|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/100 Linux driver | 
|  | Copyright(c) 1999 - 2006 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | /* | 
|  | *	e100.c: Intel(R) PRO/100 ethernet driver | 
|  | * | 
|  | *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on | 
|  | *	original e100 driver, but better described as a munging of | 
|  | *	e100, e1000, eepro100, tg3, 8139cp, and other drivers. | 
|  | * | 
|  | *	References: | 
|  | *		Intel 8255x 10/100 Mbps Ethernet Controller Family, | 
|  | *		Open Source Software Developers Manual, | 
|  | *		http://sourceforge.net/projects/e1000 | 
|  | * | 
|  | * | 
|  | *	                      Theory of Operation | 
|  | * | 
|  | *	I.   General | 
|  | * | 
|  | *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet | 
|  | *	controller family, which includes the 82557, 82558, 82559, 82550, | 
|  | *	82551, and 82562 devices.  82558 and greater controllers | 
|  | *	integrate the Intel 82555 PHY.  The controllers are used in | 
|  | *	server and client network interface cards, as well as in | 
|  | *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx | 
|  | *	configurations.  8255x supports a 32-bit linear addressing | 
|  | *	mode and operates at 33Mhz PCI clock rate. | 
|  | * | 
|  | *	II.  Driver Operation | 
|  | * | 
|  | *	Memory-mapped mode is used exclusively to access the device's | 
|  | *	shared-memory structure, the Control/Status Registers (CSR). All | 
|  | *	setup, configuration, and control of the device, including queuing | 
|  | *	of Tx, Rx, and configuration commands is through the CSR. | 
|  | *	cmd_lock serializes accesses to the CSR command register.  cb_lock | 
|  | *	protects the shared Command Block List (CBL). | 
|  | * | 
|  | *	8255x is highly MII-compliant and all access to the PHY go | 
|  | *	through the Management Data Interface (MDI).  Consequently, the | 
|  | *	driver leverages the mii.c library shared with other MII-compliant | 
|  | *	devices. | 
|  | * | 
|  | *	Big- and Little-Endian byte order as well as 32- and 64-bit | 
|  | *	archs are supported.  Weak-ordered memory and non-cache-coherent | 
|  | *	archs are supported. | 
|  | * | 
|  | *	III. Transmit | 
|  | * | 
|  | *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked | 
|  | *	together in a fixed-size ring (CBL) thus forming the flexible mode | 
|  | *	memory structure.  A TCB marked with the suspend-bit indicates | 
|  | *	the end of the ring.  The last TCB processed suspends the | 
|  | *	controller, and the controller can be restarted by issue a CU | 
|  | *	resume command to continue from the suspend point, or a CU start | 
|  | *	command to start at a given position in the ring. | 
|  | * | 
|  | *	Non-Tx commands (config, multicast setup, etc) are linked | 
|  | *	into the CBL ring along with Tx commands.  The common structure | 
|  | *	used for both Tx and non-Tx commands is the Command Block (CB). | 
|  | * | 
|  | *	cb_to_use is the next CB to use for queuing a command; cb_to_clean | 
|  | *	is the next CB to check for completion; cb_to_send is the first | 
|  | *	CB to start on in case of a previous failure to resume.  CB clean | 
|  | *	up happens in interrupt context in response to a CU interrupt. | 
|  | *	cbs_avail keeps track of number of free CB resources available. | 
|  | * | 
|  | * 	Hardware padding of short packets to minimum packet size is | 
|  | * 	enabled.  82557 pads with 7Eh, while the later controllers pad | 
|  | * 	with 00h. | 
|  | * | 
|  | *	IV.  Receive | 
|  | * | 
|  | *	The Receive Frame Area (RFA) comprises a ring of Receive Frame | 
|  | *	Descriptors (RFD) + data buffer, thus forming the simplified mode | 
|  | *	memory structure.  Rx skbs are allocated to contain both the RFD | 
|  | *	and the data buffer, but the RFD is pulled off before the skb is | 
|  | *	indicated.  The data buffer is aligned such that encapsulated | 
|  | *	protocol headers are u32-aligned.  Since the RFD is part of the | 
|  | *	mapped shared memory, and completion status is contained within | 
|  | *	the RFD, the RFD must be dma_sync'ed to maintain a consistent | 
|  | *	view from software and hardware. | 
|  | * | 
|  | *	In order to keep updates to the RFD link field from colliding with | 
|  | *	hardware writes to mark packets complete, we use the feature that | 
|  | *	hardware will not write to a size 0 descriptor and mark the previous | 
|  | *	packet as end-of-list (EL).   After updating the link, we remove EL | 
|  | *	and only then restore the size such that hardware may use the | 
|  | *	previous-to-end RFD. | 
|  | * | 
|  | *	Under typical operation, the  receive unit (RU) is start once, | 
|  | *	and the controller happily fills RFDs as frames arrive.  If | 
|  | *	replacement RFDs cannot be allocated, or the RU goes non-active, | 
|  | *	the RU must be restarted.  Frame arrival generates an interrupt, | 
|  | *	and Rx indication and re-allocation happen in the same context, | 
|  | *	therefore no locking is required.  A software-generated interrupt | 
|  | *	is generated from the watchdog to recover from a failed allocation | 
|  | *	scenario where all Rx resources have been indicated and none re- | 
|  | *	placed. | 
|  | * | 
|  | *	V.   Miscellaneous | 
|  | * | 
|  | * 	VLAN offloading of tagging, stripping and filtering is not | 
|  | * 	supported, but driver will accommodate the extra 4-byte VLAN tag | 
|  | * 	for processing by upper layers.  Tx/Rx Checksum offloading is not | 
|  | * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is | 
|  | * 	not supported (hardware limitation). | 
|  | * | 
|  | * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool. | 
|  | * | 
|  | * 	Thanks to JC (jchapman@katalix.com) for helping with | 
|  | * 	testing/troubleshooting the development driver. | 
|  | * | 
|  | * 	TODO: | 
|  | * 	o several entry points race with dev->close | 
|  | * 	o check for tx-no-resources/stop Q races with tx clean/wake Q | 
|  | * | 
|  | *	FIXES: | 
|  | * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> | 
|  | *	- Stratus87247: protect MDI control register manipulations | 
|  | * 2009/06/01 - Andreas Mohr <andi at lisas dot de> | 
|  | *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmapool.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/mii.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/firmware.h> | 
|  | #include <linux/rtnetlink.h> | 
|  | #include <asm/unaligned.h> | 
|  |  | 
|  |  | 
|  | #define DRV_NAME		"e100" | 
|  | #define DRV_EXT			"-NAPI" | 
|  | #define DRV_VERSION		"3.5.24-k2"DRV_EXT | 
|  | #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver" | 
|  | #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation" | 
|  |  | 
|  | #define E100_WATCHDOG_PERIOD	(2 * HZ) | 
|  | #define E100_NAPI_WEIGHT	16 | 
|  |  | 
|  | #define FIRMWARE_D101M		"e100/d101m_ucode.bin" | 
|  | #define FIRMWARE_D101S		"e100/d101s_ucode.bin" | 
|  | #define FIRMWARE_D102E		"e100/d102e_ucode.bin" | 
|  |  | 
|  | MODULE_DESCRIPTION(DRV_DESCRIPTION); | 
|  | MODULE_AUTHOR(DRV_COPYRIGHT); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | MODULE_FIRMWARE(FIRMWARE_D101M); | 
|  | MODULE_FIRMWARE(FIRMWARE_D101S); | 
|  | MODULE_FIRMWARE(FIRMWARE_D102E); | 
|  |  | 
|  | static int debug = 3; | 
|  | static int eeprom_bad_csum_allow = 0; | 
|  | static int use_io = 0; | 
|  | module_param(debug, int, 0); | 
|  | module_param(eeprom_bad_csum_allow, int, 0); | 
|  | module_param(use_io, int, 0); | 
|  | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | 
|  | MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); | 
|  | MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); | 
|  |  | 
|  | #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ | 
|  | PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ | 
|  | PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } | 
|  | static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = { | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), | 
|  | INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), | 
|  | { 0, } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pci, e100_id_table); | 
|  |  | 
|  | enum mac { | 
|  | mac_82557_D100_A  = 0, | 
|  | mac_82557_D100_B  = 1, | 
|  | mac_82557_D100_C  = 2, | 
|  | mac_82558_D101_A4 = 4, | 
|  | mac_82558_D101_B0 = 5, | 
|  | mac_82559_D101M   = 8, | 
|  | mac_82559_D101S   = 9, | 
|  | mac_82550_D102    = 12, | 
|  | mac_82550_D102_C  = 13, | 
|  | mac_82551_E       = 14, | 
|  | mac_82551_F       = 15, | 
|  | mac_82551_10      = 16, | 
|  | mac_unknown       = 0xFF, | 
|  | }; | 
|  |  | 
|  | enum phy { | 
|  | phy_100a     = 0x000003E0, | 
|  | phy_100c     = 0x035002A8, | 
|  | phy_82555_tx = 0x015002A8, | 
|  | phy_nsc_tx   = 0x5C002000, | 
|  | phy_82562_et = 0x033002A8, | 
|  | phy_82562_em = 0x032002A8, | 
|  | phy_82562_ek = 0x031002A8, | 
|  | phy_82562_eh = 0x017002A8, | 
|  | phy_82552_v  = 0xd061004d, | 
|  | phy_unknown  = 0xFFFFFFFF, | 
|  | }; | 
|  |  | 
|  | /* CSR (Control/Status Registers) */ | 
|  | struct csr { | 
|  | struct { | 
|  | u8 status; | 
|  | u8 stat_ack; | 
|  | u8 cmd_lo; | 
|  | u8 cmd_hi; | 
|  | u32 gen_ptr; | 
|  | } scb; | 
|  | u32 port; | 
|  | u16 flash_ctrl; | 
|  | u8 eeprom_ctrl_lo; | 
|  | u8 eeprom_ctrl_hi; | 
|  | u32 mdi_ctrl; | 
|  | u32 rx_dma_count; | 
|  | }; | 
|  |  | 
|  | enum scb_status { | 
|  | rus_no_res       = 0x08, | 
|  | rus_ready        = 0x10, | 
|  | rus_mask         = 0x3C, | 
|  | }; | 
|  |  | 
|  | enum ru_state  { | 
|  | RU_SUSPENDED = 0, | 
|  | RU_RUNNING	 = 1, | 
|  | RU_UNINITIALIZED = -1, | 
|  | }; | 
|  |  | 
|  | enum scb_stat_ack { | 
|  | stat_ack_not_ours    = 0x00, | 
|  | stat_ack_sw_gen      = 0x04, | 
|  | stat_ack_rnr         = 0x10, | 
|  | stat_ack_cu_idle     = 0x20, | 
|  | stat_ack_frame_rx    = 0x40, | 
|  | stat_ack_cu_cmd_done = 0x80, | 
|  | stat_ack_not_present = 0xFF, | 
|  | stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), | 
|  | stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), | 
|  | }; | 
|  |  | 
|  | enum scb_cmd_hi { | 
|  | irq_mask_none = 0x00, | 
|  | irq_mask_all  = 0x01, | 
|  | irq_sw_gen    = 0x02, | 
|  | }; | 
|  |  | 
|  | enum scb_cmd_lo { | 
|  | cuc_nop        = 0x00, | 
|  | ruc_start      = 0x01, | 
|  | ruc_load_base  = 0x06, | 
|  | cuc_start      = 0x10, | 
|  | cuc_resume     = 0x20, | 
|  | cuc_dump_addr  = 0x40, | 
|  | cuc_dump_stats = 0x50, | 
|  | cuc_load_base  = 0x60, | 
|  | cuc_dump_reset = 0x70, | 
|  | }; | 
|  |  | 
|  | enum cuc_dump { | 
|  | cuc_dump_complete       = 0x0000A005, | 
|  | cuc_dump_reset_complete = 0x0000A007, | 
|  | }; | 
|  |  | 
|  | enum port { | 
|  | software_reset  = 0x0000, | 
|  | selftest        = 0x0001, | 
|  | selective_reset = 0x0002, | 
|  | }; | 
|  |  | 
|  | enum eeprom_ctrl_lo { | 
|  | eesk = 0x01, | 
|  | eecs = 0x02, | 
|  | eedi = 0x04, | 
|  | eedo = 0x08, | 
|  | }; | 
|  |  | 
|  | enum mdi_ctrl { | 
|  | mdi_write = 0x04000000, | 
|  | mdi_read  = 0x08000000, | 
|  | mdi_ready = 0x10000000, | 
|  | }; | 
|  |  | 
|  | enum eeprom_op { | 
|  | op_write = 0x05, | 
|  | op_read  = 0x06, | 
|  | op_ewds  = 0x10, | 
|  | op_ewen  = 0x13, | 
|  | }; | 
|  |  | 
|  | enum eeprom_offsets { | 
|  | eeprom_cnfg_mdix  = 0x03, | 
|  | eeprom_phy_iface  = 0x06, | 
|  | eeprom_id         = 0x0A, | 
|  | eeprom_config_asf = 0x0D, | 
|  | eeprom_smbus_addr = 0x90, | 
|  | }; | 
|  |  | 
|  | enum eeprom_cnfg_mdix { | 
|  | eeprom_mdix_enabled = 0x0080, | 
|  | }; | 
|  |  | 
|  | enum eeprom_phy_iface { | 
|  | NoSuchPhy = 0, | 
|  | I82553AB, | 
|  | I82553C, | 
|  | I82503, | 
|  | DP83840, | 
|  | S80C240, | 
|  | S80C24, | 
|  | I82555, | 
|  | DP83840A = 10, | 
|  | }; | 
|  |  | 
|  | enum eeprom_id { | 
|  | eeprom_id_wol = 0x0020, | 
|  | }; | 
|  |  | 
|  | enum eeprom_config_asf { | 
|  | eeprom_asf = 0x8000, | 
|  | eeprom_gcl = 0x4000, | 
|  | }; | 
|  |  | 
|  | enum cb_status { | 
|  | cb_complete = 0x8000, | 
|  | cb_ok       = 0x2000, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cb_command - Command Block flags | 
|  | * @cb_tx_nc:  0: controler does CRC (normal),  1: CRC from skb memory | 
|  | */ | 
|  | enum cb_command { | 
|  | cb_nop    = 0x0000, | 
|  | cb_iaaddr = 0x0001, | 
|  | cb_config = 0x0002, | 
|  | cb_multi  = 0x0003, | 
|  | cb_tx     = 0x0004, | 
|  | cb_ucode  = 0x0005, | 
|  | cb_dump   = 0x0006, | 
|  | cb_tx_sf  = 0x0008, | 
|  | cb_tx_nc  = 0x0010, | 
|  | cb_cid    = 0x1f00, | 
|  | cb_i      = 0x2000, | 
|  | cb_s      = 0x4000, | 
|  | cb_el     = 0x8000, | 
|  | }; | 
|  |  | 
|  | struct rfd { | 
|  | __le16 status; | 
|  | __le16 command; | 
|  | __le32 link; | 
|  | __le32 rbd; | 
|  | __le16 actual_size; | 
|  | __le16 size; | 
|  | }; | 
|  |  | 
|  | struct rx { | 
|  | struct rx *next, *prev; | 
|  | struct sk_buff *skb; | 
|  | dma_addr_t dma_addr; | 
|  | }; | 
|  |  | 
|  | #if defined(__BIG_ENDIAN_BITFIELD) | 
|  | #define X(a,b)	b,a | 
|  | #else | 
|  | #define X(a,b)	a,b | 
|  | #endif | 
|  | struct config { | 
|  | /*0*/	u8 X(byte_count:6, pad0:2); | 
|  | /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); | 
|  | /*2*/	u8 adaptive_ifs; | 
|  | /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), | 
|  | term_write_cache_line:1), pad3:4); | 
|  | /*4*/	u8 X(rx_dma_max_count:7, pad4:1); | 
|  | /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1); | 
