supported radix tree geometry. |
| * Like p9, we support either 5 or 9 bits at the first (lowest) level, |
| * for a page size of 64k or 4k. |
| */ |
| static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; |
| |
| int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, |
| struct kvmppc_pte *gpte, bool data, bool iswrite) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| u32 pid; |
| int ret, level, ps; |
| __be64 prte, rpte; |
| unsigned long ptbl; |
| unsigned long root, pte, index; |
| unsigned long rts, bits, offset; |
| unsigned long gpa; |
| unsigned long proc_tbl_size; |
| |
| /* Work out effective PID */ |
| switch (eaddr >> 62) { |
| case 0: |
| pid = vcpu->arch.pid; |
| break; |
| case 3: |
| pid = 0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12); |
| if (pid * 16 >= proc_tbl_size) |
| return -EINVAL; |
| |
| /* Read partition table to find root of tree for effective PID */ |
| ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16); |
| ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte)); |
| if (ret) |
| return ret; |
| |
| root = be64_to_cpu(prte); |
| rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | |
| ((root & RTS2_MASK) >> RTS2_SHIFT); |
| bits = root & RPDS_MASK; |
| root = root & RPDB_MASK; |
| |
| /* P9 DD1 interprets RTS (radix tree size) differently */ |
| offset = rts + 31; |
| if (cpu_has_feature(CPU_FTR_POWER9_DD1)) |
| offset -= 3; |
| |
| /* current implementations only support 52-bit space */ |
| if (offset != 52) |
| return -EINVAL; |
| |
| for (level = 3; level >= 0; --level) { |
| if (level && bits != p9_supported_radix_bits[level]) |
| return -EINVAL; |
| if (level == 0 && !(bits == 5 || bits == 9)) |
| return -EINVAL; |
| offset -= bits; |
| index = (eaddr >> offset) & ((1UL << bits) - 1); |
| /* check that low bits of page table base are zero */ |
| if (root & ((1UL << (bits + 3)) - 1)) |
| return -EINVAL; |
| ret = kvm_read_guest(kvm, root + index * 8, |
| &rpte, sizeof(rpte)); |
| if (ret) |
| return ret; |
| pte = __be64_to_cpu(rpte); |
| if (!(pte & _PAGE_PRESENT)) |
| return -ENOENT; |
| if (pte & _PAGE_PTE) |
| break; |
| bits = pte & 0x1f; |
| root = pte & 0x0fffffffffffff00ul; |
| } |
| /* need a leaf at lowest level; 512GB pages not supported */ |
| if (level < 0 || level == 3) |
| return -EINVAL; |
| |
| /* offset is now log base 2 of the page size */ |
| gpa = pte & 0x01fffffffffff000ul; |
| if (gpa & ((1ul << offset) - 1)) |
| return -EINVAL; |
| gpa += eaddr & ((1ul << offset) - 1); |
| for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) |
| if (offset == mmu_psize_defs[ps].shift) |
| break; |
| gpte->page_size = ps; |
| |
| gpte->eaddr = eaddr; |
| gpte->raddr = gpa; |
| |
| /* Work out permissions */ |
| gpte->may_read = !!(pte & _PAGE_READ); |
| gpte->may_write = !!(pte & _PAGE_WRITE); |
| gpte->may_execute = !!(pte & _PAGE_EXEC); |
| if (kvmppc_get_msr(vcpu) & MSR_PR) { |
| if (pte & _PAGE_PRIVILEGED) { |
| gpte->may_read = 0; |
| gpte->may_write = 0; |
| gpte->may_execute = 0; |
| } |
| } else { |
| if (!(pte & _PAGE_PRIVILEGED)) { |
| /* Check AMR/IAMR to see if strict mode is in force */ |
| if (vcpu->arch.amr & (1ul << 62)) |
| gpte->may_read = 0; |
| if (vcpu->arch.amr & (1ul << 63)) |
| gpte->may_write = 0; |
| if (vcpu->arch.iamr & (1ul << 62)) |
| gpte->may_execute = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, |
| unsigned int pshift) |
| { |
| unsigned long psize = PAGE_SIZE; |
| |
| if (pshift) |
| psize = 1UL << pshift; |
| |
| addr &= ~(psize - 1); |
