|  | /* | 
|  | * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include <linux/log2.h> | 
|  |  | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_filestream.h" | 
|  | #include "xfs_cksum.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_icache.h" | 
|  |  | 
|  | kmem_zone_t *xfs_ifork_zone; | 
|  |  | 
|  | STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); | 
|  | STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); | 
|  | STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); | 
|  |  | 
|  | #ifdef DEBUG | 
|  | /* | 
|  | * Make sure that the extents in the given memory buffer | 
|  | * are valid. | 
|  | */ | 
|  | void | 
|  | xfs_validate_extents( | 
|  | xfs_ifork_t		*ifp, | 
|  | int			nrecs, | 
|  | xfs_exntfmt_t		fmt) | 
|  | { | 
|  | xfs_bmbt_irec_t		irec; | 
|  | xfs_bmbt_rec_host_t	rec; | 
|  | int			i; | 
|  |  | 
|  | for (i = 0; i < nrecs; i++) { | 
|  | xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); | 
|  | rec.l0 = get_unaligned(&ep->l0); | 
|  | rec.l1 = get_unaligned(&ep->l1); | 
|  | xfs_bmbt_get_all(&rec, &irec); | 
|  | if (fmt == XFS_EXTFMT_NOSTATE) | 
|  | ASSERT(irec.br_state == XFS_EXT_NORM); | 
|  | } | 
|  | } | 
|  | #else /* DEBUG */ | 
|  | #define xfs_validate_extents(ifp, nrecs, fmt) | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Move inode type and inode format specific information from the | 
|  | * on-disk inode to the in-core inode.  For fifos, devs, and sockets | 
|  | * this means set if_rdev to the proper value.  For files, directories, | 
|  | * and symlinks this means to bring in the in-line data or extent | 
|  | * pointers.  For a file in B-tree format, only the root is immediately | 
|  | * brought in-core.  The rest will be in-lined in if_extents when it | 
|  | * is first referenced (see xfs_iread_extents()). | 
|  | */ | 
|  | int | 
|  | xfs_iformat_fork( | 
|  | xfs_inode_t		*ip, | 
|  | xfs_dinode_t		*dip) | 
|  | { | 
|  | xfs_attr_shortform_t	*atp; | 
|  | int			size; | 
|  | int			error = 0; | 
|  | xfs_fsize_t             di_size; | 
|  |  | 
|  | if (unlikely(be32_to_cpu(dip->di_nextents) + | 
|  | be16_to_cpu(dip->di_anextents) > | 
|  | be64_to_cpu(dip->di_nblocks))) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", | 
|  | (unsigned long long)ip->i_ino, | 
|  | (int)(be32_to_cpu(dip->di_nextents) + | 
|  | be16_to_cpu(dip->di_anextents)), | 
|  | (unsigned long long) | 
|  | be64_to_cpu(dip->di_nblocks)); | 
|  | XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount, dip); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { | 
|  | xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.", | 
|  | (unsigned long long)ip->i_ino, | 
|  | dip->di_forkoff); | 
|  | XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount, dip); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && | 
|  | !ip->i_mount->m_rtdev_targp)) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "corrupt dinode %Lu, has realtime flag set.", | 
|  | ip->i_ino); | 
|  | XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", | 
|  | XFS_ERRLEVEL_LOW, ip->i_mount, dip); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | switch (ip->i_d.di_mode & S_IFMT) { | 
|  | case S_IFIFO: | 
|  | case S_IFCHR: | 
|  | case S_IFBLK: | 
|  | case S_IFSOCK: | 
|  | if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { | 
|  | XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount, dip); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | ip->i_d.di_size = 0; | 
|  | ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); | 
|  | break; | 
|  |  | 
|  | case S_IFREG: | 
|  | case S_IFLNK: | 
|  | case S_IFDIR: | 
|  | switch (dip->di_format) { | 
|  | case XFS_DINODE_FMT_LOCAL: | 
|  | /* | 
|  | * no local regular files yet | 
|  | */ | 
|  | if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "corrupt inode %Lu (local format for regular file).", | 
|  | (unsigned long long) ip->i_ino); | 
|  | XFS_CORRUPTION_ERROR("xfs_iformat(4)", | 
|  | XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount, dip); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | di_size = be64_to_cpu(dip->di_size); | 
|  | if (unlikely(di_size < 0 || | 
|  | di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "corrupt inode %Lu (bad size %Ld for local inode).", | 
|  | (unsigned long long) ip->i_ino, | 
|  | (long long) di_size); | 
|  | XFS_CORRUPTION_ERROR("xfs_iformat(5)", | 
|  | XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount, dip); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | size = (int)di_size; | 
|  | error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); | 
|  | break; | 
|  | case XFS_DINODE_FMT_EXTENTS: | 
|  | error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); | 
|  | break; | 
|  | case XFS_DINODE_FMT_BTREE: | 
|  | error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); | 
|  | break; | 
|  | default: | 
|  | XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | if (error) { | 
|  | return error; | 
|  | } | 
|  | if (!XFS_DFORK_Q(dip)) | 
|  | return 0; | 
|  |  | 
|  | ASSERT(ip->i_afp == NULL); | 
|  | ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); | 
|  |  | 
|  | switch (dip->di_aformat) { | 
|  | case XFS_DINODE_FMT_LOCAL: | 
|  | atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); | 
|  | size = be16_to_cpu(atp->hdr.totsize); | 
|  |  | 
|  | if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "corrupt inode %Lu (bad attr fork size %Ld).", | 
|  | (unsigned long long) ip->i_ino, | 
|  | (long long) size); | 
|  | XFS_CORRUPTION_ERROR("xfs_iformat(8)", | 
|  | XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount, dip); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); | 
|  | break; | 
|  | case XFS_DINODE_FMT_EXTENTS: | 
|  | error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); | 
|  | break; | 
|  | case XFS_DINODE_FMT_BTREE: | 
|  | error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); | 
|  | break; | 
|  | default: | 
|  | error = XFS_ERROR(EFSCORRUPTED); | 
|  | break; | 
|  | } | 
|  | if (error) { | 
|  | kmem_zone_free(xfs_ifork_zone, ip->i_afp); | 
|  | ip->i_afp = NULL; | 
|  | xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The file is in-lined in the on-disk inode. | 
|  | * If it fits into if_inline_data, then copy | 
|  | * it there, otherwise allocate a buffer for it | 
|  | * and copy the data there.  Either way, set | 
|  | * if_data to point at the data. | 
|  | * If we allocate a buffer for the data, make | 
|  | * sure that its size is a multiple of 4 and | 
|  | * record the real size in i_real_bytes. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_iformat_local( | 
|  | xfs_inode_t	*ip, | 
|  | xfs_dinode_t	*dip, | 
|  | int		whichfork, | 
|  | int		size) | 
|  | { | 
|  | xfs_ifork_t	*ifp; | 
|  | int		real_size; | 
|  |  | 
|  | /* | 
|  | * If the size is unreasonable, then something | 
|  | * is wrong and we just bail out rather than crash in | 
|  | * kmem_alloc() or memcpy() below. | 
|  | */ | 
|  | if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "corrupt inode %Lu (bad size %d for local fork, size = %d).", | 
|  | (unsigned long long) ip->i_ino, size, | 
|  | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); | 
|  | XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount, dip); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | real_size = 0; | 
|  | if (size == 0) | 
|  | ifp->if_u1.if_data = NULL; | 
|  | else if (size <= sizeof(ifp->if_u2.if_inline_data)) | 
|  | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
|  | else { | 
|  | real_size = roundup(size, 4); | 
|  | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); | 
|  | } | 
|  | ifp->if_bytes = size; | 
|  | ifp->if_real_bytes = real_size; | 
|  | if (size) | 
|  | memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); | 
|  | ifp->if_flags &= ~XFS_IFEXTENTS; | 
|  | ifp->if_flags |= XFS_IFINLINE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The file consists of a set of extents all | 
|  | * of which fit into the on-disk inode. | 
|  | * If there are few enough extents to fit into | 
|  | * the if_inline_ext, then copy them there. | 