|  | /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), | 
|  | tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), | 
|  | rx_save_overruns : 1), rx_save_bad_frames : 1); | 
|  | /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), | 
|  | pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), | 
|  | tx_dynamic_tbd:1); | 
|  | /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); | 
|  | /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), | 
|  | link_status_wake:1), arp_wake:1), mcmatch_wake:1); | 
|  | /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), | 
|  | loopback:2); | 
|  | /*11*/	u8 X(linear_priority:3, pad11:5); | 
|  | /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); | 
|  | /*13*/	u8 ip_addr_lo; | 
|  | /*14*/	u8 ip_addr_hi; | 
|  | /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), | 
|  | wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), | 
|  | pad15_2:1), crs_or_cdt:1); | 
|  | /*16*/	u8 fc_delay_lo; | 
|  | /*17*/	u8 fc_delay_hi; | 
|  | /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), | 
|  | rx_long_ok:1), fc_priority_threshold:3), pad18:1); | 
|  | /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), | 
|  | fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), | 
|  | full_duplex_force:1), full_duplex_pin:1); | 
|  | /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); | 
|  | /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); | 
|  | /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); | 
|  | u8 pad_d102[9]; | 
|  | }; | 
|  |  | 
|  | #define E100_MAX_MULTICAST_ADDRS	64 | 
|  | struct multi { | 
|  | __le16 count; | 
|  | u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; | 
|  | }; | 
|  |  | 
|  | /* Important: keep total struct u32-aligned */ | 
|  | #define UCODE_SIZE			134 | 
|  | struct cb { | 
|  | __le16 status; | 
|  | __le16 command; | 
|  | __le32 link; | 
|  | union { | 
|  | u8 iaaddr[ETH_ALEN]; | 
|  | __le32 ucode[UCODE_SIZE]; | 
|  | struct config config; | 
|  | struct multi multi; | 
|  | struct { | 
|  | u32 tbd_array; | 
|  | u16 tcb_byte_count; | 
|  | u8 threshold; | 
|  | u8 tbd_count; | 
|  | struct { | 
|  | __le32 buf_addr; | 
|  | __le16 size; | 
|  | u16 eol; | 
|  | } tbd; | 
|  | } tcb; | 
|  | __le32 dump_buffer_addr; | 
|  | } u; | 
|  | struct cb *next, *prev; | 
|  | dma_addr_t dma_addr; | 
|  | struct sk_buff *skb; | 
|  | }; | 
|  |  | 
|  | enum loopback { | 
|  | lb_none = 0, lb_mac = 1, lb_phy = 3, | 
|  | }; | 
|  |  | 
|  | struct stats { | 
|  | __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, | 
|  | tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, | 
|  | tx_multiple_collisions, tx_total_collisions; | 
|  | __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, | 
|  | rx_resource_errors, rx_overrun_errors, rx_cdt_errors, | 
|  | rx_short_frame_errors; | 
|  | __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; | 
|  | __le16 xmt_tco_frames, rcv_tco_frames; | 
|  | __le32 complete; | 
|  | }; | 
|  |  | 
|  | struct mem { | 
|  | struct { | 
|  | u32 signature; | 
|  | u32 result; | 
|  | } selftest; | 
|  | struct stats stats; | 
|  | u8 dump_buf[596]; | 
|  | }; | 
|  |  | 
|  | struct param_range { | 
|  | u32 min; | 
|  | u32 max; | 
|  | u32 count; | 
|  | }; | 
|  |  | 
|  | struct params { | 
|  | struct param_range rfds; | 
|  | struct param_range cbs; | 
|  | }; | 
|  |  | 
|  | struct nic { | 
|  | /* Begin: frequently used values: keep adjacent for cache effect */ | 
|  | u32 msg_enable				____cacheline_aligned; | 
|  | struct net_device *netdev; | 
|  | struct pci_dev *pdev; | 
|  | u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); | 
|  |  | 
|  | struct rx *rxs				____cacheline_aligned; | 
|  | struct rx *rx_to_use; | 
|  | struct rx *rx_to_clean; | 
|  | struct rfd blank_rfd; | 
|  | enum ru_state ru_running; | 
|  |  | 
|  | spinlock_t cb_lock			____cacheline_aligned; | 
|  | spinlock_t cmd_lock; | 
|  | struct csr __iomem *csr; | 
|  | enum scb_cmd_lo cuc_cmd; | 
|  | unsigned int cbs_avail; | 
|  | struct napi_struct napi; | 
|  | struct cb *cbs; | 
|  | struct cb *cb_to_use; | 
|  | struct cb *cb_to_send; | 
|  | struct cb *cb_to_clean; | 
|  | __le16 tx_command; | 
|  | /* End: frequently used values: keep adjacent for cache effect */ | 
|  |  | 
|  | enum { | 
|  | ich                = (1 << 0), | 
|  | promiscuous        = (1 << 1), | 
|  | multicast_all      = (1 << 2), | 
|  | wol_magic          = (1 << 3), | 
|  | ich_10h_workaround = (1 << 4), | 
|  | } flags					____cacheline_aligned; | 
|  |  | 
|  | enum mac mac; | 
|  | enum phy phy; | 
|  | struct params params; | 
|  | struct timer_list watchdog; | 
|  | struct mii_if_info mii; | 
|  | struct work_struct tx_timeout_task; | 
|  | enum loopback loopback; | 
|  |  | 
|  | struct mem *mem; | 
|  | dma_addr_t dma_addr; | 
|  |  | 
|  | struct pci_pool *cbs_pool; | 
|  | dma_addr_t cbs_dma_addr; | 
|  | u8 adaptive_ifs; | 
|  | u8 tx_threshold; | 
|  | u32 tx_frames; | 
|  | u32 tx_collisions; | 
|  | u32 tx_deferred; | 
|  | u32 tx_single_collisions; | 
|  | u32 tx_multiple_collisions; | 
|  | u32 tx_fc_pause; | 
|  | u32 tx_tco_frames; | 
|  |  | 
|  | u32 rx_fc_pause; | 
|  | u32 rx_fc_unsupported; | 
|  | u32 rx_tco_frames; | 
|  | u32 rx_short_frame_errors; | 
|  | u32 rx_over_length_errors; | 
|  |  | 
|  | u16 eeprom_wc; | 
|  | __le16 eeprom[256]; | 
|  | spinlock_t mdio_lock; | 
|  | const struct firmware *fw; | 
|  | }; | 
|  |  | 
|  | static inline void e100_write_flush(struct nic *nic) | 
|  | { | 
|  | /* Flush previous PCI writes through intermediate bridges | 
|  | * by doing a benign read */ | 
|  | (void)ioread8(&nic->csr->scb.status); | 
|  | } | 
|  |  | 
|  | static void e100_enable_irq(struct nic *nic) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&nic->cmd_lock, flags); | 
|  | iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); | 
|  | e100_write_flush(nic); | 
|  | spin_unlock_irqrestore(&nic->cmd_lock, flags); | 
|  | } | 
|  |  | 
|  | static void e100_disable_irq(struct nic *nic) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&nic->cmd_lock, flags); | 
|  | iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); | 
|  | e100_write_flush(nic); | 
|  | spin_unlock_irqrestore(&nic->cmd_lock, flags); | 
|  | } | 
|  |  | 
|  | static void e100_hw_reset(struct nic *nic) | 
|  | { | 
|  | /* Put CU and RU into idle with a selective reset to get | 
|  | * device off of PCI bus */ | 
|  | iowrite32(selective_reset, &nic->csr->port); | 
|  | e100_write_flush(nic); udelay(20); | 
|  |  | 
|  | /* Now fully reset device */ | 
|  | iowrite32(software_reset, &nic->csr->port); | 
|  | e100_write_flush(nic); udelay(20); | 
|  |  | 
|  | /* Mask off our interrupt line - it's unmasked after reset */ | 
|  | e100_disable_irq(nic); | 
|  | } | 
|  |  | 
|  | static int e100_self_test(struct nic *nic) | 
|  | { | 
|  | u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); | 
|  |  | 
|  | /* Passing the self-test is a pretty good indication | 
|  | * that the device can DMA to/from host memory */ | 
|  |  | 
|  | nic->mem->selftest.signature = 0; | 
|  | nic->mem->selftest.result = 0xFFFFFFFF; | 
|  |  | 
|  | iowrite32(selftest | dma_addr, &nic->csr->port); | 
|  | e100_write_flush(nic); | 
|  | /* Wait 10 msec for self-test to complete */ | 
|  | msleep(10); | 
|  |  | 
|  | /* Interrupts are enabled after self-test */ | 
|  | e100_disable_irq(nic); | 
|  |  | 
|  | /* Check results of self-test */ | 
|  | if (nic->mem->selftest.result != 0) { | 
|  | netif_err(nic, hw, nic->netdev, | 
|  | "Self-test failed: result=0x%08X\n", | 
|  | nic->mem->selftest.result); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | if (nic->mem->selftest.signature == 0) { | 
|  | netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) | 
|  | { | 
|  | u32 cmd_addr_data[3]; | 
|  | u8 ctrl; | 
|  | int i, j; | 
|  |  | 
|  | /* Three cmds: write/erase enable, write data, write/erase disable */ | 
|  | cmd_addr_data[0] = op_ewen << (addr_len - 2); | 
|  | cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | | 
|  | le16_to_cpu(data); | 
|  | cmd_addr_data[2] = op_ewds << (addr_len - 2); | 
|  |  | 
|  | /* Bit-bang cmds to write word to eeprom */ | 
|  | for (j = 0; j < 3; j++) { | 
|  |  | 
|  | /* Chip select */ | 
|  | iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); | 
|  | e100_write_flush(nic); udelay(4); | 
|  |  | 
|  | for (i = 31; i >= 0; i--) { | 
|  | ctrl = (cmd_addr_data[j] & (1 << i)) ? | 
|  | eecs | eedi : eecs; | 
|  | iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); | 
|  | e100_write_flush(nic); udelay(4); | 
|  |  | 
|  | iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); | 
|  | e100_write_flush(nic); udelay(4); | 
|  | } | 
|  | /* Wait 10 msec for cmd to complete */ | 
|  | msleep(10); | 
|  |  | 
|  | /* Chip deselect */ | 
|  | iowrite8(0, &nic->csr->eeprom_ctrl_lo); | 
|  | e100_write_flush(nic); udelay(4); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* General technique stolen from the eepro100 driver - very clever */ | 
|  | static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) | 
|  | { | 
|  | u32 cmd_addr_data; | 
|  | u16 data = 0; | 
|  | u8 ctrl; | 
|  | int i; | 
|  |  | 
|  | cmd_addr_data = ((op_read << *addr_len) | addr) << 16; | 
|  |  | 
|  | /* Chip select */ | 
|  | iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); | 
|  | e100_write_flush(nic); udelay(4); | 
|  |  | 
|  | /* Bit-bang to read word from eeprom */ | 
|  | for (i = 31; i >= 0; i--) { | 
|  | ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; | 
|  | iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); | 
|  | e100_write_flush(nic); udelay(4); | 
|  |  | 
|  | iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); | 
|  | e100_write_flush(nic); udelay(4); | 
|  |  | 
|  | /* Eeprom drives a dummy zero to EEDO after receiving | 
|  | * complete address.  Use this to adjust addr_len. */ | 
|  | ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); | 
|  | if (!(ctrl & eedo) && i > 16) { | 
|  | *addr_len -= (i - 16); | 
|  | i = 17; | 
|  | } | 
|  |  | 
|  | data = (data << 1) | (ctrl & eedo ? 1 : 0); | 
|  | } | 
|  |  | 
|  | /* Chip deselect */ | 
|  | iowrite8(0, &nic->csr->eeprom_ctrl_lo); | 
|  | e100_write_flush(nic); udelay(4); | 
|  |  | 
|  | return cpu_to_le16(data); | 
|  | }; | 
|  |  | 
|  | /* Load entire EEPROM image into driver cache and validate checksum */ | 
|  | static int e100_eeprom_load(struct nic *nic) | 
|  | { | 
|  | u16 addr, addr_len = 8, checksum = 0; | 
|  |  | 
|  | /* Try reading with an 8-bit addr len to discover actual addr len */ | 
|  | e100_eeprom_read(nic, &addr_len, 0); | 
|  | nic->eeprom_wc = 1 << addr_len; | 
|  |  | 
|  | for (addr = 0; addr < nic->eeprom_wc; addr++) { | 
|  | nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); | 
|  | if (addr < nic->eeprom_wc - 1) | 
|  | checksum += le16_to_cpu(nic->eeprom[addr]); | 
|  | } | 
|  |  | 
|  | /* The checksum, stored in the last word, is calculated such that | 
|  | * the sum of words should be 0xBABA */ | 
|  | if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { | 
|  | netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); | 
|  | if (!eeprom_bad_csum_allow) | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Save (portion of) driver EEPROM cache to device and update checksum */ | 
|  | static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) | 
|  | { | 
|  | u16 addr, addr_len = 8, checksum = 0; | 
|  |  | 
|  | /* Try reading with an 8-bit addr len to discover actual addr len */ | 
|  | e100_eeprom_read(nic, &addr_len, 0); | 
|  | nic->eeprom_wc = 1 << addr_len; | 
|  |  | 
|  | if (start + count >= nic->eeprom_wc) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (addr = start; addr < start + count; addr++) | 
|  | e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); | 
|  |  | 
|  | /* The checksum, stored in the last word, is calculated such that | 
|  | * the sum of words should be 0xBABA */ | 
|  | for (addr = 0; addr < nic->eeprom_wc - 1; addr++) | 
|  | checksum += le16_to_cpu(nic->eeprom[addr]); | 
|  | nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); | 
|  | e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, | 
|  | nic->eeprom[nic->eeprom_wc - 1]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ | 
|  | #define E100_WAIT_SCB_FAST 20       /* delay like the old code */ | 
|  | static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int i; | 
|  | int err = 0; | 
|  |  | 
|  | spin_lock_irqsave(&nic->cmd_lock, flags); | 
|  |  | 
|  | /* Previous command is accepted when SCB clears */ | 
|  | for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { | 
|  | if (likely(!ioread8(&nic->csr->scb.cmd_lo))) | 
|  | break; | 
|  | cpu_relax(); | 
|  | if (unlikely(i > E100_WAIT_SCB_FAST)) | 
|  | udelay(5); | 
|  | } | 
|  | if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { | 
|  | err = -EAGAIN; | 
|  | goto err_unlock; | 
|  | } | 
|  |  | 
|  | if (unlikely(cmd != cuc_resume)) | 
|  | iowrite32(dma_addr, &nic->csr->scb.gen_ptr); | 
|  | iowrite8(cmd, &nic->csr->scb.cmd_lo); | 
|  |  | 
|  | err_unlock: | 
|  | spin_unlock_irqrestore(&nic->cmd_lock, flags); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, | 
|  | int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) | 