| radix__flush_tlb_lpid_page(kvm->arch.lpid, addr, psize); |
| } |
| |
| static void kvmppc_radix_flush_pwc(struct kvm *kvm) |
| { |
| radix__flush_pwc_lpid(kvm->arch.lpid); |
| } |
| |
| static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, |
| unsigned long clr, unsigned long set, |
| unsigned long addr, unsigned int shift) |
| { |
| unsigned long old = 0; |
| |
| if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) && |
| pte_present(*ptep)) { |
| /* have to invalidate it first */ |
| old = __radix_pte_update(ptep, _PAGE_PRESENT, 0); |
| kvmppc_radix_tlbie_page(kvm, addr, shift); |
| set |= _PAGE_PRESENT; |
| old &= _PAGE_PRESENT; |
| } |
| return __radix_pte_update(ptep, clr, set) | old; |
| } |
| |
| void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); |
| } |
| |
| static struct kmem_cache *kvm_pte_cache; |
| static struct kmem_cache *kvm_pmd_cache; |
| |
| static pte_t *kvmppc_pte_alloc(void) |
| { |
| return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); |
| } |
| |
| static void kvmppc_pte_free(pte_t *ptep) |
| { |
| kmem_cache_free(kvm_pte_cache, ptep); |
| } |
| |
| /* Like pmd_huge() and pmd_large(), but works regardless of config options */ |
| static inline int pmd_is_leaf(pmd_t pmd) |
| { |
| return !!(pmd_val(pmd) & _PAGE_PTE); |
| } |
| |
| static pmd_t *kvmppc_pmd_alloc(void) |
| { |
| return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL); |
| } |
| |
| static void kvmppc_pmd_free(pmd_t *pmdp) |
| { |
| kmem_cache_free(kvm_pmd_cache, pmdp); |
| } |
| |
| static void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, |
| unsigned long gpa, unsigned int shift) |
| |
| { |
| unsigned long page_size = 1ul << shift; |
| unsigned long old; |
| |
| old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); |
| kvmppc_radix_tlbie_page(kvm, gpa, shift); |
| if (old & _PAGE_DIRTY) { |
| unsigned long gfn = gpa >> PAGE_SHIFT; |
| struct kvm_memory_slot *memslot; |
| |
| memslot = gfn_to_memslot(kvm, gfn); |
| if (memslot && memslot->dirty_bitmap) |
| kvmppc_update_dirty_map(memslot, gfn, page_size); |
| } |
| } |
| |
| /* |
| * kvmppc_free_p?d are used to free existing page tables, and recursively |
| * descend and clear and free children. |
| * Callers are responsible for flushing the PWC. |
| * |
| * When page tables are being unmapped/freed as part of page fault path |
| * (full == false), ptes are not expected. There is code to unmap them |
| * and emit a warning if encountered, but there may already be data |
| * corruption due to the unexpected mappings. |
| */ |
| static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full) |
| { |
| if (full) { |
| memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE); |
| } else { |
| pte_t *p = pte; |
| unsigned long it; |
| |
| for (it = 0; it < PTRS_PER_PTE; ++it, ++p) { |
| if (pte_val(*p) == 0) |
| continue; |
| WARN_ON_ONCE(1); |
| kvmppc_unmap_pte(kvm, p, |
| pte_pfn(*p) << PAGE_SHIFT, |
| PAGE_SHIFT); |
| } |
| } |
| |
| kvmppc_pte_free(pte); |
| } |
| |
| static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full) |
| { |
| unsigned long im; |
| pmd_t *p = pmd; |
| |
| for (im = 0; im < PTRS_PER_PMD; ++im, ++p) { |
| if (!pmd_present(*p)) |
| continue; |
| if (pmd_is_leaf(*p)) { |
| if (full) { |
| pmd_clear(p); |
| } else { |
| WARN_ON_ONCE(1); |
| kvmppc_unmap_pte(kvm, (pte_t *)p, |
| pte_pfn(*(pte_t *)p) << PAGE_SHIFT, |
| PMD_SHIFT); |
| } |
| } else { |
| pte_t *pte; |
| |
| pte = pte_offset_map(p, 0); |
| kvmppc_unmap_free_pte(kvm, pte, full); |
