| /* | 
 |  * Copyright (c) 2006 Oracle.  All rights reserved. | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the | 
 |  * OpenIB.org BSD license below: | 
 |  * | 
 |  *     Redistribution and use in source and binary forms, with or | 
 |  *     without modification, are permitted provided that the following | 
 |  *     conditions are met: | 
 |  * | 
 |  *      - Redistributions of source code must retain the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer. | 
 |  * | 
 |  *      - Redistributions in binary form must reproduce the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer in the documentation and/or other materials | 
 |  *        provided with the distribution. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 |  * SOFTWARE. | 
 |  * | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/ratelimit.h> | 
 |  | 
 | #include "rds.h" | 
 | #include "iw.h" | 
 |  | 
 |  | 
 | /* | 
 |  * This is stored as mr->r_trans_private. | 
 |  */ | 
 | struct rds_iw_mr { | 
 | 	struct rds_iw_device	*device; | 
 | 	struct rds_iw_mr_pool	*pool; | 
 | 	struct rdma_cm_id	*cm_id; | 
 |  | 
 | 	struct ib_mr	*mr; | 
 | 	struct ib_fast_reg_page_list *page_list; | 
 |  | 
 | 	struct rds_iw_mapping	mapping; | 
 | 	unsigned char		remap_count; | 
 | }; | 
 |  | 
 | /* | 
 |  * Our own little MR pool | 
 |  */ | 
 | struct rds_iw_mr_pool { | 
 | 	struct rds_iw_device	*device;		/* back ptr to the device that owns us */ | 
 |  | 
 | 	struct mutex		flush_lock;		/* serialize fmr invalidate */ | 
 | 	struct work_struct	flush_worker;		/* flush worker */ | 
 |  | 
 | 	spinlock_t		list_lock;		/* protect variables below */ | 
 | 	atomic_t		item_count;		/* total # of MRs */ | 
 | 	atomic_t		dirty_count;		/* # dirty of MRs */ | 
 | 	struct list_head	dirty_list;		/* dirty mappings */ | 
 | 	struct list_head	clean_list;		/* unused & unamapped MRs */ | 
 | 	atomic_t		free_pinned;		/* memory pinned by free MRs */ | 
 | 	unsigned long		max_message_size;	/* in pages */ | 
 | 	unsigned long		max_items; | 
 | 	unsigned long		max_items_soft; | 
 | 	unsigned long		max_free_pinned; | 
 | 	int			max_pages; | 
 | }; | 
 |  | 
 | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all); | 
 | static void rds_iw_mr_pool_flush_worker(struct work_struct *work); | 
 | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | 
 | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, | 
 | 			  struct rds_iw_mr *ibmr, | 
 | 			  struct scatterlist *sg, unsigned int nents); | 
 | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | 
 | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, | 
 | 			struct list_head *unmap_list, | 
 | 			struct list_head *kill_list, | 
 | 			int *unpinned); | 
 | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | 
 |  | 
 | static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id) | 
 | { | 
 | 	struct rds_iw_device *iwdev; | 
 | 	struct rds_iw_cm_id *i_cm_id; | 
 |  | 
 | 	*rds_iwdev = NULL; | 
 | 	*cm_id = NULL; | 
 |  | 
 | 	list_for_each_entry(iwdev, &rds_iw_devices, list) { | 
 | 		spin_lock_irq(&iwdev->spinlock); | 
 | 		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) { | 
 | 			struct sockaddr_in *src_addr, *dst_addr; | 
 |  | 
 | 			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr; | 
 | 			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr; | 
 |  | 
 | 			rdsdebug("local ipaddr = %x port %d, " | 
 | 				 "remote ipaddr = %x port %d" | 
 | 				 "..looking for %x port %d, " | 
 | 				 "remote ipaddr = %x port %d\n", | 
 | 				src_addr->sin_addr.s_addr, | 
 | 				src_addr->sin_port, | 
 | 				dst_addr->sin_addr.s_addr, | 