|  | { | 
|  | struct cb *cb; | 
|  | unsigned long flags; | 
|  | int err = 0; | 
|  |  | 
|  | spin_lock_irqsave(&nic->cb_lock, flags); | 
|  |  | 
|  | if (unlikely(!nic->cbs_avail)) { | 
|  | err = -ENOMEM; | 
|  | goto err_unlock; | 
|  | } | 
|  |  | 
|  | cb = nic->cb_to_use; | 
|  | nic->cb_to_use = cb->next; | 
|  | nic->cbs_avail--; | 
|  | cb->skb = skb; | 
|  |  | 
|  | err = cb_prepare(nic, cb, skb); | 
|  | if (err) | 
|  | goto err_unlock; | 
|  |  | 
|  | if (unlikely(!nic->cbs_avail)) | 
|  | err = -ENOSPC; | 
|  |  | 
|  |  | 
|  | /* Order is important otherwise we'll be in a race with h/w: | 
|  | * set S-bit in current first, then clear S-bit in previous. */ | 
|  | cb->command |= cpu_to_le16(cb_s); | 
|  | wmb(); | 
|  | cb->prev->command &= cpu_to_le16(~cb_s); | 
|  |  | 
|  | while (nic->cb_to_send != nic->cb_to_use) { | 
|  | if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, | 
|  | nic->cb_to_send->dma_addr))) { | 
|  | /* Ok, here's where things get sticky.  It's | 
|  | * possible that we can't schedule the command | 
|  | * because the controller is too busy, so | 
|  | * let's just queue the command and try again | 
|  | * when another command is scheduled. */ | 
|  | if (err == -ENOSPC) { | 
|  | //request a reset | 
|  | schedule_work(&nic->tx_timeout_task); | 
|  | } | 
|  | break; | 
|  | } else { | 
|  | nic->cuc_cmd = cuc_resume; | 
|  | nic->cb_to_send = nic->cb_to_send->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | err_unlock: | 
|  | spin_unlock_irqrestore(&nic->cb_lock, flags); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int mdio_read(struct net_device *netdev, int addr, int reg) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); | 
|  | } | 
|  |  | 
|  | static void mdio_write(struct net_device *netdev, int addr, int reg, int data) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | nic->mdio_ctrl(nic, addr, mdi_write, reg, data); | 
|  | } | 
|  |  | 
|  | /* the standard mdio_ctrl() function for usual MII-compliant hardware */ | 
|  | static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) | 
|  | { | 
|  | u32 data_out = 0; | 
|  | unsigned int i; | 
|  | unsigned long flags; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Stratus87247: we shouldn't be writing the MDI control | 
|  | * register until the Ready bit shows True.  Also, since | 
|  | * manipulation of the MDI control registers is a multi-step | 
|  | * procedure it should be done under lock. | 
|  | */ | 
|  | spin_lock_irqsave(&nic->mdio_lock, flags); | 
|  | for (i = 100; i; --i) { | 
|  | if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) | 
|  | break; | 
|  | udelay(20); | 
|  | } | 
|  | if (unlikely(!i)) { | 
|  | netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); | 
|  | spin_unlock_irqrestore(&nic->mdio_lock, flags); | 
|  | return 0;		/* No way to indicate timeout error */ | 
|  | } | 
|  | iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); | 
|  |  | 
|  | for (i = 0; i < 100; i++) { | 
|  | udelay(20); | 
|  | if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&nic->mdio_lock, flags); | 
|  | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | 
|  | "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", | 
|  | dir == mdi_read ? "READ" : "WRITE", | 
|  | addr, reg, data, data_out); | 
|  | return (u16)data_out; | 
|  | } | 
|  |  | 
|  | /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ | 
|  | static u16 mdio_ctrl_phy_82552_v(struct nic *nic, | 
|  | u32 addr, | 
|  | u32 dir, | 
|  | u32 reg, | 
|  | u16 data) | 
|  | { | 
|  | if ((reg == MII_BMCR) && (dir == mdi_write)) { | 
|  | if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { | 
|  | u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, | 
|  | MII_ADVERTISE); | 
|  |  | 
|  | /* | 
|  | * Workaround Si issue where sometimes the part will not | 
|  | * autoneg to 100Mbps even when advertised. | 
|  | */ | 
|  | if (advert & ADVERTISE_100FULL) | 
|  | data |= BMCR_SPEED100 | BMCR_FULLDPLX; | 
|  | else if (advert & ADVERTISE_100HALF) | 
|  | data |= BMCR_SPEED100; | 
|  | } | 
|  | } | 
|  | return mdio_ctrl_hw(nic, addr, dir, reg, data); | 
|  | } | 
|  |  | 
|  | /* Fully software-emulated mdio_ctrl() function for cards without | 
|  | * MII-compliant PHYs. | 
|  | * For now, this is mainly geared towards 80c24 support; in case of further | 
|  | * requirements for other types (i82503, ...?) either extend this mechanism | 
|  | * or split it, whichever is cleaner. | 
|  | */ | 
|  | static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, | 
|  | u32 addr, | 
|  | u32 dir, | 
|  | u32 reg, | 
|  | u16 data) | 
|  | { | 
|  | /* might need to allocate a netdev_priv'ed register array eventually | 
|  | * to be able to record state changes, but for now | 
|  | * some fully hardcoded register handling ought to be ok I guess. */ | 
|  |  | 
|  | if (dir == mdi_read) { | 
|  | switch (reg) { | 
|  | case MII_BMCR: | 
|  | /* Auto-negotiation, right? */ | 
|  | return  BMCR_ANENABLE | | 
|  | BMCR_FULLDPLX; | 
|  | case MII_BMSR: | 
|  | return	BMSR_LSTATUS /* for mii_link_ok() */ | | 
|  | BMSR_ANEGCAPABLE | | 
|  | BMSR_10FULL; | 
|  | case MII_ADVERTISE: | 
|  | /* 80c24 is a "combo card" PHY, right? */ | 
|  | return	ADVERTISE_10HALF | | 
|  | ADVERTISE_10FULL; | 
|  | default: | 
|  | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | 
|  | "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", | 
|  | dir == mdi_read ? "READ" : "WRITE", | 
|  | addr, reg, data); | 
|  | return 0xFFFF; | 
|  | } | 
|  | } else { | 
|  | switch (reg) { | 
|  | default: | 
|  | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | 
|  | "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", | 
|  | dir == mdi_read ? "READ" : "WRITE", | 
|  | addr, reg, data); | 
|  | return 0xFFFF; | 
|  | } | 
|  | } | 
|  | } | 
|  | static inline int e100_phy_supports_mii(struct nic *nic) | 
|  | { | 
|  | /* for now, just check it by comparing whether we | 
|  | are using MII software emulation. | 
|  | */ | 
|  | return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); | 
|  | } | 
|  |  | 
|  | static void e100_get_defaults(struct nic *nic) | 
|  | { | 
|  | struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; | 
|  | struct param_range cbs  = { .min = 64, .max = 256, .count = 128 }; | 
|  |  | 
|  | /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ | 
|  | nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; | 
|  | if (nic->mac == mac_unknown) | 
|  | nic->mac = mac_82557_D100_A; | 
|  |  | 
|  | nic->params.rfds = rfds; | 
|  | nic->params.cbs = cbs; | 
|  |  | 
|  | /* Quadwords to DMA into FIFO before starting frame transmit */ | 
|  | nic->tx_threshold = 0xE0; | 
|  |  | 
|  | /* no interrupt for every tx completion, delay = 256us if not 557 */ | 
|  | nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | | 
|  | ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); | 
|  |  | 
|  | /* Template for a freshly allocated RFD */ | 
|  | nic->blank_rfd.command = 0; | 
|  | nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); | 
|  | nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); | 
|  |  | 
|  | /* MII setup */ | 
|  | nic->mii.phy_id_mask = 0x1F; | 
|  | nic->mii.reg_num_mask = 0x1F; | 
|  | nic->mii.dev = nic->netdev; | 
|  | nic->mii.mdio_read = mdio_read; | 
|  | nic->mii.mdio_write = mdio_write; | 
|  | } | 
|  |  | 
|  | static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) | 
|  | { | 
|  | struct config *config = &cb->u.config; | 
|  | u8 *c = (u8 *)config; | 
|  | struct net_device *netdev = nic->netdev; | 
|  |  | 
|  | cb->command = cpu_to_le16(cb_config); | 
|  |  | 
|  | memset(config, 0, sizeof(struct config)); | 
|  |  | 
|  | config->byte_count = 0x16;		/* bytes in this struct */ | 
|  | config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */ | 
|  | config->direct_rx_dma = 0x1;		/* reserved */ | 
|  | config->standard_tcb = 0x1;		/* 1=standard, 0=extended */ | 
|  | config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */ | 
|  | config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */ | 
|  | config->tx_underrun_retry = 0x3;	/* # of underrun retries */ | 
|  | if (e100_phy_supports_mii(nic)) | 
|  | config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */ | 
|  | config->pad10 = 0x6; | 
|  | config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */ | 
|  | config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */ | 
|  | config->ifs = 0x6;			/* x16 = inter frame spacing */ | 
|  | config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */ | 
|  | config->pad15_1 = 0x1; | 
|  | config->pad15_2 = 0x1; | 
|  | config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */ | 
|  | config->fc_delay_hi = 0x40;		/* time delay for fc frame */ | 
|  | config->tx_padding = 0x1;		/* 1=pad short frames */ | 
|  | config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */ | 
|  | config->pad18 = 0x1; | 
|  | config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */ | 
|  | config->pad20_1 = 0x1F; | 
|  | config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */ | 
|  | config->pad21_1 = 0x5; | 
|  |  | 
|  | config->adaptive_ifs = nic->adaptive_ifs; | 
|  | config->loopback = nic->loopback; | 
|  |  | 
|  | if (nic->mii.force_media && nic->mii.full_duplex) | 
|  | config->full_duplex_force = 0x1;	/* 1=force, 0=auto */ | 
|  |  | 
|  | if (nic->flags & promiscuous || nic->loopback) { | 
|  | config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */ | 
|  | config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */ | 
|  | config->promiscuous_mode = 0x1;		/* 1=on, 0=off */ | 
|  | } | 
|  |  | 
|  | if (unlikely(netdev->features & NETIF_F_RXFCS)) | 
|  | config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */ | 
|  |  | 
|  | if (nic->flags & multicast_all) | 
|  | config->multicast_all = 0x1;		/* 1=accept, 0=no */ | 
|  |  | 
|  | /* disable WoL when up */ | 
|  | if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) | 
|  | config->magic_packet_disable = 0x1;	/* 1=off, 0=on */ | 
|  |  | 
|  | if (nic->mac >= mac_82558_D101_A4) { | 
|  | config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */ | 
|  | config->mwi_enable = 0x1;	/* 1=enable, 0=disable */ | 
|  | config->standard_tcb = 0x0;	/* 1=standard, 0=extended */ | 
|  | config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */ | 
|  | if (nic->mac >= mac_82559_D101M) { | 
|  | config->tno_intr = 0x1;		/* TCO stats enable */ | 
|  | /* Enable TCO in extended config */ | 
|  | if (nic->mac >= mac_82551_10) { | 
|  | config->byte_count = 0x20; /* extended bytes */ | 
|  | config->rx_d102_mode = 0x1; /* GMRC for TCO */ | 
|  | } | 
|  | } else { | 
|  | config->standard_stat_counter = 0x0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (netdev->features & NETIF_F_RXALL) { | 
|  | config->rx_save_overruns = 0x1; /* 1=save, 0=discard */ | 
|  | config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */ | 
|  | config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */ | 
|  | } | 
|  |  | 
|  | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n", | 
|  | c + 0); | 
|  | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n", | 
|  | c + 8); | 
|  | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n", | 
|  | c + 16); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /************************************************************************* | 
|  | *  CPUSaver parameters | 
|  | * | 
|  | *  All CPUSaver parameters are 16-bit literals that are part of a | 
|  | *  "move immediate value" instruction.  By changing the value of | 
|  | *  the literal in the instruction before the code is loaded, the | 
|  | *  driver can change the algorithm. | 
|  | * | 
|  | *  INTDELAY - This loads the dead-man timer with its initial value. | 
|  | *    When this timer expires the interrupt is asserted, and the | 
|  | *    timer is reset each time a new packet is received.  (see | 
|  | *    BUNDLEMAX below to set the limit on number of chained packets) | 
|  | *    The current default is 0x600 or 1536.  Experiments show that | 
|  | *    the value should probably stay within the 0x200 - 0x1000. | 
|  | * | 
|  | *  BUNDLEMAX - | 
|  | *    This sets the maximum number of frames that will be bundled.  In | 
|  | *    some situations, such as the TCP windowing algorithm, it may be | 
|  | *    better to limit the growth of the bundle size than let it go as | 
|  | *    high as it can, because that could cause too much added latency. | 
|  | *    The default is six, because this is the number of packets in the | 
|  | *    default TCP window size.  A value of 1 would make CPUSaver indicate | 
|  | *    an interrupt for every frame received.  If you do not want to put | 
|  | *    a limit on the bundle size, set this value to xFFFF. | 
|  | * | 
|  | *  BUNDLESMALL - | 
|  | *    This contains a bit-mask describing the minimum size frame that | 
|  | *    will be bundled.  The default masks the lower 7 bits, which means | 
|  | *    that any frame less than 128 bytes in length will not be bundled, | 
|  | *    but will instead immediately generate an interrupt.  This does | 
|  | *    not affect the current bundle in any way.  Any frame that is 128 | 
|  | *    bytes or large will be bundled normally.  This feature is meant | 