|  | * Otherwise allocate a buffer for them and copy | 
|  | * them into it.  Either way, set if_extents | 
|  | * to point at the extents. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_iformat_extents( | 
|  | xfs_inode_t	*ip, | 
|  | xfs_dinode_t	*dip, | 
|  | int		whichfork) | 
|  | { | 
|  | xfs_bmbt_rec_t	*dp; | 
|  | xfs_ifork_t	*ifp; | 
|  | int		nex; | 
|  | int		size; | 
|  | int		i; | 
|  |  | 
|  | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | nex = XFS_DFORK_NEXTENTS(dip, whichfork); | 
|  | size = nex * (uint)sizeof(xfs_bmbt_rec_t); | 
|  |  | 
|  | /* | 
|  | * If the number of extents is unreasonable, then something | 
|  | * is wrong and we just bail out rather than crash in | 
|  | * kmem_alloc() or memcpy() below. | 
|  | */ | 
|  | if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | 
|  | xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", | 
|  | (unsigned long long) ip->i_ino, nex); | 
|  | XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount, dip); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | ifp->if_real_bytes = 0; | 
|  | if (nex == 0) | 
|  | ifp->if_u1.if_extents = NULL; | 
|  | else if (nex <= XFS_INLINE_EXTS) | 
|  | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | 
|  | else | 
|  | xfs_iext_add(ifp, 0, nex); | 
|  |  | 
|  | ifp->if_bytes = size; | 
|  | if (size) { | 
|  | dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); | 
|  | xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); | 
|  | for (i = 0; i < nex; i++, dp++) { | 
|  | xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); | 
|  | ep->l0 = get_unaligned_be64(&dp->l0); | 
|  | ep->l1 = get_unaligned_be64(&dp->l1); | 
|  | } | 
|  | XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); | 
|  | if (whichfork != XFS_DATA_FORK || | 
|  | XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) | 
|  | if (unlikely(xfs_check_nostate_extents( | 
|  | ifp, 0, nex))) { | 
|  | XFS_ERROR_REPORT("xfs_iformat_extents(2)", | 
|  | XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | } | 
|  | ifp->if_flags |= XFS_IFEXTENTS; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The file has too many extents to fit into | 
|  | * the inode, so they are in B-tree format. | 
|  | * Allocate a buffer for the root of the B-tree | 
|  | * and copy the root into it.  The i_extents | 
|  | * field will remain NULL until all of the | 
|  | * extents are read in (when they are needed). | 
|  | */ | 
|  | STATIC int | 
|  | xfs_iformat_btree( | 
|  | xfs_inode_t		*ip, | 
|  | xfs_dinode_t		*dip, | 
|  | int			whichfork) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | xfs_bmdr_block_t	*dfp; | 
|  | xfs_ifork_t		*ifp; | 
|  | /* REFERENCED */ | 
|  | int			nrecs; | 
|  | int			size; | 
|  |  | 
|  | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); | 
|  | size = XFS_BMAP_BROOT_SPACE(mp, dfp); | 
|  | nrecs = be16_to_cpu(dfp->bb_numrecs); | 
|  |  | 
|  | /* | 
|  | * blow out if -- fork has less extents than can fit in | 
|  | * fork (fork shouldn't be a btree format), root btree | 
|  | * block has more records than can fit into the fork, | 
|  | * or the number of extents is greater than the number of | 
|  | * blocks. | 
|  | */ | 
|  | if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= | 
|  | XFS_IFORK_MAXEXT(ip, whichfork) || | 
|  | XFS_BMDR_SPACE_CALC(nrecs) > | 
|  | XFS_DFORK_SIZE(dip, mp, whichfork) || | 
|  | XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { | 
|  | xfs_warn(mp, "corrupt inode %Lu (btree).", | 
|  | (unsigned long long) ip->i_ino); | 
|  | XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW, | 
|  | mp, dip); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | ifp->if_broot_bytes = size; | 
|  | ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); | 
|  | ASSERT(ifp->if_broot != NULL); | 
|  | /* | 
|  | * Copy and convert from the on-disk structure | 
|  | * to the in-memory structure. | 
|  | */ | 
|  | xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), | 
|  | ifp->if_broot, size); | 
|  | ifp->if_flags &= ~XFS_IFEXTENTS; | 
|  | ifp->if_flags |= XFS_IFBROOT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read in extents from a btree-format inode. | 
|  | * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c. | 
|  | */ | 
|  | int | 
|  | xfs_iread_extents( | 
|  | xfs_trans_t	*tp, | 
|  | xfs_inode_t	*ip, | 
|  | int		whichfork) | 
|  | { | 
|  | int		error; | 
|  | xfs_ifork_t	*ifp; | 
|  | xfs_extnum_t	nextents; | 
|  |  | 
|  | if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { | 
|  | XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, | 
|  | ip->i_mount); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  | nextents = XFS_IFORK_NEXTENTS(ip, whichfork); | 
|  | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  |  | 
|  | /* | 
|  | * We know that the size is valid (it's checked in iformat_btree) | 
|  | */ | 
|  | ifp->if_bytes = ifp->if_real_bytes = 0; | 
|  | ifp->if_flags |= XFS_IFEXTENTS; | 
|  | xfs_iext_add(ifp, 0, nextents); | 
|  | error = xfs_bmap_read_extents(tp, ip, whichfork); | 
|  | if (error) { | 
|  | xfs_iext_destroy(ifp); | 
|  | ifp->if_flags &= ~XFS_IFEXTENTS; | 
|  | return error; | 
|  | } | 
|  | xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Reallocate the space for if_broot based on the number of records | 
|  | * being added or deleted as indicated in rec_diff.  Move the records | 
|  | * and pointers in if_broot to fit the new size.  When shrinking this | 
|  | * will eliminate holes between the records and pointers created by | 
|  | * the caller.  When growing this will create holes to be filled in | 
|  | * by the caller. | 
|  | * | 
|  | * The caller must not request to add more records than would fit in | 
|  | * the on-disk inode root.  If the if_broot is currently NULL, then | 
|  | * if we are adding records, one will be allocated.  The caller must also | 
|  | * not request that the number of records go below zero, although | 
|  | * it can go to zero. | 
|  | * | 
|  | * ip -- the inode whose if_broot area is changing | 
|  | * ext_diff -- the change in the number of records, positive or negative, | 
|  | *	 requested for the if_broot array. | 
|  | */ | 
|  | void | 
|  | xfs_iroot_realloc( | 
|  | xfs_inode_t		*ip, | 
|  | int			rec_diff, | 
|  | int			whichfork) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | int			cur_max; | 
|  | xfs_ifork_t		*ifp; | 
|  | struct xfs_btree_block	*new_broot; | 
|  | int			new_max; | 
|  | size_t			new_size; | 
|  | char			*np; | 
|  | char			*op; | 
|  |  | 
|  | /* | 
|  | * Handle the degenerate case quietly. | 
|  | */ | 
|  | if (rec_diff == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | if (rec_diff > 0) { | 
|  | /* | 
|  | * If there wasn't any memory allocated before, just | 
|  | * allocate it now and get out. | 
|  | */ | 
|  | if (ifp->if_broot_bytes == 0) { | 
|  | new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); | 
|  | ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); | 
|  | ifp->if_broot_bytes = (int)new_size; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is already an existing if_broot, then we need | 
|  | * to realloc() it and shift the pointers to their new | 
|  | * location.  The records don't change location because | 
|  | * they are kept butted up against the btree block header. | 
|  | */ | 
|  | cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); | 
|  | new_max = cur_max + rec_diff; | 
|  | new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); | 
|  | ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, | 
|  | XFS_BMAP_BROOT_SPACE_CALC(mp, cur_max), | 
|  | KM_SLEEP | KM_NOFS); | 
|  | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, | 
|  | ifp->if_broot_bytes); | 
|  | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, | 
|  | (int)new_size); | 
|  | ifp->if_broot_bytes = (int)new_size; | 
|  | ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= | 
|  | XFS_IFORK_SIZE(ip, whichfork)); | 
|  | memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rec_diff is less than 0.  In this case, we are shrinking the | 