 | 				dst_addr->sin_port, | 
 | 				rs->rs_bound_addr, | 
 | 				rs->rs_bound_port, | 
 | 				rs->rs_conn_addr, | 
 | 				rs->rs_conn_port); | 
 | #ifdef WORKING_TUPLE_DETECTION | 
 | 			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr && | 
 | 			    src_addr->sin_port == rs->rs_bound_port && | 
 | 			    dst_addr->sin_addr.s_addr == rs->rs_conn_addr && | 
 | 			    dst_addr->sin_port == rs->rs_conn_port) { | 
 | #else | 
 | 			/* FIXME - needs to compare the local and remote | 
 | 			 * ipaddr/port tuple, but the ipaddr is the only | 
 | 			 * available information in the rds_sock (as the rest are | 
 | 			 * zero'ed.  It doesn't appear to be properly populated | 
 | 			 * during connection setup... | 
 | 			 */ | 
 | 			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) { | 
 | #endif | 
 | 				spin_unlock_irq(&iwdev->spinlock); | 
 | 				*rds_iwdev = iwdev; | 
 | 				*cm_id = i_cm_id->cm_id; | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irq(&iwdev->spinlock); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | 
 | { | 
 | 	struct rds_iw_cm_id *i_cm_id; | 
 |  | 
 | 	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL); | 
 | 	if (!i_cm_id) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	i_cm_id->cm_id = cm_id; | 
 |  | 
 | 	spin_lock_irq(&rds_iwdev->spinlock); | 
 | 	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list); | 
 | 	spin_unlock_irq(&rds_iwdev->spinlock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, | 
 | 				struct rdma_cm_id *cm_id) | 
 | { | 
 | 	struct rds_iw_cm_id *i_cm_id; | 
 |  | 
 | 	spin_lock_irq(&rds_iwdev->spinlock); | 
 | 	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) { | 
 | 		if (i_cm_id->cm_id == cm_id) { | 
 | 			list_del(&i_cm_id->list); | 
 | 			kfree(i_cm_id); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irq(&rds_iwdev->spinlock); | 
 | } | 
 |  | 
 |  | 
 | int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | 
 | { | 
 | 	struct sockaddr_in *src_addr, *dst_addr; | 
 | 	struct rds_iw_device *rds_iwdev_old; | 
 | 	struct rds_sock rs; | 
 | 	struct rdma_cm_id *pcm_id; | 
 | 	int rc; | 
 |  | 
 | 	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr; | 
 | 	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr; | 
 |  | 
 | 	rs.rs_bound_addr = src_addr->sin_addr.s_addr; | 
 | 	rs.rs_bound_port = src_addr->sin_port; | 
 | 	rs.rs_conn_addr = dst_addr->sin_addr.s_addr; | 
 | 	rs.rs_conn_port = dst_addr->sin_port; | 
 |  | 
 | 	rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id); | 
 | 	if (rc) | 
 | 		rds_iw_remove_cm_id(rds_iwdev, cm_id); | 
 |  | 
 | 	return rds_iw_add_cm_id(rds_iwdev, cm_id); | 
 | } | 
 |  | 
 | void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) | 
 | { | 
 | 	struct rds_iw_connection *ic = conn->c_transport_data; | 
 |  | 
 | 	/* conn was previously on the nodev_conns_list */ | 
 | 	spin_lock_irq(&iw_nodev_conns_lock); | 
 | 	BUG_ON(list_empty(&iw_nodev_conns)); | 
 | 	BUG_ON(list_empty(&ic->iw_node)); | 
 | 	list_del(&ic->iw_node); | 
 |  | 
 | 	spin_lock(&rds_iwdev->spinlock); | 
 | 	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list); | 
 | 	spin_unlock(&rds_iwdev->spinlock); | 
 | 	spin_unlock_irq(&iw_nodev_conns_lock); | 
 |  | 
 | 	ic->rds_iwdev = rds_iwdev; | 
 | } | 
 |  | 
 | void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) | 
 | { | 
 | 	struct rds_iw_connection *ic = conn->c_transport_data; | 
 |  | 
 | 	/* place conn on nodev_conns_list */ | 
 | 	spin_lock(&iw_nodev_conns_lock); | 
 |  | 
 | 	spin_lock_irq(&rds_iwdev->spinlock); | 
 | 	BUG_ON(list_empty(&ic->iw_node)); | 
