| /* | 
 |  *  Overview: | 
 |  *   This is the generic MTD driver for NAND flash devices. It should be | 
 |  *   capable of working with almost all NAND chips currently available. | 
 |  * | 
 |  *	Additional technical information is available on | 
 |  *	http://www.linux-mtd.infradead.org/doc/nand.html | 
 |  * | 
 |  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) | 
 |  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de) | 
 |  * | 
 |  *  Credits: | 
 |  *	David Woodhouse for adding multichip support | 
 |  * | 
 |  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the | 
 |  *	rework for 2K page size chips | 
 |  * | 
 |  *  TODO: | 
 |  *	Enable cached programming for 2k page size chips | 
 |  *	Check, if mtd->ecctype should be set to MTD_ECC_HW | 
 |  *	if we have HW ECC support. | 
 |  *	BBT table is not serialized, has to be fixed | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/err.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/types.h> | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/mtd/nand.h> | 
 | #include <linux/mtd/nand_ecc.h> | 
 | #include <linux/mtd/nand_bch.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/leds.h> | 
 | #include <linux/io.h> | 
 | #include <linux/mtd/partitions.h> | 
 | #include <linux/of_mtd.h> | 
 |  | 
 | /* Define default oob placement schemes for large and small page devices */ | 
 | static struct nand_ecclayout nand_oob_8 = { | 
 | 	.eccbytes = 3, | 
 | 	.eccpos = {0, 1, 2}, | 
 | 	.oobfree = { | 
 | 		{.offset = 3, | 
 | 		 .length = 2}, | 
 | 		{.offset = 6, | 
 | 		 .length = 2} } | 
 | }; | 
 |  | 
 | static struct nand_ecclayout nand_oob_16 = { | 
 | 	.eccbytes = 6, | 
 | 	.eccpos = {0, 1, 2, 3, 6, 7}, | 
 | 	.oobfree = { | 
 | 		{.offset = 8, | 
 | 		 . length = 8} } | 
 | }; | 
 |  | 
 | static struct nand_ecclayout nand_oob_64 = { | 
 | 	.eccbytes = 24, | 
 | 	.eccpos = { | 
 | 		   40, 41, 42, 43, 44, 45, 46, 47, | 
 | 		   48, 49, 50, 51, 52, 53, 54, 55, | 
 | 		   56, 57, 58, 59, 60, 61, 62, 63}, | 
 | 	.oobfree = { | 
 | 		{.offset = 2, | 
 | 		 .length = 38} } | 
 | }; | 
 |  | 
 | static struct nand_ecclayout nand_oob_128 = { | 
 | 	.eccbytes = 48, | 
 | 	.eccpos = { | 
 | 		   80, 81, 82, 83, 84, 85, 86, 87, | 
 | 		   88, 89, 90, 91, 92, 93, 94, 95, | 
 | 		   96, 97, 98, 99, 100, 101, 102, 103, | 
 | 		   104, 105, 106, 107, 108, 109, 110, 111, | 
 | 		   112, 113, 114, 115, 116, 117, 118, 119, | 
 | 		   120, 121, 122, 123, 124, 125, 126, 127}, | 
 | 	.oobfree = { | 
 | 		{.offset = 2, | 
 | 		 .length = 78} } | 
 | }; | 
 |  | 
 | static int nand_get_device(struct mtd_info *mtd, int new_state); | 
 |  | 
 | static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, | 
 | 			     struct mtd_oob_ops *ops); | 
 |  | 
 | /* | 
 |  * For devices which display every fart in the system on a separate LED. Is | 
 |  * compiled away when LED support is disabled. | 
 |  */ | 
 | DEFINE_LED_TRIGGER(nand_led_trigger); | 
 |  | 
 | static int check_offs_len(struct mtd_info *mtd, | 
 | 					loff_t ofs, uint64_t len) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Start address must align on block boundary */ | 
 | 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { | 
 | 		pr_debug("%s: unaligned address\n", __func__); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Length must align on block boundary */ | 
 | 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) { | 
 | 		pr_debug("%s: length not block aligned\n", __func__); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_release_device - [GENERIC] release chip | 
 |  * @mtd: MTD device structure | 
 |  * | 
 |  * Release chip lock and wake up anyone waiting on the device. | 
 |  */ | 
 | static void nand_release_device(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	/* Release the controller and the chip */ | 
 | 	spin_lock(&chip->controller->lock); | 
 | 	chip->controller->active = NULL; | 
 | 	chip->state = FL_READY; | 
 | 	wake_up(&chip->controller->wq); | 
 | 	spin_unlock(&chip->controller->lock); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_byte - [DEFAULT] read one byte from the chip | 
 |  * @mtd: MTD device structure | 
 |  * | 
 |  * Default read function for 8bit buswidth | 
 |  */ | 
 | static uint8_t nand_read_byte(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	return readb(chip->IO_ADDR_R); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip | 
 |  * @mtd: MTD device structure | 
 |  * | 
 |  * Default read function for 16bit buswidth with endianness conversion. | 
 |  * | 
 |  */ | 
 | static uint8_t nand_read_byte16(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_word - [DEFAULT] read one word from the chip | 
 |  * @mtd: MTD device structure | 
 |  * | 
 |  * Default read function for 16bit buswidth without endianness conversion. | 
 |  */ | 
 | static u16 nand_read_word(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	return readw(chip->IO_ADDR_R); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_select_chip - [DEFAULT] control CE line | 
 |  * @mtd: MTD device structure | 
 |  * @chipnr: chipnumber to select, -1 for deselect | 
 |  * | 
 |  * Default select function for 1 chip devices. | 
 |  */ | 
 | static void nand_select_chip(struct mtd_info *mtd, int chipnr) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	switch (chipnr) { | 
 | 	case -1: | 
 | 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); | 
 | 		break; | 
 | 	case 0: | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write_byte - [DEFAULT] write single byte to chip | 
 |  * @mtd: MTD device structure | 
 |  * @byte: value to write | 
 |  * | 
 |  * Default function to write a byte to I/O[7:0] | 
 |  */ | 
 | static void nand_write_byte(struct mtd_info *mtd, uint8_t byte) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	chip->write_buf(mtd, &byte, 1); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 | 
 |  * @mtd: MTD device structure | 
 |  * @byte: value to write | 
 |  * | 
 |  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. | 
 |  */ | 
 | static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	uint16_t word = byte; | 
 |  | 
 | 	/* | 
 | 	 * It's not entirely clear what should happen to I/O[15:8] when writing | 
 | 	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: | 
 | 	 * | 
 | 	 *    When the host supports a 16-bit bus width, only data is | 
 | 	 *    transferred at the 16-bit width. All address and command line | 
 | 	 *    transfers shall use only the lower 8-bits of the data bus. During | 
 | 	 *    command transfers, the host may place any value on the upper | 
 | 	 *    8-bits of the data bus. During address transfers, the host shall | 
 | 	 *    set the upper 8-bits of the data bus to 00h. | 
 | 	 * | 
 | 	 * One user of the write_byte callback is nand_onfi_set_features. The | 
 | 	 * four parameters are specified to be written to I/O[7:0], but this is | 
 | 	 * neither an address nor a command transfer. Let's assume a 0 on the | 
 | 	 * upper I/O lines is OK. | 
 | 	 */ | 
 | 	chip->write_buf(mtd, (uint8_t *)&word, 2); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write_buf - [DEFAULT] write buffer to chip | 
 |  * @mtd: MTD device structure | 
 |  * @buf: data buffer | 
 |  * @len: number of bytes to write | 
 |  * | 
 |  * Default write function for 8bit buswidth. | 
 |  */ | 
 | static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	iowrite8_rep(chip->IO_ADDR_W, buf, len); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_buf - [DEFAULT] read chip data into buffer | 
 |  * @mtd: MTD device structure | 
 |  * @buf: buffer to store date | 
 |  * @len: number of bytes to read | 
 |  * | 
 |  * Default read function for 8bit buswidth. | 
 |  */ | 
 | static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	ioread8_rep(chip->IO_ADDR_R, buf, len); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write_buf16 - [DEFAULT] write buffer to chip | 
 |  * @mtd: MTD device structure | 
 |  * @buf: data buffer | 
 |  * @len: number of bytes to write | 
 |  * | 
 |  * Default write function for 16bit buswidth. | 
 |  */ | 
 | static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	u16 *p = (u16 *) buf; | 
 |  | 
 | 	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_buf16 - [DEFAULT] read chip data into buffer | 
 |  * @mtd: MTD device structure | 
 |  * @buf: buffer to store date | 
 |  * @len: number of bytes to read | 
 |  * | 
 |  * Default read function for 16bit buswidth. | 
 |  */ | 
 | static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	u16 *p = (u16 *) buf; | 
 |  | 
 | 	ioread16_rep(chip->IO_ADDR_R, p, len >> 1); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_block_bad - [DEFAULT] Read bad block marker from the chip | 
 |  * @mtd: MTD device structure | 
 |  * @ofs: offset from device start | 
 |  * | 
 |  * Check, if the block is bad. | 
 |  */ | 
 | static int nand_block_bad(struct mtd_info *mtd, loff_t ofs) | 
 | { | 
 | 	int page, res = 0, i = 0; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	u16 bad; | 
 |  | 
 | 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) | 
 | 		ofs += mtd->erasesize - mtd->writesize; | 
 |  | 
 | 	page = (int)(ofs >> chip->page_shift) & chip->pagemask; | 
 |  | 
 | 	do { | 
 | 		if (chip->options & NAND_BUSWIDTH_16) { | 
 | 			chip->cmdfunc(mtd, NAND_CMD_READOOB, | 
 | 					chip->badblockpos & 0xFE, page); | 
 | 			bad = cpu_to_le16(chip->read_word(mtd)); | 
 | 			if (chip->badblockpos & 0x1) | 
 | 				bad >>= 8; | 
 | 			else | 
 | 				bad &= 0xFF; | 
 | 		} else { | 
 | 			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, | 
 | 					page); | 
 | 			bad = chip->read_byte(mtd); | 
 | 		} | 
 |  | 
 | 		if (likely(chip->badblockbits == 8)) | 
 | 			res = bad != 0xFF; | 
 | 		else | 
 | 			res = hweight8(bad) < chip->badblockbits; | 
 | 		ofs += mtd->writesize; | 
 | 		page = (int)(ofs >> chip->page_shift) & chip->pagemask; | 
 | 		i++; | 
 | 	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE)); | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker | 
 |  * @mtd: MTD device structure | 
 |  * @ofs: offset from device start | 
 |  * | 
 |  * This is the default implementation, which can be overridden by a hardware | 
 |  * specific driver. It provides the details for writing a bad block marker to a | 
 |  * block. | 
 |  */ | 
 | static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	struct mtd_oob_ops ops; | 
 | 	uint8_t buf[2] = { 0, 0 }; | 
 | 	int ret = 0, res, i = 0; | 
 |  | 
 | 	memset(&ops, 0, sizeof(ops)); | 
 | 	ops.oobbuf = buf; | 
 | 	ops.ooboffs = chip->badblockpos; | 
 | 	if (chip->options & NAND_BUSWIDTH_16) { | 
 | 		ops.ooboffs &= ~0x01; | 
 | 		ops.len = ops.ooblen = 2; | 
 | 	} else { | 
 | 		ops.len = ops.ooblen = 1; | 
 | 	} | 
 | 	ops.mode = MTD_OPS_PLACE_OOB; | 
 |  | 
 | 	/* Write to first/last page(s) if necessary */ | 
 | 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) | 
 | 		ofs += mtd->erasesize - mtd->writesize; | 
 | 	do { | 
 | 		res = nand_do_write_oob(mtd, ofs, &ops); | 
 | 		if (!ret) | 
 | 			ret = res; | 
 |  | 
 | 		i++; | 
 | 		ofs += mtd->writesize; | 
 | 	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_block_markbad_lowlevel - mark a block bad | 
 |  * @mtd: MTD device structure | 
 |  * @ofs: offset from device start | 
 |  * | 
 |  * This function performs the generic NAND bad block marking steps (i.e., bad | 
 |  * block table(s) and/or marker(s)). We only allow the hardware driver to | 
 |  * specify how to write bad block markers to OOB (chip->block_markbad). | 
 |  * | 
 |  * We try operations in the following order: | 
 |  *  (1) erase the affected block, to allow OOB marker to be written cleanly | 
 |  *  (2) write bad block marker to OOB area of affected block (unless flag | 
 |  *      NAND_BBT_NO_OOB_BBM is present) | 
 |  *  (3) update the BBT | 
 |  * Note that we retain the first error encountered in (2) or (3), finish the | 
 |  * procedures, and dump the error in the end. | 
 | */ | 
 | static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	int res, ret = 0; | 
 |  | 
 | 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { | 
 | 		struct erase_info einfo; | 
 |  | 
 | 		/* Attempt erase before marking OOB */ | 
 | 		memset(&einfo, 0, sizeof(einfo)); | 
 | 		einfo.mtd = mtd; | 
 | 		einfo.addr = ofs; | 
 | 		einfo.len = 1ULL << chip->phys_erase_shift; | 
 | 		nand_erase_nand(mtd, &einfo, 0); | 
 |  | 
 | 		/* Write bad block marker to OOB */ | 
 | 		nand_get_device(mtd, FL_WRITING); | 
 | 		ret = chip->block_markbad(mtd, ofs); | 
 | 		nand_release_device(mtd); | 
 | 	} | 
 |  | 
 | 	/* Mark block bad in BBT */ | 
 | 	if (chip->bbt) { | 
 | 		res = nand_markbad_bbt(mtd, ofs); | 
 | 		if (!ret) | 
 | 			ret = res; | 
 | 	} | 
 |  | 
 | 	if (!ret) | 
 | 		mtd->ecc_stats.badblocks++; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_check_wp - [GENERIC] check if the chip is write protected | 
 |  * @mtd: MTD device structure | 
 |  * | 
 |  * Check, if the device is write protected. The function expects, that the | 
 |  * device is already selected. | 
 |  */ | 
 | static int nand_check_wp(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	/* Broken xD cards report WP despite being writable */ | 
 | 	if (chip->options & NAND_BROKEN_XD) | 
 | 		return 0; | 
 |  | 
 | 	/* Check the WP bit */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); | 
 | 	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. | 
 |  * @mtd: MTD device structure | 
 |  * @ofs: offset from device start | 
 |  * | 
 |  * Check if the block is marked as reserved. | 
 |  */ | 
 | static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	if (!chip->bbt) | 
 | 		return 0; | 
 | 	/* Return info from the table */ | 
 | 	return nand_isreserved_bbt(mtd, ofs); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_block_checkbad - [GENERIC] Check if a block is marked bad | 
 |  * @mtd: MTD device structure | 
 |  * @ofs: offset from device start | 
 |  * @allowbbt: 1, if its allowed to access the bbt area | 
 |  * | 
 |  * Check, if the block is bad. Either by reading the bad block table or | 
 |  * calling of the scan function. | 
 |  */ | 
 | static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	if (!chip->bbt) | 
 | 		return chip->block_bad(mtd, ofs); | 
 |  | 
 | 	/* Return info from the table */ | 
 | 	return nand_isbad_bbt(mtd, ofs, allowbbt); | 
 | } | 
 |  | 
 | /** | 
 |  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. | 
 |  * @mtd: MTD device structure | 
 |  * @timeo: Timeout | 
 |  * | 
 |  * Helper function for nand_wait_ready used when needing to wait in interrupt | 
 |  * context. | 
 |  */ | 
 | static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	int i; | 
 |  | 
 | 	/* Wait for the device to get ready */ | 
 | 	for (i = 0; i < timeo; i++) { | 
 | 		if (chip->dev_ready(mtd)) | 
 | 			break; | 
 | 		touch_softlockup_watchdog(); | 
 | 		mdelay(1); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. | 
 |  * @mtd: MTD device structure | 
 |  * | 
 |  * Wait for the ready pin after a command, and warn if a timeout occurs. | 
 |  */ | 
 | void nand_wait_ready(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	unsigned long timeo = 400; | 
 |  | 
 | 	if (in_interrupt() || oops_in_progress) | 
 | 		return panic_nand_wait_ready(mtd, timeo); | 
 |  | 
 | 	led_trigger_event(nand_led_trigger, LED_FULL); | 
 | 	/* Wait until command is processed or timeout occurs */ | 
 | 	timeo = jiffies + msecs_to_jiffies(timeo); | 
 | 	do { | 
 | 		if (chip->dev_ready(mtd)) | 
 | 			goto out; | 
 | 		cond_resched(); | 
 | 	} while (time_before(jiffies, timeo)); | 
 |  | 
 | 	if (!chip->dev_ready(mtd)) | 
 | 		pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); | 
 | out: | 
 | 	led_trigger_event(nand_led_trigger, LED_OFF); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nand_wait_ready); | 
 |  | 
 | /** | 
 |  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. | 
 |  * @mtd: MTD device structure | 
 |  * @timeo: Timeout in ms | 
 |  * | 
 |  * Wait for status ready (i.e. command done) or timeout. | 
 |  */ | 
 | static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo) | 
 | { | 
 | 	register struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	timeo = jiffies + msecs_to_jiffies(timeo); | 
 | 	do { | 
 | 		if ((chip->read_byte(mtd) & NAND_STATUS_READY)) | 
 | 			break; | 
 | 		touch_softlockup_watchdog(); | 
 | 	} while (time_before(jiffies, timeo)); | 
 | }; | 
 |  | 
 | /** | 
 |  * nand_command - [DEFAULT] Send command to NAND device | 
 |  * @mtd: MTD device structure | 
 |  * @command: the command to be sent | 
 |  * @column: the column address for this command, -1 if none | 
 |  * @page_addr: the page address for this command, -1 if none | 
 |  * | 
 |  * Send command to NAND device. This function is used for small page devices | 
 |  * (512 Bytes per page). | 
 |  */ | 
 | static void nand_command(struct mtd_info *mtd, unsigned int command, | 
 | 			 int column, int page_addr) | 
 | { | 
 | 	register struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; | 
 |  | 
 | 	/* Write out the command to the device */ | 
 | 	if (command == NAND_CMD_SEQIN) { | 
 | 		int readcmd; | 
 |  | 
 | 		if (column >= mtd->writesize) { | 
 | 			/* OOB area */ | 
 | 			column -= mtd->writesize; | 
 | 			readcmd = NAND_CMD_READOOB; | 
 | 		} else if (column < 256) { | 
 | 			/* First 256 bytes --> READ0 */ | 
 | 			readcmd = NAND_CMD_READ0; | 
 | 		} else { | 
 | 			column -= 256; | 