|  | *    to provide immediate indication of ACK frames in a TCP environment. | 
|  | *    Customers were seeing poor performance when a machine with CPUSaver | 
|  | *    enabled was sending but not receiving.  The delay introduced when | 
|  | *    the ACKs were received was enough to reduce total throughput, because | 
|  | *    the sender would sit idle until the ACK was finally seen. | 
|  | * | 
|  | *    The current default is 0xFF80, which masks out the lower 7 bits. | 
|  | *    This means that any frame which is x7F (127) bytes or smaller | 
|  | *    will cause an immediate interrupt.  Because this value must be a | 
|  | *    bit mask, there are only a few valid values that can be used.  To | 
|  | *    turn this feature off, the driver can write the value xFFFF to the | 
|  | *    lower word of this instruction (in the same way that the other | 
|  | *    parameters are used).  Likewise, a value of 0xF800 (2047) would | 
|  | *    cause an interrupt to be generated for every frame, because all | 
|  | *    standard Ethernet frames are <= 2047 bytes in length. | 
|  | *************************************************************************/ | 
|  |  | 
|  | /* if you wish to disable the ucode functionality, while maintaining the | 
|  | * workarounds it provides, set the following defines to: | 
|  | * BUNDLESMALL 0 | 
|  | * BUNDLEMAX 1 | 
|  | * INTDELAY 1 | 
|  | */ | 
|  | #define BUNDLESMALL 1 | 
|  | #define BUNDLEMAX (u16)6 | 
|  | #define INTDELAY (u16)1536 /* 0x600 */ | 
|  |  | 
|  | /* Initialize firmware */ | 
|  | static const struct firmware *e100_request_firmware(struct nic *nic) | 
|  | { | 
|  | const char *fw_name; | 
|  | const struct firmware *fw = nic->fw; | 
|  | u8 timer, bundle, min_size; | 
|  | int err = 0; | 
|  | bool required = false; | 
|  |  | 
|  | /* do not load u-code for ICH devices */ | 
|  | if (nic->flags & ich) | 
|  | return NULL; | 
|  |  | 
|  | /* Search for ucode match against h/w revision | 
|  | * | 
|  | * Based on comments in the source code for the FreeBSD fxp | 
|  | * driver, the FIRMWARE_D102E ucode includes both CPUSaver and | 
|  | * | 
|  | *    "fixes for bugs in the B-step hardware (specifically, bugs | 
|  | *     with Inline Receive)." | 
|  | * | 
|  | * So we must fail if it cannot be loaded. | 
|  | * | 
|  | * The other microcode files are only required for the optional | 
|  | * CPUSaver feature.  Nice to have, but no reason to fail. | 
|  | */ | 
|  | if (nic->mac == mac_82559_D101M) { | 
|  | fw_name = FIRMWARE_D101M; | 
|  | } else if (nic->mac == mac_82559_D101S) { | 
|  | fw_name = FIRMWARE_D101S; | 
|  | } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) { | 
|  | fw_name = FIRMWARE_D102E; | 
|  | required = true; | 
|  | } else { /* No ucode on other devices */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* If the firmware has not previously been loaded, request a pointer | 
|  | * to it. If it was previously loaded, we are reinitializing the | 
|  | * adapter, possibly in a resume from hibernate, in which case | 
|  | * request_firmware() cannot be used. | 
|  | */ | 
|  | if (!fw) | 
|  | err = request_firmware(&fw, fw_name, &nic->pdev->dev); | 
|  |  | 
|  | if (err) { | 
|  | if (required) { | 
|  | netif_err(nic, probe, nic->netdev, | 
|  | "Failed to load firmware \"%s\": %d\n", | 
|  | fw_name, err); | 
|  | return ERR_PTR(err); | 
|  | } else { | 
|  | netif_info(nic, probe, nic->netdev, | 
|  | "CPUSaver disabled. Needs \"%s\": %d\n", | 
|  | fw_name, err); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Firmware should be precisely UCODE_SIZE (words) plus three bytes | 
|  | indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ | 
|  | if (fw->size != UCODE_SIZE * 4 + 3) { | 
|  | netif_err(nic, probe, nic->netdev, | 
|  | "Firmware \"%s\" has wrong size %zu\n", | 
|  | fw_name, fw->size); | 
|  | release_firmware(fw); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | /* Read timer, bundle and min_size from end of firmware blob */ | 
|  | timer = fw->data[UCODE_SIZE * 4]; | 
|  | bundle = fw->data[UCODE_SIZE * 4 + 1]; | 
|  | min_size = fw->data[UCODE_SIZE * 4 + 2]; | 
|  |  | 
|  | if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || | 
|  | min_size >= UCODE_SIZE) { | 
|  | netif_err(nic, probe, nic->netdev, | 
|  | "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", | 
|  | fw_name, timer, bundle, min_size); | 
|  | release_firmware(fw); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | /* OK, firmware is validated and ready to use. Save a pointer | 
|  | * to it in the nic */ | 
|  | nic->fw = fw; | 
|  | return fw; | 
|  | } | 
|  |  | 
|  | static int e100_setup_ucode(struct nic *nic, struct cb *cb, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | const struct firmware *fw = (void *)skb; | 
|  | u8 timer, bundle, min_size; | 
|  |  | 
|  | /* It's not a real skb; we just abused the fact that e100_exec_cb | 
|  | will pass it through to here... */ | 
|  | cb->skb = NULL; | 
|  |  | 
|  | /* firmware is stored as little endian already */ | 
|  | memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); | 
|  |  | 
|  | /* Read timer, bundle and min_size from end of firmware blob */ | 
|  | timer = fw->data[UCODE_SIZE * 4]; | 
|  | bundle = fw->data[UCODE_SIZE * 4 + 1]; | 
|  | min_size = fw->data[UCODE_SIZE * 4 + 2]; | 
|  |  | 
|  | /* Insert user-tunable settings in cb->u.ucode */ | 
|  | cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); | 
|  | cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); | 
|  | cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); | 
|  | cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); | 
|  | cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); | 
|  | cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); | 
|  |  | 
|  | cb->command = cpu_to_le16(cb_ucode | cb_el); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int e100_load_ucode_wait(struct nic *nic) | 
|  | { | 
|  | const struct firmware *fw; | 
|  | int err = 0, counter = 50; | 
|  | struct cb *cb = nic->cb_to_clean; | 
|  |  | 
|  | fw = e100_request_firmware(nic); | 
|  | /* If it's NULL, then no ucode is required */ | 
|  | if (!fw || IS_ERR(fw)) | 
|  | return PTR_ERR(fw); | 
|  |  | 
|  | if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) | 
|  | netif_err(nic, probe, nic->netdev, | 
|  | "ucode cmd failed with error %d\n", err); | 
|  |  | 
|  | /* must restart cuc */ | 
|  | nic->cuc_cmd = cuc_start; | 
|  |  | 
|  | /* wait for completion */ | 
|  | e100_write_flush(nic); | 
|  | udelay(10); | 
|  |  | 
|  | /* wait for possibly (ouch) 500ms */ | 
|  | while (!(cb->status & cpu_to_le16(cb_complete))) { | 
|  | msleep(10); | 
|  | if (!--counter) break; | 
|  | } | 
|  |  | 
|  | /* ack any interrupts, something could have been set */ | 
|  | iowrite8(~0, &nic->csr->scb.stat_ack); | 
|  |  | 
|  | /* if the command failed, or is not OK, notify and return */ | 
|  | if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { | 
|  | netif_err(nic, probe, nic->netdev, "ucode load failed\n"); | 
|  | err = -EPERM; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int e100_setup_iaaddr(struct nic *nic, struct cb *cb, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | cb->command = cpu_to_le16(cb_iaaddr); | 
|  | memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) | 
|  | { | 
|  | cb->command = cpu_to_le16(cb_dump); | 
|  | cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + | 
|  | offsetof(struct mem, dump_buf)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e100_phy_check_without_mii(struct nic *nic) | 
|  | { | 
|  | u8 phy_type; | 
|  | int without_mii; | 
|  |  | 
|  | phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; | 
|  |  | 
|  | switch (phy_type) { | 
|  | case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ | 
|  | case I82503: /* Non-MII PHY; UNTESTED! */ | 
|  | case S80C24: /* Non-MII PHY; tested and working */ | 
|  | /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": | 
|  | * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter | 
|  | * doesn't have a programming interface of any sort.  The | 
|  | * media is sensed automatically based on how the link partner | 
|  | * is configured.  This is, in essence, manual configuration. | 
|  | */ | 
|  | netif_info(nic, probe, nic->netdev, | 
|  | "found MII-less i82503 or 80c24 or other PHY\n"); | 
|  |  | 
|  | nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; | 
|  | nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ | 
|  |  | 
|  | /* these might be needed for certain MII-less cards... | 
|  | * nic->flags |= ich; | 
|  | * nic->flags |= ich_10h_workaround; */ | 
|  |  | 
|  | without_mii = 1; | 
|  | break; | 
|  | default: | 
|  | without_mii = 0; | 
|  | break; | 
|  | } | 
|  | return without_mii; | 
|  | } | 
|  |  | 
|  | #define NCONFIG_AUTO_SWITCH	0x0080 | 
|  | #define MII_NSC_CONG		MII_RESV1 | 
|  | #define NSC_CONG_ENABLE		0x0100 | 
|  | #define NSC_CONG_TXREADY	0x0400 | 
|  | #define ADVERTISE_FC_SUPPORTED	0x0400 | 
|  | static int e100_phy_init(struct nic *nic) | 
|  | { | 
|  | struct net_device *netdev = nic->netdev; | 
|  | u32 addr; | 
|  | u16 bmcr, stat, id_lo, id_hi, cong; | 
|  |  | 
|  | /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ | 
|  | for (addr = 0; addr < 32; addr++) { | 
|  | nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; | 
|  | bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); | 
|  | stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); | 
|  | stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); | 
|  | if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) | 
|  | break; | 
|  | } | 
|  | if (addr == 32) { | 
|  | /* uhoh, no PHY detected: check whether we seem to be some | 
|  | * weird, rare variant which is *known* to not have any MII. | 
|  | * But do this AFTER MII checking only, since this does | 
|  | * lookup of EEPROM values which may easily be unreliable. */ | 
|  | if (e100_phy_check_without_mii(nic)) | 
|  | return 0; /* simply return and hope for the best */ | 
|  | else { | 
|  | /* for unknown cases log a fatal error */ | 
|  | netif_err(nic, hw, nic->netdev, | 
|  | "Failed to locate any known PHY, aborting\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } else | 
|  | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | 
|  | "phy_addr = %d\n", nic->mii.phy_id); | 
|  |  | 
|  | /* Get phy ID */ | 
|  | id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); | 
|  | id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); | 
|  | nic->phy = (u32)id_hi << 16 | (u32)id_lo; | 
|  | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | 
|  | "phy ID = 0x%08X\n", nic->phy); | 
|  |  | 
|  | /* Select the phy and isolate the rest */ | 
|  | for (addr = 0; addr < 32; addr++) { | 
|  | if (addr != nic->mii.phy_id) { | 
|  | mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); | 
|  | } else if (nic->phy != phy_82552_v) { | 
|  | bmcr = mdio_read(netdev, addr, MII_BMCR); | 
|  | mdio_write(netdev, addr, MII_BMCR, | 
|  | bmcr & ~BMCR_ISOLATE); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Workaround for 82552: | 
|  | * Clear the ISOLATE bit on selected phy_id last (mirrored on all | 
|  | * other phy_id's) using bmcr value from addr discovery loop above. | 
|  | */ | 
|  | if (nic->phy == phy_82552_v) | 
|  | mdio_write(netdev, nic->mii.phy_id, MII_BMCR, | 
|  | bmcr & ~BMCR_ISOLATE); | 
|  |  | 
|  | /* Handle National tx phys */ | 
|  | #define NCS_PHY_MODEL_MASK	0xFFF0FFFF | 
|  | if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { | 
|  | /* Disable congestion control */ | 
|  | cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); | 
|  | cong |= NSC_CONG_TXREADY; | 
|  | cong &= ~NSC_CONG_ENABLE; | 
|  | mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); | 
|  | } | 
|  |  | 
|  | if (nic->phy == phy_82552_v) { | 
|  | u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); | 
|  |  | 
|  | /* assign special tweaked mdio_ctrl() function */ | 
|  | nic->mdio_ctrl = mdio_ctrl_phy_82552_v; | 
|  |  | 
|  | /* Workaround Si not advertising flow-control during autoneg */ | 
|  | advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; | 
|  | mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); | 
|  |  | 
|  | /* Reset for the above changes to take effect */ | 
|  | bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); | 
|  | bmcr |= BMCR_RESET; | 
|  | mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); | 
|  | } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && | 
|  | (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && | 
|  | !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { | 
|  | /* enable/disable MDI/MDI-X auto-switching. */ | 
|  | mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, | 
|  | nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e100_hw_init(struct nic *nic) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | e100_hw_reset(nic); | 
|  |  | 
|  | netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); | 
|  | if (!in_interrupt() && (err = e100_self_test(nic))) | 
|  | return err; | 
|  |  | 
|  | if ((err = e100_phy_init(nic))) | 
|  | return err; | 
|  | if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) | 
|  | return err; | 
|  | if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) | 
|  | return err; | 