 | 	list_del(&ic->iw_node); | 
 | 	spin_unlock_irq(&rds_iwdev->spinlock); | 
 |  | 
 | 	list_add_tail(&ic->iw_node, &iw_nodev_conns); | 
 |  | 
 | 	spin_unlock(&iw_nodev_conns_lock); | 
 |  | 
 | 	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id); | 
 | 	ic->rds_iwdev = NULL; | 
 | } | 
 |  | 
 | void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock) | 
 | { | 
 | 	struct rds_iw_connection *ic, *_ic; | 
 | 	LIST_HEAD(tmp_list); | 
 |  | 
 | 	/* avoid calling conn_destroy with irqs off */ | 
 | 	spin_lock_irq(list_lock); | 
 | 	list_splice(list, &tmp_list); | 
 | 	INIT_LIST_HEAD(list); | 
 | 	spin_unlock_irq(list_lock); | 
 |  | 
 | 	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) | 
 | 		rds_conn_destroy(ic->conn); | 
 | } | 
 |  | 
 | static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg, | 
 | 		struct scatterlist *list, unsigned int sg_len) | 
 | { | 
 | 	sg->list = list; | 
 | 	sg->len = sg_len; | 
 | 	sg->dma_len = 0; | 
 | 	sg->dma_npages = 0; | 
 | 	sg->bytes = 0; | 
 | } | 
 |  | 
 | static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev, | 
 | 			struct rds_iw_scatterlist *sg) | 
 | { | 
 | 	struct ib_device *dev = rds_iwdev->dev; | 
 | 	u64 *dma_pages = NULL; | 
 | 	int i, j, ret; | 
 |  | 
 | 	WARN_ON(sg->dma_len); | 
 |  | 
 | 	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL); | 
 | 	if (unlikely(!sg->dma_len)) { | 
 | 		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n"); | 
 | 		return ERR_PTR(-EBUSY); | 
 | 	} | 
 |  | 
 | 	sg->bytes = 0; | 
 | 	sg->dma_npages = 0; | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	for (i = 0; i < sg->dma_len; ++i) { | 
 | 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); | 
 | 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); | 
 | 		u64 end_addr; | 
 |  | 
 | 		sg->bytes += dma_len; | 
 |  | 
 | 		end_addr = dma_addr + dma_len; | 
 | 		if (dma_addr & PAGE_MASK) { | 
 | 			if (i > 0) | 
 | 				goto out_unmap; | 
 | 			dma_addr &= ~PAGE_MASK; | 
 | 		} | 
 | 		if (end_addr & PAGE_MASK) { | 
 | 			if (i < sg->dma_len - 1) | 
 | 				goto out_unmap; | 
 | 			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK; | 
 | 		} | 
 |  | 
 | 		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT; | 
 | 	} | 
 |  | 
 | 	/* Now gather the dma addrs into one list */ | 
 | 	if (sg->dma_npages > fastreg_message_size) | 
 | 		goto out_unmap; | 
 |  | 
 | 	dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC); | 
 | 	if (!dma_pages) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_unmap; | 
 | 	} | 
 |  | 
 | 	for (i = j = 0; i < sg->dma_len; ++i) { | 
 | 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); | 
 | 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); | 
 | 		u64 end_addr; | 
 |  | 
 | 		end_addr = dma_addr + dma_len; | 
 | 		dma_addr &= ~PAGE_MASK; | 
 | 		for (; dma_addr < end_addr; dma_addr += PAGE_SIZE) | 
 | 			dma_pages[j++] = dma_addr; | 
 | 		BUG_ON(j > sg->dma_npages); | 
 | 	} | 
 |  | 
 | 	return dma_pages; | 
 |  | 
 | out_unmap: | 
 | 	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL); | 
 | 	sg->dma_len = 0; | 
 | 	kfree(dma_pages); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 |  | 
 | struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev) | 
 | { | 
 | 	struct rds_iw_mr_pool *pool; | 
 |  | 
 | 	pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
 | 	if (!pool) { | 
 | 		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n"); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	pool->device = rds_iwdev; | 
 | 	INIT_LIST_HEAD(&pool->dirty_list); | 
 | 	INIT_LIST_HEAD(&pool->clean_list); | 