|  | * if_broot buffer.  It must already exist.  If we go to zero | 
|  | * records, just get rid of the root and clear the status bit. | 
|  | */ | 
|  | ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); | 
|  | cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); | 
|  | new_max = cur_max + rec_diff; | 
|  | ASSERT(new_max >= 0); | 
|  | if (new_max > 0) | 
|  | new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); | 
|  | else | 
|  | new_size = 0; | 
|  | if (new_size > 0) { | 
|  | new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); | 
|  | /* | 
|  | * First copy over the btree block header. | 
|  | */ | 
|  | memcpy(new_broot, ifp->if_broot, | 
|  | XFS_BMBT_BLOCK_LEN(ip->i_mount)); | 
|  | } else { | 
|  | new_broot = NULL; | 
|  | ifp->if_flags &= ~XFS_IFBROOT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only copy the records and pointers if there are any. | 
|  | */ | 
|  | if (new_max > 0) { | 
|  | /* | 
|  | * First copy the records. | 
|  | */ | 
|  | op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); | 
|  | np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); | 
|  | memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); | 
|  |  | 
|  | /* | 
|  | * Then copy the pointers. | 
|  | */ | 
|  | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, | 
|  | ifp->if_broot_bytes); | 
|  | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, | 
|  | (int)new_size); | 
|  | memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); | 
|  | } | 
|  | kmem_free(ifp->if_broot); | 
|  | ifp->if_broot = new_broot; | 
|  | ifp->if_broot_bytes = (int)new_size; | 
|  | if (ifp->if_broot) | 
|  | ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= | 
|  | XFS_IFORK_SIZE(ip, whichfork)); | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is called when the amount of space needed for if_data | 
|  | * is increased or decreased.  The change in size is indicated by | 
|  | * the number of bytes that need to be added or deleted in the | 
|  | * byte_diff parameter. | 
|  | * | 
|  | * If the amount of space needed has decreased below the size of the | 
|  | * inline buffer, then switch to using the inline buffer.  Otherwise, | 
|  | * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | 
|  | * to what is needed. | 
|  | * | 
|  | * ip -- the inode whose if_data area is changing | 
|  | * byte_diff -- the change in the number of bytes, positive or negative, | 
|  | *	 requested for the if_data array. | 
|  | */ | 
|  | void | 
|  | xfs_idata_realloc( | 
|  | xfs_inode_t	*ip, | 
|  | int		byte_diff, | 
|  | int		whichfork) | 
|  | { | 
|  | xfs_ifork_t	*ifp; | 
|  | int		new_size; | 
|  | int		real_size; | 
|  |  | 
|  | if (byte_diff == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | new_size = (int)ifp->if_bytes + byte_diff; | 
|  | ASSERT(new_size >= 0); | 
|  |  | 
|  | if (new_size == 0) { | 
|  | if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
|  | kmem_free(ifp->if_u1.if_data); | 
|  | } | 
|  | ifp->if_u1.if_data = NULL; | 
|  | real_size = 0; | 
|  | } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { | 
|  | /* | 
|  | * If the valid extents/data can fit in if_inline_ext/data, | 
|  | * copy them from the malloc'd vector and free it. | 
|  | */ | 
|  | if (ifp->if_u1.if_data == NULL) { | 
|  | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
|  | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
|  | ASSERT(ifp->if_real_bytes != 0); | 
|  | memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, | 
|  | new_size); | 
|  | kmem_free(ifp->if_u1.if_data); | 
|  | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
|  | } | 
|  | real_size = 0; | 
|  | } else { | 
|  | /* | 
|  | * Stuck with malloc/realloc. | 
|  | * For inline data, the underlying buffer must be | 
|  | * a multiple of 4 bytes in size so that it can be | 
|  | * logged and stay on word boundaries.  We enforce | 
|  | * that here. | 
|  | */ | 
|  | real_size = roundup(new_size, 4); | 
|  | if (ifp->if_u1.if_data == NULL) { | 
|  | ASSERT(ifp->if_real_bytes == 0); | 
|  | ifp->if_u1.if_data = kmem_alloc(real_size, | 
|  | KM_SLEEP | KM_NOFS); | 
|  | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
|  | /* | 
|  | * Only do the realloc if the underlying size | 
|  | * is really changing. | 
|  | */ | 
|  | if (ifp->if_real_bytes != real_size) { | 
|  | ifp->if_u1.if_data = | 
|  | kmem_realloc(ifp->if_u1.if_data, | 
|  | real_size, | 
|  | ifp->if_real_bytes, | 
|  | KM_SLEEP | KM_NOFS); | 
|  | } | 
|  | } else { | 
|  | ASSERT(ifp->if_real_bytes == 0); | 
|  | ifp->if_u1.if_data = kmem_alloc(real_size, | 
|  | KM_SLEEP | KM_NOFS); | 
|  | memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, | 
|  | ifp->if_bytes); | 
|  | } | 
|  | } | 
|  | ifp->if_real_bytes = real_size; | 
|  | ifp->if_bytes = new_size; | 
|  | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_idestroy_fork( | 
|  | xfs_inode_t	*ip, | 
|  | int		whichfork) | 
|  | { | 
|  | xfs_ifork_t	*ifp; | 
|  |  | 
|  | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | if (ifp->if_broot != NULL) { | 
|  | kmem_free(ifp->if_broot); | 
|  | ifp->if_broot = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the format is local, then we can't have an extents | 
|  | * array so just look for an inline data array.  If we're | 
|  | * not local then we may or may not have an extents list, | 
|  | * so check and free it up if we do. | 
|  | */ | 
|  | if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { | 
|  | if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && | 
|  | (ifp->if_u1.if_data != NULL)) { | 
|  | ASSERT(ifp->if_real_bytes != 0); | 
|  | kmem_free(ifp->if_u1.if_data); | 
|  | ifp->if_u1.if_data = NULL; | 
|  | ifp->if_real_bytes = 0; | 
|  | } | 
|  | } else if ((ifp->if_flags & XFS_IFEXTENTS) && | 
|  | ((ifp->if_flags & XFS_IFEXTIREC) || | 
|  | ((ifp->if_u1.if_extents != NULL) && | 
|  | (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { | 
|  | ASSERT(ifp->if_real_bytes != 0); | 
|  | xfs_iext_destroy(ifp); | 
|  | } | 
|  | ASSERT(ifp->if_u1.if_extents == NULL || | 
|  | ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); | 
|  | ASSERT(ifp->if_real_bytes == 0); | 
|  | if (whichfork == XFS_ATTR_FORK) { | 
|  | kmem_zone_free(xfs_ifork_zone, ip->i_afp); | 
|  | ip->i_afp = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_iextents_copy() | 
|  | * | 
|  | * This is called to copy the REAL extents (as opposed to the delayed | 
|  | * allocation extents) from the inode into the given buffer.  It | 
|  | * returns the number of bytes copied into the buffer. | 
|  | * | 
|  | * If there are no delayed allocation extents, then we can just | 
|  | * memcpy() the extents into the buffer.  Otherwise, we need to | 
|  | * examine each extent in turn and skip those which are delayed. | 
|  | */ | 
|  | int | 
|  | xfs_iextents_copy( | 
|  | xfs_inode_t		*ip, | 
|  | xfs_bmbt_rec_t		*dp, | 
|  | int			whichfork) | 
|  | { | 
|  | int			copied; | 
|  | int			i; | 
|  | xfs_ifork_t		*ifp; | 
|  | int			nrecs; | 
|  | xfs_fsblock_t		start_block; | 
|  |  | 
|  | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); | 
|  | ASSERT(ifp->if_bytes > 0); | 
|  |  | 
|  | nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); | 
|  | ASSERT(nrecs > 0); | 
|  |  | 
|  | /* | 
|  | * There are some delayed allocation extents in the | 
|  | * inode, so copy the extents one at a time and skip | 
|  | * the delayed ones.  There must be at least one | 
|  | * non-delayed extent. | 
|  | */ | 
|  | copied = 0; | 
|  | for (i = 0; i < nrecs; i++) { | 
|  | xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); | 
|  | start_block = xfs_bmbt_get_startblock(ep); | 
|  | if (isnullstartblock(start_block)) { | 
|  | /* | 
|  | * It's a delayed allocation extent, so skip it. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Translate to on disk format */ | 
|  | put_unaligned_be64(ep->l0, &dp->l0); | 
|  | put_unaligned_be64(ep->l1, &dp->l1); | 
|  | dp++; | 
|  | copied++; | 
|  | } | 
|  | ASSERT(copied != 0); | 
|  | xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); | 
|  |  | 