|  | if ((err = e100_load_ucode_wait(nic))) | 
|  | return err; | 
|  | if ((err = e100_exec_cb(nic, NULL, e100_configure))) | 
|  | return err; | 
|  | if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) | 
|  | return err; | 
|  | if ((err = e100_exec_cmd(nic, cuc_dump_addr, | 
|  | nic->dma_addr + offsetof(struct mem, stats)))) | 
|  | return err; | 
|  | if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) | 
|  | return err; | 
|  |  | 
|  | e100_disable_irq(nic); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) | 
|  | { | 
|  | struct net_device *netdev = nic->netdev; | 
|  | struct netdev_hw_addr *ha; | 
|  | u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); | 
|  |  | 
|  | cb->command = cpu_to_le16(cb_multi); | 
|  | cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); | 
|  | i = 0; | 
|  | netdev_for_each_mc_addr(ha, netdev) { | 
|  | if (i == count) | 
|  | break; | 
|  | memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, | 
|  | ETH_ALEN); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e100_set_multicast_list(struct net_device *netdev) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | 
|  | "mc_count=%d, flags=0x%04X\n", | 
|  | netdev_mc_count(netdev), netdev->flags); | 
|  |  | 
|  | if (netdev->flags & IFF_PROMISC) | 
|  | nic->flags |= promiscuous; | 
|  | else | 
|  | nic->flags &= ~promiscuous; | 
|  |  | 
|  | if (netdev->flags & IFF_ALLMULTI || | 
|  | netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) | 
|  | nic->flags |= multicast_all; | 
|  | else | 
|  | nic->flags &= ~multicast_all; | 
|  |  | 
|  | e100_exec_cb(nic, NULL, e100_configure); | 
|  | e100_exec_cb(nic, NULL, e100_multi); | 
|  | } | 
|  |  | 
|  | static void e100_update_stats(struct nic *nic) | 
|  | { | 
|  | struct net_device *dev = nic->netdev; | 
|  | struct net_device_stats *ns = &dev->stats; | 
|  | struct stats *s = &nic->mem->stats; | 
|  | __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : | 
|  | (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : | 
|  | &s->complete; | 
|  |  | 
|  | /* Device's stats reporting may take several microseconds to | 
|  | * complete, so we're always waiting for results of the | 
|  | * previous command. */ | 
|  |  | 
|  | if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { | 
|  | *complete = 0; | 
|  | nic->tx_frames = le32_to_cpu(s->tx_good_frames); | 
|  | nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); | 
|  | ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); | 
|  | ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); | 
|  | ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); | 
|  | ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); | 
|  | ns->collisions += nic->tx_collisions; | 
|  | ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + | 
|  | le32_to_cpu(s->tx_lost_crs); | 
|  | nic->rx_short_frame_errors += | 
|  | le32_to_cpu(s->rx_short_frame_errors); | 
|  | ns->rx_length_errors = nic->rx_short_frame_errors + | 
|  | nic->rx_over_length_errors; | 
|  | ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); | 
|  | ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); | 
|  | ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); | 
|  | ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); | 
|  | ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); | 
|  | ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + | 
|  | le32_to_cpu(s->rx_alignment_errors) + | 
|  | le32_to_cpu(s->rx_short_frame_errors) + | 
|  | le32_to_cpu(s->rx_cdt_errors); | 
|  | nic->tx_deferred += le32_to_cpu(s->tx_deferred); | 
|  | nic->tx_single_collisions += | 
|  | le32_to_cpu(s->tx_single_collisions); | 
|  | nic->tx_multiple_collisions += | 
|  | le32_to_cpu(s->tx_multiple_collisions); | 
|  | if (nic->mac >= mac_82558_D101_A4) { | 
|  | nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); | 
|  | nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); | 
|  | nic->rx_fc_unsupported += | 
|  | le32_to_cpu(s->fc_rcv_unsupported); | 
|  | if (nic->mac >= mac_82559_D101M) { | 
|  | nic->tx_tco_frames += | 
|  | le16_to_cpu(s->xmt_tco_frames); | 
|  | nic->rx_tco_frames += | 
|  | le16_to_cpu(s->rcv_tco_frames); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | if (e100_exec_cmd(nic, cuc_dump_reset, 0)) | 
|  | netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, | 
|  | "exec cuc_dump_reset failed\n"); | 
|  | } | 
|  |  | 
|  | static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) | 
|  | { | 
|  | /* Adjust inter-frame-spacing (IFS) between two transmits if | 
|  | * we're getting collisions on a half-duplex connection. */ | 
|  |  | 
|  | if (duplex == DUPLEX_HALF) { | 
|  | u32 prev = nic->adaptive_ifs; | 
|  | u32 min_frames = (speed == SPEED_100) ? 1000 : 100; | 
|  |  | 
|  | if ((nic->tx_frames / 32 < nic->tx_collisions) && | 
|  | (nic->tx_frames > min_frames)) { | 
|  | if (nic->adaptive_ifs < 60) | 
|  | nic->adaptive_ifs += 5; | 
|  | } else if (nic->tx_frames < min_frames) { | 
|  | if (nic->adaptive_ifs >= 5) | 
|  | nic->adaptive_ifs -= 5; | 
|  | } | 
|  | if (nic->adaptive_ifs != prev) | 
|  | e100_exec_cb(nic, NULL, e100_configure); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e100_watchdog(unsigned long data) | 
|  | { | 
|  | struct nic *nic = (struct nic *)data; | 
|  | struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET }; | 
|  | u32 speed; | 
|  |  | 
|  | netif_printk(nic, timer, KERN_DEBUG, nic->netdev, | 
|  | "right now = %ld\n", jiffies); | 
|  |  | 
|  | /* mii library handles link maintenance tasks */ | 
|  |  | 
|  | mii_ethtool_gset(&nic->mii, &cmd); | 
|  | speed = ethtool_cmd_speed(&cmd); | 
|  |  | 
|  | if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { | 
|  | netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", | 
|  | speed == SPEED_100 ? 100 : 10, | 
|  | cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); | 
|  | } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { | 
|  | netdev_info(nic->netdev, "NIC Link is Down\n"); | 
|  | } | 
|  |  | 
|  | mii_check_link(&nic->mii); | 
|  |  | 
|  | /* Software generated interrupt to recover from (rare) Rx | 
|  | * allocation failure. | 
|  | * Unfortunately have to use a spinlock to not re-enable interrupts | 
|  | * accidentally, due to hardware that shares a register between the | 
|  | * interrupt mask bit and the SW Interrupt generation bit */ | 
|  | spin_lock_irq(&nic->cmd_lock); | 
|  | iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); | 
|  | e100_write_flush(nic); | 
|  | spin_unlock_irq(&nic->cmd_lock); | 
|  |  | 
|  | e100_update_stats(nic); | 
|  | e100_adjust_adaptive_ifs(nic, speed, cmd.duplex); | 
|  |  | 
|  | if (nic->mac <= mac_82557_D100_C) | 
|  | /* Issue a multicast command to workaround a 557 lock up */ | 
|  | e100_set_multicast_list(nic->netdev); | 
|  |  | 
|  | if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF) | 
|  | /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ | 
|  | nic->flags |= ich_10h_workaround; | 
|  | else | 
|  | nic->flags &= ~ich_10h_workaround; | 
|  |  | 
|  | mod_timer(&nic->watchdog, | 
|  | round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); | 
|  | } | 
|  |  | 
|  | static int e100_xmit_prepare(struct nic *nic, struct cb *cb, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | dma_addr_t dma_addr; | 
|  | cb->command = nic->tx_command; | 
|  |  | 
|  | dma_addr = pci_map_single(nic->pdev, | 
|  | skb->data, skb->len, PCI_DMA_TODEVICE); | 
|  | /* If we can't map the skb, have the upper layer try later */ | 
|  | if (pci_dma_mapping_error(nic->pdev, dma_addr)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Use the last 4 bytes of the SKB payload packet as the CRC, used for | 
|  | * testing, ie sending frames with bad CRC. | 
|  | */ | 
|  | if (unlikely(skb->no_fcs)) | 
|  | cb->command |= __constant_cpu_to_le16(cb_tx_nc); | 
|  | else | 
|  | cb->command &= ~__constant_cpu_to_le16(cb_tx_nc); | 
|  |  | 
|  | /* interrupt every 16 packets regardless of delay */ | 
|  | if ((nic->cbs_avail & ~15) == nic->cbs_avail) | 
|  | cb->command |= cpu_to_le16(cb_i); | 
|  | cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); | 
|  | cb->u.tcb.tcb_byte_count = 0; | 
|  | cb->u.tcb.threshold = nic->tx_threshold; | 
|  | cb->u.tcb.tbd_count = 1; | 
|  | cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr); | 
|  | cb->u.tcb.tbd.size = cpu_to_le16(skb->len); | 
|  | skb_tx_timestamp(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, | 
|  | struct net_device *netdev) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | int err; | 
|  |  | 
|  | if (nic->flags & ich_10h_workaround) { | 
|  | /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. | 
|  | Issue a NOP command followed by a 1us delay before | 
|  | issuing the Tx command. */ | 
|  | if (e100_exec_cmd(nic, cuc_nop, 0)) | 
|  | netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, | 
|  | "exec cuc_nop failed\n"); | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | err = e100_exec_cb(nic, skb, e100_xmit_prepare); | 
|  |  | 
|  | switch (err) { | 
|  | case -ENOSPC: | 
|  | /* We queued the skb, but now we're out of space. */ | 
|  | netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, | 
|  | "No space for CB\n"); | 
|  | netif_stop_queue(netdev); | 
|  | break; | 
|  | case -ENOMEM: | 
|  | /* This is a hard error - log it. */ | 
|  | netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, | 
|  | "Out of Tx resources, returning skb\n"); | 
|  | netif_stop_queue(netdev); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | static int e100_tx_clean(struct nic *nic) | 
|  | { | 
|  | struct net_device *dev = nic->netdev; | 
|  | struct cb *cb; | 
|  | int tx_cleaned = 0; | 
|  |  | 
|  | spin_lock(&nic->cb_lock); | 
|  |  | 
|  | /* Clean CBs marked complete */ | 
|  | for (cb = nic->cb_to_clean; | 
|  | cb->status & cpu_to_le16(cb_complete); | 
|  | cb = nic->cb_to_clean = cb->next) { | 
|  | rmb(); /* read skb after status */ | 
|  | netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, | 
|  | "cb[%d]->status = 0x%04X\n", | 
|  | (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), | 
|  | cb->status); | 
|  |  | 
|  | if (likely(cb->skb != NULL)) { | 
|  | dev->stats.tx_packets++; | 
|  | dev->stats.tx_bytes += cb->skb->len; | 
|  |  | 
|  | pci_unmap_single(nic->pdev, | 
|  | le32_to_cpu(cb->u.tcb.tbd.buf_addr), | 
|  | le16_to_cpu(cb->u.tcb.tbd.size), | 
|  | PCI_DMA_TODEVICE); | 
|  | dev_kfree_skb_any(cb->skb); | 
|  | cb->skb = NULL; | 
|  | tx_cleaned = 1; | 
|  | } | 
|  | cb->status = 0; | 
|  | nic->cbs_avail++; | 
|  | } | 
|  |  | 
|  | spin_unlock(&nic->cb_lock); | 
|  |  | 
|  | /* Recover from running out of Tx resources in xmit_frame */ | 
|  | if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) | 
|  | netif_wake_queue(nic->netdev); | 
|  |  | 
|  | return tx_cleaned; | 
|  | } | 
|  |  | 
|  | static void e100_clean_cbs(struct nic *nic) | 
|  | { | 
|  | if (nic->cbs) { | 
|  | while (nic->cbs_avail != nic->params.cbs.count) { | 
|  | struct cb *cb = nic->cb_to_clean; | 
|  | if (cb->skb) { | 
|  | pci_unmap_single(nic->pdev, | 
|  | le32_to_cpu(cb->u.tcb.tbd.buf_addr), | 
|  | le16_to_cpu(cb->u.tcb.tbd.size), | 
|  | PCI_DMA_TODEVICE); | 
|  | dev_kfree_skb(cb->skb); | 
|  | } | 
|  | nic->cb_to_clean = nic->cb_to_clean->next; | 
|  | nic->cbs_avail++; | 
|  | } | 
|  | pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); | 
|  | nic->cbs = NULL; | 
|  | nic->cbs_avail = 0; | 
|  | } | 
|  | nic->cuc_cmd = cuc_start; | 
|  | nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = | 
|  | nic->cbs; | 
|  | } | 
|  |  | 
|  | static int e100_alloc_cbs(struct nic *nic) | 
|  | { | 
|  | struct cb *cb; | 
|  | unsigned int i, count = nic->params.cbs.count; | 
|  |  | 
|  | nic->cuc_cmd = cuc_start; | 
|  | nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; | 
|  | nic->cbs_avail = 0; | 
|  |  | 
|  | nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, | 
|  | &nic->cbs_dma_addr); | 
|  | if (!nic->cbs) | 
|  | return -ENOMEM; | 
|  | memset(nic->cbs, 0, count * sizeof(struct cb)); | 
|  |  | 
|  | for (cb = nic->cbs, i = 0; i < count; cb++, i++) { | 
|  | cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; | 
|  | cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; | 
|  |  | 
|  | cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); | 
|  | cb->link = cpu_to_le32(nic->cbs_dma_addr + | 
|  | ((i+1) % count) * sizeof(struct cb)); | 
|  | } | 
|  |  | 
|  | nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; | 
|  | nic->cbs_avail = count; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void e100_start_receiver(struct nic *nic, struct rx *rx) | 
|  | { | 
|  | if (!nic->rxs) return; | 
|  | if (RU_SUSPENDED != nic->ru_running) return; | 
|  |  | 
|  | /* handle init time starts */ | 
|  | if (!rx) rx = nic->rxs; | 
|  |  | 
|  | /* (Re)start RU if suspended or idle and RFA is non-NULL */ | 
|  | if (rx->skb) { | 
|  | e100_exec_cmd(nic, ruc_start, rx->dma_addr); | 
|  | nic->ru_running = RU_RUNNING; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) | 
|  | static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) | 
|  | { | 
|  | if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Init, and map the RFD. */ | 
|  | skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); | 