 | 	mutex_init(&pool->flush_lock); | 
 | 	spin_lock_init(&pool->list_lock); | 
 | 	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker); | 
 |  | 
 | 	pool->max_message_size = fastreg_message_size; | 
 | 	pool->max_items = fastreg_pool_size; | 
 | 	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4; | 
 | 	pool->max_pages = fastreg_message_size; | 
 |  | 
 | 	/* We never allow more than max_items MRs to be allocated. | 
 | 	 * When we exceed more than max_items_soft, we start freeing | 
 | 	 * items more aggressively. | 
 | 	 * Make sure that max_items > max_items_soft > max_items / 2 | 
 | 	 */ | 
 | 	pool->max_items_soft = pool->max_items * 3 / 4; | 
 |  | 
 | 	return pool; | 
 | } | 
 |  | 
 | void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo) | 
 | { | 
 | 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | 
 |  | 
 | 	iinfo->rdma_mr_max = pool->max_items; | 
 | 	iinfo->rdma_mr_size = pool->max_pages; | 
 | } | 
 |  | 
 | void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool) | 
 | { | 
 | 	flush_workqueue(rds_wq); | 
 | 	rds_iw_flush_mr_pool(pool, 1); | 
 | 	BUG_ON(atomic_read(&pool->item_count)); | 
 | 	BUG_ON(atomic_read(&pool->free_pinned)); | 
 | 	kfree(pool); | 
 | } | 
 |  | 
 | static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool) | 
 | { | 
 | 	struct rds_iw_mr *ibmr = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&pool->list_lock, flags); | 
 | 	if (!list_empty(&pool->clean_list)) { | 
 | 		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list); | 
 | 		list_del_init(&ibmr->mapping.m_list); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&pool->list_lock, flags); | 
 |  | 
 | 	return ibmr; | 
 | } | 
 |  | 
 | static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev) | 
 | { | 
 | 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | 
 | 	struct rds_iw_mr *ibmr = NULL; | 
 | 	int err = 0, iter = 0; | 
 |  | 
 | 	while (1) { | 
 | 		ibmr = rds_iw_reuse_fmr(pool); | 
 | 		if (ibmr) | 
 | 			return ibmr; | 
 |  | 
 | 		/* No clean MRs - now we have the choice of either | 
 | 		 * allocating a fresh MR up to the limit imposed by the | 
 | 		 * driver, or flush any dirty unused MRs. | 
 | 		 * We try to avoid stalling in the send path if possible, | 
 | 		 * so we allocate as long as we're allowed to. | 
 | 		 * | 
 | 		 * We're fussy with enforcing the FMR limit, though. If the driver | 
 | 		 * tells us we can't use more than N fmrs, we shouldn't start | 
 | 		 * arguing with it */ | 
 | 		if (atomic_inc_return(&pool->item_count) <= pool->max_items) | 
 | 			break; | 
 |  | 
 | 		atomic_dec(&pool->item_count); | 
 |  | 
 | 		if (++iter > 2) { | 
 | 			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted); | 
 | 			return ERR_PTR(-EAGAIN); | 
 | 		} | 
 |  | 
 | 		/* We do have some empty MRs. Flush them out. */ | 
 | 		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait); | 
 | 		rds_iw_flush_mr_pool(pool, 0); | 
 | 	} | 
 |  | 
 | 	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); | 
 | 	if (!ibmr) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_no_cigar; | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&ibmr->mapping.m_lock); | 
 | 	INIT_LIST_HEAD(&ibmr->mapping.m_list); | 
 | 	ibmr->mapping.m_mr = ibmr; | 
 |  | 
 | 	err = rds_iw_init_fastreg(pool, ibmr); | 
 | 	if (err) | 
 | 		goto out_no_cigar; | 
 |  | 
 | 	rds_iw_stats_inc(s_iw_rdma_mr_alloc); | 
 | 	return ibmr; | 
 |  | 
 | out_no_cigar: | 
 | 	if (ibmr) { | 
 | 		rds_iw_destroy_fastreg(pool, ibmr); | 
 | 		kfree(ibmr); | 
 | 	} | 