 | 			readcmd = NAND_CMD_READ1; | 
 | 		} | 
 | 		chip->cmd_ctrl(mtd, readcmd, ctrl); | 
 | 		ctrl &= ~NAND_CTRL_CHANGE; | 
 | 	} | 
 | 	chip->cmd_ctrl(mtd, command, ctrl); | 
 |  | 
 | 	/* Address cycle, when necessary */ | 
 | 	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; | 
 | 	/* Serially input address */ | 
 | 	if (column != -1) { | 
 | 		/* Adjust columns for 16 bit buswidth */ | 
 | 		if (chip->options & NAND_BUSWIDTH_16 && | 
 | 				!nand_opcode_8bits(command)) | 
 | 			column >>= 1; | 
 | 		chip->cmd_ctrl(mtd, column, ctrl); | 
 | 		ctrl &= ~NAND_CTRL_CHANGE; | 
 | 	} | 
 | 	if (page_addr != -1) { | 
 | 		chip->cmd_ctrl(mtd, page_addr, ctrl); | 
 | 		ctrl &= ~NAND_CTRL_CHANGE; | 
 | 		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); | 
 | 		/* One more address cycle for devices > 32MiB */ | 
 | 		if (chip->chipsize > (32 << 20)) | 
 | 			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); | 
 | 	} | 
 | 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); | 
 |  | 
 | 	/* | 
 | 	 * Program and erase have their own busy handlers status and sequential | 
 | 	 * in needs no delay | 
 | 	 */ | 
 | 	switch (command) { | 
 |  | 
 | 	case NAND_CMD_PAGEPROG: | 
 | 	case NAND_CMD_ERASE1: | 
 | 	case NAND_CMD_ERASE2: | 
 | 	case NAND_CMD_SEQIN: | 
 | 	case NAND_CMD_STATUS: | 
 | 		return; | 
 |  | 
 | 	case NAND_CMD_RESET: | 
 | 		if (chip->dev_ready) | 
 | 			break; | 
 | 		udelay(chip->chip_delay); | 
 | 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS, | 
 | 			       NAND_CTRL_CLE | NAND_CTRL_CHANGE); | 
 | 		chip->cmd_ctrl(mtd, | 
 | 			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); | 
 | 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */ | 
 | 		nand_wait_status_ready(mtd, 250); | 
 | 		return; | 
 |  | 
 | 		/* This applies to read commands */ | 
 | 	default: | 
 | 		/* | 
 | 		 * If we don't have access to the busy pin, we apply the given | 
 | 		 * command delay | 
 | 		 */ | 
 | 		if (!chip->dev_ready) { | 
 | 			udelay(chip->chip_delay); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * Apply this short delay always to ensure that we do wait tWB in | 
 | 	 * any case on any machine. | 
 | 	 */ | 
 | 	ndelay(100); | 
 |  | 
 | 	nand_wait_ready(mtd); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_command_lp - [DEFAULT] Send command to NAND large page device | 
 |  * @mtd: MTD device structure | 
 |  * @command: the command to be sent | 
 |  * @column: the column address for this command, -1 if none | 
 |  * @page_addr: the page address for this command, -1 if none | 
 |  * | 
 |  * Send command to NAND device. This is the version for the new large page | 
 |  * devices. We don't have the separate regions as we have in the small page | 
 |  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. | 
 |  */ | 
 | static void nand_command_lp(struct mtd_info *mtd, unsigned int command, | 
 | 			    int column, int page_addr) | 
 | { | 
 | 	register struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	/* Emulate NAND_CMD_READOOB */ | 
 | 	if (command == NAND_CMD_READOOB) { | 
 | 		column += mtd->writesize; | 
 | 		command = NAND_CMD_READ0; | 
 | 	} | 
 |  | 
 | 	/* Command latch cycle */ | 
 | 	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); | 
 |  | 
 | 	if (column != -1 || page_addr != -1) { | 
 | 		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; | 
 |  | 
 | 		/* Serially input address */ | 
 | 		if (column != -1) { | 
 | 			/* Adjust columns for 16 bit buswidth */ | 
 | 			if (chip->options & NAND_BUSWIDTH_16 && | 
 | 					!nand_opcode_8bits(command)) | 
 | 				column >>= 1; | 
 | 			chip->cmd_ctrl(mtd, column, ctrl); | 
 | 			ctrl &= ~NAND_CTRL_CHANGE; | 
 | 			chip->cmd_ctrl(mtd, column >> 8, ctrl); | 
 | 		} | 
 | 		if (page_addr != -1) { | 
 | 			chip->cmd_ctrl(mtd, page_addr, ctrl); | 
 | 			chip->cmd_ctrl(mtd, page_addr >> 8, | 
 | 				       NAND_NCE | NAND_ALE); | 
 | 			/* One more address cycle for devices > 128MiB */ | 
 | 			if (chip->chipsize > (128 << 20)) | 
 | 				chip->cmd_ctrl(mtd, page_addr >> 16, | 
 | 					       NAND_NCE | NAND_ALE); | 
 | 		} | 
 | 	} | 
 | 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); | 
 |  | 
 | 	/* | 
 | 	 * Program and erase have their own busy handlers status, sequential | 
 | 	 * in and status need no delay. | 
 | 	 */ | 
 | 	switch (command) { | 
 |  | 
 | 	case NAND_CMD_CACHEDPROG: | 
 | 	case NAND_CMD_PAGEPROG: | 
 | 	case NAND_CMD_ERASE1: | 
 | 	case NAND_CMD_ERASE2: | 
 | 	case NAND_CMD_SEQIN: | 
 | 	case NAND_CMD_RNDIN: | 
 | 	case NAND_CMD_STATUS: | 
 | 		return; | 
 |  | 
 | 	case NAND_CMD_RESET: | 
 | 		if (chip->dev_ready) | 
 | 			break; | 
 | 		udelay(chip->chip_delay); | 
 | 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS, | 
 | 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); | 
 | 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, | 
 | 			       NAND_NCE | NAND_CTRL_CHANGE); | 
 | 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */ | 
 | 		nand_wait_status_ready(mtd, 250); | 
 | 		return; | 
 |  | 
 | 	case NAND_CMD_RNDOUT: | 
 | 		/* No ready / busy check necessary */ | 
 | 		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART, | 
 | 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); | 
 | 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, | 
 | 			       NAND_NCE | NAND_CTRL_CHANGE); | 
 | 		return; | 
 |  | 
 | 	case NAND_CMD_READ0: | 
 | 		chip->cmd_ctrl(mtd, NAND_CMD_READSTART, | 
 | 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); | 
 | 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, | 
 | 			       NAND_NCE | NAND_CTRL_CHANGE); | 
 |  | 
 | 		/* This applies to read commands */ | 
 | 	default: | 
 | 		/* | 
 | 		 * If we don't have access to the busy pin, we apply the given | 
 | 		 * command delay. | 
 | 		 */ | 
 | 		if (!chip->dev_ready) { | 
 | 			udelay(chip->chip_delay); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Apply this short delay always to ensure that we do wait tWB in | 
 | 	 * any case on any machine. | 
 | 	 */ | 
 | 	ndelay(100); | 
 |  | 
 | 	nand_wait_ready(mtd); | 
 | } | 
 |  | 
 | /** | 
 |  * panic_nand_get_device - [GENERIC] Get chip for selected access | 
 |  * @chip: the nand chip descriptor | 
 |  * @mtd: MTD device structure | 
 |  * @new_state: the state which is requested | 
 |  * | 
 |  * Used when in panic, no locks are taken. | 
 |  */ | 
 | static void panic_nand_get_device(struct nand_chip *chip, | 
 | 		      struct mtd_info *mtd, int new_state) | 
 | { | 
 | 	/* Hardware controller shared among independent devices */ | 
 | 	chip->controller->active = chip; | 
 | 	chip->state = new_state; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_get_device - [GENERIC] Get chip for selected access | 
 |  * @mtd: MTD device structure | 
 |  * @new_state: the state which is requested | 
 |  * | 
 |  * Get the device and lock it for exclusive access | 
 |  */ | 
 | static int | 
 | nand_get_device(struct mtd_info *mtd, int new_state) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	spinlock_t *lock = &chip->controller->lock; | 
 | 	wait_queue_head_t *wq = &chip->controller->wq; | 
 | 	DECLARE_WAITQUEUE(wait, current); | 
 | retry: | 
 | 	spin_lock(lock); | 
 |  | 
 | 	/* Hardware controller shared among independent devices */ | 
 | 	if (!chip->controller->active) | 
 | 		chip->controller->active = chip; | 
 |  | 
 | 	if (chip->controller->active == chip && chip->state == FL_READY) { | 
 | 		chip->state = new_state; | 
 | 		spin_unlock(lock); | 
 | 		return 0; | 
 | 	} | 
 | 	if (new_state == FL_PM_SUSPENDED) { | 
 | 		if (chip->controller->active->state == FL_PM_SUSPENDED) { | 
 | 			chip->state = FL_PM_SUSPENDED; | 
 | 			spin_unlock(lock); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 	add_wait_queue(wq, &wait); | 
 | 	spin_unlock(lock); | 
 | 	schedule(); | 
 | 	remove_wait_queue(wq, &wait); | 
 | 	goto retry; | 
 | } | 
 |  | 
 | /** | 
 |  * panic_nand_wait - [GENERIC] wait until the command is done | 
 |  * @mtd: MTD device structure | 
 |  * @chip: NAND chip structure | 
 |  * @timeo: timeout | 
 |  * | 
 |  * Wait for command done. This is a helper function for nand_wait used when | 
 |  * we are in interrupt context. May happen when in panic and trying to write | 
 |  * an oops through mtdoops. | 
 |  */ | 
 | static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			    unsigned long timeo) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < timeo; i++) { | 
 | 		if (chip->dev_ready) { | 
 | 			if (chip->dev_ready(mtd)) | 
 | 				break; | 
 | 		} else { | 
 | 			if (chip->read_byte(mtd) & NAND_STATUS_READY) | 
 | 				break; | 
 | 		} | 
 | 		mdelay(1); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * nand_wait - [DEFAULT] wait until the command is done | 
 |  * @mtd: MTD device structure | 
 |  * @chip: NAND chip structure | 
 |  * | 
 |  * Wait for command done. This applies to erase and program only. | 
 |  */ | 
 | static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) | 
 | { | 
 |  | 
 | 	int status; | 
 | 	unsigned long timeo = 400; | 
 |  | 
 | 	led_trigger_event(nand_led_trigger, LED_FULL); | 
 |  | 
 | 	/* | 
 | 	 * Apply this short delay always to ensure that we do wait tWB in any | 
 | 	 * case on any machine. | 
 | 	 */ | 
 | 	ndelay(100); | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); | 
 |  | 
 | 	if (in_interrupt() || oops_in_progress) | 
 | 		panic_nand_wait(mtd, chip, timeo); | 
 | 	else { | 
 | 		timeo = jiffies + msecs_to_jiffies(timeo); | 
 | 		do { | 
 | 			if (chip->dev_ready) { | 
 | 				if (chip->dev_ready(mtd)) | 
 | 					break; | 
 | 			} else { | 
 | 				if (chip->read_byte(mtd) & NAND_STATUS_READY) | 
 | 					break; | 
 | 			} | 
 | 			cond_resched(); | 
 | 		} while (time_before(jiffies, timeo)); | 
 | 	} | 
 | 	led_trigger_event(nand_led_trigger, LED_OFF); | 
 |  | 
 | 	status = (int)chip->read_byte(mtd); | 
 | 	/* This can happen if in case of timeout or buggy dev_ready */ | 
 | 	WARN_ON(!(status & NAND_STATUS_READY)); | 
 | 	return status; | 
 | } | 
 |  | 
 | /** | 
 |  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks | 
 |  * @mtd: mtd info | 
 |  * @ofs: offset to start unlock from | 
 |  * @len: length to unlock | 
 |  * @invert: when = 0, unlock the range of blocks within the lower and | 
 |  *                    upper boundary address | 
 |  *          when = 1, unlock the range of blocks outside the boundaries | 
 |  *                    of the lower and upper boundary address | 
 |  * | 
 |  * Returs unlock status. | 
 |  */ | 
 | static int __nand_unlock(struct mtd_info *mtd, loff_t ofs, | 
 | 					uint64_t len, int invert) | 
 | { | 
 | 	int ret = 0; | 
 | 	int status, page; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	/* Submit address of first page to unlock */ | 
 | 	page = ofs >> chip->page_shift; | 
 | 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask); | 
 |  | 
 | 	/* Submit address of last page to unlock */ | 
 | 	page = (ofs + len) >> chip->page_shift; | 
 | 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, | 
 | 				(page | invert) & chip->pagemask); | 
 |  | 
 | 	/* Call wait ready function */ | 
 | 	status = chip->waitfunc(mtd, chip); | 
 | 	/* See if device thinks it succeeded */ | 
 | 	if (status & NAND_STATUS_FAIL) { | 
 | 		pr_debug("%s: error status = 0x%08x\n", | 
 | 					__func__, status); | 
 | 		ret = -EIO; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks | 
 |  * @mtd: mtd info | 
 |  * @ofs: offset to start unlock from | 
 |  * @len: length to unlock | 
 |  * | 
 |  * Returns unlock status. | 
 |  */ | 
 | int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) | 
 | { | 
 | 	int ret = 0; | 
 | 	int chipnr; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	pr_debug("%s: start = 0x%012llx, len = %llu\n", | 
 | 			__func__, (unsigned long long)ofs, len); | 
 |  | 
 | 	if (check_offs_len(mtd, ofs, len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Align to last block address if size addresses end of the device */ | 
 | 	if (ofs + len == mtd->size) | 
 | 		len -= mtd->erasesize; | 
 |  | 
 | 	nand_get_device(mtd, FL_UNLOCKING); | 
 |  | 
 | 	/* Shift to get chip number */ | 
 | 	chipnr = ofs >> chip->chip_shift; | 
 |  | 
 | 	chip->select_chip(mtd, chipnr); | 
 |  | 
 | 	/* | 
 | 	 * Reset the chip. | 
 | 	 * If we want to check the WP through READ STATUS and check the bit 7 | 
 | 	 * we must reset the chip | 
 | 	 * some operation can also clear the bit 7 of status register | 
 | 	 * eg. erase/program a locked block | 
 | 	 */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | 
 |  | 
 | 	/* Check, if it is write protected */ | 
 | 	if (nand_check_wp(mtd)) { | 
 | 		pr_debug("%s: device is write protected!\n", | 
 | 					__func__); | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = __nand_unlock(mtd, ofs, len, 0); | 
 |  | 
 | out: | 
 | 	chip->select_chip(mtd, -1); | 
 | 	nand_release_device(mtd); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(nand_unlock); | 
 |  | 
 | /** | 
 |  * nand_lock - [REPLACEABLE] locks all blocks present in the device | 
 |  * @mtd: mtd info | 
 |  * @ofs: offset to start unlock from | 
 |  * @len: length to unlock | 
 |  * | 
 |  * This feature is not supported in many NAND parts. 'Micron' NAND parts do | 
 |  * have this feature, but it allows only to lock all blocks, not for specified | 
 |  * range for block. Implementing 'lock' feature by making use of 'unlock', for | 
 |  * now. | 
 |  * | 
 |  * Returns lock status. | 
 |  */ | 
 | int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) | 
 | { | 
 | 	int ret = 0; | 
 | 	int chipnr, status, page; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	pr_debug("%s: start = 0x%012llx, len = %llu\n", | 
 | 			__func__, (unsigned long long)ofs, len); | 
 |  | 
 | 	if (check_offs_len(mtd, ofs, len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	nand_get_device(mtd, FL_LOCKING); | 
 |  | 
 | 	/* Shift to get chip number */ | 
 | 	chipnr = ofs >> chip->chip_shift; | 
 |  | 
 | 	chip->select_chip(mtd, chipnr); | 
 |  | 
 | 	/* | 
 | 	 * Reset the chip. | 
 | 	 * If we want to check the WP through READ STATUS and check the bit 7 | 
 | 	 * we must reset the chip | 
 | 	 * some operation can also clear the bit 7 of status register | 
 | 	 * eg. erase/program a locked block | 
 | 	 */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | 
 |  | 
 | 	/* Check, if it is write protected */ | 
 | 	if (nand_check_wp(mtd)) { | 
 | 		pr_debug("%s: device is write protected!\n", | 
 | 					__func__); | 
 | 		status = MTD_ERASE_FAILED; | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Submit address of first page to lock */ | 
 | 	page = ofs >> chip->page_shift; | 
 | 	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask); | 
 |  | 
 | 	/* Call wait ready function */ | 
 | 	status = chip->waitfunc(mtd, chip); | 
 | 	/* See if device thinks it succeeded */ | 
 | 	if (status & NAND_STATUS_FAIL) { | 
 | 		pr_debug("%s: error status = 0x%08x\n", | 
 | 					__func__, status); | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = __nand_unlock(mtd, ofs, len, 0x1); | 
 |  | 
 | out: | 
 | 	chip->select_chip(mtd, -1); | 
 | 	nand_release_device(mtd); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(nand_lock); | 
 |  | 
 | /** | 
 |  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data | 
 |  * @buf: buffer to test | 
 |  * @len: buffer length | 
 |  * @bitflips_threshold: maximum number of bitflips | 
 |  * | 
 |  * Check if a buffer contains only 0xff, which means the underlying region | 
 |  * has been erased and is ready to be programmed. | 
 |  * The bitflips_threshold specify the maximum number of bitflips before | 
 |  * considering the region is not erased. | 
 |  * Note: The logic of this function has been extracted from the memweight | 
 |  * implementation, except that nand_check_erased_buf function exit before | 
 |  * testing the whole buffer if the number of bitflips exceed the | 
 |  * bitflips_threshold value. | 
 |  * | 
 |  * Returns a positive number of bitflips less than or equal to | 
 |  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the | 
 |  * threshold. | 
 |  */ | 
 | static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) | 
 | { | 
 | 	const unsigned char *bitmap = buf; | 
 | 	int bitflips = 0; | 
 | 	int weight; | 
 |  | 
 | 	for (; len && ((uintptr_t)bitmap) % sizeof(long); | 
 | 	     len--, bitmap++) { | 
 | 		weight = hweight8(*bitmap); | 
 | 		bitflips += BITS_PER_BYTE - weight; | 
 | 		if (unlikely(bitflips > bitflips_threshold)) | 
 | 			return -EBADMSG; | 
 | 	} | 
 |  | 
 | 	for (; len >= sizeof(long); | 
 | 	     len -= sizeof(long), bitmap += sizeof(long)) { | 
 | 		weight = hweight_long(*((unsigned long *)bitmap)); | 
 | 		bitflips += BITS_PER_LONG - weight; | 
 | 		if (unlikely(bitflips > bitflips_threshold)) | 
 | 			return -EBADMSG; | 
 | 	} | 
 |  | 
 | 	for (; len > 0; len--, bitmap++) { | 
 | 		weight = hweight8(*bitmap); | 
 | 		bitflips += BITS_PER_BYTE - weight; | 
 | 		if (unlikely(bitflips > bitflips_threshold)) | 
 | 			return -EBADMSG; | 
 | 	} | 
 |  | 
 | 	return bitflips; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only | 
 |  *				 0xff data | 
 |  * @data: data buffer to test | 
 |  * @datalen: data length | 
 |  * @ecc: ECC buffer | 
 |  * @ecclen: ECC length | 
 |  * @extraoob: extra OOB buffer | 
 |  * @extraooblen: extra OOB length | 
 |  * @bitflips_threshold: maximum number of bitflips | 