| pmd_clear(p); |
| } |
| } |
| kvmppc_pmd_free(pmd); |
| } |
| |
| static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud) |
| { |
| unsigned long iu; |
| pud_t *p = pud; |
| |
| for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) { |
| if (!pud_present(*p)) |
| continue; |
| if (pud_huge(*p)) { |
| pud_clear(p); |
| } else { |
| pmd_t *pmd; |
| |
| pmd = pmd_offset(p, 0); |
| kvmppc_unmap_free_pmd(kvm, pmd, true); |
| pud_clear(p); |
| } |
| } |
| pud_free(kvm->mm, pud); |
| } |
| |
| void kvmppc_free_radix(struct kvm *kvm) |
| { |
| unsigned long ig; |
| pgd_t *pgd; |
| |
| if (!kvm->arch.pgtable) |
| return; |
| pgd = kvm->arch.pgtable; |
| for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { |
| pud_t *pud; |
| |
| if (!pgd_present(*pgd)) |
| continue; |
| pud = pud_offset(pgd, 0); |
| kvmppc_unmap_free_pud(kvm, pud); |
| pgd_clear(pgd); |
| } |
| pgd_free(kvm->mm, kvm->arch.pgtable); |
| kvm->arch.pgtable = NULL; |
| } |
| |
| static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, |
| unsigned long gpa) |
| { |
| pte_t *pte = pte_offset_kernel(pmd, 0); |
| |
| /* |
| * Clearing the pmd entry then flushing the PWC ensures that the pte |
| * page no longer be cached by the MMU, so can be freed without |
| * flushing the PWC again. |
| */ |
| pmd_clear(pmd); |
| kvmppc_radix_flush_pwc(kvm); |
| |
| kvmppc_unmap_free_pte(kvm, pte, false); |
| } |
| |
| static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, |
| unsigned long gpa) |
| { |
| pmd_t *pmd = pmd_offset(pud, 0); |
| |
| /* |
| * Clearing the pud entry then flushing the PWC ensures that the pmd |
| * page and any children pte pages will no longer be cached by the MMU, |
| * so can be freed without flushing the PWC again. |
| */ |
| pud_clear(pud); |
| kvmppc_radix_flush_pwc(kvm); |
| |
| kvmppc_unmap_free_pmd(kvm, pmd, false); |
| } |
| |
| /* |
| * There are a number of bits which may differ between different faults to |
| * the same partition scope entry. RC bits, in the course of cleaning and |
| * aging. And the write bit can change, either the access could have been |
| * upgraded, or a read fault could happen concurrently with a write fault |
| * that sets those bits first. |
| */ |
| #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) |
| |
| static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa, |
| unsigned int level, unsigned long mmu_seq) |
| { |
| pgd_t *pgd; |
| pud_t *pud, *new_pud = NULL; |
| pmd_t *pmd, *new_pmd = NULL; |
| pte_t *ptep, *new_ptep = NULL; |
| int ret; |
| |
| /* Traverse the guest's 2nd-level tree, allocate new levels needed */ |
| pgd = kvm->arch.pgtable + pgd_index(gpa); |
| pud = NULL; |
| if (pgd_present(*pgd)) |
| pud = pud_offset(pgd, gpa); |
| else |
| new_pud = pud_alloc_one(kvm->mm, gpa); |
| |
| pmd = NULL; |
| if (pud && pud_present(*pud) && !pud_huge(*pud)) |
| pmd = pmd_offset(pud, gpa); |
| else if (level <= 1) |
| new_pmd = kvmppc_pmd_alloc(); |
| |
| if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) |
| new_ptep = kvmppc_pte_alloc(); |
| |
| /* Check if we might have been invalidated; let the guest retry if so */ |
| spin_lock(&kvm->mmu_lock); |
| ret = -EAGAIN; |
| if (mmu_notifier_retry(kvm, mmu_seq)) |
| goto out_unlock; |
| |
| /* Now traverse again under the lock and change the tree */ |
| ret = -ENOMEM; |
| if (pgd_none(*pgd)) { |
| if (!new_pud) |
| goto out_unlock; |
| pgd_populate(kvm->mm, pgd, new_pud); |
| new_pud = NULL; |
| } |
| pud = pud_offset(pgd, gpa); |
| if (pud_huge(*pud)) { |