|  | return (copied * (uint)sizeof(xfs_bmbt_rec_t)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each of the following cases stores data into the same region | 
|  | * of the on-disk inode, so only one of them can be valid at | 
|  | * any given time. While it is possible to have conflicting formats | 
|  | * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is | 
|  | * in EXTENTS format, this can only happen when the fork has | 
|  | * changed formats after being modified but before being flushed. | 
|  | * In these cases, the format always takes precedence, because the | 
|  | * format indicates the current state of the fork. | 
|  | */ | 
|  | void | 
|  | xfs_iflush_fork( | 
|  | xfs_inode_t		*ip, | 
|  | xfs_dinode_t		*dip, | 
|  | xfs_inode_log_item_t	*iip, | 
|  | int			whichfork, | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | char			*cp; | 
|  | xfs_ifork_t		*ifp; | 
|  | xfs_mount_t		*mp; | 
|  | static const short	brootflag[2] = | 
|  | { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; | 
|  | static const short	dataflag[2] = | 
|  | { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; | 
|  | static const short	extflag[2] = | 
|  | { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; | 
|  |  | 
|  | if (!iip) | 
|  | return; | 
|  | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | /* | 
|  | * This can happen if we gave up in iformat in an error path, | 
|  | * for the attribute fork. | 
|  | */ | 
|  | if (!ifp) { | 
|  | ASSERT(whichfork == XFS_ATTR_FORK); | 
|  | return; | 
|  | } | 
|  | cp = XFS_DFORK_PTR(dip, whichfork); | 
|  | mp = ip->i_mount; | 
|  | switch (XFS_IFORK_FORMAT(ip, whichfork)) { | 
|  | case XFS_DINODE_FMT_LOCAL: | 
|  | if ((iip->ili_fields & dataflag[whichfork]) && | 
|  | (ifp->if_bytes > 0)) { | 
|  | ASSERT(ifp->if_u1.if_data != NULL); | 
|  | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | 
|  | memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_EXTENTS: | 
|  | ASSERT((ifp->if_flags & XFS_IFEXTENTS) || | 
|  | !(iip->ili_fields & extflag[whichfork])); | 
|  | if ((iip->ili_fields & extflag[whichfork]) && | 
|  | (ifp->if_bytes > 0)) { | 
|  | ASSERT(xfs_iext_get_ext(ifp, 0)); | 
|  | ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); | 
|  | (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, | 
|  | whichfork); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_BTREE: | 
|  | if ((iip->ili_fields & brootflag[whichfork]) && | 
|  | (ifp->if_broot_bytes > 0)) { | 
|  | ASSERT(ifp->if_broot != NULL); | 
|  | ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= | 
|  | XFS_IFORK_SIZE(ip, whichfork)); | 
|  | xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, | 
|  | (xfs_bmdr_block_t *)cp, | 
|  | XFS_DFORK_SIZE(dip, mp, whichfork)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_DEV: | 
|  | if (iip->ili_fields & XFS_ILOG_DEV) { | 
|  | ASSERT(whichfork == XFS_DATA_FORK); | 
|  | xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_UUID: | 
|  | if (iip->ili_fields & XFS_ILOG_UUID) { | 
|  | ASSERT(whichfork == XFS_DATA_FORK); | 
|  | memcpy(XFS_DFORK_DPTR(dip), | 
|  | &ip->i_df.if_u2.if_uuid, | 
|  | sizeof(uuid_t)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | ASSERT(0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a pointer to the extent record at file index idx. | 
|  | */ | 
|  | xfs_bmbt_rec_host_t * | 
|  | xfs_iext_get_ext( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | xfs_extnum_t	idx)		/* index of target extent */ | 
|  | { | 
|  | ASSERT(idx >= 0); | 
|  | ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); | 
|  |  | 
|  | if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { | 
|  | return ifp->if_u1.if_ext_irec->er_extbuf; | 
|  | } else if (ifp->if_flags & XFS_IFEXTIREC) { | 
|  | xfs_ext_irec_t	*erp;		/* irec pointer */ | 
|  | int		erp_idx = 0;	/* irec index */ | 
|  | xfs_extnum_t	page_idx = idx;	/* ext index in target list */ | 
|  |  | 
|  | erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); | 
|  | return &erp->er_extbuf[page_idx]; | 
|  | } else if (ifp->if_bytes) { | 
|  | return &ifp->if_u1.if_extents[idx]; | 
|  | } else { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert new item(s) into the extent records for incore inode | 
|  | * fork 'ifp'.  'count' new items are inserted at index 'idx'. | 
|  | */ | 
|  | void | 
|  | xfs_iext_insert( | 
|  | xfs_inode_t	*ip,		/* incore inode pointer */ | 
|  | xfs_extnum_t	idx,		/* starting index of new items */ | 
|  | xfs_extnum_t	count,		/* number of inserted items */ | 
|  | xfs_bmbt_irec_t	*new,		/* items to insert */ | 
|  | int		state)		/* type of extent conversion */ | 
|  | { | 
|  | xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; | 
|  | xfs_extnum_t	i;		/* extent record index */ | 
|  |  | 
|  | trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_); | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTENTS); | 
|  | xfs_iext_add(ifp, idx, count); | 
|  | for (i = idx; i < idx + count; i++, new++) | 
|  | xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when the amount of space required for incore file | 
|  | * extents needs to be increased. The ext_diff parameter stores the | 
|  | * number of new extents being added and the idx parameter contains | 
|  | * the extent index where the new extents will be added. If the new | 
|  | * extents are being appended, then we just need to (re)allocate and | 
|  | * initialize the space. Otherwise, if the new extents are being | 
|  | * inserted into the middle of the existing entries, a bit more work | 
|  | * is required to make room for the new extents to be inserted. The | 
|  | * caller is responsible for filling in the new extent entries upon | 
|  | * return. | 
|  | */ | 
|  | void | 
|  | xfs_iext_add( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | xfs_extnum_t	idx,		/* index to begin adding exts */ | 
|  | int		ext_diff)	/* number of extents to add */ | 
|  | { | 
|  | int		byte_diff;	/* new bytes being added */ | 
|  | int		new_size;	/* size of extents after adding */ | 
|  | xfs_extnum_t	nextents;	/* number of extents in file */ | 
|  |  | 
|  | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | ASSERT((idx >= 0) && (idx <= nextents)); | 
|  | byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); | 
|  | new_size = ifp->if_bytes + byte_diff; | 
|  | /* | 
|  | * If the new number of extents (nextents + ext_diff) | 
|  | * fits inside the inode, then continue to use the inline | 
|  | * extent buffer. | 
|  | */ | 
|  | if (nextents + ext_diff <= XFS_INLINE_EXTS) { | 
|  | if (idx < nextents) { | 
|  | memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], | 
|  | &ifp->if_u2.if_inline_ext[idx], | 
|  | (nextents - idx) * sizeof(xfs_bmbt_rec_t)); | 
|  | memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); | 
|  | } | 
|  | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | 
|  | ifp->if_real_bytes = 0; | 
|  | } | 
|  | /* | 
|  | * Otherwise use a linear (direct) extent list. | 
|  | * If the extents are currently inside the inode, | 
|  | * xfs_iext_realloc_direct will switch us from | 
|  | * inline to direct extent allocation mode. | 
|  | */ | 
|  | else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { | 
|  | xfs_iext_realloc_direct(ifp, new_size); | 
|  | if (idx < nextents) { | 
|  | memmove(&ifp->if_u1.if_extents[idx + ext_diff], | 
|  | &ifp->if_u1.if_extents[idx], | 
|  | (nextents - idx) * sizeof(xfs_bmbt_rec_t)); | 
|  | memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); | 
|  | } | 
|  | } | 
|  | /* Indirection array */ | 
|  | else { | 
|  | xfs_ext_irec_t	*erp; | 
|  | int		erp_idx = 0; | 
|  | int		page_idx = idx; | 
|  |  | 
|  | ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); | 
|  | if (ifp->if_flags & XFS_IFEXTIREC) { | 
|  | erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); | 
|  | } else { | 
|  | xfs_iext_irec_init(ifp); | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | erp = ifp->if_u1.if_ext_irec; | 
|  | } | 
|  | /* Extents fit in target extent page */ | 
|  | if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { | 
|  | if (page_idx < erp->er_extcount) { | 
|  | memmove(&erp->er_extbuf[page_idx + ext_diff], | 