 |  * | 
 |  * Check if a data buffer and its associated ECC and OOB data contains only | 
 |  * 0xff pattern, which means the underlying region has been erased and is | 
 |  * ready to be programmed. | 
 |  * The bitflips_threshold specify the maximum number of bitflips before | 
 |  * considering the region as not erased. | 
 |  * | 
 |  * Note: | 
 |  * 1/ ECC algorithms are working on pre-defined block sizes which are usually | 
 |  *    different from the NAND page size. When fixing bitflips, ECC engines will | 
 |  *    report the number of errors per chunk, and the NAND core infrastructure | 
 |  *    expect you to return the maximum number of bitflips for the whole page. | 
 |  *    This is why you should always use this function on a single chunk and | 
 |  *    not on the whole page. After checking each chunk you should update your | 
 |  *    max_bitflips value accordingly. | 
 |  * 2/ When checking for bitflips in erased pages you should not only check | 
 |  *    the payload data but also their associated ECC data, because a user might | 
 |  *    have programmed almost all bits to 1 but a few. In this case, we | 
 |  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent | 
 |  *    this case. | 
 |  * 3/ The extraoob argument is optional, and should be used if some of your OOB | 
 |  *    data are protected by the ECC engine. | 
 |  *    It could also be used if you support subpages and want to attach some | 
 |  *    extra OOB data to an ECC chunk. | 
 |  * | 
 |  * Returns a positive number of bitflips less than or equal to | 
 |  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the | 
 |  * threshold. In case of success, the passed buffers are filled with 0xff. | 
 |  */ | 
 | int nand_check_erased_ecc_chunk(void *data, int datalen, | 
 | 				void *ecc, int ecclen, | 
 | 				void *extraoob, int extraooblen, | 
 | 				int bitflips_threshold) | 
 | { | 
 | 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; | 
 |  | 
 | 	data_bitflips = nand_check_erased_buf(data, datalen, | 
 | 					      bitflips_threshold); | 
 | 	if (data_bitflips < 0) | 
 | 		return data_bitflips; | 
 |  | 
 | 	bitflips_threshold -= data_bitflips; | 
 |  | 
 | 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); | 
 | 	if (ecc_bitflips < 0) | 
 | 		return ecc_bitflips; | 
 |  | 
 | 	bitflips_threshold -= ecc_bitflips; | 
 |  | 
 | 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, | 
 | 						  bitflips_threshold); | 
 | 	if (extraoob_bitflips < 0) | 
 | 		return extraoob_bitflips; | 
 |  | 
 | 	if (data_bitflips) | 
 | 		memset(data, 0xff, datalen); | 
 |  | 
 | 	if (ecc_bitflips) | 
 | 		memset(ecc, 0xff, ecclen); | 
 |  | 
 | 	if (extraoob_bitflips) | 
 | 		memset(extraoob, 0xff, extraooblen); | 
 |  | 
 | 	return data_bitflips + ecc_bitflips + extraoob_bitflips; | 
 | } | 
 | EXPORT_SYMBOL(nand_check_erased_ecc_chunk); | 
 |  | 
 | /** | 
 |  * nand_read_page_raw - [INTERN] read raw page data without ecc | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: buffer to store read data | 
 |  * @oob_required: caller requires OOB data read to chip->oob_poi | 
 |  * @page: page number to read | 
 |  * | 
 |  * Not for syndrome calculating ECC controllers, which use a special oob layout. | 
 |  */ | 
 | static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			      uint8_t *buf, int oob_required, int page) | 
 | { | 
 | 	chip->read_buf(mtd, buf, mtd->writesize); | 
 | 	if (oob_required) | 
 | 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: buffer to store read data | 
 |  * @oob_required: caller requires OOB data read to chip->oob_poi | 
 |  * @page: page number to read | 
 |  * | 
 |  * We need a special oob layout and handling even when OOB isn't used. | 
 |  */ | 
 | static int nand_read_page_raw_syndrome(struct mtd_info *mtd, | 
 | 				       struct nand_chip *chip, uint8_t *buf, | 
 | 				       int oob_required, int page) | 
 | { | 
 | 	int eccsize = chip->ecc.size; | 
 | 	int eccbytes = chip->ecc.bytes; | 
 | 	uint8_t *oob = chip->oob_poi; | 
 | 	int steps, size; | 
 |  | 
 | 	for (steps = chip->ecc.steps; steps > 0; steps--) { | 
 | 		chip->read_buf(mtd, buf, eccsize); | 
 | 		buf += eccsize; | 
 |  | 
 | 		if (chip->ecc.prepad) { | 
 | 			chip->read_buf(mtd, oob, chip->ecc.prepad); | 
 | 			oob += chip->ecc.prepad; | 
 | 		} | 
 |  | 
 | 		chip->read_buf(mtd, oob, eccbytes); | 
 | 		oob += eccbytes; | 
 |  | 
 | 		if (chip->ecc.postpad) { | 
 | 			chip->read_buf(mtd, oob, chip->ecc.postpad); | 
 | 			oob += chip->ecc.postpad; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	size = mtd->oobsize - (oob - chip->oob_poi); | 
 | 	if (size) | 
 | 		chip->read_buf(mtd, oob, size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: buffer to store read data | 
 |  * @oob_required: caller requires OOB data read to chip->oob_poi | 
 |  * @page: page number to read | 
 |  */ | 
 | static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				uint8_t *buf, int oob_required, int page) | 
 | { | 
 | 	int i, eccsize = chip->ecc.size; | 
 | 	int eccbytes = chip->ecc.bytes; | 
 | 	int eccsteps = chip->ecc.steps; | 
 | 	uint8_t *p = buf; | 
 | 	uint8_t *ecc_calc = chip->buffers->ecccalc; | 
 | 	uint8_t *ecc_code = chip->buffers->ecccode; | 
 | 	uint32_t *eccpos = chip->ecc.layout->eccpos; | 
 | 	unsigned int max_bitflips = 0; | 
 |  | 
 | 	chip->ecc.read_page_raw(mtd, chip, buf, 1, page); | 
 |  | 
 | 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) | 
 | 		chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
 |  | 
 | 	for (i = 0; i < chip->ecc.total; i++) | 
 | 		ecc_code[i] = chip->oob_poi[eccpos[i]]; | 
 |  | 
 | 	eccsteps = chip->ecc.steps; | 
 | 	p = buf; | 
 |  | 
 | 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
 | 		int stat; | 
 |  | 
 | 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); | 
 | 		if (stat < 0) { | 
 | 			mtd->ecc_stats.failed++; | 
 | 		} else { | 
 | 			mtd->ecc_stats.corrected += stat; | 
 | 			max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
 | 		} | 
 | 	} | 
 | 	return max_bitflips; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @data_offs: offset of requested data within the page | 
 |  * @readlen: data length | 
 |  * @bufpoi: buffer to store read data | 
 |  * @page: page number to read | 
 |  */ | 
 | static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi, | 
 | 			int page) | 
 | { | 
 | 	int start_step, end_step, num_steps; | 
 | 	uint32_t *eccpos = chip->ecc.layout->eccpos; | 
 | 	uint8_t *p; | 
 | 	int data_col_addr, i, gaps = 0; | 
 | 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos; | 
 | 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; | 
 | 	int index; | 
 | 	unsigned int max_bitflips = 0; | 
 |  | 
 | 	/* Column address within the page aligned to ECC size (256bytes) */ | 
 | 	start_step = data_offs / chip->ecc.size; | 
 | 	end_step = (data_offs + readlen - 1) / chip->ecc.size; | 
 | 	num_steps = end_step - start_step + 1; | 
 | 	index = start_step * chip->ecc.bytes; | 
 |  | 
 | 	/* Data size aligned to ECC ecc.size */ | 
 | 	datafrag_len = num_steps * chip->ecc.size; | 
 | 	eccfrag_len = num_steps * chip->ecc.bytes; | 
 |  | 
 | 	data_col_addr = start_step * chip->ecc.size; | 
 | 	/* If we read not a page aligned data */ | 
 | 	if (data_col_addr != 0) | 
 | 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1); | 
 |  | 
 | 	p = bufpoi + data_col_addr; | 
 | 	chip->read_buf(mtd, p, datafrag_len); | 
 |  | 
 | 	/* Calculate ECC */ | 
 | 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) | 
 | 		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]); | 
 |  | 
 | 	/* | 
 | 	 * The performance is faster if we position offsets according to | 
 | 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions. | 
 | 	 */ | 
 | 	for (i = 0; i < eccfrag_len - 1; i++) { | 
 | 		if (eccpos[i + index] + 1 != eccpos[i + index + 1]) { | 
 | 			gaps = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (gaps) { | 
 | 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); | 
 | 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Send the command to read the particular ECC bytes take care | 
 | 		 * about buswidth alignment in read_buf. | 
 | 		 */ | 
 | 		aligned_pos = eccpos[index] & ~(busw - 1); | 
 | 		aligned_len = eccfrag_len; | 
 | 		if (eccpos[index] & (busw - 1)) | 
 | 			aligned_len++; | 
 | 		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1)) | 
 | 			aligned_len++; | 
 |  | 
 | 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, | 
 | 					mtd->writesize + aligned_pos, -1); | 
 | 		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < eccfrag_len; i++) | 
 | 		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]]; | 
 |  | 
 | 	p = bufpoi + data_col_addr; | 
 | 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { | 
 | 		int stat; | 
 |  | 
 | 		stat = chip->ecc.correct(mtd, p, | 
 | 			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]); | 
 | 		if (stat == -EBADMSG && | 
 | 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { | 
 | 			/* check for empty pages with bitflips */ | 
 | 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, | 
 | 						&chip->buffers->ecccode[i], | 
 | 						chip->ecc.bytes, | 
 | 						NULL, 0, | 
 | 						chip->ecc.strength); | 
 | 		} | 
 |  | 
 | 		if (stat < 0) { | 
 | 			mtd->ecc_stats.failed++; | 
 | 		} else { | 
 | 			mtd->ecc_stats.corrected += stat; | 
 | 			max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
 | 		} | 
 | 	} | 
 | 	return max_bitflips; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: buffer to store read data | 
 |  * @oob_required: caller requires OOB data read to chip->oob_poi | 
 |  * @page: page number to read | 
 |  * | 
 |  * Not for syndrome calculating ECC controllers which need a special oob layout. | 
 |  */ | 
 | static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				uint8_t *buf, int oob_required, int page) | 
 | { | 
 | 	int i, eccsize = chip->ecc.size; | 
 | 	int eccbytes = chip->ecc.bytes; | 
 | 	int eccsteps = chip->ecc.steps; | 
 | 	uint8_t *p = buf; | 
 | 	uint8_t *ecc_calc = chip->buffers->ecccalc; | 
 | 	uint8_t *ecc_code = chip->buffers->ecccode; | 
 | 	uint32_t *eccpos = chip->ecc.layout->eccpos; | 
 | 	unsigned int max_bitflips = 0; | 
 |  | 
 | 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
 | 		chip->ecc.hwctl(mtd, NAND_ECC_READ); | 
 | 		chip->read_buf(mtd, p, eccsize); | 
 | 		chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
 | 	} | 
 | 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 |  | 
 | 	for (i = 0; i < chip->ecc.total; i++) | 
 | 		ecc_code[i] = chip->oob_poi[eccpos[i]]; | 
 |  | 
 | 	eccsteps = chip->ecc.steps; | 
 | 	p = buf; | 
 |  | 
 | 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
 | 		int stat; | 
 |  | 
 | 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); | 
 | 		if (stat == -EBADMSG && | 
 | 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { | 
 | 			/* check for empty pages with bitflips */ | 
 | 			stat = nand_check_erased_ecc_chunk(p, eccsize, | 
 | 						&ecc_code[i], eccbytes, | 
 | 						NULL, 0, | 
 | 						chip->ecc.strength); | 
 | 		} | 
 |  | 
 | 		if (stat < 0) { | 
 | 			mtd->ecc_stats.failed++; | 
 | 		} else { | 
 | 			mtd->ecc_stats.corrected += stat; | 
 | 			max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
 | 		} | 
 | 	} | 
 | 	return max_bitflips; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: buffer to store read data | 
 |  * @oob_required: caller requires OOB data read to chip->oob_poi | 
 |  * @page: page number to read | 
 |  * | 
 |  * Hardware ECC for large page chips, require OOB to be read first. For this | 
 |  * ECC mode, the write_page method is re-used from ECC_HW. These methods | 
 |  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with | 
 |  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from | 
 |  * the data area, by overwriting the NAND manufacturer bad block markings. | 
 |  */ | 
 | static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, | 
 | 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page) | 
 | { | 
 | 	int i, eccsize = chip->ecc.size; | 
 | 	int eccbytes = chip->ecc.bytes; | 
 | 	int eccsteps = chip->ecc.steps; | 
 | 	uint8_t *p = buf; | 
 | 	uint8_t *ecc_code = chip->buffers->ecccode; | 
 | 	uint32_t *eccpos = chip->ecc.layout->eccpos; | 
 | 	uint8_t *ecc_calc = chip->buffers->ecccalc; | 
 | 	unsigned int max_bitflips = 0; | 
 |  | 
 | 	/* Read the OOB area first */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); | 
 | 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | 
 |  | 
 | 	for (i = 0; i < chip->ecc.total; i++) | 
 | 		ecc_code[i] = chip->oob_poi[eccpos[i]]; | 
 |  | 
 | 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
 | 		int stat; | 
 |  | 
 | 		chip->ecc.hwctl(mtd, NAND_ECC_READ); | 
 | 		chip->read_buf(mtd, p, eccsize); | 
 | 		chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
 |  | 
 | 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); | 
 | 		if (stat == -EBADMSG && | 
 | 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { | 
 | 			/* check for empty pages with bitflips */ | 
 | 			stat = nand_check_erased_ecc_chunk(p, eccsize, | 
 | 						&ecc_code[i], eccbytes, | 
 | 						NULL, 0, | 
 | 						chip->ecc.strength); | 
 | 		} | 
 |  | 
 | 		if (stat < 0) { | 
 | 			mtd->ecc_stats.failed++; | 
 | 		} else { | 
 | 			mtd->ecc_stats.corrected += stat; | 
 | 			max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
 | 		} | 
 | 	} | 
 | 	return max_bitflips; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: buffer to store read data | 
 |  * @oob_required: caller requires OOB data read to chip->oob_poi | 
 |  * @page: page number to read | 
 |  * | 
 |  * The hw generator calculates the error syndrome automatically. Therefore we | 
 |  * need a special oob layout and handling. | 
 |  */ | 
 | static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				   uint8_t *buf, int oob_required, int page) | 
 | { | 
 | 	int i, eccsize = chip->ecc.size; | 
 | 	int eccbytes = chip->ecc.bytes; | 
 | 	int eccsteps = chip->ecc.steps; | 
 | 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; | 
 | 	uint8_t *p = buf; | 
 | 	uint8_t *oob = chip->oob_poi; | 
 | 	unsigned int max_bitflips = 0; | 
 |  | 
 | 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
 | 		int stat; | 
 |  | 
 | 		chip->ecc.hwctl(mtd, NAND_ECC_READ); | 
 | 		chip->read_buf(mtd, p, eccsize); | 
 |  | 
 | 		if (chip->ecc.prepad) { | 
 | 			chip->read_buf(mtd, oob, chip->ecc.prepad); | 
 | 			oob += chip->ecc.prepad; | 
 | 		} | 
 |  | 
 | 		chip->ecc.hwctl(mtd, NAND_ECC_READSYN); | 
 | 		chip->read_buf(mtd, oob, eccbytes); | 
 | 		stat = chip->ecc.correct(mtd, p, oob, NULL); | 
 |  | 
 | 		oob += eccbytes; | 
 |  | 
 | 		if (chip->ecc.postpad) { | 
 | 			chip->read_buf(mtd, oob, chip->ecc.postpad); | 
 | 			oob += chip->ecc.postpad; | 
 | 		} | 
 |  | 
 | 		if (stat == -EBADMSG && | 
 | 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { | 
 | 			/* check for empty pages with bitflips */ | 
 | 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, | 
 | 							   oob - eccpadbytes, | 
 | 							   eccpadbytes, | 
 | 							   NULL, 0, | 
 | 							   chip->ecc.strength); | 
 | 		} | 
 |  | 
 | 		if (stat < 0) { | 
 | 			mtd->ecc_stats.failed++; | 
 | 		} else { | 
 | 			mtd->ecc_stats.corrected += stat; | 
 | 			max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Calculate remaining oob bytes */ | 
 | 	i = mtd->oobsize - (oob - chip->oob_poi); | 
 | 	if (i) | 
 | 		chip->read_buf(mtd, oob, i); | 
 |  | 
 | 	return max_bitflips; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_transfer_oob - [INTERN] Transfer oob to client buffer | 
 |  * @chip: nand chip structure | 
 |  * @oob: oob destination address | 
 |  * @ops: oob ops structure | 
 |  * @len: size of oob to transfer | 
 |  */ | 
 | static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, | 
 | 				  struct mtd_oob_ops *ops, size_t len) | 
 | { | 
 | 	switch (ops->mode) { | 
 |  | 
 | 	case MTD_OPS_PLACE_OOB: | 
 | 	case MTD_OPS_RAW: | 
 | 		memcpy(oob, chip->oob_poi + ops->ooboffs, len); | 
 | 		return oob + len; | 
 |  | 
 | 	case MTD_OPS_AUTO_OOB: { | 
 | 		struct nand_oobfree *free = chip->ecc.layout->oobfree; | 
 | 		uint32_t boffs = 0, roffs = ops->ooboffs; | 
 | 		size_t bytes = 0; | 
 |  | 
 | 		for (; free->length && len; free++, len -= bytes) { | 
 | 			/* Read request not from offset 0? */ | 
 | 			if (unlikely(roffs)) { | 
 | 				if (roffs >= free->length) { | 
 | 					roffs -= free->length; | 
 | 					continue; | 
 | 				} | 
 | 				boffs = free->offset + roffs; | 
 | 				bytes = min_t(size_t, len, | 
 | 					      (free->length - roffs)); | 
 | 				roffs = 0; | 
 | 			} else { | 
 | 				bytes = min_t(size_t, len, free->length); | 
 | 				boffs = free->offset; | 
 | 			} | 
 | 			memcpy(oob, chip->oob_poi + boffs, bytes); | 
 | 			oob += bytes; | 
 | 		} | 
 | 		return oob; | 
 | 	} | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode | 
 |  * @mtd: MTD device structure | 
 |  * @retry_mode: the retry mode to use | 
 |  * | 
 |  * Some vendors supply a special command to shift the Vt threshold, to be used | 
 |  * when there are too many bitflips in a page (i.e., ECC error). After setting | 
 |  * a new threshold, the host should retry reading the page. | 
 |  */ | 
 | static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	pr_debug("setting READ RETRY mode %d\n", retry_mode); | 
 |  | 