| unsigned long hgpa = gpa & PUD_MASK; |
| |
| /* Check if we raced and someone else has set the same thing */ |
| if (level == 2) { |
| if (pud_raw(*pud) == pte_raw(pte)) { |
| ret = 0; |
| goto out_unlock; |
| } |
| /* Valid 1GB page here already, add our extra bits */ |
| WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) & |
| PTE_BITS_MUST_MATCH); |
| kvmppc_radix_update_pte(kvm, (pte_t *)pud, |
| 0, pte_val(pte), hgpa, PUD_SHIFT); |
| ret = 0; |
| goto out_unlock; |
| } |
| /* |
| * If we raced with another CPU which has just put |
| * a 1GB pte in after we saw a pmd page, try again. |
| */ |
| if (!new_pmd) { |
| ret = -EAGAIN; |
| goto out_unlock; |
| } |
| /* Valid 1GB page here already, remove it */ |
| kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT); |
| } |
| if (level == 2) { |
| if (!pud_none(*pud)) { |
| /* |
| * There's a page table page here, but we wanted to |
| * install a large page, so remove and free the page |
| * table page. |
| */ |
| kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa); |
| } |
| kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); |
| ret = 0; |
| goto out_unlock; |
| } |
| if (pud_none(*pud)) { |
| if (!new_pmd) |
| goto out_unlock; |
| pud_populate(kvm->mm, pud, new_pmd); |
| new_pmd = NULL; |
| } |
| pmd = pmd_offset(pud, gpa); |
| if (pmd_is_leaf(*pmd)) { |
| unsigned long lgpa = gpa & PMD_MASK; |
| |
| /* Check if we raced and someone else has set the same thing */ |
| if (level == 1) { |
| if (pmd_raw(*pmd) == pte_raw(pte)) { |
| ret = 0; |
| goto out_unlock; |
| } |
| /* Valid 2MB page here already, add our extra bits */ |
| WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) & |
| PTE_BITS_MUST_MATCH); |
| kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), |
| 0, pte_val(pte), lgpa, PMD_SHIFT); |
| ret = 0; |
| goto out_unlock; |
| } |
| |
| /* |
| * If we raced with another CPU which has just put |
| * a 2MB pte in after we saw a pte page, try again. |
| */ |
| if (!new_ptep) { |
| ret = -EAGAIN; |
| goto out_unlock; |
| } |
| /* Valid 2MB page here already, remove it */ |
| kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT); |
| } |
| if (level == 1) { |
| if (!pmd_none(*pmd)) { |
| /* |
| * There's a page table page here, but we wanted to |
| * install a large page, so remove and free the page |
| * table page. |
| */ |
| kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa); |
| } |
| kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); |
| ret = 0; |
| goto out_unlock; |
| } |
| if (pmd_none(*pmd)) { |
| if (!new_ptep) |
| goto out_unlock; |
| pmd_populate(kvm->mm, pmd, new_ptep); |
| new_ptep = NULL; |
| } |
| ptep = pte_offset_kernel(pmd, gpa); |
| if (pte_present(*ptep)) { |
| /* Check if someone else set the same thing */ |
| if (pte_raw(*ptep) == pte_raw(pte)) { |
| ret = 0; |
| goto out_unlock; |
| } |
| /* Valid page here already, add our extra bits */ |
| WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) & |
| PTE_BITS_MUST_MATCH); |
| kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0); |
| ret = 0; |
| goto out_unlock; |
| } |
| kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); |
| ret = 0; |
| |
| out_unlock: |
| spin_unlock(&kvm->mmu_lock); |
| if (new_pud) |
| pud_free(kvm->mm, new_pud); |
| if (new_pmd) |
| kvmppc_pmd_free(new_pmd); |
| if (new_ptep) |
| kvmppc_pte_free(new_ptep); |
| return ret; |
| } |
| |
| int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| unsigned long ea, unsigned long dsisr) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long mmu_seq, pte_size; |