|  | &erp->er_extbuf[page_idx], | 
|  | (erp->er_extcount - page_idx) * | 
|  | sizeof(xfs_bmbt_rec_t)); | 
|  | memset(&erp->er_extbuf[page_idx], 0, byte_diff); | 
|  | } | 
|  | erp->er_extcount += ext_diff; | 
|  | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); | 
|  | } | 
|  | /* Insert a new extent page */ | 
|  | else if (erp) { | 
|  | xfs_iext_add_indirect_multi(ifp, | 
|  | erp_idx, page_idx, ext_diff); | 
|  | } | 
|  | /* | 
|  | * If extent(s) are being appended to the last page in | 
|  | * the indirection array and the new extent(s) don't fit | 
|  | * in the page, then erp is NULL and erp_idx is set to | 
|  | * the next index needed in the indirection array. | 
|  | */ | 
|  | else { | 
|  | int	count = ext_diff; | 
|  |  | 
|  | while (count) { | 
|  | erp = xfs_iext_irec_new(ifp, erp_idx); | 
|  | erp->er_extcount = count; | 
|  | count -= MIN(count, (int)XFS_LINEAR_EXTS); | 
|  | if (count) { | 
|  | erp_idx++; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | ifp->if_bytes = new_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when incore extents are being added to the indirection | 
|  | * array and the new extents do not fit in the target extent list. The | 
|  | * erp_idx parameter contains the irec index for the target extent list | 
|  | * in the indirection array, and the idx parameter contains the extent | 
|  | * index within the list. The number of extents being added is stored | 
|  | * in the count parameter. | 
|  | * | 
|  | *    |-------|   |-------| | 
|  | *    |       |   |       |    idx - number of extents before idx | 
|  | *    |  idx  |   | count | | 
|  | *    |       |   |       |    count - number of extents being inserted at idx | 
|  | *    |-------|   |-------| | 
|  | *    | count |   | nex2  |    nex2 - number of extents after idx + count | 
|  | *    |-------|   |-------| | 
|  | */ | 
|  | void | 
|  | xfs_iext_add_indirect_multi( | 
|  | xfs_ifork_t	*ifp,			/* inode fork pointer */ | 
|  | int		erp_idx,		/* target extent irec index */ | 
|  | xfs_extnum_t	idx,			/* index within target list */ | 
|  | int		count)			/* new extents being added */ | 
|  | { | 
|  | int		byte_diff;		/* new bytes being added */ | 
|  | xfs_ext_irec_t	*erp;			/* pointer to irec entry */ | 
|  | xfs_extnum_t	ext_diff;		/* number of extents to add */ | 
|  | xfs_extnum_t	ext_cnt;		/* new extents still needed */ | 
|  | xfs_extnum_t	nex2;			/* extents after idx + count */ | 
|  | xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */ | 
|  | int		nlists;			/* number of irec's (lists) */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | 
|  | nex2 = erp->er_extcount - idx; | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  |  | 
|  | /* | 
|  | * Save second part of target extent list | 
|  | * (all extents past */ | 
|  | if (nex2) { | 
|  | byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); | 
|  | nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); | 
|  | memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); | 
|  | erp->er_extcount -= nex2; | 
|  | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); | 
|  | memset(&erp->er_extbuf[idx], 0, byte_diff); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add the new extents to the end of the target | 
|  | * list, then allocate new irec record(s) and | 
|  | * extent buffer(s) as needed to store the rest | 
|  | * of the new extents. | 
|  | */ | 
|  | ext_cnt = count; | 
|  | ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); | 
|  | if (ext_diff) { | 
|  | erp->er_extcount += ext_diff; | 
|  | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); | 
|  | ext_cnt -= ext_diff; | 
|  | } | 
|  | while (ext_cnt) { | 
|  | erp_idx++; | 
|  | erp = xfs_iext_irec_new(ifp, erp_idx); | 
|  | ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); | 
|  | erp->er_extcount = ext_diff; | 
|  | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); | 
|  | ext_cnt -= ext_diff; | 
|  | } | 
|  |  | 
|  | /* Add nex2 extents back to indirection array */ | 
|  | if (nex2) { | 
|  | xfs_extnum_t	ext_avail; | 
|  | int		i; | 
|  |  | 
|  | byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); | 
|  | ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; | 
|  | i = 0; | 
|  | /* | 
|  | * If nex2 extents fit in the current page, append | 
|  | * nex2_ep after the new extents. | 
|  | */ | 
|  | if (nex2 <= ext_avail) { | 
|  | i = erp->er_extcount; | 
|  | } | 
|  | /* | 
|  | * Otherwise, check if space is available in the | 
|  | * next page. | 
|  | */ | 
|  | else if ((erp_idx < nlists - 1) && | 
|  | (nex2 <= (ext_avail = XFS_LINEAR_EXTS - | 
|  | ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { | 
|  | erp_idx++; | 
|  | erp++; | 
|  | /* Create a hole for nex2 extents */ | 
|  | memmove(&erp->er_extbuf[nex2], erp->er_extbuf, | 
|  | erp->er_extcount * sizeof(xfs_bmbt_rec_t)); | 
|  | } | 
|  | /* | 
|  | * Final choice, create a new extent page for | 
|  | * nex2 extents. | 
|  | */ | 
|  | else { | 
|  | erp_idx++; | 
|  | erp = xfs_iext_irec_new(ifp, erp_idx); | 
|  | } | 
|  | memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); | 
|  | kmem_free(nex2_ep); | 
|  | erp->er_extcount += nex2; | 
|  | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when the amount of space required for incore file | 
|  | * extents needs to be decreased. The ext_diff parameter stores the | 
|  | * number of extents to be removed and the idx parameter contains | 
|  | * the extent index where the extents will be removed from. | 
|  | * | 
|  | * If the amount of space needed has decreased below the linear | 
|  | * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous | 
|  | * extent array.  Otherwise, use kmem_realloc() to adjust the | 
|  | * size to what is needed. | 
|  | */ | 
|  | void | 
|  | xfs_iext_remove( | 
|  | xfs_inode_t	*ip,		/* incore inode pointer */ | 
|  | xfs_extnum_t	idx,		/* index to begin removing exts */ | 
|  | int		ext_diff,	/* number of extents to remove */ | 
|  | int		state)		/* type of extent conversion */ | 
|  | { | 
|  | xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; | 
|  | xfs_extnum_t	nextents;	/* number of extents in file */ | 
|  | int		new_size;	/* size of extents after removal */ | 
|  |  | 
|  | trace_xfs_iext_remove(ip, idx, state, _RET_IP_); | 
|  |  | 
|  | ASSERT(ext_diff > 0); | 
|  | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); | 
|  |  | 
|  | if (new_size == 0) { | 
|  | xfs_iext_destroy(ifp); | 
|  | } else if (ifp->if_flags & XFS_IFEXTIREC) { | 
|  | xfs_iext_remove_indirect(ifp, idx, ext_diff); | 
|  | } else if (ifp->if_real_bytes) { | 
|  | xfs_iext_remove_direct(ifp, idx, ext_diff); | 
|  | } else { | 
|  | xfs_iext_remove_inline(ifp, idx, ext_diff); | 
|  | } | 
|  | ifp->if_bytes = new_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This removes ext_diff extents from the inline buffer, beginning | 
|  | * at extent index idx. | 
|  | */ | 
|  | void | 
|  | xfs_iext_remove_inline( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | xfs_extnum_t	idx,		/* index to begin removing exts */ | 
|  | int		ext_diff)	/* number of extents to remove */ | 
|  | { | 
|  | int		nextents;	/* number of extents in file */ | 
|  |  | 
|  | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); | 
|  | ASSERT(idx < XFS_INLINE_EXTS); | 
|  | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | ASSERT(((nextents - ext_diff) > 0) && | 
|  | (nextents - ext_diff) < XFS_INLINE_EXTS); | 
|  |  | 
|  | if (idx + ext_diff < nextents) { | 
|  | memmove(&ifp->if_u2.if_inline_ext[idx], | 
|  | &ifp->if_u2.if_inline_ext[idx + ext_diff], | 
|  | (nextents - (idx + ext_diff)) * | 
|  | sizeof(xfs_bmbt_rec_t)); | 
|  | memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], | 
|  | 0, ext_diff * sizeof(xfs_bmbt_rec_t)); | 
|  | } else { | 
|  | memset(&ifp->if_u2.if_inline_ext[idx], 0, | 
|  | ext_diff * sizeof(xfs_bmbt_rec_t)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This removes ext_diff extents from a linear (direct) extent list, | 
|  | * beginning at extent index idx. If the extents are being removed | 