 | 	if (retry_mode >= chip->read_retries) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!chip->setup_read_retry) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	return chip->setup_read_retry(mtd, retry_mode); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_do_read_ops - [INTERN] Read data with ECC | 
 |  * @mtd: MTD device structure | 
 |  * @from: offset to read from | 
 |  * @ops: oob ops structure | 
 |  * | 
 |  * Internal function. Called with chip held. | 
 |  */ | 
 | static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, | 
 | 			    struct mtd_oob_ops *ops) | 
 | { | 
 | 	int chipnr, page, realpage, col, bytes, aligned, oob_required; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	int ret = 0; | 
 | 	uint32_t readlen = ops->len; | 
 | 	uint32_t oobreadlen = ops->ooblen; | 
 | 	uint32_t max_oobsize = mtd_oobavail(mtd, ops); | 
 |  | 
 | 	uint8_t *bufpoi, *oob, *buf; | 
 | 	int use_bufpoi; | 
 | 	unsigned int max_bitflips = 0; | 
 | 	int retry_mode = 0; | 
 | 	bool ecc_fail = false; | 
 |  | 
 | 	chipnr = (int)(from >> chip->chip_shift); | 
 | 	chip->select_chip(mtd, chipnr); | 
 |  | 
 | 	realpage = (int)(from >> chip->page_shift); | 
 | 	page = realpage & chip->pagemask; | 
 |  | 
 | 	col = (int)(from & (mtd->writesize - 1)); | 
 |  | 
 | 	buf = ops->datbuf; | 
 | 	oob = ops->oobbuf; | 
 | 	oob_required = oob ? 1 : 0; | 
 |  | 
 | 	while (1) { | 
 | 		unsigned int ecc_failures = mtd->ecc_stats.failed; | 
 |  | 
 | 		bytes = min(mtd->writesize - col, readlen); | 
 | 		aligned = (bytes == mtd->writesize); | 
 |  | 
 | 		if (!aligned) | 
 | 			use_bufpoi = 1; | 
 | 		else if (chip->options & NAND_USE_BOUNCE_BUFFER) | 
 | 			use_bufpoi = !virt_addr_valid(buf); | 
 | 		else | 
 | 			use_bufpoi = 0; | 
 |  | 
 | 		/* Is the current page in the buffer? */ | 
 | 		if (realpage != chip->pagebuf || oob) { | 
 | 			bufpoi = use_bufpoi ? chip->buffers->databuf : buf; | 
 |  | 
 | 			if (use_bufpoi && aligned) | 
 | 				pr_debug("%s: using read bounce buffer for buf@%p\n", | 
 | 						 __func__, buf); | 
 |  | 
 | read_retry: | 
 | 			chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); | 
 |  | 
 | 			/* | 
 | 			 * Now read the page into the buffer.  Absent an error, | 
 | 			 * the read methods return max bitflips per ecc step. | 
 | 			 */ | 
 | 			if (unlikely(ops->mode == MTD_OPS_RAW)) | 
 | 				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, | 
 | 							      oob_required, | 
 | 							      page); | 
 | 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && | 
 | 				 !oob) | 
 | 				ret = chip->ecc.read_subpage(mtd, chip, | 
 | 							col, bytes, bufpoi, | 
 | 							page); | 
 | 			else | 
 | 				ret = chip->ecc.read_page(mtd, chip, bufpoi, | 
 | 							  oob_required, page); | 
 | 			if (ret < 0) { | 
 | 				if (use_bufpoi) | 
 | 					/* Invalidate page cache */ | 
 | 					chip->pagebuf = -1; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			max_bitflips = max_t(unsigned int, max_bitflips, ret); | 
 |  | 
 | 			/* Transfer not aligned data */ | 
 | 			if (use_bufpoi) { | 
 | 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && | 
 | 				    !(mtd->ecc_stats.failed - ecc_failures) && | 
 | 				    (ops->mode != MTD_OPS_RAW)) { | 
 | 					chip->pagebuf = realpage; | 
 | 					chip->pagebuf_bitflips = ret; | 
 | 				} else { | 
 | 					/* Invalidate page cache */ | 
 | 					chip->pagebuf = -1; | 
 | 				} | 
 | 				memcpy(buf, chip->buffers->databuf + col, bytes); | 
 | 			} | 
 |  | 
 | 			if (unlikely(oob)) { | 
 | 				int toread = min(oobreadlen, max_oobsize); | 
 |  | 
 | 				if (toread) { | 
 | 					oob = nand_transfer_oob(chip, | 
 | 						oob, ops, toread); | 
 | 					oobreadlen -= toread; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (chip->options & NAND_NEED_READRDY) { | 
 | 				/* Apply delay or wait for ready/busy pin */ | 
 | 				if (!chip->dev_ready) | 
 | 					udelay(chip->chip_delay); | 
 | 				else | 
 | 					nand_wait_ready(mtd); | 
 | 			} | 
 |  | 
 | 			if (mtd->ecc_stats.failed - ecc_failures) { | 
 | 				if (retry_mode + 1 < chip->read_retries) { | 
 | 					retry_mode++; | 
 | 					ret = nand_setup_read_retry(mtd, | 
 | 							retry_mode); | 
 | 					if (ret < 0) | 
 | 						break; | 
 |  | 
 | 					/* Reset failures; retry */ | 
 | 					mtd->ecc_stats.failed = ecc_failures; | 
 | 					goto read_retry; | 
 | 				} else { | 
 | 					/* No more retry modes; real failure */ | 
 | 					ecc_fail = true; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			buf += bytes; | 
 | 		} else { | 
 | 			memcpy(buf, chip->buffers->databuf + col, bytes); | 
 | 			buf += bytes; | 
 | 			max_bitflips = max_t(unsigned int, max_bitflips, | 
 | 					     chip->pagebuf_bitflips); | 
 | 		} | 
 |  | 
 | 		readlen -= bytes; | 
 |  | 
 | 		/* Reset to retry mode 0 */ | 
 | 		if (retry_mode) { | 
 | 			ret = nand_setup_read_retry(mtd, 0); | 
 | 			if (ret < 0) | 
 | 				break; | 
 | 			retry_mode = 0; | 
 | 		} | 
 |  | 
 | 		if (!readlen) | 
 | 			break; | 
 |  | 
 | 		/* For subsequent reads align to page boundary */ | 
 | 		col = 0; | 
 | 		/* Increment page address */ | 
 | 		realpage++; | 
 |  | 
 | 		page = realpage & chip->pagemask; | 
 | 		/* Check, if we cross a chip boundary */ | 
 | 		if (!page) { | 
 | 			chipnr++; | 
 | 			chip->select_chip(mtd, -1); | 
 | 			chip->select_chip(mtd, chipnr); | 
 | 		} | 
 | 	} | 
 | 	chip->select_chip(mtd, -1); | 
 |  | 
 | 	ops->retlen = ops->len - (size_t) readlen; | 
 | 	if (oob) | 
 | 		ops->oobretlen = ops->ooblen - oobreadlen; | 
 |  | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (ecc_fail) | 
 | 		return -EBADMSG; | 
 |  | 
 | 	return max_bitflips; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc | 
 |  * @mtd: MTD device structure | 
 |  * @from: offset to read from | 
 |  * @len: number of bytes to read | 
 |  * @retlen: pointer to variable to store the number of read bytes | 
 |  * @buf: the databuffer to put data | 
 |  * | 
 |  * Get hold of the chip and call nand_do_read. | 
 |  */ | 
 | static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, | 
 | 		     size_t *retlen, uint8_t *buf) | 
 | { | 
 | 	struct mtd_oob_ops ops; | 
 | 	int ret; | 
 |  | 
 | 	nand_get_device(mtd, FL_READING); | 
 | 	memset(&ops, 0, sizeof(ops)); | 
 | 	ops.len = len; | 
 | 	ops.datbuf = buf; | 
 | 	ops.mode = MTD_OPS_PLACE_OOB; | 
 | 	ret = nand_do_read_ops(mtd, from, &ops); | 
 | 	*retlen = ops.retlen; | 
 | 	nand_release_device(mtd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @page: page number to read | 
 |  */ | 
 | static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			     int page) | 
 | { | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); | 
 | 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC | 
 |  *			    with syndromes | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @page: page number to read | 
 |  */ | 
 | static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				  int page) | 
 | { | 
 | 	int length = mtd->oobsize; | 
 | 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; | 
 | 	int eccsize = chip->ecc.size; | 
 | 	uint8_t *bufpoi = chip->oob_poi; | 
 | 	int i, toread, sndrnd = 0, pos; | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page); | 
 | 	for (i = 0; i < chip->ecc.steps; i++) { | 
 | 		if (sndrnd) { | 
 | 			pos = eccsize + i * (eccsize + chunk); | 
 | 			if (mtd->writesize > 512) | 
 | 				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1); | 
 | 			else | 
 | 				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page); | 
 | 		} else | 
 | 			sndrnd = 1; | 
 | 		toread = min_t(int, length, chunk); | 
 | 		chip->read_buf(mtd, bufpoi, toread); | 
 | 		bufpoi += toread; | 
 | 		length -= toread; | 
 | 	} | 
 | 	if (length > 0) | 
 | 		chip->read_buf(mtd, bufpoi, length); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @page: page number to write | 
 |  */ | 
 | static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			      int page) | 
 | { | 
 | 	int status = 0; | 
 | 	const uint8_t *buf = chip->oob_poi; | 
 | 	int length = mtd->oobsize; | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); | 
 | 	chip->write_buf(mtd, buf, length); | 
 | 	/* Send command to program the OOB data */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
 |  | 
 | 	status = chip->waitfunc(mtd, chip); | 
 |  | 
 | 	return status & NAND_STATUS_FAIL ? -EIO : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC | 
 |  *			     with syndrome - only for large page flash | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @page: page number to write | 
 |  */ | 
 | static int nand_write_oob_syndrome(struct mtd_info *mtd, | 
 | 				   struct nand_chip *chip, int page) | 
 | { | 
 | 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; | 
 | 	int eccsize = chip->ecc.size, length = mtd->oobsize; | 
 | 	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps; | 
 | 	const uint8_t *bufpoi = chip->oob_poi; | 
 |  | 
 | 	/* | 
 | 	 * data-ecc-data-ecc ... ecc-oob | 
 | 	 * or | 
 | 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob | 
 | 	 */ | 
 | 	if (!chip->ecc.prepad && !chip->ecc.postpad) { | 
 | 		pos = steps * (eccsize + chunk); | 
 | 		steps = 0; | 
 | 	} else | 
 | 		pos = eccsize; | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page); | 
 | 	for (i = 0; i < steps; i++) { | 
 | 		if (sndcmd) { | 
 | 			if (mtd->writesize <= 512) { | 
 | 				uint32_t fill = 0xFFFFFFFF; | 
 |  | 
 | 				len = eccsize; | 
 | 				while (len > 0) { | 
 | 					int num = min_t(int, len, 4); | 
 | 					chip->write_buf(mtd, (uint8_t *)&fill, | 
 | 							num); | 
 | 					len -= num; | 
 | 				} | 
 | 			} else { | 
 | 				pos = eccsize + i * (eccsize + chunk); | 
 | 				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1); | 
 | 			} | 
 | 		} else | 
 | 			sndcmd = 1; | 
 | 		len = min_t(int, length, chunk); | 
 | 		chip->write_buf(mtd, bufpoi, len); | 
 | 		bufpoi += len; | 
 | 		length -= len; | 
 | 	} | 
 | 	if (length > 0) | 
 | 		chip->write_buf(mtd, bufpoi, length); | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
 | 	status = chip->waitfunc(mtd, chip); | 
 |  | 
 | 	return status & NAND_STATUS_FAIL ? -EIO : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_do_read_oob - [INTERN] NAND read out-of-band | 
 |  * @mtd: MTD device structure | 
 |  * @from: offset to read from | 
 |  * @ops: oob operations description structure | 
 |  * | 
 |  * NAND read out-of-band data from the spare area. | 
 |  */ | 
 | static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, | 
 | 			    struct mtd_oob_ops *ops) | 
 | { | 
 | 	int page, realpage, chipnr; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	struct mtd_ecc_stats stats; | 
 | 	int readlen = ops->ooblen; | 
 | 	int len; | 
 | 	uint8_t *buf = ops->oobbuf; | 
 | 	int ret = 0; | 
 |  | 
 | 	pr_debug("%s: from = 0x%08Lx, len = %i\n", | 
 | 			__func__, (unsigned long long)from, readlen); | 
 |  | 
 | 	stats = mtd->ecc_stats; | 
 |  | 
 | 	len = mtd_oobavail(mtd, ops); | 
 |  | 
 | 	if (unlikely(ops->ooboffs >= len)) { | 
 | 		pr_debug("%s: attempt to start read outside oob\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Do not allow reads past end of device */ | 
 | 	if (unlikely(from >= mtd->size || | 
 | 		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) - | 
 | 					(from >> chip->page_shift)) * len)) { | 
 | 		pr_debug("%s: attempt to read beyond end of device\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	chipnr = (int)(from >> chip->chip_shift); | 
 | 	chip->select_chip(mtd, chipnr); | 
 |  | 
 | 	/* Shift to get page */ | 
 | 	realpage = (int)(from >> chip->page_shift); | 
 | 	page = realpage & chip->pagemask; | 
 |  | 
 | 	while (1) { | 
 | 		if (ops->mode == MTD_OPS_RAW) | 
 | 			ret = chip->ecc.read_oob_raw(mtd, chip, page); | 
 | 		else | 
 | 			ret = chip->ecc.read_oob(mtd, chip, page); | 
 |  | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		len = min(len, readlen); | 
 | 		buf = nand_transfer_oob(chip, buf, ops, len); | 
 |  | 
 | 		if (chip->options & NAND_NEED_READRDY) { | 
 | 			/* Apply delay or wait for ready/busy pin */ | 
 | 			if (!chip->dev_ready) | 
 | 				udelay(chip->chip_delay); | 
 | 			else | 
 | 				nand_wait_ready(mtd); | 
 | 		} | 
 |  | 
 | 		readlen -= len; | 
 | 		if (!readlen) | 
 | 			break; | 
 |  | 
 | 		/* Increment page address */ | 
 | 		realpage++; | 
 |  | 
 | 		page = realpage & chip->pagemask; | 
 | 		/* Check, if we cross a chip boundary */ | 
 | 		if (!page) { | 
 | 			chipnr++; | 
 | 			chip->select_chip(mtd, -1); | 
 | 			chip->select_chip(mtd, chipnr); | 
 | 		} | 
 | 	} | 
 | 	chip->select_chip(mtd, -1); | 
 |  | 
 | 	ops->oobretlen = ops->ooblen - readlen; | 
 |  | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (mtd->ecc_stats.failed - stats.failed) | 
 | 		return -EBADMSG; | 
 |  | 
 | 	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band | 
 |  * @mtd: MTD device structure | 
 |  * @from: offset to read from | 
 |  * @ops: oob operation description structure | 
 |  * | 
 |  * NAND read data and/or out-of-band data. | 
 |  */ | 
 | static int nand_read_oob(struct mtd_info *mtd, loff_t from, | 
 | 			 struct mtd_oob_ops *ops) | 
 | { | 
 | 	int ret = -ENOTSUPP; | 
 |  | 
 | 	ops->retlen = 0; | 
 |  | 
 | 	/* Do not allow reads past end of device */ | 
 | 	if (ops->datbuf && (from + ops->len) > mtd->size) { | 
 | 		pr_debug("%s: attempt to read beyond end of device\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	nand_get_device(mtd, FL_READING); | 
 |  | 
 | 	switch (ops->mode) { | 
 | 	case MTD_OPS_PLACE_OOB: | 
 | 	case MTD_OPS_AUTO_OOB: | 
 | 	case MTD_OPS_RAW: | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!ops->datbuf) | 
 | 		ret = nand_do_read_oob(mtd, from, ops); | 
 | 	else | 
 | 		ret = nand_do_read_ops(mtd, from, ops); | 
 |  | 
 | out: | 
 | 	nand_release_device(mtd); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * nand_write_page_raw - [INTERN] raw page write function | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: data buffer | 
 |  * @oob_required: must write chip->oob_poi to OOB | 
 |  * @page: page number to write | 
 |  * | 
 |  * Not for syndrome calculating ECC controllers, which use a special oob layout. | 
 |  */ | 
 | static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			       const uint8_t *buf, int oob_required, int page) | 
 | { | 
 | 	chip->write_buf(mtd, buf, mtd->writesize); | 
 | 	if (oob_required) | 
 | 		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write_page_raw_syndrome - [INTERN] raw page write function | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: data buffer | 
 |  * @oob_required: must write chip->oob_poi to OOB | 
 |  * @page: page number to write | 
 |  * | 
 |  * We need a special oob layout and handling even when ECC isn't checked. | 
 |  */ | 
 | static int nand_write_page_raw_syndrome(struct mtd_info *mtd, | 
 | 					struct nand_chip *chip, | 
 | 					const uint8_t *buf, int oob_required, | 
 | 					int page) | 
 | { | 
 | 	int eccsize = chip->ecc.size; | 
 | 	int eccbytes = chip->ecc.bytes; | 
 | 	uint8_t *oob = chip->oob_poi; | 
 | 	int steps, size; | 
 |  | 
 | 	for (steps = chip->ecc.steps; steps > 0; steps--) { | 
 | 		chip->write_buf(mtd, buf, eccsize); | 
 | 		buf += eccsize; | 
 |  | 
 | 		if (chip->ecc.prepad) { | 
 | 			chip->write_buf(mtd, oob, chip->ecc.prepad); | 
 | 			oob += chip->ecc.prepad; | 
 | 		} | 
 |  | 
 | 		chip->write_buf(mtd, oob, eccbytes); | 
 | 		oob += eccbytes; | 
 |  | 
 | 		if (chip->ecc.postpad) { | 
 | 			chip->write_buf(mtd, oob, chip->ecc.postpad); | 
 | 			oob += chip->ecc.postpad; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	size = mtd->oobsize - (oob - chip->oob_poi); | 
 | 	if (size) | 
 | 		chip->write_buf(mtd, oob, size); | 
 |  | 
 | 	return 0; | 
 | } | 
 | /** | 
 |  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: data buffer | 
 |  * @oob_required: must write chip->oob_poi to OOB | 
 |  * @page: page number to write | 
 |  */ | 
 | static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				 const uint8_t *buf, int oob_required, | 
 | 				 int page) | 
 | { | 
 | 	int i, eccsize = chip->ecc.size; | 
 | 	int eccbytes = chip->ecc.bytes; | 
 | 	int eccsteps = chip->ecc.steps; | 
 | 	uint8_t *ecc_calc = chip->buffers->ecccalc; | 
 | 	const uint8_t *p = buf; | 
 | 	uint32_t *eccpos = chip->ecc.layout->eccpos; | 
 |  | 
 | 	/* Software ECC calculation */ | 
 | 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) | 
 | 		chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
 |  | 
 | 	for (i = 0; i < chip->ecc.total; i++) | 
 | 		chip->oob_poi[eccpos[i]] = ecc_calc[i]; | 
 |  | 
 | 	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: data buffer | 
 |  * @oob_required: must write chip->oob_poi to OOB | 
 |  * @page: page number to write | 
 |  */ | 
 | static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				  const uint8_t *buf, int oob_required, | 
 | 				  int page) | 
 | { | 
 | 	int i, eccsize = chip->ecc.size; | 
 | 	int eccbytes = chip->ecc.bytes; | 
 | 	int eccsteps = chip->ecc.steps; | 
 | 	uint8_t *ecc_calc = chip->buffers->ecccalc; | 
 | 	const uint8_t *p = buf; | 
 | 	uint32_t *eccpos = chip->ecc.layout->eccpos; | 
 |  | 
 | 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
 | 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE); | 
 | 		chip->write_buf(mtd, p, eccsize); | 
 | 		chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < chip->ecc.total; i++) | 