|  | rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, | 
|  | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); | 
|  |  | 
|  | if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { | 
|  | dev_kfree_skb_any(rx->skb); | 
|  | rx->skb = NULL; | 
|  | rx->dma_addr = 0; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Link the RFD to end of RFA by linking previous RFD to | 
|  | * this one.  We are safe to touch the previous RFD because | 
|  | * it is protected by the before last buffer's el bit being set */ | 
|  | if (rx->prev->skb) { | 
|  | struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; | 
|  | put_unaligned_le32(rx->dma_addr, &prev_rfd->link); | 
|  | pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, | 
|  | sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e100_rx_indicate(struct nic *nic, struct rx *rx, | 
|  | unsigned int *work_done, unsigned int work_to_do) | 
|  | { | 
|  | struct net_device *dev = nic->netdev; | 
|  | struct sk_buff *skb = rx->skb; | 
|  | struct rfd *rfd = (struct rfd *)skb->data; | 
|  | u16 rfd_status, actual_size; | 
|  | u16 fcs_pad = 0; | 
|  |  | 
|  | if (unlikely(work_done && *work_done >= work_to_do)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* Need to sync before taking a peek at cb_complete bit */ | 
|  | pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, | 
|  | sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); | 
|  | rfd_status = le16_to_cpu(rfd->status); | 
|  |  | 
|  | netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, | 
|  | "status=0x%04X\n", rfd_status); | 
|  | rmb(); /* read size after status bit */ | 
|  |  | 
|  | /* If data isn't ready, nothing to indicate */ | 
|  | if (unlikely(!(rfd_status & cb_complete))) { | 
|  | /* If the next buffer has the el bit, but we think the receiver | 
|  | * is still running, check to see if it really stopped while | 
|  | * we had interrupts off. | 
|  | * This allows for a fast restart without re-enabling | 
|  | * interrupts */ | 
|  | if ((le16_to_cpu(rfd->command) & cb_el) && | 
|  | (RU_RUNNING == nic->ru_running)) | 
|  |  | 
|  | if (ioread8(&nic->csr->scb.status) & rus_no_res) | 
|  | nic->ru_running = RU_SUSPENDED; | 
|  | pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, | 
|  | sizeof(struct rfd), | 
|  | PCI_DMA_FROMDEVICE); | 
|  | return -ENODATA; | 
|  | } | 
|  |  | 
|  | /* Get actual data size */ | 
|  | if (unlikely(dev->features & NETIF_F_RXFCS)) | 
|  | fcs_pad = 4; | 
|  | actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; | 
|  | if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) | 
|  | actual_size = RFD_BUF_LEN - sizeof(struct rfd); | 
|  |  | 
|  | /* Get data */ | 
|  | pci_unmap_single(nic->pdev, rx->dma_addr, | 
|  | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); | 
|  |  | 
|  | /* If this buffer has the el bit, but we think the receiver | 
|  | * is still running, check to see if it really stopped while | 
|  | * we had interrupts off. | 
|  | * This allows for a fast restart without re-enabling interrupts. | 
|  | * This can happen when the RU sees the size change but also sees | 
|  | * the el bit set. */ | 
|  | if ((le16_to_cpu(rfd->command) & cb_el) && | 
|  | (RU_RUNNING == nic->ru_running)) { | 
|  |  | 
|  | if (ioread8(&nic->csr->scb.status) & rus_no_res) | 
|  | nic->ru_running = RU_SUSPENDED; | 
|  | } | 
|  |  | 
|  | /* Pull off the RFD and put the actual data (minus eth hdr) */ | 
|  | skb_reserve(skb, sizeof(struct rfd)); | 
|  | skb_put(skb, actual_size); | 
|  | skb->protocol = eth_type_trans(skb, nic->netdev); | 
|  |  | 
|  | /* If we are receiving all frames, then don't bother | 
|  | * checking for errors. | 
|  | */ | 
|  | if (unlikely(dev->features & NETIF_F_RXALL)) { | 
|  | if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) | 
|  | /* Received oversized frame, but keep it. */ | 
|  | nic->rx_over_length_errors++; | 
|  | goto process_skb; | 
|  | } | 
|  |  | 
|  | if (unlikely(!(rfd_status & cb_ok))) { | 
|  | /* Don't indicate if hardware indicates errors */ | 
|  | dev_kfree_skb_any(skb); | 
|  | } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) { | 
|  | /* Don't indicate oversized frames */ | 
|  | nic->rx_over_length_errors++; | 
|  | dev_kfree_skb_any(skb); | 
|  | } else { | 
|  | process_skb: | 
|  | dev->stats.rx_packets++; | 
|  | dev->stats.rx_bytes += (actual_size - fcs_pad); | 
|  | netif_receive_skb(skb); | 
|  | if (work_done) | 
|  | (*work_done)++; | 
|  | } | 
|  |  | 
|  | rx->skb = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e100_rx_clean(struct nic *nic, unsigned int *work_done, | 
|  | unsigned int work_to_do) | 
|  | { | 
|  | struct rx *rx; | 
|  | int restart_required = 0, err = 0; | 
|  | struct rx *old_before_last_rx, *new_before_last_rx; | 
|  | struct rfd *old_before_last_rfd, *new_before_last_rfd; | 
|  |  | 
|  | /* Indicate newly arrived packets */ | 
|  | for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { | 
|  | err = e100_rx_indicate(nic, rx, work_done, work_to_do); | 
|  | /* Hit quota or no more to clean */ | 
|  | if (-EAGAIN == err || -ENODATA == err) | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* On EAGAIN, hit quota so have more work to do, restart once | 
|  | * cleanup is complete. | 
|  | * Else, are we already rnr? then pay attention!!! this ensures that | 
|  | * the state machine progression never allows a start with a | 
|  | * partially cleaned list, avoiding a race between hardware | 
|  | * and rx_to_clean when in NAPI mode */ | 
|  | if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) | 
|  | restart_required = 1; | 
|  |  | 
|  | old_before_last_rx = nic->rx_to_use->prev->prev; | 
|  | old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; | 
|  |  | 
|  | /* Alloc new skbs to refill list */ | 
|  | for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { | 
|  | if (unlikely(e100_rx_alloc_skb(nic, rx))) | 
|  | break; /* Better luck next time (see watchdog) */ | 
|  | } | 
|  |  | 
|  | new_before_last_rx = nic->rx_to_use->prev->prev; | 
|  | if (new_before_last_rx != old_before_last_rx) { | 
|  | /* Set the el-bit on the buffer that is before the last buffer. | 
|  | * This lets us update the next pointer on the last buffer | 
|  | * without worrying about hardware touching it. | 
|  | * We set the size to 0 to prevent hardware from touching this | 
|  | * buffer. | 
|  | * When the hardware hits the before last buffer with el-bit | 
|  | * and size of 0, it will RNR interrupt, the RUS will go into | 
|  | * the No Resources state.  It will not complete nor write to | 
|  | * this buffer. */ | 
|  | new_before_last_rfd = | 
|  | (struct rfd *)new_before_last_rx->skb->data; | 
|  | new_before_last_rfd->size = 0; | 
|  | new_before_last_rfd->command |= cpu_to_le16(cb_el); | 
|  | pci_dma_sync_single_for_device(nic->pdev, | 
|  | new_before_last_rx->dma_addr, sizeof(struct rfd), | 
|  | PCI_DMA_BIDIRECTIONAL); | 
|  |  | 
|  | /* Now that we have a new stopping point, we can clear the old | 
|  | * stopping point.  We must sync twice to get the proper | 
|  | * ordering on the hardware side of things. */ | 
|  | old_before_last_rfd->command &= ~cpu_to_le16(cb_el); | 
|  | pci_dma_sync_single_for_device(nic->pdev, | 
|  | old_before_last_rx->dma_addr, sizeof(struct rfd), | 
|  | PCI_DMA_BIDIRECTIONAL); | 
|  | old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN | 
|  | + ETH_FCS_LEN); | 
|  | pci_dma_sync_single_for_device(nic->pdev, | 
|  | old_before_last_rx->dma_addr, sizeof(struct rfd), | 
|  | PCI_DMA_BIDIRECTIONAL); | 
|  | } | 
|  |  | 
|  | if (restart_required) { | 
|  | // ack the rnr? | 
|  | iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); | 
|  | e100_start_receiver(nic, nic->rx_to_clean); | 
|  | if (work_done) | 
|  | (*work_done)++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e100_rx_clean_list(struct nic *nic) | 
|  | { | 
|  | struct rx *rx; | 
|  | unsigned int i, count = nic->params.rfds.count; | 
|  |  | 
|  | nic->ru_running = RU_UNINITIALIZED; | 
|  |  | 
|  | if (nic->rxs) { | 
|  | for (rx = nic->rxs, i = 0; i < count; rx++, i++) { | 
|  | if (rx->skb) { | 
|  | pci_unmap_single(nic->pdev, rx->dma_addr, | 
|  | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); | 
|  | dev_kfree_skb(rx->skb); | 
|  | } | 
|  | } | 
|  | kfree(nic->rxs); | 
|  | nic->rxs = NULL; | 
|  | } | 
|  |  | 
|  | nic->rx_to_use = nic->rx_to_clean = NULL; | 
|  | } | 
|  |  | 
|  | static int e100_rx_alloc_list(struct nic *nic) | 
|  | { | 
|  | struct rx *rx; | 
|  | unsigned int i, count = nic->params.rfds.count; | 
|  | struct rfd *before_last; | 
|  |  | 
|  | nic->rx_to_use = nic->rx_to_clean = NULL; | 
|  | nic->ru_running = RU_UNINITIALIZED; | 
|  |  | 
|  | if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (rx = nic->rxs, i = 0; i < count; rx++, i++) { | 
|  | rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; | 
|  | rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; | 
|  | if (e100_rx_alloc_skb(nic, rx)) { | 
|  | e100_rx_clean_list(nic); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | /* Set the el-bit on the buffer that is before the last buffer. | 
|  | * This lets us update the next pointer on the last buffer without | 
|  | * worrying about hardware touching it. | 
|  | * We set the size to 0 to prevent hardware from touching this buffer. | 
|  | * When the hardware hits the before last buffer with el-bit and size | 
|  | * of 0, it will RNR interrupt, the RU will go into the No Resources | 
|  | * state.  It will not complete nor write to this buffer. */ | 
|  | rx = nic->rxs->prev->prev; | 
|  | before_last = (struct rfd *)rx->skb->data; | 
|  | before_last->command |= cpu_to_le16(cb_el); | 
|  | before_last->size = 0; | 
|  | pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, | 
|  | sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); | 
|  |  | 
|  | nic->rx_to_use = nic->rx_to_clean = nic->rxs; | 
|  | nic->ru_running = RU_SUSPENDED; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t e100_intr(int irq, void *dev_id) | 
|  | { | 
|  | struct net_device *netdev = dev_id; | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); | 
|  |  | 
|  | netif_printk(nic, intr, KERN_DEBUG, nic->netdev, | 
|  | "stat_ack = 0x%02X\n", stat_ack); | 
|  |  | 
|  | if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */ | 
|  | stat_ack == stat_ack_not_present)	/* Hardware is ejected */ | 
|  | return IRQ_NONE; | 
|  |  | 
|  | /* Ack interrupt(s) */ | 
|  | iowrite8(stat_ack, &nic->csr->scb.stat_ack); | 
|  |  | 
|  | /* We hit Receive No Resource (RNR); restart RU after cleaning */ | 
|  | if (stat_ack & stat_ack_rnr) | 
|  | nic->ru_running = RU_SUSPENDED; | 
|  |  | 
|  | if (likely(napi_schedule_prep(&nic->napi))) { | 
|  | e100_disable_irq(nic); | 
|  | __napi_schedule(&nic->napi); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int e100_poll(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct nic *nic = container_of(napi, struct nic, napi); | 
|  | unsigned int work_done = 0; | 
|  |  | 
|  | e100_rx_clean(nic, &work_done, budget); | 
|  | e100_tx_clean(nic); | 
|  |  | 
|  | /* If budget not fully consumed, exit the polling mode */ | 
|  | if (work_done < budget) { | 
|  | napi_complete(napi); | 
|  | e100_enable_irq(nic); | 
|  | } | 
|  |  | 
|  | return work_done; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | static void e100_netpoll(struct net_device *netdev) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | e100_disable_irq(nic); | 
|  | e100_intr(nic->pdev->irq, netdev); | 
|  | e100_tx_clean(nic); | 
|  | e100_enable_irq(nic); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int e100_set_mac_address(struct net_device *netdev, void *p) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | struct sockaddr *addr = p; | 
|  |  | 
|  | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | return -EADDRNOTAVAIL; | 
|  |  | 
|  | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | 
|  | e100_exec_cb(nic, NULL, e100_setup_iaaddr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e100_change_mtu(struct net_device *netdev, int new_mtu) | 
|  | { | 
|  | if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) | 
|  | return -EINVAL; | 
|  | netdev->mtu = new_mtu; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e100_asf(struct nic *nic) | 
|  | { | 
|  | /* ASF can be enabled from eeprom */ | 
|  | return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && | 
|  | (nic->eeprom[eeprom_config_asf] & eeprom_asf) && | 
|  | !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && | 
|  | ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE); | 
|  | } | 
|  |  | 
|  | static int e100_up(struct nic *nic) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if ((err = e100_rx_alloc_list(nic))) | 
|  | return err; | 
|  | if ((err = e100_alloc_cbs(nic))) | 
|  | goto err_rx_clean_list; | 
|  | if ((err = e100_hw_init(nic))) | 
|  | goto err_clean_cbs; | 
|  | e100_set_multicast_list(nic->netdev); | 
|  | e100_start_receiver(nic, NULL); | 
|  | mod_timer(&nic->watchdog, jiffies); | 
|  | if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, | 
|  | nic->netdev->name, nic->netdev))) | 
|  | goto err_no_irq; | 
|  | netif_wake_queue(nic->netdev); | 
|  | napi_enable(&nic->napi); | 
|  | /* enable ints _after_ enabling poll, preventing a race between | 