|  | * from the end of the list (ie. truncate) then we just need to re- | 
|  | * allocate the list to remove the extra space. Otherwise, if the | 
|  | * extents are being removed from the middle of the existing extent | 
|  | * entries, then we first need to move the extent records beginning | 
|  | * at idx + ext_diff up in the list to overwrite the records being | 
|  | * removed, then remove the extra space via kmem_realloc. | 
|  | */ | 
|  | void | 
|  | xfs_iext_remove_direct( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | xfs_extnum_t	idx,		/* index to begin removing exts */ | 
|  | int		ext_diff)	/* number of extents to remove */ | 
|  | { | 
|  | xfs_extnum_t	nextents;	/* number of extents in file */ | 
|  | int		new_size;	/* size of extents after removal */ | 
|  |  | 
|  | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); | 
|  | new_size = ifp->if_bytes - | 
|  | (ext_diff * sizeof(xfs_bmbt_rec_t)); | 
|  | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
|  |  | 
|  | if (new_size == 0) { | 
|  | xfs_iext_destroy(ifp); | 
|  | return; | 
|  | } | 
|  | /* Move extents up in the list (if needed) */ | 
|  | if (idx + ext_diff < nextents) { | 
|  | memmove(&ifp->if_u1.if_extents[idx], | 
|  | &ifp->if_u1.if_extents[idx + ext_diff], | 
|  | (nextents - (idx + ext_diff)) * | 
|  | sizeof(xfs_bmbt_rec_t)); | 
|  | } | 
|  | memset(&ifp->if_u1.if_extents[nextents - ext_diff], | 
|  | 0, ext_diff * sizeof(xfs_bmbt_rec_t)); | 
|  | /* | 
|  | * Reallocate the direct extent list. If the extents | 
|  | * will fit inside the inode then xfs_iext_realloc_direct | 
|  | * will switch from direct to inline extent allocation | 
|  | * mode for us. | 
|  | */ | 
|  | xfs_iext_realloc_direct(ifp, new_size); | 
|  | ifp->if_bytes = new_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when incore extents are being removed from the | 
|  | * indirection array and the extents being removed span multiple extent | 
|  | * buffers. The idx parameter contains the file extent index where we | 
|  | * want to begin removing extents, and the count parameter contains | 
|  | * how many extents need to be removed. | 
|  | * | 
|  | *    |-------|   |-------| | 
|  | *    | nex1  |   |       |    nex1 - number of extents before idx | 
|  | *    |-------|   | count | | 
|  | *    |       |   |       |    count - number of extents being removed at idx | 
|  | *    | count |   |-------| | 
|  | *    |       |   | nex2  |    nex2 - number of extents after idx + count | 
|  | *    |-------|   |-------| | 
|  | */ | 
|  | void | 
|  | xfs_iext_remove_indirect( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | xfs_extnum_t	idx,		/* index to begin removing extents */ | 
|  | int		count)		/* number of extents to remove */ | 
|  | { | 
|  | xfs_ext_irec_t	*erp;		/* indirection array pointer */ | 
|  | int		erp_idx = 0;	/* indirection array index */ | 
|  | xfs_extnum_t	ext_cnt;	/* extents left to remove */ | 
|  | xfs_extnum_t	ext_diff;	/* extents to remove in current list */ | 
|  | xfs_extnum_t	nex1;		/* number of extents before idx */ | 
|  | xfs_extnum_t	nex2;		/* extents after idx + count */ | 
|  | int		page_idx = idx;	/* index in target extent list */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0); | 
|  | ASSERT(erp != NULL); | 
|  | nex1 = page_idx; | 
|  | ext_cnt = count; | 
|  | while (ext_cnt) { | 
|  | nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); | 
|  | ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); | 
|  | /* | 
|  | * Check for deletion of entire list; | 
|  | * xfs_iext_irec_remove() updates extent offsets. | 
|  | */ | 
|  | if (ext_diff == erp->er_extcount) { | 
|  | xfs_iext_irec_remove(ifp, erp_idx); | 
|  | ext_cnt -= ext_diff; | 
|  | nex1 = 0; | 
|  | if (ext_cnt) { | 
|  | ASSERT(erp_idx < ifp->if_real_bytes / | 
|  | XFS_IEXT_BUFSZ); | 
|  | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | 
|  | nex1 = 0; | 
|  | continue; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* Move extents up (if needed) */ | 
|  | if (nex2) { | 
|  | memmove(&erp->er_extbuf[nex1], | 
|  | &erp->er_extbuf[nex1 + ext_diff], | 
|  | nex2 * sizeof(xfs_bmbt_rec_t)); | 
|  | } | 
|  | /* Zero out rest of page */ | 
|  | memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - | 
|  | ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); | 
|  | /* Update remaining counters */ | 
|  | erp->er_extcount -= ext_diff; | 
|  | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); | 
|  | ext_cnt -= ext_diff; | 
|  | nex1 = 0; | 
|  | erp_idx++; | 
|  | erp++; | 
|  | } | 
|  | ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); | 
|  | xfs_iext_irec_compact(ifp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create, destroy, or resize a linear (direct) block of extents. | 
|  | */ | 
|  | void | 
|  | xfs_iext_realloc_direct( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | int		new_size)	/* new size of extents */ | 
|  | { | 
|  | int		rnew_size;	/* real new size of extents */ | 
|  |  | 
|  | rnew_size = new_size; | 
|  |  | 
|  | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || | 
|  | ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && | 
|  | (new_size != ifp->if_real_bytes))); | 
|  |  | 
|  | /* Free extent records */ | 
|  | if (new_size == 0) { | 
|  | xfs_iext_destroy(ifp); | 
|  | } | 
|  | /* Resize direct extent list and zero any new bytes */ | 
|  | else if (ifp->if_real_bytes) { | 
|  | /* Check if extents will fit inside the inode */ | 
|  | if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { | 
|  | xfs_iext_direct_to_inline(ifp, new_size / | 
|  | (uint)sizeof(xfs_bmbt_rec_t)); | 
|  | ifp->if_bytes = new_size; | 
|  | return; | 
|  | } | 
|  | if (!is_power_of_2(new_size)){ | 
|  | rnew_size = roundup_pow_of_two(new_size); | 
|  | } | 
|  | if (rnew_size != ifp->if_real_bytes) { | 
|  | ifp->if_u1.if_extents = | 
|  | kmem_realloc(ifp->if_u1.if_extents, | 
|  | rnew_size, | 
|  | ifp->if_real_bytes, KM_NOFS); | 
|  | } | 
|  | if (rnew_size > ifp->if_real_bytes) { | 
|  | memset(&ifp->if_u1.if_extents[ifp->if_bytes / | 
|  | (uint)sizeof(xfs_bmbt_rec_t)], 0, | 
|  | rnew_size - ifp->if_real_bytes); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Switch from the inline extent buffer to a direct | 
|  | * extent list. Be sure to include the inline extent | 
|  | * bytes in new_size. | 
|  | */ | 
|  | else { | 
|  | new_size += ifp->if_bytes; | 
|  | if (!is_power_of_2(new_size)) { | 
|  | rnew_size = roundup_pow_of_two(new_size); | 
|  | } | 
|  | xfs_iext_inline_to_direct(ifp, rnew_size); | 
|  | } | 
|  | ifp->if_real_bytes = rnew_size; | 
|  | ifp->if_bytes = new_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch from linear (direct) extent records to inline buffer. | 
|  | */ | 
|  | void | 
|  | xfs_iext_direct_to_inline( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | xfs_extnum_t	nextents)	/* number of extents in file */ | 
|  | { | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTENTS); | 
|  | ASSERT(nextents <= XFS_INLINE_EXTS); | 
|  | /* | 
|  | * The inline buffer was zeroed when we switched | 
|  | * from inline to direct extent allocation mode, | 
|  | * so we don't need to clear it here. | 
|  | */ | 
|  | memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, | 
|  | nextents * sizeof(xfs_bmbt_rec_t)); | 
|  | kmem_free(ifp->if_u1.if_extents); | 
|  | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | 
|  | ifp->if_real_bytes = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch from inline buffer to linear (direct) extent records. | 
|  | * new_size should already be rounded up to the next power of 2 | 
|  | * by the caller (when appropriate), so use new_size as it is. | 
|  | * However, since new_size may be rounded up, we can't update | 
|  | * if_bytes here. It is the caller's responsibility to update | 
|  | * if_bytes upon return. | 
|  | */ | 
|  | void | 
|  | xfs_iext_inline_to_direct( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | int		new_size)	/* number of extents in file */ | 
|  | { | 
|  | ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); | 
|  | memset(ifp->if_u1.if_extents, 0, new_size); | 
|  | if (ifp->if_bytes) { | 