 | 		chip->oob_poi[eccpos[i]] = ecc_calc[i]; | 
 |  | 
 | 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write | 
 |  * @mtd:	mtd info structure | 
 |  * @chip:	nand chip info structure | 
 |  * @offset:	column address of subpage within the page | 
 |  * @data_len:	data length | 
 |  * @buf:	data buffer | 
 |  * @oob_required: must write chip->oob_poi to OOB | 
 |  * @page: page number to write | 
 |  */ | 
 | static int nand_write_subpage_hwecc(struct mtd_info *mtd, | 
 | 				struct nand_chip *chip, uint32_t offset, | 
 | 				uint32_t data_len, const uint8_t *buf, | 
 | 				int oob_required, int page) | 
 | { | 
 | 	uint8_t *oob_buf  = chip->oob_poi; | 
 | 	uint8_t *ecc_calc = chip->buffers->ecccalc; | 
 | 	int ecc_size      = chip->ecc.size; | 
 | 	int ecc_bytes     = chip->ecc.bytes; | 
 | 	int ecc_steps     = chip->ecc.steps; | 
 | 	uint32_t *eccpos  = chip->ecc.layout->eccpos; | 
 | 	uint32_t start_step = offset / ecc_size; | 
 | 	uint32_t end_step   = (offset + data_len - 1) / ecc_size; | 
 | 	int oob_bytes       = mtd->oobsize / ecc_steps; | 
 | 	int step, i; | 
 |  | 
 | 	for (step = 0; step < ecc_steps; step++) { | 
 | 		/* configure controller for WRITE access */ | 
 | 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE); | 
 |  | 
 | 		/* write data (untouched subpages already masked by 0xFF) */ | 
 | 		chip->write_buf(mtd, buf, ecc_size); | 
 |  | 
 | 		/* mask ECC of un-touched subpages by padding 0xFF */ | 
 | 		if ((step < start_step) || (step > end_step)) | 
 | 			memset(ecc_calc, 0xff, ecc_bytes); | 
 | 		else | 
 | 			chip->ecc.calculate(mtd, buf, ecc_calc); | 
 |  | 
 | 		/* mask OOB of un-touched subpages by padding 0xFF */ | 
 | 		/* if oob_required, preserve OOB metadata of written subpage */ | 
 | 		if (!oob_required || (step < start_step) || (step > end_step)) | 
 | 			memset(oob_buf, 0xff, oob_bytes); | 
 |  | 
 | 		buf += ecc_size; | 
 | 		ecc_calc += ecc_bytes; | 
 | 		oob_buf  += oob_bytes; | 
 | 	} | 
 |  | 
 | 	/* copy calculated ECC for whole page to chip->buffer->oob */ | 
 | 	/* this include masked-value(0xFF) for unwritten subpages */ | 
 | 	ecc_calc = chip->buffers->ecccalc; | 
 | 	for (i = 0; i < chip->ecc.total; i++) | 
 | 		chip->oob_poi[eccpos[i]] = ecc_calc[i]; | 
 |  | 
 | 	/* write OOB buffer to NAND device */ | 
 | 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write | 
 |  * @mtd: mtd info structure | 
 |  * @chip: nand chip info structure | 
 |  * @buf: data buffer | 
 |  * @oob_required: must write chip->oob_poi to OOB | 
 |  * @page: page number to write | 
 |  * | 
 |  * The hw generator calculates the error syndrome automatically. Therefore we | 
 |  * need a special oob layout and handling. | 
 |  */ | 
 | static int nand_write_page_syndrome(struct mtd_info *mtd, | 
 | 				    struct nand_chip *chip, | 
 | 				    const uint8_t *buf, int oob_required, | 
 | 				    int page) | 
 | { | 
 | 	int i, eccsize = chip->ecc.size; | 
 | 	int eccbytes = chip->ecc.bytes; | 
 | 	int eccsteps = chip->ecc.steps; | 
 | 	const uint8_t *p = buf; | 
 | 	uint8_t *oob = chip->oob_poi; | 
 |  | 
 | 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
 |  | 
 | 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE); | 
 | 		chip->write_buf(mtd, p, eccsize); | 
 |  | 
 | 		if (chip->ecc.prepad) { | 
 | 			chip->write_buf(mtd, oob, chip->ecc.prepad); | 
 | 			oob += chip->ecc.prepad; | 
 | 		} | 
 |  | 
 | 		chip->ecc.calculate(mtd, p, oob); | 
 | 		chip->write_buf(mtd, oob, eccbytes); | 
 | 		oob += eccbytes; | 
 |  | 
 | 		if (chip->ecc.postpad) { | 
 | 			chip->write_buf(mtd, oob, chip->ecc.postpad); | 
 | 			oob += chip->ecc.postpad; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Calculate remaining oob bytes */ | 
 | 	i = mtd->oobsize - (oob - chip->oob_poi); | 
 | 	if (i) | 
 | 		chip->write_buf(mtd, oob, i); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write_page - [REPLACEABLE] write one page | 
 |  * @mtd: MTD device structure | 
 |  * @chip: NAND chip descriptor | 
 |  * @offset: address offset within the page | 
 |  * @data_len: length of actual data to be written | 
 |  * @buf: the data to write | 
 |  * @oob_required: must write chip->oob_poi to OOB | 
 |  * @page: page number to write | 
 |  * @cached: cached programming | 
 |  * @raw: use _raw version of write_page | 
 |  */ | 
 | static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 		uint32_t offset, int data_len, const uint8_t *buf, | 
 | 		int oob_required, int page, int cached, int raw) | 
 | { | 
 | 	int status, subpage; | 
 |  | 
 | 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && | 
 | 		chip->ecc.write_subpage) | 
 | 		subpage = offset || (data_len < mtd->writesize); | 
 | 	else | 
 | 		subpage = 0; | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); | 
 |  | 
 | 	if (unlikely(raw)) | 
 | 		status = chip->ecc.write_page_raw(mtd, chip, buf, | 
 | 						  oob_required, page); | 
 | 	else if (subpage) | 
 | 		status = chip->ecc.write_subpage(mtd, chip, offset, data_len, | 
 | 						 buf, oob_required, page); | 
 | 	else | 
 | 		status = chip->ecc.write_page(mtd, chip, buf, oob_required, | 
 | 					      page); | 
 |  | 
 | 	if (status < 0) | 
 | 		return status; | 
 |  | 
 | 	/* | 
 | 	 * Cached progamming disabled for now. Not sure if it's worth the | 
 | 	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s). | 
 | 	 */ | 
 | 	cached = 0; | 
 |  | 
 | 	if (!cached || !NAND_HAS_CACHEPROG(chip)) { | 
 |  | 
 | 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
 | 		status = chip->waitfunc(mtd, chip); | 
 | 		/* | 
 | 		 * See if operation failed and additional status checks are | 
 | 		 * available. | 
 | 		 */ | 
 | 		if ((status & NAND_STATUS_FAIL) && (chip->errstat)) | 
 | 			status = chip->errstat(mtd, chip, FL_WRITING, status, | 
 | 					       page); | 
 |  | 
 | 		if (status & NAND_STATUS_FAIL) | 
 | 			return -EIO; | 
 | 	} else { | 
 | 		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1); | 
 | 		status = chip->waitfunc(mtd, chip); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_fill_oob - [INTERN] Transfer client buffer to oob | 
 |  * @mtd: MTD device structure | 
 |  * @oob: oob data buffer | 
 |  * @len: oob data write length | 
 |  * @ops: oob ops structure | 
 |  */ | 
 | static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, | 
 | 			      struct mtd_oob_ops *ops) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	/* | 
 | 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB | 
 | 	 * data from a previous OOB read. | 
 | 	 */ | 
 | 	memset(chip->oob_poi, 0xff, mtd->oobsize); | 
 |  | 
 | 	switch (ops->mode) { | 
 |  | 
 | 	case MTD_OPS_PLACE_OOB: | 
 | 	case MTD_OPS_RAW: | 
 | 		memcpy(chip->oob_poi + ops->ooboffs, oob, len); | 
 | 		return oob + len; | 
 |  | 
 | 	case MTD_OPS_AUTO_OOB: { | 
 | 		struct nand_oobfree *free = chip->ecc.layout->oobfree; | 
 | 		uint32_t boffs = 0, woffs = ops->ooboffs; | 
 | 		size_t bytes = 0; | 
 |  | 
 | 		for (; free->length && len; free++, len -= bytes) { | 
 | 			/* Write request not from offset 0? */ | 
 | 			if (unlikely(woffs)) { | 
 | 				if (woffs >= free->length) { | 
 | 					woffs -= free->length; | 
 | 					continue; | 
 | 				} | 
 | 				boffs = free->offset + woffs; | 
 | 				bytes = min_t(size_t, len, | 
 | 					      (free->length - woffs)); | 
 | 				woffs = 0; | 
 | 			} else { | 
 | 				bytes = min_t(size_t, len, free->length); | 
 | 				boffs = free->offset; | 
 | 			} | 
 | 			memcpy(chip->oob_poi + boffs, oob, bytes); | 
 | 			oob += bytes; | 
 | 		} | 
 | 		return oob; | 
 | 	} | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0) | 
 |  | 
 | /** | 
 |  * nand_do_write_ops - [INTERN] NAND write with ECC | 
 |  * @mtd: MTD device structure | 
 |  * @to: offset to write to | 
 |  * @ops: oob operations description structure | 
 |  * | 
 |  * NAND write with ECC. | 
 |  */ | 
 | static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, | 
 | 			     struct mtd_oob_ops *ops) | 
 | { | 
 | 	int chipnr, realpage, page, blockmask, column; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	uint32_t writelen = ops->len; | 
 |  | 
 | 	uint32_t oobwritelen = ops->ooblen; | 
 | 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops); | 
 |  | 
 | 	uint8_t *oob = ops->oobbuf; | 
 | 	uint8_t *buf = ops->datbuf; | 
 | 	int ret; | 
 | 	int oob_required = oob ? 1 : 0; | 
 |  | 
 | 	ops->retlen = 0; | 
 | 	if (!writelen) | 
 | 		return 0; | 
 |  | 
 | 	/* Reject writes, which are not page aligned */ | 
 | 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { | 
 | 		pr_notice("%s: attempt to write non page aligned data\n", | 
 | 			   __func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	column = to & (mtd->writesize - 1); | 
 |  | 
 | 	chipnr = (int)(to >> chip->chip_shift); | 
 | 	chip->select_chip(mtd, chipnr); | 
 |  | 
 | 	/* Check, if it is write protected */ | 
 | 	if (nand_check_wp(mtd)) { | 
 | 		ret = -EIO; | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	realpage = (int)(to >> chip->page_shift); | 
 | 	page = realpage & chip->pagemask; | 
 | 	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; | 
 |  | 
 | 	/* Invalidate the page cache, when we write to the cached page */ | 
 | 	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) && | 
 | 	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len)) | 
 | 		chip->pagebuf = -1; | 
 |  | 
 | 	/* Don't allow multipage oob writes with offset */ | 
 | 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { | 
 | 		ret = -EINVAL; | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		int bytes = mtd->writesize; | 
 | 		int cached = writelen > bytes && page != blockmask; | 
 | 		uint8_t *wbuf = buf; | 
 | 		int use_bufpoi; | 
 | 		int part_pagewr = (column || writelen < (mtd->writesize - 1)); | 
 |  | 
 | 		if (part_pagewr) | 
 | 			use_bufpoi = 1; | 
 | 		else if (chip->options & NAND_USE_BOUNCE_BUFFER) | 
 | 			use_bufpoi = !virt_addr_valid(buf); | 
 | 		else | 
 | 			use_bufpoi = 0; | 
 |  | 
 | 		/* Partial page write?, or need to use bounce buffer */ | 
 | 		if (use_bufpoi) { | 
 | 			pr_debug("%s: using write bounce buffer for buf@%p\n", | 
 | 					 __func__, buf); | 
 | 			cached = 0; | 
 | 			if (part_pagewr) | 
 | 				bytes = min_t(int, bytes - column, writelen); | 
 | 			chip->pagebuf = -1; | 
 | 			memset(chip->buffers->databuf, 0xff, mtd->writesize); | 
 | 			memcpy(&chip->buffers->databuf[column], buf, bytes); | 
 | 			wbuf = chip->buffers->databuf; | 
 | 		} | 
 |  | 
 | 		if (unlikely(oob)) { | 
 | 			size_t len = min(oobwritelen, oobmaxlen); | 
 | 			oob = nand_fill_oob(mtd, oob, len, ops); | 
 | 			oobwritelen -= len; | 
 | 		} else { | 
 | 			/* We still need to erase leftover OOB data */ | 
 | 			memset(chip->oob_poi, 0xff, mtd->oobsize); | 
 | 		} | 
 | 		ret = chip->write_page(mtd, chip, column, bytes, wbuf, | 
 | 					oob_required, page, cached, | 
 | 					(ops->mode == MTD_OPS_RAW)); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		writelen -= bytes; | 
 | 		if (!writelen) | 
 | 			break; | 
 |  | 
 | 		column = 0; | 
 | 		buf += bytes; | 
 | 		realpage++; | 
 |  | 
 | 		page = realpage & chip->pagemask; | 
 | 		/* Check, if we cross a chip boundary */ | 
 | 		if (!page) { | 
 | 			chipnr++; | 
 | 			chip->select_chip(mtd, -1); | 
 | 			chip->select_chip(mtd, chipnr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ops->retlen = ops->len - writelen; | 
 | 	if (unlikely(oob)) | 
 | 		ops->oobretlen = ops->ooblen; | 
 |  | 
 | err_out: | 
 | 	chip->select_chip(mtd, -1); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * panic_nand_write - [MTD Interface] NAND write with ECC | 
 |  * @mtd: MTD device structure | 
 |  * @to: offset to write to | 
 |  * @len: number of bytes to write | 
 |  * @retlen: pointer to variable to store the number of written bytes | 
 |  * @buf: the data to write | 
 |  * | 
 |  * NAND write with ECC. Used when performing writes in interrupt context, this | 
 |  * may for example be called by mtdoops when writing an oops while in panic. | 
 |  */ | 
 | static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, | 
 | 			    size_t *retlen, const uint8_t *buf) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	struct mtd_oob_ops ops; | 
 | 	int ret; | 
 |  | 
 | 	/* Wait for the device to get ready */ | 
 | 	panic_nand_wait(mtd, chip, 400); | 
 |  | 
 | 	/* Grab the device */ | 
 | 	panic_nand_get_device(chip, mtd, FL_WRITING); | 
 |  | 
 | 	memset(&ops, 0, sizeof(ops)); | 
 | 	ops.len = len; | 
 | 	ops.datbuf = (uint8_t *)buf; | 
 | 	ops.mode = MTD_OPS_PLACE_OOB; | 
 |  | 
 | 	ret = nand_do_write_ops(mtd, to, &ops); | 
 |  | 
 | 	*retlen = ops.retlen; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write - [MTD Interface] NAND write with ECC | 
 |  * @mtd: MTD device structure | 
 |  * @to: offset to write to | 
 |  * @len: number of bytes to write | 
 |  * @retlen: pointer to variable to store the number of written bytes | 
 |  * @buf: the data to write | 
 |  * | 
 |  * NAND write with ECC. | 
 |  */ | 
 | static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, | 
 | 			  size_t *retlen, const uint8_t *buf) | 
 | { | 
 | 	struct mtd_oob_ops ops; | 
 | 	int ret; | 
 |  | 
 | 	nand_get_device(mtd, FL_WRITING); | 
 | 	memset(&ops, 0, sizeof(ops)); | 
 | 	ops.len = len; | 
 | 	ops.datbuf = (uint8_t *)buf; | 
 | 	ops.mode = MTD_OPS_PLACE_OOB; | 
 | 	ret = nand_do_write_ops(mtd, to, &ops); | 
 | 	*retlen = ops.retlen; | 
 | 	nand_release_device(mtd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_do_write_oob - [MTD Interface] NAND write out-of-band | 
 |  * @mtd: MTD device structure | 
 |  * @to: offset to write to | 
 |  * @ops: oob operation description structure | 
 |  * | 
 |  * NAND write out-of-band. | 
 |  */ | 
 | static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, | 
 | 			     struct mtd_oob_ops *ops) | 
 | { | 
 | 	int chipnr, page, status, len; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	pr_debug("%s: to = 0x%08x, len = %i\n", | 
 | 			 __func__, (unsigned int)to, (int)ops->ooblen); | 
 |  | 
 | 	len = mtd_oobavail(mtd, ops); | 
 |  | 
 | 	/* Do not allow write past end of page */ | 
 | 	if ((ops->ooboffs + ops->ooblen) > len) { | 
 | 		pr_debug("%s: attempt to write past end of page\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (unlikely(ops->ooboffs >= len)) { | 
 | 		pr_debug("%s: attempt to start write outside oob\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Do not allow write past end of device */ | 
 | 	if (unlikely(to >= mtd->size || | 
 | 		     ops->ooboffs + ops->ooblen > | 
 | 			((mtd->size >> chip->page_shift) - | 
 | 			 (to >> chip->page_shift)) * len)) { | 
 | 		pr_debug("%s: attempt to write beyond end of device\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	chipnr = (int)(to >> chip->chip_shift); | 
 | 	chip->select_chip(mtd, chipnr); | 
 |  | 
 | 	/* Shift to get page */ | 
 | 	page = (int)(to >> chip->page_shift); | 
 |  | 
 | 	/* | 
 | 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one | 
 | 	 * of my DiskOnChip 2000 test units) will clear the whole data page too | 
 | 	 * if we don't do this. I have no clue why, but I seem to have 'fixed' | 
 | 	 * it in the doc2000 driver in August 1999.  dwmw2. | 
 | 	 */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | 
 |  | 
 | 	/* Check, if it is write protected */ | 
 | 	if (nand_check_wp(mtd)) { | 
 | 		chip->select_chip(mtd, -1); | 
 | 		return -EROFS; | 
 | 	} | 
 |  | 
 | 	/* Invalidate the page cache, if we write to the cached page */ | 
 | 	if (page == chip->pagebuf) | 
 | 		chip->pagebuf = -1; | 
 |  | 
 | 	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); | 
 |  | 
 | 	if (ops->mode == MTD_OPS_RAW) | 
 | 		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); | 
 | 	else | 
 | 		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); | 
 |  | 
 | 	chip->select_chip(mtd, -1); | 
 |  | 
 | 	if (status) | 
 | 		return status; | 
 |  | 
 | 	ops->oobretlen = ops->ooblen; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band | 
 |  * @mtd: MTD device structure | 
 |  * @to: offset to write to | 
 |  * @ops: oob operation description structure | 
 |  */ | 
 | static int nand_write_oob(struct mtd_info *mtd, loff_t to, | 
 | 			  struct mtd_oob_ops *ops) | 
 | { | 
 | 	int ret = -ENOTSUPP; | 
 |  | 
 | 	ops->retlen = 0; | 
 |  | 
 | 	/* Do not allow writes past end of device */ | 
 | 	if (ops->datbuf && (to + ops->len) > mtd->size) { | 
 | 		pr_debug("%s: attempt to write beyond end of device\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	nand_get_device(mtd, FL_WRITING); | 
 |  | 
 | 	switch (ops->mode) { | 
 | 	case MTD_OPS_PLACE_OOB: | 
 | 	case MTD_OPS_AUTO_OOB: | 
 | 	case MTD_OPS_RAW: | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!ops->datbuf) | 
 | 		ret = nand_do_write_oob(mtd, to, ops); | 
 | 	else | 
 | 		ret = nand_do_write_ops(mtd, to, ops); | 
 |  | 
 | out: | 
 | 	nand_release_device(mtd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * single_erase - [GENERIC] NAND standard block erase command function | 
 |  * @mtd: MTD device structure | 
 |  * @page: the page address of the block which will be erased | 
 |  * | 
 |  * Standard erase command for NAND chips. Returns NAND status. | 
 |  */ | 
 | static int single_erase(struct mtd_info *mtd, int page) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	/* Send commands to erase a block */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); | 
 | 	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); | 