| unsigned long gpa, gfn, hva, pfn; |
| struct kvm_memory_slot *memslot; |
| struct page *page = NULL; |
| long ret; |
| bool writing; |
| bool upgrade_write = false; |
| bool *upgrade_p = &upgrade_write; |
| pte_t pte, *ptep; |
| unsigned long pgflags; |
| unsigned int shift, level; |
| |
| /* Check for unusual errors */ |
| if (dsisr & DSISR_UNSUPP_MMU) { |
| pr_err("KVM: Got unsupported MMU fault\n"); |
| return -EFAULT; |
| } |
| if (dsisr & DSISR_BADACCESS) { |
| /* Reflect to the guest as DSI */ |
| pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); |
| kvmppc_core_queue_data_storage(vcpu, ea, dsisr); |
| return RESUME_GUEST; |
| } |
| |
| /* Translate the logical address and get the page */ |
| gpa = vcpu->arch.fault_gpa & ~0xfffUL; |
| gpa &= ~0xF000000000000000ul; |
| gfn = gpa >> PAGE_SHIFT; |
| if (!(dsisr & DSISR_PRTABLE_FAULT)) |
| gpa |= ea & 0xfff; |
| memslot = gfn_to_memslot(kvm, gfn); |
| |
| /* No memslot means it's an emulated MMIO region */ |
| if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { |
| if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | |
| DSISR_SET_RC)) { |
| /* |
| * Bad address in guest page table tree, or other |
| * unusual error - reflect it to the guest as DSI. |
| */ |
| kvmppc_core_queue_data_storage(vcpu, ea, dsisr); |
| return RESUME_GUEST; |
| } |
| return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, |
| dsisr & DSISR_ISSTORE); |
| } |
| |
| writing = (dsisr & DSISR_ISSTORE) != 0; |
| if (memslot->flags & KVM_MEM_READONLY) { |
| if (writing) { |
| /* give the guest a DSI */ |
| dsisr = DSISR_ISSTORE | DSISR_PROTFAULT; |
| kvmppc_core_queue_data_storage(vcpu, ea, dsisr); |
| return RESUME_GUEST; |
| } |
| upgrade_p = NULL; |
| } |
| |
| if (dsisr & DSISR_SET_RC) { |
| /* |
| * Need to set an R or C bit in the 2nd-level tables; |
| * since we are just helping out the hardware here, |
| * it is sufficient to do what the hardware does. |
| */ |
| pgflags = _PAGE_ACCESSED; |
| if (writing) |
| pgflags |= _PAGE_DIRTY; |
| /* |
| * We are walking the secondary page table here. We can do this |
| * without disabling irq. |
| */ |
| spin_lock(&kvm->mmu_lock); |
| ptep = __find_linux_pte(kvm->arch.pgtable, |
| gpa, NULL, &shift); |
| if (ptep && pte_present(*ptep) && |
| (!writing || pte_write(*ptep))) { |
| kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, |
| gpa, shift); |
| dsisr &= ~DSISR_SET_RC; |
| } |
| spin_unlock(&kvm->mmu_lock); |
| if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | |
| DSISR_PROTFAULT | DSISR_SET_RC))) |
| return RESUME_GUEST; |
| } |
| |
| /* used to check for invalidations in progress */ |
| mmu_seq = kvm->mmu_notifier_seq; |
| smp_rmb(); |
| |
| /* |
| * Do a fast check first, since __gfn_to_pfn_memslot doesn't |
| * do it with !atomic && !async, which is how we call it. |
| * We always ask for write permission since the common case |
| * is that the page is writable. |
| */ |
| hva = gfn_to_hva_memslot(memslot, gfn); |
| if (upgrade_p && __get_user_pages_fast(hva, 1, 1, &page) == 1) { |
| pfn = page_to_pfn(page); |
| upgrade_write = true; |
| } else { |
| /* Call KVM generic code to do the slow-path check */ |
| pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, |
| writing, upgrade_p); |
| if (is_error_noslot_pfn(pfn)) |
| return -EFAULT; |
| page = NULL; |
| if (pfn_valid(pfn)) { |
| page = pfn_to_page(pfn); |
| if (PageReserved(page)) |
| page = NULL; |
| } |
| } |
| |
| /* See if we can insert a 1GB or 2MB large PTE here */ |