|  | * disable ints+schedule */ | 
|  | e100_enable_irq(nic); | 
|  | return 0; | 
|  |  | 
|  | err_no_irq: | 
|  | del_timer_sync(&nic->watchdog); | 
|  | err_clean_cbs: | 
|  | e100_clean_cbs(nic); | 
|  | err_rx_clean_list: | 
|  | e100_rx_clean_list(nic); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void e100_down(struct nic *nic) | 
|  | { | 
|  | /* wait here for poll to complete */ | 
|  | napi_disable(&nic->napi); | 
|  | netif_stop_queue(nic->netdev); | 
|  | e100_hw_reset(nic); | 
|  | free_irq(nic->pdev->irq, nic->netdev); | 
|  | del_timer_sync(&nic->watchdog); | 
|  | netif_carrier_off(nic->netdev); | 
|  | e100_clean_cbs(nic); | 
|  | e100_rx_clean_list(nic); | 
|  | } | 
|  |  | 
|  | static void e100_tx_timeout(struct net_device *netdev) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | /* Reset outside of interrupt context, to avoid request_irq | 
|  | * in interrupt context */ | 
|  | schedule_work(&nic->tx_timeout_task); | 
|  | } | 
|  |  | 
|  | static void e100_tx_timeout_task(struct work_struct *work) | 
|  | { | 
|  | struct nic *nic = container_of(work, struct nic, tx_timeout_task); | 
|  | struct net_device *netdev = nic->netdev; | 
|  |  | 
|  | netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, | 
|  | "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); | 
|  |  | 
|  | rtnl_lock(); | 
|  | if (netif_running(netdev)) { | 
|  | e100_down(netdev_priv(netdev)); | 
|  | e100_up(netdev_priv(netdev)); | 
|  | } | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) | 
|  | { | 
|  | int err; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* Use driver resources to perform internal MAC or PHY | 
|  | * loopback test.  A single packet is prepared and transmitted | 
|  | * in loopback mode, and the test passes if the received | 
|  | * packet compares byte-for-byte to the transmitted packet. */ | 
|  |  | 
|  | if ((err = e100_rx_alloc_list(nic))) | 
|  | return err; | 
|  | if ((err = e100_alloc_cbs(nic))) | 
|  | goto err_clean_rx; | 
|  |  | 
|  | /* ICH PHY loopback is broken so do MAC loopback instead */ | 
|  | if (nic->flags & ich && loopback_mode == lb_phy) | 
|  | loopback_mode = lb_mac; | 
|  |  | 
|  | nic->loopback = loopback_mode; | 
|  | if ((err = e100_hw_init(nic))) | 
|  | goto err_loopback_none; | 
|  |  | 
|  | if (loopback_mode == lb_phy) | 
|  | mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, | 
|  | BMCR_LOOPBACK); | 
|  |  | 
|  | e100_start_receiver(nic, NULL); | 
|  |  | 
|  | if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { | 
|  | err = -ENOMEM; | 
|  | goto err_loopback_none; | 
|  | } | 
|  | skb_put(skb, ETH_DATA_LEN); | 
|  | memset(skb->data, 0xFF, ETH_DATA_LEN); | 
|  | e100_xmit_frame(skb, nic->netdev); | 
|  |  | 
|  | msleep(10); | 
|  |  | 
|  | pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, | 
|  | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); | 
|  |  | 
|  | if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), | 
|  | skb->data, ETH_DATA_LEN)) | 
|  | err = -EAGAIN; | 
|  |  | 
|  | err_loopback_none: | 
|  | mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); | 
|  | nic->loopback = lb_none; | 
|  | e100_clean_cbs(nic); | 
|  | e100_hw_reset(nic); | 
|  | err_clean_rx: | 
|  | e100_rx_clean_list(nic); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #define MII_LED_CONTROL	0x1B | 
|  | #define E100_82552_LED_OVERRIDE 0x19 | 
|  | #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */ | 
|  | #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */ | 
|  |  | 
|  | static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | return mii_ethtool_gset(&nic->mii, cmd); | 
|  | } | 
|  |  | 
|  | static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | int err; | 
|  |  | 
|  | mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); | 
|  | err = mii_ethtool_sset(&nic->mii, cmd); | 
|  | e100_exec_cb(nic, NULL, e100_configure); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void e100_get_drvinfo(struct net_device *netdev, | 
|  | struct ethtool_drvinfo *info) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); | 
|  | strlcpy(info->version, DRV_VERSION, sizeof(info->version)); | 
|  | strlcpy(info->bus_info, pci_name(nic->pdev), | 
|  | sizeof(info->bus_info)); | 
|  | } | 
|  |  | 
|  | #define E100_PHY_REGS 0x1C | 
|  | static int e100_get_regs_len(struct net_device *netdev) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); | 
|  | } | 
|  |  | 
|  | static void e100_get_regs(struct net_device *netdev, | 
|  | struct ethtool_regs *regs, void *p) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | u32 *buff = p; | 
|  | int i; | 
|  |  | 
|  | regs->version = (1 << 24) | nic->pdev->revision; | 
|  | buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | | 
|  | ioread8(&nic->csr->scb.cmd_lo) << 16 | | 
|  | ioread16(&nic->csr->scb.status); | 
|  | for (i = E100_PHY_REGS; i >= 0; i--) | 
|  | buff[1 + E100_PHY_REGS - i] = | 
|  | mdio_read(netdev, nic->mii.phy_id, i); | 
|  | memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); | 
|  | e100_exec_cb(nic, NULL, e100_dump); | 
|  | msleep(10); | 
|  | memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, | 
|  | sizeof(nic->mem->dump_buf)); | 
|  | } | 
|  |  | 
|  | static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0; | 
|  | wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; | 
|  | } | 
|  |  | 
|  | static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || | 
|  | !device_can_wakeup(&nic->pdev->dev)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (wol->wolopts) | 
|  | nic->flags |= wol_magic; | 
|  | else | 
|  | nic->flags &= ~wol_magic; | 
|  |  | 
|  | device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); | 
|  |  | 
|  | e100_exec_cb(nic, NULL, e100_configure); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 e100_get_msglevel(struct net_device *netdev) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | return nic->msg_enable; | 
|  | } | 
|  |  | 
|  | static void e100_set_msglevel(struct net_device *netdev, u32 value) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | nic->msg_enable = value; | 
|  | } | 
|  |  | 
|  | static int e100_nway_reset(struct net_device *netdev) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | return mii_nway_restart(&nic->mii); | 
|  | } | 
|  |  | 
|  | static u32 e100_get_link(struct net_device *netdev) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | return mii_link_ok(&nic->mii); | 
|  | } | 
|  |  | 
|  | static int e100_get_eeprom_len(struct net_device *netdev) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | return nic->eeprom_wc << 1; | 
|  | } | 
|  |  | 
|  | #define E100_EEPROM_MAGIC	0x1234 | 
|  | static int e100_get_eeprom(struct net_device *netdev, | 
|  | struct ethtool_eeprom *eeprom, u8 *bytes) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | eeprom->magic = E100_EEPROM_MAGIC; | 
|  | memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e100_set_eeprom(struct net_device *netdev, | 
|  | struct ethtool_eeprom *eeprom, u8 *bytes) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | if (eeprom->magic != E100_EEPROM_MAGIC) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); | 
|  |  | 
|  | return e100_eeprom_save(nic, eeprom->offset >> 1, | 
|  | (eeprom->len >> 1) + 1); | 
|  | } | 
|  |  | 
|  | static void e100_get_ringparam(struct net_device *netdev, | 
|  | struct ethtool_ringparam *ring) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | struct param_range *rfds = &nic->params.rfds; | 
|  | struct param_range *cbs = &nic->params.cbs; | 
|  |  | 
|  | ring->rx_max_pending = rfds->max; | 
|  | ring->tx_max_pending = cbs->max; | 
|  | ring->rx_pending = rfds->count; | 
|  | ring->tx_pending = cbs->count; | 
|  | } | 
|  |  | 
|  | static int e100_set_ringparam(struct net_device *netdev, | 
|  | struct ethtool_ringparam *ring) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | struct param_range *rfds = &nic->params.rfds; | 
|  | struct param_range *cbs = &nic->params.cbs; | 
|  |  | 
|  | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e100_down(nic); | 
|  | rfds->count = max(ring->rx_pending, rfds->min); | 
|  | rfds->count = min(rfds->count, rfds->max); | 
|  | cbs->count = max(ring->tx_pending, cbs->min); | 
|  | cbs->count = min(cbs->count, cbs->max); | 
|  | netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", | 
|  | rfds->count, cbs->count); | 
|  | if (netif_running(netdev)) | 
|  | e100_up(nic); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { | 
|  | "Link test     (on/offline)", | 
|  | "Eeprom test   (on/offline)", | 
|  | "Self test        (offline)", | 
|  | "Mac loopback     (offline)", | 
|  | "Phy loopback     (offline)", | 
|  | }; | 
|  | #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test) | 
|  |  | 
|  | static void e100_diag_test(struct net_device *netdev, | 
|  | struct ethtool_test *test, u64 *data) | 
|  | { | 
|  | struct ethtool_cmd cmd; | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | int i, err; | 
|  |  | 
|  | memset(data, 0, E100_TEST_LEN * sizeof(u64)); | 
|  | data[0] = !mii_link_ok(&nic->mii); | 
|  | data[1] = e100_eeprom_load(nic); | 
|  | if (test->flags & ETH_TEST_FL_OFFLINE) { | 
|  |  | 
|  | /* save speed, duplex & autoneg settings */ | 
|  | err = mii_ethtool_gset(&nic->mii, &cmd); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e100_down(nic); | 
|  | data[2] = e100_self_test(nic); | 
|  | data[3] = e100_loopback_test(nic, lb_mac); | 
|  | data[4] = e100_loopback_test(nic, lb_phy); | 
|  |  | 
|  | /* restore speed, duplex & autoneg settings */ | 
|  | err = mii_ethtool_sset(&nic->mii, &cmd); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e100_up(nic); | 
|  | } | 
|  | for (i = 0; i < E100_TEST_LEN; i++) | 
|  | test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; | 
|  |  | 
|  | msleep_interruptible(4 * 1000); | 
|  | } | 
|  |  | 
|  | static int e100_set_phys_id(struct net_device *netdev, | 
|  | enum ethtool_phys_id_state state) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | enum led_state { | 
|  | led_on     = 0x01, | 
|  | led_off    = 0x04, | 
|  | led_on_559 = 0x05, | 
|  | led_on_557 = 0x07, | 
|  | }; | 
|  | u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : | 
|  | MII_LED_CONTROL; | 
|  | u16 leds = 0; | 
|  |  | 
|  | switch (state) { | 
|  | case ETHTOOL_ID_ACTIVE: | 
|  | return 2; | 
|  |  | 
|  | case ETHTOOL_ID_ON: | 
|  | leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON : | 
|  | (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; | 
|  | break; | 
|  |  | 
|  | case ETHTOOL_ID_OFF: | 
|  | leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off; | 
|  | break; | 
|  |  | 
|  | case ETHTOOL_ID_INACTIVE: | 
|  | break; | 
|  | } | 
|  |  | 
|  | mdio_write(netdev, nic->mii.phy_id, led_reg, leds); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { | 
|  | "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", | 
|  | "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", | 
|  | "rx_length_errors", "rx_over_errors", "rx_crc_errors", | 
|  | "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", | 
|  | "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", | 
|  | "tx_heartbeat_errors", "tx_window_errors", | 
|  | /* device-specific stats */ | 
|  | "tx_deferred", "tx_single_collisions", "tx_multi_collisions", | 
|  | "tx_flow_control_pause", "rx_flow_control_pause", | 
|  | "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", | 
|  | "rx_short_frame_errors", "rx_over_length_errors", | 
|  | }; | 
|  | #define E100_NET_STATS_LEN	21 | 
|  | #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats) | 
|  |  | 
|  | static int e100_get_sset_count(struct net_device *netdev, int sset) | 
|  | { | 
|  | switch (sset) { | 
|  | case ETH_SS_TEST: | 
|  | return E100_TEST_LEN; | 
|  | case ETH_SS_STATS: | 
|  | return E100_STATS_LEN; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e100_get_ethtool_stats(struct net_device *netdev, | 
|  | struct ethtool_stats *stats, u64 *data) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < E100_NET_STATS_LEN; i++) | 
|  | data[i] = ((unsigned long *)&netdev->stats)[i]; | 
|  |  | 
|  | data[i++] = nic->tx_deferred; | 
|  | data[i++] = nic->tx_single_collisions; | 
|  | data[i++] = nic->tx_multiple_collisions; | 
|  | data[i++] = nic->tx_fc_pause; | 
|  | data[i++] = nic->rx_fc_pause; | 
|  | data[i++] = nic->rx_fc_unsupported; | 
|  | data[i++] = nic->tx_tco_frames; | 
|  | data[i++] = nic->rx_tco_frames; | 
|  | data[i++] = nic->rx_short_frame_errors; | 
|  | data[i++] = nic->rx_over_length_errors; | 
|  | } | 
|  |  | 
|  | static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) | 
|  | { | 
|  | switch (stringset) { | 
|  | case ETH_SS_TEST: | 
|  | memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); | 
|  | break; | 
|  | case ETH_SS_STATS: | 
|  | memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct ethtool_ops e100_ethtool_ops = { | 
|  | .get_settings		= e100_get_settings, | 
|  | .set_settings		= e100_set_settings, | 
|  | .get_drvinfo		= e100_get_drvinfo, | 
|  | .get_regs_len		= e100_get_regs_len, | 
|  | .get_regs		= e100_get_regs, | 
|  | .get_wol		= e100_get_wol, | 
|  | .set_wol		= e100_set_wol, | 
|  | .get_msglevel		= e100_get_msglevel, | 
|  | .set_msglevel		= e100_set_msglevel, | 