 |  | 
 | 	return chip->waitfunc(mtd, chip); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_erase - [MTD Interface] erase block(s) | 
 |  * @mtd: MTD device structure | 
 |  * @instr: erase instruction | 
 |  * | 
 |  * Erase one ore more blocks. | 
 |  */ | 
 | static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) | 
 | { | 
 | 	return nand_erase_nand(mtd, instr, 0); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_erase_nand - [INTERN] erase block(s) | 
 |  * @mtd: MTD device structure | 
 |  * @instr: erase instruction | 
 |  * @allowbbt: allow erasing the bbt area | 
 |  * | 
 |  * Erase one ore more blocks. | 
 |  */ | 
 | int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, | 
 | 		    int allowbbt) | 
 | { | 
 | 	int page, status, pages_per_block, ret, chipnr; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	loff_t len; | 
 |  | 
 | 	pr_debug("%s: start = 0x%012llx, len = %llu\n", | 
 | 			__func__, (unsigned long long)instr->addr, | 
 | 			(unsigned long long)instr->len); | 
 |  | 
 | 	if (check_offs_len(mtd, instr->addr, instr->len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Grab the lock and see if the device is available */ | 
 | 	nand_get_device(mtd, FL_ERASING); | 
 |  | 
 | 	/* Shift to get first page */ | 
 | 	page = (int)(instr->addr >> chip->page_shift); | 
 | 	chipnr = (int)(instr->addr >> chip->chip_shift); | 
 |  | 
 | 	/* Calculate pages in each block */ | 
 | 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); | 
 |  | 
 | 	/* Select the NAND device */ | 
 | 	chip->select_chip(mtd, chipnr); | 
 |  | 
 | 	/* Check, if it is write protected */ | 
 | 	if (nand_check_wp(mtd)) { | 
 | 		pr_debug("%s: device is write protected!\n", | 
 | 				__func__); | 
 | 		instr->state = MTD_ERASE_FAILED; | 
 | 		goto erase_exit; | 
 | 	} | 
 |  | 
 | 	/* Loop through the pages */ | 
 | 	len = instr->len; | 
 |  | 
 | 	instr->state = MTD_ERASING; | 
 |  | 
 | 	while (len) { | 
 | 		/* Check if we have a bad block, we do not erase bad blocks! */ | 
 | 		if (nand_block_checkbad(mtd, ((loff_t) page) << | 
 | 					chip->page_shift, allowbbt)) { | 
 | 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", | 
 | 				    __func__, page); | 
 | 			instr->state = MTD_ERASE_FAILED; | 
 | 			goto erase_exit; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Invalidate the page cache, if we erase the block which | 
 | 		 * contains the current cached page. | 
 | 		 */ | 
 | 		if (page <= chip->pagebuf && chip->pagebuf < | 
 | 		    (page + pages_per_block)) | 
 | 			chip->pagebuf = -1; | 
 |  | 
 | 		status = chip->erase(mtd, page & chip->pagemask); | 
 |  | 
 | 		/* | 
 | 		 * See if operation failed and additional status checks are | 
 | 		 * available | 
 | 		 */ | 
 | 		if ((status & NAND_STATUS_FAIL) && (chip->errstat)) | 
 | 			status = chip->errstat(mtd, chip, FL_ERASING, | 
 | 					       status, page); | 
 |  | 
 | 		/* See if block erase succeeded */ | 
 | 		if (status & NAND_STATUS_FAIL) { | 
 | 			pr_debug("%s: failed erase, page 0x%08x\n", | 
 | 					__func__, page); | 
 | 			instr->state = MTD_ERASE_FAILED; | 
 | 			instr->fail_addr = | 
 | 				((loff_t)page << chip->page_shift); | 
 | 			goto erase_exit; | 
 | 		} | 
 |  | 
 | 		/* Increment page address and decrement length */ | 
 | 		len -= (1ULL << chip->phys_erase_shift); | 
 | 		page += pages_per_block; | 
 |  | 
 | 		/* Check, if we cross a chip boundary */ | 
 | 		if (len && !(page & chip->pagemask)) { | 
 | 			chipnr++; | 
 | 			chip->select_chip(mtd, -1); | 
 | 			chip->select_chip(mtd, chipnr); | 
 | 		} | 
 | 	} | 
 | 	instr->state = MTD_ERASE_DONE; | 
 |  | 
 | erase_exit: | 
 |  | 
 | 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; | 
 |  | 
 | 	/* Deselect and wake up anyone waiting on the device */ | 
 | 	chip->select_chip(mtd, -1); | 
 | 	nand_release_device(mtd); | 
 |  | 
 | 	/* Do call back function */ | 
 | 	if (!ret) | 
 | 		mtd_erase_callback(instr); | 
 |  | 
 | 	/* Return more or less happy */ | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_sync - [MTD Interface] sync | 
 |  * @mtd: MTD device structure | 
 |  * | 
 |  * Sync is actually a wait for chip ready function. | 
 |  */ | 
 | static void nand_sync(struct mtd_info *mtd) | 
 | { | 
 | 	pr_debug("%s: called\n", __func__); | 
 |  | 
 | 	/* Grab the lock and see if the device is available */ | 
 | 	nand_get_device(mtd, FL_SYNCING); | 
 | 	/* Release it and go back */ | 
 | 	nand_release_device(mtd); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_block_isbad - [MTD Interface] Check if block at offset is bad | 
 |  * @mtd: MTD device structure | 
 |  * @offs: offset relative to mtd start | 
 |  */ | 
 | static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	int chipnr = (int)(offs >> chip->chip_shift); | 
 | 	int ret; | 
 |  | 
 | 	/* Select the NAND device */ | 
 | 	nand_get_device(mtd, FL_READING); | 
 | 	chip->select_chip(mtd, chipnr); | 
 |  | 
 | 	ret = nand_block_checkbad(mtd, offs, 0); | 
 |  | 
 | 	chip->select_chip(mtd, -1); | 
 | 	nand_release_device(mtd); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad | 
 |  * @mtd: MTD device structure | 
 |  * @ofs: offset relative to mtd start | 
 |  */ | 
 | static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = nand_block_isbad(mtd, ofs); | 
 | 	if (ret) { | 
 | 		/* If it was bad already, return success and do nothing */ | 
 | 		if (ret > 0) | 
 | 			return 0; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return nand_block_markbad_lowlevel(mtd, ofs); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand | 
 |  * @mtd: MTD device structure | 
 |  * @chip: nand chip info structure | 
 |  * @addr: feature address. | 
 |  * @subfeature_param: the subfeature parameters, a four bytes array. | 
 |  */ | 
 | static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			int addr, uint8_t *subfeature_param) | 
 | { | 
 | 	int status; | 
 | 	int i; | 
 |  | 
 | 	if (!chip->onfi_version || | 
 | 	    !(le16_to_cpu(chip->onfi_params.opt_cmd) | 
 | 	      & ONFI_OPT_CMD_SET_GET_FEATURES)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1); | 
 | 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) | 
 | 		chip->write_byte(mtd, subfeature_param[i]); | 
 |  | 
 | 	status = chip->waitfunc(mtd, chip); | 
 | 	if (status & NAND_STATUS_FAIL) | 
 | 		return -EIO; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand | 
 |  * @mtd: MTD device structure | 
 |  * @chip: nand chip info structure | 
 |  * @addr: feature address. | 
 |  * @subfeature_param: the subfeature parameters, a four bytes array. | 
 |  */ | 
 | static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			int addr, uint8_t *subfeature_param) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!chip->onfi_version || | 
 | 	    !(le16_to_cpu(chip->onfi_params.opt_cmd) | 
 | 	      & ONFI_OPT_CMD_SET_GET_FEATURES)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1); | 
 | 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) | 
 | 		*subfeature_param++ = chip->read_byte(mtd); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_suspend - [MTD Interface] Suspend the NAND flash | 
 |  * @mtd: MTD device structure | 
 |  */ | 
 | static int nand_suspend(struct mtd_info *mtd) | 
 | { | 
 | 	return nand_get_device(mtd, FL_PM_SUSPENDED); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_resume - [MTD Interface] Resume the NAND flash | 
 |  * @mtd: MTD device structure | 
 |  */ | 
 | static void nand_resume(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	if (chip->state == FL_PM_SUSPENDED) | 
 | 		nand_release_device(mtd); | 
 | 	else | 
 | 		pr_err("%s called for a chip which is not in suspended state\n", | 
 | 			__func__); | 
 | } | 
 |  | 
 | /** | 
 |  * nand_shutdown - [MTD Interface] Finish the current NAND operation and | 
 |  *                 prevent further operations | 
 |  * @mtd: MTD device structure | 
 |  */ | 
 | static void nand_shutdown(struct mtd_info *mtd) | 
 | { | 
 | 	nand_get_device(mtd, FL_PM_SUSPENDED); | 
 | } | 
 |  | 
 | /* Set default functions */ | 
 | static void nand_set_defaults(struct nand_chip *chip, int busw) | 
 | { | 
 | 	/* check for proper chip_delay setup, set 20us if not */ | 
 | 	if (!chip->chip_delay) | 
 | 		chip->chip_delay = 20; | 
 |  | 
 | 	/* check, if a user supplied command function given */ | 
 | 	if (chip->cmdfunc == NULL) | 
 | 		chip->cmdfunc = nand_command; | 
 |  | 
 | 	/* check, if a user supplied wait function given */ | 
 | 	if (chip->waitfunc == NULL) | 
 | 		chip->waitfunc = nand_wait; | 
 |  | 
 | 	if (!chip->select_chip) | 
 | 		chip->select_chip = nand_select_chip; | 
 |  | 
 | 	/* set for ONFI nand */ | 
 | 	if (!chip->onfi_set_features) | 
 | 		chip->onfi_set_features = nand_onfi_set_features; | 
 | 	if (!chip->onfi_get_features) | 
 | 		chip->onfi_get_features = nand_onfi_get_features; | 
 |  | 
 | 	/* If called twice, pointers that depend on busw may need to be reset */ | 
 | 	if (!chip->read_byte || chip->read_byte == nand_read_byte) | 
 | 		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; | 
 | 	if (!chip->read_word) | 
 | 		chip->read_word = nand_read_word; | 
 | 	if (!chip->block_bad) | 
 | 		chip->block_bad = nand_block_bad; | 
 | 	if (!chip->block_markbad) | 
 | 		chip->block_markbad = nand_default_block_markbad; | 
 | 	if (!chip->write_buf || chip->write_buf == nand_write_buf) | 
 | 		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; | 
 | 	if (!chip->write_byte || chip->write_byte == nand_write_byte) | 
 | 		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte; | 
 | 	if (!chip->read_buf || chip->read_buf == nand_read_buf) | 
 | 		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; | 
 | 	if (!chip->scan_bbt) | 
 | 		chip->scan_bbt = nand_default_bbt; | 
 |  | 
 | 	if (!chip->controller) { | 
 | 		chip->controller = &chip->hwcontrol; | 
 | 		spin_lock_init(&chip->controller->lock); | 
 | 		init_waitqueue_head(&chip->controller->wq); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /* Sanitize ONFI strings so we can safely print them */ | 
 | static void sanitize_string(uint8_t *s, size_t len) | 
 | { | 
 | 	ssize_t i; | 
 |  | 
 | 	/* Null terminate */ | 
 | 	s[len - 1] = 0; | 
 |  | 
 | 	/* Remove non printable chars */ | 
 | 	for (i = 0; i < len - 1; i++) { | 
 | 		if (s[i] < ' ' || s[i] > 127) | 
 | 			s[i] = '?'; | 
 | 	} | 
 |  | 
 | 	/* Remove trailing spaces */ | 
 | 	strim(s); | 
 | } | 
 |  | 
 | static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) | 
 | { | 
 | 	int i; | 
 | 	while (len--) { | 
 | 		crc ^= *p++ << 8; | 
 | 		for (i = 0; i < 8; i++) | 
 | 			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); | 
 | 	} | 
 |  | 
 | 	return crc; | 
 | } | 
 |  | 
 | /* Parse the Extended Parameter Page. */ | 
 | static int nand_flash_detect_ext_param_page(struct mtd_info *mtd, | 
 | 		struct nand_chip *chip, struct nand_onfi_params *p) | 
 | { | 
 | 	struct onfi_ext_param_page *ep; | 
 | 	struct onfi_ext_section *s; | 
 | 	struct onfi_ext_ecc_info *ecc; | 
 | 	uint8_t *cursor; | 
 | 	int ret = -EINVAL; | 
 | 	int len; | 
 | 	int i; | 
 |  | 
 | 	len = le16_to_cpu(p->ext_param_page_length) * 16; | 
 | 	ep = kmalloc(len, GFP_KERNEL); | 
 | 	if (!ep) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Send our own NAND_CMD_PARAM. */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); | 
 |  | 
 | 	/* Use the Change Read Column command to skip the ONFI param pages. */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, | 
 | 			sizeof(*p) * p->num_of_param_pages , -1); | 
 |  | 
 | 	/* Read out the Extended Parameter Page. */ | 
 | 	chip->read_buf(mtd, (uint8_t *)ep, len); | 
 | 	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2) | 
 | 		!= le16_to_cpu(ep->crc))) { | 
 | 		pr_debug("fail in the CRC.\n"); | 
 | 		goto ext_out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check the signature. | 
 | 	 * Do not strictly follow the ONFI spec, maybe changed in future. | 
 | 	 */ | 
 | 	if (strncmp(ep->sig, "EPPS", 4)) { | 
 | 		pr_debug("The signature is invalid.\n"); | 
 | 		goto ext_out; | 
 | 	} | 
 |  | 
 | 	/* find the ECC section. */ | 
 | 	cursor = (uint8_t *)(ep + 1); | 
 | 	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) { | 
 | 		s = ep->sections + i; | 
 | 		if (s->type == ONFI_SECTION_TYPE_2) | 
 | 			break; | 
 | 		cursor += s->length * 16; | 
 | 	} | 
 | 	if (i == ONFI_EXT_SECTION_MAX) { | 
 | 		pr_debug("We can not find the ECC section.\n"); | 
 | 		goto ext_out; | 
 | 	} | 
 |  | 
 | 	/* get the info we want. */ | 
 | 	ecc = (struct onfi_ext_ecc_info *)cursor; | 
 |  | 
 | 	if (!ecc->codeword_size) { | 
 | 		pr_debug("Invalid codeword size\n"); | 
 | 		goto ext_out; | 
 | 	} | 
 |  | 
 | 	chip->ecc_strength_ds = ecc->ecc_bits; | 
 | 	chip->ecc_step_ds = 1 << ecc->codeword_size; | 
 | 	ret = 0; | 
 |  | 
 | ext_out: | 
 | 	kfree(ep); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; | 
 |  | 
 | 	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, | 
 | 			feature); | 
 | } | 
 |  | 
 | /* | 
 |  * Configure chip properties from Micron vendor-specific ONFI table | 
 |  */ | 
 | static void nand_onfi_detect_micron(struct nand_chip *chip, | 
 | 		struct nand_onfi_params *p) | 
 | { | 
 | 	struct nand_onfi_vendor_micron *micron = (void *)p->vendor; | 
 |  | 
 | 	if (le16_to_cpu(p->vendor_revision) < 1) | 
 | 		return; | 
 |  | 
 | 	chip->read_retries = micron->read_retry_options; | 
 | 	chip->setup_read_retry = nand_setup_read_retry_micron; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. | 
 |  */ | 
 | static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 					int *busw) | 
 | { | 
 | 	struct nand_onfi_params *p = &chip->onfi_params; | 
 | 	int i, j; | 
 | 	int val; | 
 |  | 
 | 	/* Try ONFI for unknown chip or LP */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1); | 
 | 	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' || | 
 | 		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') | 
 | 		return 0; | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		for (j = 0; j < sizeof(*p); j++) | 
 | 			((uint8_t *)p)[j] = chip->read_byte(mtd); | 
 | 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == | 
 | 				le16_to_cpu(p->crc)) { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (i == 3) { | 
 | 		pr_err("Could not find valid ONFI parameter page; aborting\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Check version */ | 
 | 	val = le16_to_cpu(p->revision); | 
 | 	if (val & (1 << 5)) | 
 | 		chip->onfi_version = 23; | 
 | 	else if (val & (1 << 4)) | 
 | 		chip->onfi_version = 22; | 
 | 	else if (val & (1 << 3)) | 
 | 		chip->onfi_version = 21; | 
 | 	else if (val & (1 << 2)) | 
 | 		chip->onfi_version = 20; | 
 | 	else if (val & (1 << 1)) | 
 | 		chip->onfi_version = 10; | 
 |  | 
 | 	if (!chip->onfi_version) { | 
 | 		pr_info("unsupported ONFI version: %d\n", val); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	sanitize_string(p->manufacturer, sizeof(p->manufacturer)); | 
 | 	sanitize_string(p->model, sizeof(p->model)); | 
 | 	if (!mtd->name) | 
 | 		mtd->name = p->model; | 
 |  | 
 | 	mtd->writesize = le32_to_cpu(p->byte_per_page); | 
 |  | 
 | 	/* | 
 | 	 * pages_per_block and blocks_per_lun may not be a power-of-2 size | 
 | 	 * (don't ask me who thought of this...). MTD assumes that these | 
 | 	 * dimensions will be power-of-2, so just truncate the remaining area. | 
 | 	 */ | 
 | 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); | 
 | 	mtd->erasesize *= mtd->writesize; | 
 |  | 
 | 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); | 
 |  | 
 | 	/* See erasesize comment */ | 
 | 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); | 
 | 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; | 
 | 	chip->bits_per_cell = p->bits_per_cell; | 
 |  | 
 | 	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS) | 
 | 		*busw = NAND_BUSWIDTH_16; | 
 | 	else | 
 | 		*busw = 0; | 
 |  | 
 | 	if (p->ecc_bits != 0xff) { | 
 | 		chip->ecc_strength_ds = p->ecc_bits; | 
 | 		chip->ecc_step_ds = 512; | 
 | 	} else if (chip->onfi_version >= 21 && | 
 | 		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) { | 
 |  | 
 | 		/* | 
 | 		 * The nand_flash_detect_ext_param_page() uses the | 
 | 		 * Change Read Column command which maybe not supported | 
 | 		 * by the chip->cmdfunc. So try to update the chip->cmdfunc | 
 | 		 * now. We do not replace user supplied command function. | 
 | 		 */ | 
 | 		if (mtd->writesize > 512 && chip->cmdfunc == nand_command) | 
 | 			chip->cmdfunc = nand_command_lp; | 
 |  | 
 | 		/* The Extended Parameter Page is supported since ONFI 2.1. */ | 
 | 		if (nand_flash_detect_ext_param_page(mtd, chip, p)) | 
 | 			pr_warn("Failed to detect ONFI extended param page\n"); | 
 | 	} else { | 
 | 		pr_warn("Could not retrieve ONFI ECC requirements\n"); | 
 | 	} | 
 |  | 
 | 	if (p->jedec_id == NAND_MFR_MICRON) | 
 | 		nand_onfi_detect_micron(chip, p); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. | 
 |  */ | 
 | static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 					int *busw) | 
 | { | 
 | 	struct nand_jedec_params *p = &chip->jedec_params; | 
 | 	struct jedec_ecc_info *ecc; | 
 | 	int val; | 
 | 	int i, j; | 
 |  | 
 | 	/* Try JEDEC for unknown chip or LP */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1); | 
 | 	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' || | 
 | 		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' || | 
 | 		chip->read_byte(mtd) != 'C') | 