| level = 0; |
| if (page && PageCompound(page)) { |
| pte_size = PAGE_SIZE << compound_order(compound_head(page)); |
| if (pte_size >= PUD_SIZE && |
| (gpa & (PUD_SIZE - PAGE_SIZE)) == |
| (hva & (PUD_SIZE - PAGE_SIZE))) { |
| level = 2; |
| pfn &= ~((PUD_SIZE >> PAGE_SHIFT) - 1); |
| } else if (pte_size >= PMD_SIZE && |
| (gpa & (PMD_SIZE - PAGE_SIZE)) == |
| (hva & (PMD_SIZE - PAGE_SIZE))) { |
| level = 1; |
| pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1); |
| } |
| } |
| |
| /* |
| * Compute the PTE value that we need to insert. |
| */ |
| if (page) { |
| pgflags = _PAGE_READ | _PAGE_EXEC | _PAGE_PRESENT | _PAGE_PTE | |
| _PAGE_ACCESSED; |
| if (writing || upgrade_write) |
| pgflags |= _PAGE_WRITE | _PAGE_DIRTY; |
| pte = pfn_pte(pfn, __pgprot(pgflags)); |
| } else { |
| /* |
| * Read the PTE from the process' radix tree and use that |
| * so we get the attribute bits. |
| */ |
| local_irq_disable(); |
| ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift); |
| pte = *ptep; |
| local_irq_enable(); |
| if (shift == PUD_SHIFT && |
| (gpa & (PUD_SIZE - PAGE_SIZE)) == |
| (hva & (PUD_SIZE - PAGE_SIZE))) { |
| level = 2; |
| } else if (shift == PMD_SHIFT && |
| (gpa & (PMD_SIZE - PAGE_SIZE)) == |
| (hva & (PMD_SIZE - PAGE_SIZE))) { |
| level = 1; |
| } else if (shift && shift != PAGE_SHIFT) { |
| /* Adjust PFN */ |
| unsigned long mask = (1ul << shift) - PAGE_SIZE; |
| pte = __pte(pte_val(pte) | (hva & mask)); |
| } |
| pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED); |
| if (writing || upgrade_write) { |
| if (pte_val(pte) & _PAGE_WRITE) |
| pte = __pte(pte_val(pte) | _PAGE_DIRTY); |
| } else { |
| pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY)); |
| } |
| } |
| |
| /* Allocate space in the tree and write the PTE */ |
| ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq); |
| |
| if (page) { |
| if (!ret && (pte_val(pte) & _PAGE_WRITE)) |
| set_page_dirty_lock(page); |
| put_page(page); |
| } |
| |
| if (ret == 0 || ret == -EAGAIN) |
| ret = RESUME_GUEST; |
| return ret; |
| } |
| |
| /* Called with kvm->lock held */ |
| int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| unsigned long gfn) |
| { |
| pte_t *ptep; |
| unsigned long gpa = gfn << PAGE_SHIFT; |
| unsigned int shift; |
| unsigned long old; |
| |
| ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); |
| if (ptep && pte_present(*ptep)) { |
| old = kvmppc_radix_update_pte(kvm, ptep, ~0UL, 0, |
| gpa, shift); |
| kvmppc_radix_tlbie_page(kvm, gpa, shift); |
| if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) { |
| unsigned long npages = 1; |
| if (shift) |
| npages = 1ul << (shift - PAGE_SHIFT); |
| kvmppc_update_dirty_map(memslot, gfn, npages); |
| } |
| } |
| return 0; |
| } |
| |
| /* Called with kvm->lock held */ |
| int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| unsigned long gfn) |
| { |
| pte_t *ptep; |
| unsigned long gpa = gfn << PAGE_SHIFT; |
| unsigned int shift; |
| int ref = 0; |
| |
| ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); |
| if (ptep && pte_present(*ptep) && pte_young(*ptep)) { |
| kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, |
| gpa, shift); |
| /* XXX need to flush tlb here? */ |
| ref = 1; |
| } |
| return ref; |
| } |
| |
| /* Called with kvm->lock held */ |
| int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| unsigned long gfn) |
| { |
| pte_t *ptep; |
| unsigned long gpa = gfn << PAGE_SHIFT; |
| unsigned int shift; |
| int ref = 0; |
| |
| ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); |
| if (ptep && pte_present(*ptep) && pte_young(*ptep)) |
| ref = 1; |
| return ref; |
| } |
| |
| /* Returns the number of PAGE_SIZE pages that are dirty */ |
| static int kvm_radix_test_clear_dirty(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, int pagenum) |
| { |
| unsigned long gfn = memslot->base_gfn + pagenum; |
| unsigned long gpa = gfn << PAGE_SHIFT; |
| pte_t *ptep; |
| unsigned int shift; |
| int ret = 0; |
| |
| ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); |
| if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) { |
| ret = 1; |
| if (shift) |
| ret = 1 << (shift - PAGE_SHIFT); |
| kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, |
| gpa, shift); |
| kvmppc_radix_tlbie_page(kvm, gpa, shift); |
| } |
| return ret; |
| } |
| |
| long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, unsigned long *map) |
| { |
| unsigned long i, j; |
| int npages; |
| |
| for (i = 0; i < memslot->npages; i = j) { |
| npages = kvm_radix_test_clear_dirty(kvm, memslot, i); |
| |
| /* |
| * Note that if npages > 0 then i must be a multiple of npages, |
| * since huge pages are only used to back the guest at guest |
| * real addresses that are a multiple of their size. |
| * Since we have at most one PTE covering any given guest |
| * real address, if npages > 1 we can skip to i + npages. |
| */ |
| j = i + 1; |
| if (npages) { |
| set_dirty_bits(map, i, npages); |
| j = i + npages; |
| } |
| } |
| return 0; |
| } |
| |
| static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, |
| int psize, int *indexp) |
| { |
| if (!mmu_psize_defs[psize].shift) |
| return; |
| info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | |
| (mmu_psize_defs[psize].ap << 29); |
| ++(*indexp); |
| } |
| |
| int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) |
| { |
| int i; |
| |
| if (!radix_enabled()) |
| return -EINVAL; |
| memset(info, 0, sizeof(*info)); |
| |
| /* 4k page size */ |
| info->geometries[0].page_shift = 12; |
| info->geometries[0].level_bits[0] = 9; |
| for (i = 1; i < 4; ++i) |
| info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; |
| /* 64k page size */ |
| info->geometries[1].page_shift = 16; |
| for (i = 0; i < 4; ++i) |
| info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; |
| |
| i = 0; |
| add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); |
| add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); |
| add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); |
| add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); |
| |
| return 0; |
| } |
| |
| int kvmppc_init_vm_radix(struct kvm *kvm) |
| { |
| kvm->arch.pgtable = pgd_alloc(kvm->mm); |
| if (!kvm->arch.pgtable) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void pte_ctor(void *addr) |
| { |
| memset(addr, 0, RADIX_PTE_TABLE_SIZE); |
| } |
| |
| static void pmd_ctor(void *addr) |
| { |
| memset(addr, 0, RADIX_PMD_TABLE_SIZE); |
| } |
| |
| int kvmppc_radix_init(void) |
| { |
| unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE; |
| |
| kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); |
| if (!kvm_pte_cache) |
| return -ENOMEM; |
| |
| size = sizeof(void *) << RADIX_PMD_INDEX_SIZE; |
| |
| kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor); |
| if (!kvm_pmd_cache) { |
| kmem_cache_destroy(kvm_pte_cache); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| void kvmppc_radix_exit(void) |
| { |
| kmem_cache_destroy(kvm_pte_cache); |
| kmem_cache_destroy(kvm_pmd_cache); |
| } |