|  | memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, | 
|  | ifp->if_bytes); | 
|  | memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * | 
|  | sizeof(xfs_bmbt_rec_t)); | 
|  | } | 
|  | ifp->if_real_bytes = new_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Resize an extent indirection array to new_size bytes. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_iext_realloc_indirect( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | int		new_size)	/* new indirection array size */ | 
|  | { | 
|  | int		nlists;		/* number of irec's (ex lists) */ | 
|  | int		size;		/* current indirection array size */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  | size = nlists * sizeof(xfs_ext_irec_t); | 
|  | ASSERT(ifp->if_real_bytes); | 
|  | ASSERT((new_size >= 0) && (new_size != size)); | 
|  | if (new_size == 0) { | 
|  | xfs_iext_destroy(ifp); | 
|  | } else { | 
|  | ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) | 
|  | kmem_realloc(ifp->if_u1.if_ext_irec, | 
|  | new_size, size, KM_NOFS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch from indirection array to linear (direct) extent allocations. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_iext_indirect_to_direct( | 
|  | xfs_ifork_t	*ifp)		/* inode fork pointer */ | 
|  | { | 
|  | xfs_bmbt_rec_host_t *ep;	/* extent record pointer */ | 
|  | xfs_extnum_t	nextents;	/* number of extents in file */ | 
|  | int		size;		/* size of file extents */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | ASSERT(nextents <= XFS_LINEAR_EXTS); | 
|  | size = nextents * sizeof(xfs_bmbt_rec_t); | 
|  |  | 
|  | xfs_iext_irec_compact_pages(ifp); | 
|  | ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); | 
|  |  | 
|  | ep = ifp->if_u1.if_ext_irec->er_extbuf; | 
|  | kmem_free(ifp->if_u1.if_ext_irec); | 
|  | ifp->if_flags &= ~XFS_IFEXTIREC; | 
|  | ifp->if_u1.if_extents = ep; | 
|  | ifp->if_bytes = size; | 
|  | if (nextents < XFS_LINEAR_EXTS) { | 
|  | xfs_iext_realloc_direct(ifp, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free incore file extents. | 
|  | */ | 
|  | void | 
|  | xfs_iext_destroy( | 
|  | xfs_ifork_t	*ifp)		/* inode fork pointer */ | 
|  | { | 
|  | if (ifp->if_flags & XFS_IFEXTIREC) { | 
|  | int	erp_idx; | 
|  | int	nlists; | 
|  |  | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  | for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { | 
|  | xfs_iext_irec_remove(ifp, erp_idx); | 
|  | } | 
|  | ifp->if_flags &= ~XFS_IFEXTIREC; | 
|  | } else if (ifp->if_real_bytes) { | 
|  | kmem_free(ifp->if_u1.if_extents); | 
|  | } else if (ifp->if_bytes) { | 
|  | memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * | 
|  | sizeof(xfs_bmbt_rec_t)); | 
|  | } | 
|  | ifp->if_u1.if_extents = NULL; | 
|  | ifp->if_real_bytes = 0; | 
|  | ifp->if_bytes = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a pointer to the extent record for file system block bno. | 
|  | */ | 
|  | xfs_bmbt_rec_host_t *			/* pointer to found extent record */ | 
|  | xfs_iext_bno_to_ext( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | xfs_fileoff_t	bno,		/* block number to search for */ | 
|  | xfs_extnum_t	*idxp)		/* index of target extent */ | 
|  | { | 
|  | xfs_bmbt_rec_host_t *base;	/* pointer to first extent */ | 
|  | xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */ | 
|  | xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */ | 
|  | xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */ | 
|  | int		high;		/* upper boundary in search */ | 
|  | xfs_extnum_t	idx = 0;	/* index of target extent */ | 
|  | int		low;		/* lower boundary in search */ | 
|  | xfs_extnum_t	nextents;	/* number of file extents */ | 
|  | xfs_fileoff_t	startoff = 0;	/* start offset of extent */ | 
|  |  | 
|  | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | if (nextents == 0) { | 
|  | *idxp = 0; | 
|  | return NULL; | 
|  | } | 
|  | low = 0; | 
|  | if (ifp->if_flags & XFS_IFEXTIREC) { | 
|  | /* Find target extent list */ | 
|  | int	erp_idx = 0; | 
|  | erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); | 
|  | base = erp->er_extbuf; | 
|  | high = erp->er_extcount - 1; | 
|  | } else { | 
|  | base = ifp->if_u1.if_extents; | 
|  | high = nextents - 1; | 
|  | } | 
|  | /* Binary search extent records */ | 
|  | while (low <= high) { | 
|  | idx = (low + high) >> 1; | 
|  | ep = base + idx; | 
|  | startoff = xfs_bmbt_get_startoff(ep); | 
|  | blockcount = xfs_bmbt_get_blockcount(ep); | 
|  | if (bno < startoff) { | 
|  | high = idx - 1; | 
|  | } else if (bno >= startoff + blockcount) { | 
|  | low = idx + 1; | 
|  | } else { | 
|  | /* Convert back to file-based extent index */ | 
|  | if (ifp->if_flags & XFS_IFEXTIREC) { | 
|  | idx += erp->er_extoff; | 
|  | } | 
|  | *idxp = idx; | 
|  | return ep; | 
|  | } | 
|  | } | 
|  | /* Convert back to file-based extent index */ | 
|  | if (ifp->if_flags & XFS_IFEXTIREC) { | 
|  | idx += erp->er_extoff; | 
|  | } | 
|  | if (bno >= startoff + blockcount) { | 
|  | if (++idx == nextents) { | 
|  | ep = NULL; | 
|  | } else { | 
|  | ep = xfs_iext_get_ext(ifp, idx); | 
|  | } | 
|  | } | 
|  | *idxp = idx; | 
|  | return ep; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a pointer to the indirection array entry containing the | 
|  | * extent record for filesystem block bno. Store the index of the | 
|  | * target irec in *erp_idxp. | 
|  | */ | 
|  | xfs_ext_irec_t *			/* pointer to found extent record */ | 
|  | xfs_iext_bno_to_irec( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | xfs_fileoff_t	bno,		/* block number to search for */ | 
|  | int		*erp_idxp)	/* irec index of target ext list */ | 
|  | { | 
|  | xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */ | 
|  | xfs_ext_irec_t	*erp_next;	/* next indirection array entry */ | 
|  | int		erp_idx;	/* indirection array index */ | 
|  | int		nlists;		/* number of extent irec's (lists) */ | 
|  | int		high;		/* binary search upper limit */ | 
|  | int		low;		/* binary search lower limit */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  | erp_idx = 0; | 
|  | low = 0; | 
|  | high = nlists - 1; | 
|  | while (low <= high) { | 
|  | erp_idx = (low + high) >> 1; | 
|  | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | 
|  | erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; | 
|  | if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { | 
|  | high = erp_idx - 1; | 
|  | } else if (erp_next && bno >= | 
|  | xfs_bmbt_get_startoff(erp_next->er_extbuf)) { | 
|  | low = erp_idx + 1; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | *erp_idxp = erp_idx; | 
|  | return erp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a pointer to the indirection array entry containing the | 
|  | * extent record at file extent index *idxp. Store the index of the | 
|  | * target irec in *erp_idxp and store the page index of the target | 
|  | * extent record in *idxp. | 
|  | */ | 
|  | xfs_ext_irec_t * | 
|  | xfs_iext_idx_to_irec( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | xfs_extnum_t	*idxp,		/* extent index (file -> page) */ | 
|  | int		*erp_idxp,	/* pointer to target irec */ | 
|  | int		realloc)	/* new bytes were just added */ | 
|  | { | 
|  | xfs_ext_irec_t	*prev;		/* pointer to previous irec */ | 
|  | xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */ | 
|  | int		erp_idx;	/* indirection array index */ | 
|  | int		nlists;		/* number of irec's (ex lists) */ | 
|  | int		high;		/* binary search upper limit */ | 
|  | int		low;		/* binary search lower limit */ | 
|  | xfs_extnum_t	page_idx = *idxp; /* extent index in target list */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | ASSERT(page_idx >= 0); | 
|  | ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); | 
|  | ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc); | 
|  |  | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  | erp_idx = 0; | 
|  | low = 0; | 
|  | high = nlists - 1; | 
|  |  | 
|  | /* Binary search extent irec's */ | 
|  | while (low <= high) { | 
|  | erp_idx = (low + high) >> 1; | 
|  | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | 
|  | prev = erp_idx > 0 ? erp - 1 : NULL; | 