 | 		return 0; | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1); | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		for (j = 0; j < sizeof(*p); j++) | 
 | 			((uint8_t *)p)[j] = chip->read_byte(mtd); | 
 |  | 
 | 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) == | 
 | 				le16_to_cpu(p->crc)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (i == 3) { | 
 | 		pr_err("Could not find valid JEDEC parameter page; aborting\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Check version */ | 
 | 	val = le16_to_cpu(p->revision); | 
 | 	if (val & (1 << 2)) | 
 | 		chip->jedec_version = 10; | 
 | 	else if (val & (1 << 1)) | 
 | 		chip->jedec_version = 1; /* vendor specific version */ | 
 |  | 
 | 	if (!chip->jedec_version) { | 
 | 		pr_info("unsupported JEDEC version: %d\n", val); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	sanitize_string(p->manufacturer, sizeof(p->manufacturer)); | 
 | 	sanitize_string(p->model, sizeof(p->model)); | 
 | 	if (!mtd->name) | 
 | 		mtd->name = p->model; | 
 |  | 
 | 	mtd->writesize = le32_to_cpu(p->byte_per_page); | 
 |  | 
 | 	/* Please reference to the comment for nand_flash_detect_onfi. */ | 
 | 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); | 
 | 	mtd->erasesize *= mtd->writesize; | 
 |  | 
 | 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); | 
 |  | 
 | 	/* Please reference to the comment for nand_flash_detect_onfi. */ | 
 | 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); | 
 | 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; | 
 | 	chip->bits_per_cell = p->bits_per_cell; | 
 |  | 
 | 	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS) | 
 | 		*busw = NAND_BUSWIDTH_16; | 
 | 	else | 
 | 		*busw = 0; | 
 |  | 
 | 	/* ECC info */ | 
 | 	ecc = &p->ecc_info[0]; | 
 |  | 
 | 	if (ecc->codeword_size >= 9) { | 
 | 		chip->ecc_strength_ds = ecc->ecc_bits; | 
 | 		chip->ecc_step_ds = 1 << ecc->codeword_size; | 
 | 	} else { | 
 | 		pr_warn("Invalid codeword size\n"); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * nand_id_has_period - Check if an ID string has a given wraparound period | 
 |  * @id_data: the ID string | 
 |  * @arrlen: the length of the @id_data array | 
 |  * @period: the period of repitition | 
 |  * | 
 |  * Check if an ID string is repeated within a given sequence of bytes at | 
 |  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a | 
 |  * period of 3). This is a helper function for nand_id_len(). Returns non-zero | 
 |  * if the repetition has a period of @period; otherwise, returns zero. | 
 |  */ | 
 | static int nand_id_has_period(u8 *id_data, int arrlen, int period) | 
 | { | 
 | 	int i, j; | 
 | 	for (i = 0; i < period; i++) | 
 | 		for (j = i + period; j < arrlen; j += period) | 
 | 			if (id_data[i] != id_data[j]) | 
 | 				return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * nand_id_len - Get the length of an ID string returned by CMD_READID | 
 |  * @id_data: the ID string | 
 |  * @arrlen: the length of the @id_data array | 
 |  | 
 |  * Returns the length of the ID string, according to known wraparound/trailing | 
 |  * zero patterns. If no pattern exists, returns the length of the array. | 
 |  */ | 
 | static int nand_id_len(u8 *id_data, int arrlen) | 
 | { | 
 | 	int last_nonzero, period; | 
 |  | 
 | 	/* Find last non-zero byte */ | 
 | 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) | 
 | 		if (id_data[last_nonzero]) | 
 | 			break; | 
 |  | 
 | 	/* All zeros */ | 
 | 	if (last_nonzero < 0) | 
 | 		return 0; | 
 |  | 
 | 	/* Calculate wraparound period */ | 
 | 	for (period = 1; period < arrlen; period++) | 
 | 		if (nand_id_has_period(id_data, arrlen, period)) | 
 | 			break; | 
 |  | 
 | 	/* There's a repeated pattern */ | 
 | 	if (period < arrlen) | 
 | 		return period; | 
 |  | 
 | 	/* There are trailing zeros */ | 
 | 	if (last_nonzero < arrlen - 1) | 
 | 		return last_nonzero + 1; | 
 |  | 
 | 	/* No pattern detected */ | 
 | 	return arrlen; | 
 | } | 
 |  | 
 | /* Extract the bits of per cell from the 3rd byte of the extended ID */ | 
 | static int nand_get_bits_per_cell(u8 cellinfo) | 
 | { | 
 | 	int bits; | 
 |  | 
 | 	bits = cellinfo & NAND_CI_CELLTYPE_MSK; | 
 | 	bits >>= NAND_CI_CELLTYPE_SHIFT; | 
 | 	return bits + 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Many new NAND share similar device ID codes, which represent the size of the | 
 |  * chip. The rest of the parameters must be decoded according to generic or | 
 |  * manufacturer-specific "extended ID" decoding patterns. | 
 |  */ | 
 | static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				u8 id_data[8], int *busw) | 
 | { | 
 | 	int extid, id_len; | 
 | 	/* The 3rd id byte holds MLC / multichip data */ | 
 | 	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); | 
 | 	/* The 4th id byte is the important one */ | 
 | 	extid = id_data[3]; | 
 |  | 
 | 	id_len = nand_id_len(id_data, 8); | 
 |  | 
 | 	/* | 
 | 	 * Field definitions are in the following datasheets: | 
 | 	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) | 
 | 	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) | 
 | 	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22) | 
 | 	 * | 
 | 	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung | 
 | 	 * ID to decide what to do. | 
 | 	 */ | 
 | 	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG && | 
 | 			!nand_is_slc(chip) && id_data[5] != 0x00) { | 
 | 		/* Calc pagesize */ | 
 | 		mtd->writesize = 2048 << (extid & 0x03); | 
 | 		extid >>= 2; | 
 | 		/* Calc oobsize */ | 
 | 		switch (((extid >> 2) & 0x04) | (extid & 0x03)) { | 
 | 		case 1: | 
 | 			mtd->oobsize = 128; | 
 | 			break; | 
 | 		case 2: | 
 | 			mtd->oobsize = 218; | 
 | 			break; | 
 | 		case 3: | 
 | 			mtd->oobsize = 400; | 
 | 			break; | 
 | 		case 4: | 
 | 			mtd->oobsize = 436; | 
 | 			break; | 
 | 		case 5: | 
 | 			mtd->oobsize = 512; | 
 | 			break; | 
 | 		case 6: | 
 | 			mtd->oobsize = 640; | 
 | 			break; | 
 | 		case 7: | 
 | 		default: /* Other cases are "reserved" (unknown) */ | 
 | 			mtd->oobsize = 1024; | 
 | 			break; | 
 | 		} | 
 | 		extid >>= 2; | 
 | 		/* Calc blocksize */ | 
 | 		mtd->erasesize = (128 * 1024) << | 
 | 			(((extid >> 1) & 0x04) | (extid & 0x03)); | 
 | 		*busw = 0; | 
 | 	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX && | 
 | 			!nand_is_slc(chip)) { | 
 | 		unsigned int tmp; | 
 |  | 
 | 		/* Calc pagesize */ | 
 | 		mtd->writesize = 2048 << (extid & 0x03); | 
 | 		extid >>= 2; | 
 | 		/* Calc oobsize */ | 
 | 		switch (((extid >> 2) & 0x04) | (extid & 0x03)) { | 
 | 		case 0: | 
 | 			mtd->oobsize = 128; | 
 | 			break; | 
 | 		case 1: | 
 | 			mtd->oobsize = 224; | 
 | 			break; | 
 | 		case 2: | 
 | 			mtd->oobsize = 448; | 
 | 			break; | 
 | 		case 3: | 
 | 			mtd->oobsize = 64; | 
 | 			break; | 
 | 		case 4: | 
 | 			mtd->oobsize = 32; | 
 | 			break; | 
 | 		case 5: | 
 | 			mtd->oobsize = 16; | 
 | 			break; | 
 | 		default: | 
 | 			mtd->oobsize = 640; | 
 | 			break; | 
 | 		} | 
 | 		extid >>= 2; | 
 | 		/* Calc blocksize */ | 
 | 		tmp = ((extid >> 1) & 0x04) | (extid & 0x03); | 
 | 		if (tmp < 0x03) | 
 | 			mtd->erasesize = (128 * 1024) << tmp; | 
 | 		else if (tmp == 0x03) | 
 | 			mtd->erasesize = 768 * 1024; | 
 | 		else | 
 | 			mtd->erasesize = (64 * 1024) << tmp; | 
 | 		*busw = 0; | 
 | 	} else { | 
 | 		/* Calc pagesize */ | 
 | 		mtd->writesize = 1024 << (extid & 0x03); | 
 | 		extid >>= 2; | 
 | 		/* Calc oobsize */ | 
 | 		mtd->oobsize = (8 << (extid & 0x01)) * | 
 | 			(mtd->writesize >> 9); | 
 | 		extid >>= 2; | 
 | 		/* Calc blocksize. Blocksize is multiples of 64KiB */ | 
 | 		mtd->erasesize = (64 * 1024) << (extid & 0x03); | 
 | 		extid >>= 2; | 
 | 		/* Get buswidth information */ | 
 | 		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; | 
 |  | 
 | 		/* | 
 | 		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per | 
 | 		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as | 
 | 		 * follows: | 
 | 		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm, | 
 | 		 *                         110b -> 24nm | 
 | 		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC | 
 | 		 */ | 
 | 		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA && | 
 | 				nand_is_slc(chip) && | 
 | 				(id_data[5] & 0x7) == 0x6 /* 24nm */ && | 
 | 				!(id_data[4] & 0x80) /* !BENAND */) { | 
 | 			mtd->oobsize = 32 * mtd->writesize >> 9; | 
 | 		} | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Old devices have chip data hardcoded in the device ID table. nand_decode_id | 
 |  * decodes a matching ID table entry and assigns the MTD size parameters for | 
 |  * the chip. | 
 |  */ | 
 | static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				struct nand_flash_dev *type, u8 id_data[8], | 
 | 				int *busw) | 
 | { | 
 | 	int maf_id = id_data[0]; | 
 |  | 
 | 	mtd->erasesize = type->erasesize; | 
 | 	mtd->writesize = type->pagesize; | 
 | 	mtd->oobsize = mtd->writesize / 32; | 
 | 	*busw = type->options & NAND_BUSWIDTH_16; | 
 |  | 
 | 	/* All legacy ID NAND are small-page, SLC */ | 
 | 	chip->bits_per_cell = 1; | 
 |  | 
 | 	/* | 
 | 	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since | 
 | 	 * some Spansion chips have erasesize that conflicts with size | 
 | 	 * listed in nand_ids table. | 
 | 	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) | 
 | 	 */ | 
 | 	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00 | 
 | 			&& id_data[6] == 0x00 && id_data[7] == 0x00 | 
 | 			&& mtd->writesize == 512) { | 
 | 		mtd->erasesize = 128 * 1024; | 
 | 		mtd->erasesize <<= ((id_data[3] & 0x03) << 1); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Set the bad block marker/indicator (BBM/BBI) patterns according to some | 
 |  * heuristic patterns using various detected parameters (e.g., manufacturer, | 
 |  * page size, cell-type information). | 
 |  */ | 
 | static void nand_decode_bbm_options(struct mtd_info *mtd, | 
 | 				    struct nand_chip *chip, u8 id_data[8]) | 
 | { | 
 | 	int maf_id = id_data[0]; | 
 |  | 
 | 	/* Set the bad block position */ | 
 | 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) | 
 | 		chip->badblockpos = NAND_LARGE_BADBLOCK_POS; | 
 | 	else | 
 | 		chip->badblockpos = NAND_SMALL_BADBLOCK_POS; | 
 |  | 
 | 	/* | 
 | 	 * Bad block marker is stored in the last page of each block on Samsung | 
 | 	 * and Hynix MLC devices; stored in first two pages of each block on | 
 | 	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba, | 
 | 	 * AMD/Spansion, and Macronix.  All others scan only the first page. | 
 | 	 */ | 
 | 	if (!nand_is_slc(chip) && | 
 | 			(maf_id == NAND_MFR_SAMSUNG || | 
 | 			 maf_id == NAND_MFR_HYNIX)) | 
 | 		chip->bbt_options |= NAND_BBT_SCANLASTPAGE; | 
 | 	else if ((nand_is_slc(chip) && | 
 | 				(maf_id == NAND_MFR_SAMSUNG || | 
 | 				 maf_id == NAND_MFR_HYNIX || | 
 | 				 maf_id == NAND_MFR_TOSHIBA || | 
 | 				 maf_id == NAND_MFR_AMD || | 
 | 				 maf_id == NAND_MFR_MACRONIX)) || | 
 | 			(mtd->writesize == 2048 && | 
 | 			 maf_id == NAND_MFR_MICRON)) | 
 | 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; | 
 | } | 
 |  | 
 | static inline bool is_full_id_nand(struct nand_flash_dev *type) | 
 | { | 
 | 	return type->id_len; | 
 | } | 
 |  | 
 | static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 		   struct nand_flash_dev *type, u8 *id_data, int *busw) | 
 | { | 
 | 	if (!strncmp(type->id, id_data, type->id_len)) { | 
 | 		mtd->writesize = type->pagesize; | 
 | 		mtd->erasesize = type->erasesize; | 
 | 		mtd->oobsize = type->oobsize; | 
 |  | 
 | 		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); | 
 | 		chip->chipsize = (uint64_t)type->chipsize << 20; | 
 | 		chip->options |= type->options; | 
 | 		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); | 
 | 		chip->ecc_step_ds = NAND_ECC_STEP(type); | 
 | 		chip->onfi_timing_mode_default = | 
 | 					type->onfi_timing_mode_default; | 
 |  | 
 | 		*busw = type->options & NAND_BUSWIDTH_16; | 
 |  | 
 | 		if (!mtd->name) | 
 | 			mtd->name = type->name; | 
 |  | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the flash and manufacturer id and lookup if the type is supported. | 
 |  */ | 
 | static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, | 
 | 						  struct nand_chip *chip, | 
 | 						  int *maf_id, int *dev_id, | 
 | 						  struct nand_flash_dev *type) | 
 | { | 
 | 	int busw; | 
 | 	int i, maf_idx; | 
 | 	u8 id_data[8]; | 
 |  | 
 | 	/* Select the device */ | 
 | 	chip->select_chip(mtd, 0); | 
 |  | 
 | 	/* | 
 | 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) | 
 | 	 * after power-up. | 
 | 	 */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | 
 |  | 
 | 	/* Send the command for reading device ID */ | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | 
 |  | 
 | 	/* Read manufacturer and device IDs */ | 
 | 	*maf_id = chip->read_byte(mtd); | 
 | 	*dev_id = chip->read_byte(mtd); | 
 |  | 
 | 	/* | 
 | 	 * Try again to make sure, as some systems the bus-hold or other | 
 | 	 * interface concerns can cause random data which looks like a | 
 | 	 * possibly credible NAND flash to appear. If the two results do | 
 | 	 * not match, ignore the device completely. | 
 | 	 */ | 
 |  | 
 | 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | 
 |  | 
 | 	/* Read entire ID string */ | 
 | 	for (i = 0; i < 8; i++) | 
 | 		id_data[i] = chip->read_byte(mtd); | 
 |  | 
 | 	if (id_data[0] != *maf_id || id_data[1] != *dev_id) { | 
 | 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", | 
 | 			*maf_id, *dev_id, id_data[0], id_data[1]); | 
 | 		return ERR_PTR(-ENODEV); | 
 | 	} | 
 |  | 
 | 	if (!type) | 
 | 		type = nand_flash_ids; | 
 |  | 
 | 	for (; type->name != NULL; type++) { | 
 | 		if (is_full_id_nand(type)) { | 
 | 			if (find_full_id_nand(mtd, chip, type, id_data, &busw)) | 
 | 				goto ident_done; | 
 | 		} else if (*dev_id == type->dev_id) { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	chip->onfi_version = 0; | 
 | 	if (!type->name || !type->pagesize) { | 
 | 		/* Check if the chip is ONFI compliant */ | 
 | 		if (nand_flash_detect_onfi(mtd, chip, &busw)) | 
 | 			goto ident_done; | 
 |  | 
 | 		/* Check if the chip is JEDEC compliant */ | 
 | 		if (nand_flash_detect_jedec(mtd, chip, &busw)) | 
 | 			goto ident_done; | 
 | 	} | 
 |  | 
 | 	if (!type->name) | 
 | 		return ERR_PTR(-ENODEV); | 
 |  | 
 | 	if (!mtd->name) | 
 | 		mtd->name = type->name; | 
 |  | 
 | 	chip->chipsize = (uint64_t)type->chipsize << 20; | 
 |  | 
 | 	if (!type->pagesize) { | 
 | 		/* Decode parameters from extended ID */ | 
 | 		nand_decode_ext_id(mtd, chip, id_data, &busw); | 
 | 	} else { | 
 | 		nand_decode_id(mtd, chip, type, id_data, &busw); | 
 | 	} | 
 | 	/* Get chip options */ | 
 | 	chip->options |= type->options; | 
 |  | 
 | 	/* | 
 | 	 * Check if chip is not a Samsung device. Do not clear the | 
 | 	 * options for chips which do not have an extended id. | 
 | 	 */ | 
 | 	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize) | 
 | 		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; | 
 | ident_done: | 
 |  | 
 | 	/* Try to identify manufacturer */ | 
 | 	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) { | 
 | 		if (nand_manuf_ids[maf_idx].id == *maf_id) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (chip->options & NAND_BUSWIDTH_AUTO) { | 
 | 		WARN_ON(chip->options & NAND_BUSWIDTH_16); | 
 | 		chip->options |= busw; | 
 | 		nand_set_defaults(chip, busw); | 
 | 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) { | 
 | 		/* | 
 | 		 * Check, if buswidth is correct. Hardware drivers should set | 
 | 		 * chip correct! | 
 | 		 */ | 
 | 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", | 
 | 			*maf_id, *dev_id); | 
 | 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name); | 
 | 		pr_warn("bus width %d instead %d bit\n", | 
 | 			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, | 
 | 			   busw ? 16 : 8); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	nand_decode_bbm_options(mtd, chip, id_data); | 
 |  | 
 | 	/* Calculate the address shift from the page size */ | 
 | 	chip->page_shift = ffs(mtd->writesize) - 1; | 
 | 	/* Convert chipsize to number of pages per chip -1 */ | 
 | 	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; | 
 |  | 
 | 	chip->bbt_erase_shift = chip->phys_erase_shift = | 
 | 		ffs(mtd->erasesize) - 1; | 
 | 	if (chip->chipsize & 0xffffffff) | 
 | 		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; | 
 | 	else { | 
 | 		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); | 
 | 		chip->chip_shift += 32 - 1; | 
 | 	} | 
 |  | 
 | 	chip->badblockbits = 8; | 
 | 	chip->erase = single_erase; | 
 |  | 
 | 	/* Do not replace user supplied command function! */ | 
 | 	if (mtd->writesize > 512 && chip->cmdfunc == nand_command) | 
 | 		chip->cmdfunc = nand_command_lp; | 
 |  | 
 | 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", | 
 | 		*maf_id, *dev_id); | 
 |  | 
 | 	if (chip->onfi_version) | 
 | 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, | 
 | 				chip->onfi_params.model); | 
 | 	else if (chip->jedec_version) | 
 | 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, | 
 | 				chip->jedec_params.model); | 
 | 	else | 
 | 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, | 
 | 				type->name); | 
 |  | 
 | 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", | 
 | 		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", | 
 | 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); | 