|  | .nway_reset		= e100_nway_reset, | 
|  | .get_link		= e100_get_link, | 
|  | .get_eeprom_len		= e100_get_eeprom_len, | 
|  | .get_eeprom		= e100_get_eeprom, | 
|  | .set_eeprom		= e100_set_eeprom, | 
|  | .get_ringparam		= e100_get_ringparam, | 
|  | .set_ringparam		= e100_set_ringparam, | 
|  | .self_test		= e100_diag_test, | 
|  | .get_strings		= e100_get_strings, | 
|  | .set_phys_id		= e100_set_phys_id, | 
|  | .get_ethtool_stats	= e100_get_ethtool_stats, | 
|  | .get_sset_count		= e100_get_sset_count, | 
|  | .get_ts_info		= ethtool_op_get_ts_info, | 
|  | }; | 
|  |  | 
|  | static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); | 
|  | } | 
|  |  | 
|  | static int e100_alloc(struct nic *nic) | 
|  | { | 
|  | nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), | 
|  | &nic->dma_addr); | 
|  | return nic->mem ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void e100_free(struct nic *nic) | 
|  | { | 
|  | if (nic->mem) { | 
|  | pci_free_consistent(nic->pdev, sizeof(struct mem), | 
|  | nic->mem, nic->dma_addr); | 
|  | nic->mem = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int e100_open(struct net_device *netdev) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | int err = 0; | 
|  |  | 
|  | netif_carrier_off(netdev); | 
|  | if ((err = e100_up(nic))) | 
|  | netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int e100_close(struct net_device *netdev) | 
|  | { | 
|  | e100_down(netdev_priv(netdev)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e100_set_features(struct net_device *netdev, | 
|  | netdev_features_t features) | 
|  | { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | netdev_features_t changed = features ^ netdev->features; | 
|  |  | 
|  | if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL))) | 
|  | return 0; | 
|  |  | 
|  | netdev->features = features; | 
|  | e100_exec_cb(nic, NULL, e100_configure); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct net_device_ops e100_netdev_ops = { | 
|  | .ndo_open		= e100_open, | 
|  | .ndo_stop		= e100_close, | 
|  | .ndo_start_xmit		= e100_xmit_frame, | 
|  | .ndo_validate_addr	= eth_validate_addr, | 
|  | .ndo_set_rx_mode	= e100_set_multicast_list, | 
|  | .ndo_set_mac_address	= e100_set_mac_address, | 
|  | .ndo_change_mtu		= e100_change_mtu, | 
|  | .ndo_do_ioctl		= e100_do_ioctl, | 
|  | .ndo_tx_timeout		= e100_tx_timeout, | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | .ndo_poll_controller	= e100_netpoll, | 
|  | #endif | 
|  | .ndo_set_features	= e100_set_features, | 
|  | }; | 
|  |  | 
|  | static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent) | 
|  | { | 
|  | struct net_device *netdev; | 
|  | struct nic *nic; | 
|  | int err; | 
|  |  | 
|  | if (!(netdev = alloc_etherdev(sizeof(struct nic)))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | netdev->hw_features |= NETIF_F_RXFCS; | 
|  | netdev->priv_flags |= IFF_SUPP_NOFCS; | 
|  | netdev->hw_features |= NETIF_F_RXALL; | 
|  |  | 
|  | netdev->netdev_ops = &e100_netdev_ops; | 
|  | SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); | 
|  | netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; | 
|  | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | 
|  |  | 
|  | nic = netdev_priv(netdev); | 
|  | netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); | 
|  | nic->netdev = netdev; | 
|  | nic->pdev = pdev; | 
|  | nic->msg_enable = (1 << debug) - 1; | 
|  | nic->mdio_ctrl = mdio_ctrl_hw; | 
|  | pci_set_drvdata(pdev, netdev); | 
|  |  | 
|  | if ((err = pci_enable_device(pdev))) { | 
|  | netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); | 
|  | goto err_out_free_dev; | 
|  | } | 
|  |  | 
|  | if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { | 
|  | netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); | 
|  | err = -ENODEV; | 
|  | goto err_out_disable_pdev; | 
|  | } | 
|  |  | 
|  | if ((err = pci_request_regions(pdev, DRV_NAME))) { | 
|  | netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); | 
|  | goto err_out_disable_pdev; | 
|  | } | 
|  |  | 
|  | if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { | 
|  | netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); | 
|  | goto err_out_free_res; | 
|  | } | 
|  |  | 
|  | SET_NETDEV_DEV(netdev, &pdev->dev); | 
|  |  | 
|  | if (use_io) | 
|  | netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); | 
|  |  | 
|  | nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); | 
|  | if (!nic->csr) { | 
|  | netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); | 
|  | err = -ENOMEM; | 
|  | goto err_out_free_res; | 
|  | } | 
|  |  | 
|  | if (ent->driver_data) | 
|  | nic->flags |= ich; | 
|  | else | 
|  | nic->flags &= ~ich; | 
|  |  | 
|  | e100_get_defaults(nic); | 
|  |  | 
|  | /* D100 MAC doesn't allow rx of vlan packets with normal MTU */ | 
|  | if (nic->mac < mac_82558_D101_A4) | 
|  | netdev->features |= NETIF_F_VLAN_CHALLENGED; | 
|  |  | 
|  | /* locks must be initialized before calling hw_reset */ | 
|  | spin_lock_init(&nic->cb_lock); | 
|  | spin_lock_init(&nic->cmd_lock); | 
|  | spin_lock_init(&nic->mdio_lock); | 
|  |  | 
|  | /* Reset the device before pci_set_master() in case device is in some | 
|  | * funky state and has an interrupt pending - hint: we don't have the | 
|  | * interrupt handler registered yet. */ | 
|  | e100_hw_reset(nic); | 
|  |  | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | init_timer(&nic->watchdog); | 
|  | nic->watchdog.function = e100_watchdog; | 
|  | nic->watchdog.data = (unsigned long)nic; | 
|  |  | 
|  | INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); | 
|  |  | 
|  | if ((err = e100_alloc(nic))) { | 
|  | netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); | 
|  | goto err_out_iounmap; | 
|  | } | 
|  |  | 
|  | if ((err = e100_eeprom_load(nic))) | 
|  | goto err_out_free; | 
|  |  | 
|  | e100_phy_init(nic); | 
|  |  | 
|  | memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); | 
|  | if (!is_valid_ether_addr(netdev->dev_addr)) { | 
|  | if (!eeprom_bad_csum_allow) { | 
|  | netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); | 
|  | err = -EAGAIN; | 
|  | goto err_out_free; | 
|  | } else { | 
|  | netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Wol magic packet can be enabled from eeprom */ | 
|  | if ((nic->mac >= mac_82558_D101_A4) && | 
|  | (nic->eeprom[eeprom_id] & eeprom_id_wol)) { | 
|  | nic->flags |= wol_magic; | 
|  | device_set_wakeup_enable(&pdev->dev, true); | 
|  | } | 
|  |  | 
|  | /* ack any pending wake events, disable PME */ | 
|  | pci_pme_active(pdev, false); | 
|  |  | 
|  | strcpy(netdev->name, "eth%d"); | 
|  | if ((err = register_netdev(netdev))) { | 
|  | netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); | 
|  | goto err_out_free; | 
|  | } | 
|  | nic->cbs_pool = pci_pool_create(netdev->name, | 
|  | nic->pdev, | 
|  | nic->params.cbs.max * sizeof(struct cb), | 
|  | sizeof(u32), | 
|  | 0); | 
|  | netif_info(nic, probe, nic->netdev, | 
|  | "addr 0x%llx, irq %d, MAC addr %pM\n", | 
|  | (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), | 
|  | pdev->irq, netdev->dev_addr); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out_free: | 
|  | e100_free(nic); | 
|  | err_out_iounmap: | 
|  | pci_iounmap(pdev, nic->csr); | 
|  | err_out_free_res: | 
|  | pci_release_regions(pdev); | 
|  | err_out_disable_pdev: | 
|  | pci_disable_device(pdev); | 
|  | err_out_free_dev: | 
|  | free_netdev(netdev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void e100_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  |  | 
|  | if (netdev) { | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  | unregister_netdev(netdev); | 
|  | e100_free(nic); | 
|  | pci_iounmap(pdev, nic->csr); | 
|  | pci_pool_destroy(nic->cbs_pool); | 
|  | free_netdev(netdev); | 
|  | pci_release_regions(pdev); | 
|  | pci_disable_device(pdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */ | 
|  | #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */ | 
|  | #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */ | 
|  | static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e100_down(nic); | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | pci_save_state(pdev); | 
|  |  | 
|  | if ((nic->flags & wol_magic) | e100_asf(nic)) { | 
|  | /* enable reverse auto-negotiation */ | 
|  | if (nic->phy == phy_82552_v) { | 
|  | u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, | 
|  | E100_82552_SMARTSPEED); | 
|  |  | 
|  | mdio_write(netdev, nic->mii.phy_id, | 
|  | E100_82552_SMARTSPEED, smartspeed | | 
|  | E100_82552_REV_ANEG | E100_82552_ANEG_NOW); | 
|  | } | 
|  | *enable_wake = true; | 
|  | } else { | 
|  | *enable_wake = false; | 
|  | } | 
|  |  | 
|  | pci_clear_master(pdev); | 
|  | } | 
|  |  | 
|  | static int __e100_power_off(struct pci_dev *pdev, bool wake) | 
|  | { | 
|  | if (wake) | 
|  | return pci_prepare_to_sleep(pdev); | 
|  |  | 
|  | pci_wake_from_d3(pdev, false); | 
|  | pci_set_power_state(pdev, PCI_D3hot); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int e100_suspend(struct pci_dev *pdev, pm_message_t state) | 
|  | { | 
|  | bool wake; | 
|  | __e100_shutdown(pdev, &wake); | 
|  | return __e100_power_off(pdev, wake); | 
|  | } | 
|  |  | 
|  | static int e100_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | pci_set_power_state(pdev, PCI_D0); | 
|  | pci_restore_state(pdev); | 
|  | /* ack any pending wake events, disable PME */ | 
|  | pci_enable_wake(pdev, PCI_D0, 0); | 
|  |  | 
|  | /* disable reverse auto-negotiation */ | 
|  | if (nic->phy == phy_82552_v) { | 
|  | u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, | 
|  | E100_82552_SMARTSPEED); | 
|  |  | 
|  | mdio_write(netdev, nic->mii.phy_id, | 
|  | E100_82552_SMARTSPEED, | 
|  | smartspeed & ~(E100_82552_REV_ANEG)); | 
|  | } | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  | if (netif_running(netdev)) | 
|  | e100_up(nic); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_PM */ | 
|  |  | 
|  | static void e100_shutdown(struct pci_dev *pdev) | 
|  | { | 
|  | bool wake; | 
|  | __e100_shutdown(pdev, &wake); | 
|  | if (system_state == SYSTEM_POWER_OFF) | 
|  | __e100_power_off(pdev, wake); | 
|  | } | 
|  |  | 
|  | /* ------------------ PCI Error Recovery infrastructure  -------------- */ | 
|  | /** | 
|  | * e100_io_error_detected - called when PCI error is detected. | 
|  | * @pdev: Pointer to PCI device | 
|  | * @state: The current pci connection state | 
|  | */ | 
|  | static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (state == pci_channel_io_perm_failure) | 
|  | return PCI_ERS_RESULT_DISCONNECT; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e100_down(nic); | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | /* Request a slot reset. */ | 
|  | return PCI_ERS_RESULT_NEED_RESET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e100_io_slot_reset - called after the pci bus has been reset. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * Restart the card from scratch. | 
|  | */ | 
|  | static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | if (pci_enable_device(pdev)) { | 
|  | pr_err("Cannot re-enable PCI device after reset\n"); | 
|  | return PCI_ERS_RESULT_DISCONNECT; | 
|  | } | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | /* Only one device per card can do a reset */ | 
|  | if (0 != PCI_FUNC(pdev->devfn)) | 
|  | return PCI_ERS_RESULT_RECOVERED; | 
|  | e100_hw_reset(nic); | 
|  | e100_phy_init(nic); | 
|  |  | 
|  | return PCI_ERS_RESULT_RECOVERED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e100_io_resume - resume normal operations | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * Resume normal operations after an error recovery | 
|  | * sequence has been completed. | 
|  | */ | 
|  | static void e100_io_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct nic *nic = netdev_priv(netdev); | 
|  |  | 
|  | /* ack any pending wake events, disable PME */ | 
|  | pci_enable_wake(pdev, PCI_D0, 0); | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  | if (netif_running(netdev)) { | 
|  | e100_open(netdev); | 
|  | mod_timer(&nic->watchdog, jiffies); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct pci_error_handlers e100_err_handler = { | 
|  | .error_detected = e100_io_error_detected, | 
|  | .slot_reset = e100_io_slot_reset, | 
|  | .resume = e100_io_resume, | 
|  | }; | 
|  |  | 
|  | static struct pci_driver e100_driver = { | 
|  | .name =         DRV_NAME, | 
|  | .id_table =     e100_id_table, | 
|  | .probe =        e100_probe, | 
|  | .remove =       e100_remove, | 
|  | #ifdef CONFIG_PM | 
|  | /* Power Management hooks */ | 
|  | .suspend =      e100_suspend, | 
|  | .resume =       e100_resume, | 
|  | #endif | 
|  | .shutdown =     e100_shutdown, | 
|  | .err_handler = &e100_err_handler, | 
|  | }; | 
|  |  | 
|  | static int __init e100_init_module(void) | 
|  | { | 
|  | if (((1 << debug) - 1) & NETIF_MSG_DRV) { | 
|  | pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); | 
|  | pr_info("%s\n", DRV_COPYRIGHT); | 
|  | } | 
|  | return pci_register_driver(&e100_driver); | 
|  | } | 
|  |  | 
|  | static void __exit e100_cleanup_module(void) | 
|  | { | 
|  | pci_unregister_driver(&e100_driver); | 
|  | } | 
|  |  | 
|  | module_init(e100_init_module); | 
|  | module_exit(e100_cleanup_module); |