|  | if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && | 
|  | realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { | 
|  | high = erp_idx - 1; | 
|  | } else if (page_idx > erp->er_extoff + erp->er_extcount || | 
|  | (page_idx == erp->er_extoff + erp->er_extcount && | 
|  | !realloc)) { | 
|  | low = erp_idx + 1; | 
|  | } else if (page_idx == erp->er_extoff + erp->er_extcount && | 
|  | erp->er_extcount == XFS_LINEAR_EXTS) { | 
|  | ASSERT(realloc); | 
|  | page_idx = 0; | 
|  | erp_idx++; | 
|  | erp = erp_idx < nlists ? erp + 1 : NULL; | 
|  | break; | 
|  | } else { | 
|  | page_idx -= erp->er_extoff; | 
|  | break; | 
|  | } | 
|  | } | 
|  | *idxp = page_idx; | 
|  | *erp_idxp = erp_idx; | 
|  | return(erp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an indirection array once the space needed | 
|  | * for incore extents increases above XFS_IEXT_BUFSZ. | 
|  | */ | 
|  | void | 
|  | xfs_iext_irec_init( | 
|  | xfs_ifork_t	*ifp)		/* inode fork pointer */ | 
|  | { | 
|  | xfs_ext_irec_t	*erp;		/* indirection array pointer */ | 
|  | xfs_extnum_t	nextents;	/* number of extents in file */ | 
|  |  | 
|  | ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); | 
|  | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | ASSERT(nextents <= XFS_LINEAR_EXTS); | 
|  |  | 
|  | erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); | 
|  |  | 
|  | if (nextents == 0) { | 
|  | ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); | 
|  | } else if (!ifp->if_real_bytes) { | 
|  | xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); | 
|  | } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { | 
|  | xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); | 
|  | } | 
|  | erp->er_extbuf = ifp->if_u1.if_extents; | 
|  | erp->er_extcount = nextents; | 
|  | erp->er_extoff = 0; | 
|  |  | 
|  | ifp->if_flags |= XFS_IFEXTIREC; | 
|  | ifp->if_real_bytes = XFS_IEXT_BUFSZ; | 
|  | ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); | 
|  | ifp->if_u1.if_ext_irec = erp; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize a new entry in the indirection array. | 
|  | */ | 
|  | xfs_ext_irec_t * | 
|  | xfs_iext_irec_new( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | int		erp_idx)	/* index for new irec */ | 
|  | { | 
|  | xfs_ext_irec_t	*erp;		/* indirection array pointer */ | 
|  | int		i;		/* loop counter */ | 
|  | int		nlists;		/* number of irec's (ex lists) */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  |  | 
|  | /* Resize indirection array */ | 
|  | xfs_iext_realloc_indirect(ifp, ++nlists * | 
|  | sizeof(xfs_ext_irec_t)); | 
|  | /* | 
|  | * Move records down in the array so the | 
|  | * new page can use erp_idx. | 
|  | */ | 
|  | erp = ifp->if_u1.if_ext_irec; | 
|  | for (i = nlists - 1; i > erp_idx; i--) { | 
|  | memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); | 
|  | } | 
|  | ASSERT(i == erp_idx); | 
|  |  | 
|  | /* Initialize new extent record */ | 
|  | erp = ifp->if_u1.if_ext_irec; | 
|  | erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); | 
|  | ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; | 
|  | memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); | 
|  | erp[erp_idx].er_extcount = 0; | 
|  | erp[erp_idx].er_extoff = erp_idx > 0 ? | 
|  | erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; | 
|  | return (&erp[erp_idx]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a record from the indirection array. | 
|  | */ | 
|  | void | 
|  | xfs_iext_irec_remove( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | int		erp_idx)	/* irec index to remove */ | 
|  | { | 
|  | xfs_ext_irec_t	*erp;		/* indirection array pointer */ | 
|  | int		i;		/* loop counter */ | 
|  | int		nlists;		/* number of irec's (ex lists) */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | 
|  | if (erp->er_extbuf) { | 
|  | xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, | 
|  | -erp->er_extcount); | 
|  | kmem_free(erp->er_extbuf); | 
|  | } | 
|  | /* Compact extent records */ | 
|  | erp = ifp->if_u1.if_ext_irec; | 
|  | for (i = erp_idx; i < nlists - 1; i++) { | 
|  | memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); | 
|  | } | 
|  | /* | 
|  | * Manually free the last extent record from the indirection | 
|  | * array.  A call to xfs_iext_realloc_indirect() with a size | 
|  | * of zero would result in a call to xfs_iext_destroy() which | 
|  | * would in turn call this function again, creating a nasty | 
|  | * infinite loop. | 
|  | */ | 
|  | if (--nlists) { | 
|  | xfs_iext_realloc_indirect(ifp, | 
|  | nlists * sizeof(xfs_ext_irec_t)); | 
|  | } else { | 
|  | kmem_free(ifp->if_u1.if_ext_irec); | 
|  | } | 
|  | ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to clean up large amounts of unused memory allocated | 
|  | * by the indirection array.  Before compacting anything though, verify | 
|  | * that the indirection array is still needed and switch back to the | 
|  | * linear extent list (or even the inline buffer) if possible.  The | 
|  | * compaction policy is as follows: | 
|  | * | 
|  | *    Full Compaction: Extents fit into a single page (or inline buffer) | 
|  | * Partial Compaction: Extents occupy less than 50% of allocated space | 
|  | *      No Compaction: Extents occupy at least 50% of allocated space | 
|  | */ | 
|  | void | 
|  | xfs_iext_irec_compact( | 
|  | xfs_ifork_t	*ifp)		/* inode fork pointer */ | 
|  | { | 
|  | xfs_extnum_t	nextents;	/* number of extents in file */ | 
|  | int		nlists;		/* number of irec's (ex lists) */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  | nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
|  |  | 
|  | if (nextents == 0) { | 
|  | xfs_iext_destroy(ifp); | 
|  | } else if (nextents <= XFS_INLINE_EXTS) { | 
|  | xfs_iext_indirect_to_direct(ifp); | 
|  | xfs_iext_direct_to_inline(ifp, nextents); | 
|  | } else if (nextents <= XFS_LINEAR_EXTS) { | 
|  | xfs_iext_indirect_to_direct(ifp); | 
|  | } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { | 
|  | xfs_iext_irec_compact_pages(ifp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Combine extents from neighboring extent pages. | 
|  | */ | 
|  | void | 
|  | xfs_iext_irec_compact_pages( | 
|  | xfs_ifork_t	*ifp)		/* inode fork pointer */ | 
|  | { | 
|  | xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */ | 
|  | int		erp_idx = 0;	/* indirection array index */ | 
|  | int		nlists;		/* number of irec's (ex lists) */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  | while (erp_idx < nlists - 1) { | 
|  | erp = &ifp->if_u1.if_ext_irec[erp_idx]; | 
|  | erp_next = erp + 1; | 
|  | if (erp_next->er_extcount <= | 
|  | (XFS_LINEAR_EXTS - erp->er_extcount)) { | 
|  | memcpy(&erp->er_extbuf[erp->er_extcount], | 
|  | erp_next->er_extbuf, erp_next->er_extcount * | 
|  | sizeof(xfs_bmbt_rec_t)); | 
|  | erp->er_extcount += erp_next->er_extcount; | 
|  | /* | 
|  | * Free page before removing extent record | 
|  | * so er_extoffs don't get modified in | 
|  | * xfs_iext_irec_remove. | 
|  | */ | 
|  | kmem_free(erp_next->er_extbuf); | 
|  | erp_next->er_extbuf = NULL; | 
|  | xfs_iext_irec_remove(ifp, erp_idx + 1); | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  | } else { | 
|  | erp_idx++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to update the er_extoff field in the indirection | 
|  | * array when extents have been added or removed from one of the | 
|  | * extent lists. erp_idx contains the irec index to begin updating | 
|  | * at and ext_diff contains the number of extents that were added | 
|  | * or removed. | 
|  | */ | 
|  | void | 
|  | xfs_iext_irec_update_extoffs( | 
|  | xfs_ifork_t	*ifp,		/* inode fork pointer */ | 
|  | int		erp_idx,	/* irec index to update */ | 
|  | int		ext_diff)	/* number of new extents */ | 
|  | { | 
|  | int		i;		/* loop counter */ | 
|  | int		nlists;		/* number of irec's (ex lists */ | 
|  |  | 
|  | ASSERT(ifp->if_flags & XFS_IFEXTIREC); | 
|  | nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; | 
|  | for (i = erp_idx; i < nlists; i++) { | 
|  | ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; | 
|  | } | 
|  | } |