 | 	return type; | 
 | } | 
 |  | 
 | static int nand_dt_init(struct nand_chip *chip) | 
 | { | 
 | 	struct device_node *dn = nand_get_flash_node(chip); | 
 | 	int ecc_mode, ecc_strength, ecc_step; | 
 |  | 
 | 	if (!dn) | 
 | 		return 0; | 
 |  | 
 | 	if (of_get_nand_bus_width(dn) == 16) | 
 | 		chip->options |= NAND_BUSWIDTH_16; | 
 |  | 
 | 	if (of_get_nand_on_flash_bbt(dn)) | 
 | 		chip->bbt_options |= NAND_BBT_USE_FLASH; | 
 |  | 
 | 	ecc_mode = of_get_nand_ecc_mode(dn); | 
 | 	ecc_strength = of_get_nand_ecc_strength(dn); | 
 | 	ecc_step = of_get_nand_ecc_step_size(dn); | 
 |  | 
 | 	if ((ecc_step >= 0 && !(ecc_strength >= 0)) || | 
 | 	    (!(ecc_step >= 0) && ecc_strength >= 0)) { | 
 | 		pr_err("must set both strength and step size in DT\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (ecc_mode >= 0) | 
 | 		chip->ecc.mode = ecc_mode; | 
 |  | 
 | 	if (ecc_strength >= 0) | 
 | 		chip->ecc.strength = ecc_strength; | 
 |  | 
 | 	if (ecc_step > 0) | 
 | 		chip->ecc.size = ecc_step; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_scan_ident - [NAND Interface] Scan for the NAND device | 
 |  * @mtd: MTD device structure | 
 |  * @maxchips: number of chips to scan for | 
 |  * @table: alternative NAND ID table | 
 |  * | 
 |  * This is the first phase of the normal nand_scan() function. It reads the | 
 |  * flash ID and sets up MTD fields accordingly. | 
 |  * | 
 |  * The mtd->owner field must be set to the module of the caller. | 
 |  */ | 
 | int nand_scan_ident(struct mtd_info *mtd, int maxchips, | 
 | 		    struct nand_flash_dev *table) | 
 | { | 
 | 	int i, nand_maf_id, nand_dev_id; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	struct nand_flash_dev *type; | 
 | 	int ret; | 
 |  | 
 | 	ret = nand_dt_init(chip); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (!mtd->name && mtd->dev.parent) | 
 | 		mtd->name = dev_name(mtd->dev.parent); | 
 |  | 
 | 	/* Set the default functions */ | 
 | 	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16); | 
 |  | 
 | 	/* Read the flash type */ | 
 | 	type = nand_get_flash_type(mtd, chip, &nand_maf_id, | 
 | 				   &nand_dev_id, table); | 
 |  | 
 | 	if (IS_ERR(type)) { | 
 | 		if (!(chip->options & NAND_SCAN_SILENT_NODEV)) | 
 | 			pr_warn("No NAND device found\n"); | 
 | 		chip->select_chip(mtd, -1); | 
 | 		return PTR_ERR(type); | 
 | 	} | 
 |  | 
 | 	chip->select_chip(mtd, -1); | 
 |  | 
 | 	/* Check for a chip array */ | 
 | 	for (i = 1; i < maxchips; i++) { | 
 | 		chip->select_chip(mtd, i); | 
 | 		/* See comment in nand_get_flash_type for reset */ | 
 | 		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | 
 | 		/* Send the command for reading device ID */ | 
 | 		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | 
 | 		/* Read manufacturer and device IDs */ | 
 | 		if (nand_maf_id != chip->read_byte(mtd) || | 
 | 		    nand_dev_id != chip->read_byte(mtd)) { | 
 | 			chip->select_chip(mtd, -1); | 
 | 			break; | 
 | 		} | 
 | 		chip->select_chip(mtd, -1); | 
 | 	} | 
 | 	if (i > 1) | 
 | 		pr_info("%d chips detected\n", i); | 
 |  | 
 | 	/* Store the number of chips and calc total size for mtd */ | 
 | 	chip->numchips = i; | 
 | 	mtd->size = i * chip->chipsize; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(nand_scan_ident); | 
 |  | 
 | /* | 
 |  * Check if the chip configuration meet the datasheet requirements. | 
 |  | 
 |  * If our configuration corrects A bits per B bytes and the minimum | 
 |  * required correction level is X bits per Y bytes, then we must ensure | 
 |  * both of the following are true: | 
 |  * | 
 |  * (1) A / B >= X / Y | 
 |  * (2) A >= X | 
 |  * | 
 |  * Requirement (1) ensures we can correct for the required bitflip density. | 
 |  * Requirement (2) ensures we can correct even when all bitflips are clumped | 
 |  * in the same sector. | 
 |  */ | 
 | static bool nand_ecc_strength_good(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	struct nand_ecc_ctrl *ecc = &chip->ecc; | 
 | 	int corr, ds_corr; | 
 |  | 
 | 	if (ecc->size == 0 || chip->ecc_step_ds == 0) | 
 | 		/* Not enough information */ | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * We get the number of corrected bits per page to compare | 
 | 	 * the correction density. | 
 | 	 */ | 
 | 	corr = (mtd->writesize * ecc->strength) / ecc->size; | 
 | 	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; | 
 |  | 
 | 	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; | 
 | } | 
 |  | 
 | /** | 
 |  * nand_scan_tail - [NAND Interface] Scan for the NAND device | 
 |  * @mtd: MTD device structure | 
 |  * | 
 |  * This is the second phase of the normal nand_scan() function. It fills out | 
 |  * all the uninitialized function pointers with the defaults and scans for a | 
 |  * bad block table if appropriate. | 
 |  */ | 
 | int nand_scan_tail(struct mtd_info *mtd) | 
 | { | 
 | 	int i; | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 | 	struct nand_ecc_ctrl *ecc = &chip->ecc; | 
 | 	struct nand_buffers *nbuf; | 
 |  | 
 | 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */ | 
 | 	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && | 
 | 			!(chip->bbt_options & NAND_BBT_USE_FLASH)); | 
 |  | 
 | 	if (!(chip->options & NAND_OWN_BUFFERS)) { | 
 | 		nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize | 
 | 				+ mtd->oobsize * 3, GFP_KERNEL); | 
 | 		if (!nbuf) | 
 | 			return -ENOMEM; | 
 | 		nbuf->ecccalc = (uint8_t *)(nbuf + 1); | 
 | 		nbuf->ecccode = nbuf->ecccalc + mtd->oobsize; | 
 | 		nbuf->databuf = nbuf->ecccode + mtd->oobsize; | 
 |  | 
 | 		chip->buffers = nbuf; | 
 | 	} else { | 
 | 		if (!chip->buffers) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Set the internal oob buffer location, just after the page data */ | 
 | 	chip->oob_poi = chip->buffers->databuf + mtd->writesize; | 
 |  | 
 | 	/* | 
 | 	 * If no default placement scheme is given, select an appropriate one. | 
 | 	 */ | 
 | 	if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) { | 
 | 		switch (mtd->oobsize) { | 
 | 		case 8: | 
 | 			ecc->layout = &nand_oob_8; | 
 | 			break; | 
 | 		case 16: | 
 | 			ecc->layout = &nand_oob_16; | 
 | 			break; | 
 | 		case 64: | 
 | 			ecc->layout = &nand_oob_64; | 
 | 			break; | 
 | 		case 128: | 
 | 			ecc->layout = &nand_oob_128; | 
 | 			break; | 
 | 		default: | 
 | 			pr_warn("No oob scheme defined for oobsize %d\n", | 
 | 				   mtd->oobsize); | 
 | 			BUG(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!chip->write_page) | 
 | 		chip->write_page = nand_write_page; | 
 |  | 
 | 	/* | 
 | 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is | 
 | 	 * selected and we have 256 byte pagesize fallback to software ECC | 
 | 	 */ | 
 |  | 
 | 	switch (ecc->mode) { | 
 | 	case NAND_ECC_HW_OOB_FIRST: | 
 | 		/* Similar to NAND_ECC_HW, but a separate read_page handle */ | 
 | 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { | 
 | 			pr_warn("No ECC functions supplied; hardware ECC not possible\n"); | 
 | 			BUG(); | 
 | 		} | 
 | 		if (!ecc->read_page) | 
 | 			ecc->read_page = nand_read_page_hwecc_oob_first; | 
 |  | 
 | 	case NAND_ECC_HW: | 
 | 		/* Use standard hwecc read page function? */ | 
 | 		if (!ecc->read_page) | 
 | 			ecc->read_page = nand_read_page_hwecc; | 
 | 		if (!ecc->write_page) | 
 | 			ecc->write_page = nand_write_page_hwecc; | 
 | 		if (!ecc->read_page_raw) | 
 | 			ecc->read_page_raw = nand_read_page_raw; | 
 | 		if (!ecc->write_page_raw) | 
 | 			ecc->write_page_raw = nand_write_page_raw; | 
 | 		if (!ecc->read_oob) | 
 | 			ecc->read_oob = nand_read_oob_std; | 
 | 		if (!ecc->write_oob) | 
 | 			ecc->write_oob = nand_write_oob_std; | 
 | 		if (!ecc->read_subpage) | 
 | 			ecc->read_subpage = nand_read_subpage; | 
 | 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) | 
 | 			ecc->write_subpage = nand_write_subpage_hwecc; | 
 |  | 
 | 	case NAND_ECC_HW_SYNDROME: | 
 | 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && | 
 | 		    (!ecc->read_page || | 
 | 		     ecc->read_page == nand_read_page_hwecc || | 
 | 		     !ecc->write_page || | 
 | 		     ecc->write_page == nand_write_page_hwecc)) { | 
 | 			pr_warn("No ECC functions supplied; hardware ECC not possible\n"); | 
 | 			BUG(); | 
 | 		} | 
 | 		/* Use standard syndrome read/write page function? */ | 
 | 		if (!ecc->read_page) | 
 | 			ecc->read_page = nand_read_page_syndrome; | 
 | 		if (!ecc->write_page) | 
 | 			ecc->write_page = nand_write_page_syndrome; | 
 | 		if (!ecc->read_page_raw) | 
 | 			ecc->read_page_raw = nand_read_page_raw_syndrome; | 
 | 		if (!ecc->write_page_raw) | 
 | 			ecc->write_page_raw = nand_write_page_raw_syndrome; | 
 | 		if (!ecc->read_oob) | 
 | 			ecc->read_oob = nand_read_oob_syndrome; | 
 | 		if (!ecc->write_oob) | 
 | 			ecc->write_oob = nand_write_oob_syndrome; | 
 |  | 
 | 		if (mtd->writesize >= ecc->size) { | 
 | 			if (!ecc->strength) { | 
 | 				pr_warn("Driver must set ecc.strength when using hardware ECC\n"); | 
 | 				BUG(); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", | 
 | 			ecc->size, mtd->writesize); | 
 | 		ecc->mode = NAND_ECC_SOFT; | 
 |  | 
 | 	case NAND_ECC_SOFT: | 
 | 		ecc->calculate = nand_calculate_ecc; | 
 | 		ecc->correct = nand_correct_data; | 
 | 		ecc->read_page = nand_read_page_swecc; | 
 | 		ecc->read_subpage = nand_read_subpage; | 
 | 		ecc->write_page = nand_write_page_swecc; | 
 | 		ecc->read_page_raw = nand_read_page_raw; | 
 | 		ecc->write_page_raw = nand_write_page_raw; | 
 | 		ecc->read_oob = nand_read_oob_std; | 
 | 		ecc->write_oob = nand_write_oob_std; | 
 | 		if (!ecc->size) | 
 | 			ecc->size = 256; | 
 | 		ecc->bytes = 3; | 
 | 		ecc->strength = 1; | 
 | 		break; | 
 |  | 
 | 	case NAND_ECC_SOFT_BCH: | 
 | 		if (!mtd_nand_has_bch()) { | 
 | 			pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n"); | 
 | 			BUG(); | 
 | 		} | 
 | 		ecc->calculate = nand_bch_calculate_ecc; | 
 | 		ecc->correct = nand_bch_correct_data; | 
 | 		ecc->read_page = nand_read_page_swecc; | 
 | 		ecc->read_subpage = nand_read_subpage; | 
 | 		ecc->write_page = nand_write_page_swecc; | 
 | 		ecc->read_page_raw = nand_read_page_raw; | 
 | 		ecc->write_page_raw = nand_write_page_raw; | 
 | 		ecc->read_oob = nand_read_oob_std; | 
 | 		ecc->write_oob = nand_write_oob_std; | 
 | 		/* | 
 | 		 * Board driver should supply ecc.size and ecc.strength values | 
 | 		 * to select how many bits are correctable. Otherwise, default | 
 | 		 * to 4 bits for large page devices. | 
 | 		 */ | 
 | 		if (!ecc->size && (mtd->oobsize >= 64)) { | 
 | 			ecc->size = 512; | 
 | 			ecc->strength = 4; | 
 | 		} | 
 |  | 
 | 		/* See nand_bch_init() for details. */ | 
 | 		ecc->bytes = 0; | 
 | 		ecc->priv = nand_bch_init(mtd); | 
 | 		if (!ecc->priv) { | 
 | 			pr_warn("BCH ECC initialization failed!\n"); | 
 | 			BUG(); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case NAND_ECC_NONE: | 
 | 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); | 
 | 		ecc->read_page = nand_read_page_raw; | 
 | 		ecc->write_page = nand_write_page_raw; | 
 | 		ecc->read_oob = nand_read_oob_std; | 
 | 		ecc->read_page_raw = nand_read_page_raw; | 
 | 		ecc->write_page_raw = nand_write_page_raw; | 
 | 		ecc->write_oob = nand_write_oob_std; | 
 | 		ecc->size = mtd->writesize; | 
 | 		ecc->bytes = 0; | 
 | 		ecc->strength = 0; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* For many systems, the standard OOB write also works for raw */ | 
 | 	if (!ecc->read_oob_raw) | 
 | 		ecc->read_oob_raw = ecc->read_oob; | 
 | 	if (!ecc->write_oob_raw) | 
 | 		ecc->write_oob_raw = ecc->write_oob; | 
 |  | 
 | 	/* | 
 | 	 * The number of bytes available for a client to place data into | 
 | 	 * the out of band area. | 
 | 	 */ | 
 | 	mtd->oobavail = 0; | 
 | 	if (ecc->layout) { | 
 | 		for (i = 0; ecc->layout->oobfree[i].length; i++) | 
 | 			mtd->oobavail += ecc->layout->oobfree[i].length; | 
 | 	} | 
 |  | 
 | 	/* ECC sanity check: warn if it's too weak */ | 
 | 	if (!nand_ecc_strength_good(mtd)) | 
 | 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", | 
 | 			mtd->name); | 
 |  | 
 | 	/* | 
 | 	 * Set the number of read / write steps for one page depending on ECC | 
 | 	 * mode. | 
 | 	 */ | 
 | 	ecc->steps = mtd->writesize / ecc->size; | 
 | 	if (ecc->steps * ecc->size != mtd->writesize) { | 
 | 		pr_warn("Invalid ECC parameters\n"); | 
 | 		BUG(); | 
 | 	} | 
 | 	ecc->total = ecc->steps * ecc->bytes; | 
 |  | 
 | 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ | 
 | 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { | 
 | 		switch (ecc->steps) { | 
 | 		case 2: | 
 | 			mtd->subpage_sft = 1; | 
 | 			break; | 
 | 		case 4: | 
 | 		case 8: | 
 | 		case 16: | 
 | 			mtd->subpage_sft = 2; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft; | 
 |  | 
 | 	/* Initialize state */ | 
 | 	chip->state = FL_READY; | 
 |  | 
 | 	/* Invalidate the pagebuffer reference */ | 
 | 	chip->pagebuf = -1; | 
 |  | 
 | 	/* Large page NAND with SOFT_ECC should support subpage reads */ | 
 | 	switch (ecc->mode) { | 
 | 	case NAND_ECC_SOFT: | 
 | 	case NAND_ECC_SOFT_BCH: | 
 | 		if (chip->page_shift > 9) | 
 | 			chip->options |= NAND_SUBPAGE_READ; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Fill in remaining MTD driver data */ | 
 | 	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; | 
 | 	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : | 
 | 						MTD_CAP_NANDFLASH; | 
 | 	mtd->_erase = nand_erase; | 
 | 	mtd->_point = NULL; | 
 | 	mtd->_unpoint = NULL; | 
 | 	mtd->_read = nand_read; | 
 | 	mtd->_write = nand_write; | 
 | 	mtd->_panic_write = panic_nand_write; | 
 | 	mtd->_read_oob = nand_read_oob; | 
 | 	mtd->_write_oob = nand_write_oob; | 
 | 	mtd->_sync = nand_sync; | 
 | 	mtd->_lock = NULL; | 
 | 	mtd->_unlock = NULL; | 
 | 	mtd->_suspend = nand_suspend; | 
 | 	mtd->_resume = nand_resume; | 
 | 	mtd->_reboot = nand_shutdown; | 
 | 	mtd->_block_isreserved = nand_block_isreserved; | 
 | 	mtd->_block_isbad = nand_block_isbad; | 
 | 	mtd->_block_markbad = nand_block_markbad; | 
 | 	mtd->writebufsize = mtd->writesize; | 
 |  | 
 | 	/* propagate ecc info to mtd_info */ | 
 | 	mtd->ecclayout = ecc->layout; | 
 | 	mtd->ecc_strength = ecc->strength; | 
 | 	mtd->ecc_step_size = ecc->size; | 
 | 	/* | 
 | 	 * Initialize bitflip_threshold to its default prior scan_bbt() call. | 
 | 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be | 
 | 	 * properly set. | 
 | 	 */ | 
 | 	if (!mtd->bitflip_threshold) | 
 | 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); | 
 |  | 
 | 	/* Check, if we should skip the bad block table scan */ | 
 | 	if (chip->options & NAND_SKIP_BBTSCAN) | 
 | 		return 0; | 
 |  | 
 | 	/* Build bad block table */ | 
 | 	return chip->scan_bbt(mtd); | 
 | } | 
 | EXPORT_SYMBOL(nand_scan_tail); | 
 |  | 
 | /* | 
 |  * is_module_text_address() isn't exported, and it's mostly a pointless | 
 |  * test if this is a module _anyway_ -- they'd have to try _really_ hard | 
 |  * to call us from in-kernel code if the core NAND support is modular. | 
 |  */ | 
 | #ifdef MODULE | 
 | #define caller_is_module() (1) | 
 | #else | 
 | #define caller_is_module() \ | 
 | 	is_module_text_address((unsigned long)__builtin_return_address(0)) | 
 | #endif | 
 |  | 
 | /** | 
 |  * nand_scan - [NAND Interface] Scan for the NAND device | 
 |  * @mtd: MTD device structure | 
 |  * @maxchips: number of chips to scan for | 
 |  * | 
 |  * This fills out all the uninitialized function pointers with the defaults. | 
 |  * The flash ID is read and the mtd/chip structures are filled with the | 
 |  * appropriate values. The mtd->owner field must be set to the module of the | 
 |  * caller. | 
 |  */ | 
 | int nand_scan(struct mtd_info *mtd, int maxchips) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* Many callers got this wrong, so check for it for a while... */ | 
 | 	if (!mtd->owner && caller_is_module()) { | 
 | 		pr_crit("%s called with NULL mtd->owner!\n", __func__); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	ret = nand_scan_ident(mtd, maxchips, NULL); | 
 | 	if (!ret) | 
 | 		ret = nand_scan_tail(mtd); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(nand_scan); | 
 |  | 
 | /** | 
 |  * nand_release - [NAND Interface] Free resources held by the NAND device | 
 |  * @mtd: MTD device structure | 
 |  */ | 
 | void nand_release(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *chip = mtd_to_nand(mtd); | 
 |  | 
 | 	if (chip->ecc.mode == NAND_ECC_SOFT_BCH) | 
 | 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv); | 
 |  | 
 | 	mtd_device_unregister(mtd); | 
 |  | 
 | 	/* Free bad block table memory */ | 
 | 	kfree(chip->bbt); | 
 | 	if (!(chip->options & NAND_OWN_BUFFERS)) | 
 | 		kfree(chip->buffers); | 
 |  | 
 | 	/* Free bad block descriptor memory */ | 
 | 	if (chip->badblock_pattern && chip->badblock_pattern->options | 
 | 			& NAND_BBT_DYNAMICSTRUCT) | 
 | 		kfree(chip->badblock_pattern); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nand_release); | 
 |  | 
 | static int __init nand_base_init(void) | 
 | { | 
 | 	led_trigger_register_simple("nand-disk", &nand_led_trigger); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __exit nand_base_exit(void) | 
 | { | 
 | 	led_trigger_unregister_simple(nand_led_trigger); | 
 | } | 
 |  | 
 | module_init(nand_base_init); | 
 | module_exit(nand_base_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); | 
 | MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); | 
 | MODULE_DESCRIPTION("Generic NAND flash driver code"); |