 | 	atomic_dec(&pool->item_count); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | void rds_iw_sync_mr(void *trans_private, int direction) | 
 | { | 
 | 	struct rds_iw_mr *ibmr = trans_private; | 
 | 	struct rds_iw_device *rds_iwdev = ibmr->device; | 
 |  | 
 | 	switch (direction) { | 
 | 	case DMA_FROM_DEVICE: | 
 | 		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list, | 
 | 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); | 
 | 		break; | 
 | 	case DMA_TO_DEVICE: | 
 | 		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list, | 
 | 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Flush our pool of MRs. | 
 |  * At a minimum, all currently unused MRs are unmapped. | 
 |  * If the number of MRs allocated exceeds the limit, we also try | 
 |  * to free as many MRs as needed to get back to this limit. | 
 |  */ | 
 | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all) | 
 | { | 
 | 	struct rds_iw_mr *ibmr, *next; | 
 | 	LIST_HEAD(unmap_list); | 
 | 	LIST_HEAD(kill_list); | 
 | 	unsigned long flags; | 
 | 	unsigned int nfreed = 0, ncleaned = 0, unpinned = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush); | 
 |  | 
 | 	mutex_lock(&pool->flush_lock); | 
 |  | 
 | 	spin_lock_irqsave(&pool->list_lock, flags); | 
 | 	/* Get the list of all mappings to be destroyed */ | 
 | 	list_splice_init(&pool->dirty_list, &unmap_list); | 
 | 	if (free_all) | 
 | 		list_splice_init(&pool->clean_list, &kill_list); | 
 | 	spin_unlock_irqrestore(&pool->list_lock, flags); | 
 |  | 
 | 	/* Batched invalidate of dirty MRs. | 
 | 	 * For FMR based MRs, the mappings on the unmap list are | 
 | 	 * actually members of an ibmr (ibmr->mapping). They either | 
 | 	 * migrate to the kill_list, or have been cleaned and should be | 
 | 	 * moved to the clean_list. | 
 | 	 * For fastregs, they will be dynamically allocated, and | 
 | 	 * will be destroyed by the unmap function. | 
 | 	 */ | 
 | 	if (!list_empty(&unmap_list)) { | 
 | 		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, | 
 | 						     &kill_list, &unpinned); | 
 | 		/* If we've been asked to destroy all MRs, move those | 
 | 		 * that were simply cleaned to the kill list */ | 
 | 		if (free_all) | 
 | 			list_splice_init(&unmap_list, &kill_list); | 
 | 	} | 
 |  | 
 | 	/* Destroy any MRs that are past their best before date */ | 
 | 	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) { | 
 | 		rds_iw_stats_inc(s_iw_rdma_mr_free); | 
 | 		list_del(&ibmr->mapping.m_list); | 
 | 		rds_iw_destroy_fastreg(pool, ibmr); | 
 | 		kfree(ibmr); | 
 | 		nfreed++; | 
 | 	} | 
 |  | 
 | 	/* Anything that remains are laundered ibmrs, which we can add | 
 | 	 * back to the clean list. */ | 
 | 	if (!list_empty(&unmap_list)) { | 
 | 		spin_lock_irqsave(&pool->list_lock, flags); | 
 | 		list_splice(&unmap_list, &pool->clean_list); | 
 | 		spin_unlock_irqrestore(&pool->list_lock, flags); | 
 | 	} | 
 |  | 
 | 	atomic_sub(unpinned, &pool->free_pinned); | 
 | 	atomic_sub(ncleaned, &pool->dirty_count); | 
 | 	atomic_sub(nfreed, &pool->item_count); | 
 |  | 
 | 	mutex_unlock(&pool->flush_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void rds_iw_mr_pool_flush_worker(struct work_struct *work) | 
 | { | 
 | 	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker); | 
 |  | 
 | 	rds_iw_flush_mr_pool(pool, 0); | 
 | } | 
 |  | 
 | void rds_iw_free_mr(void *trans_private, int invalidate) | 
 | { | 
 | 	struct rds_iw_mr *ibmr = trans_private; | 
 | 	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool; | 
 |  | 
 | 	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len); | 
 | 	if (!pool) | 
 | 		return; | 
 |  | 
 | 	/* Return it to the pool's free list */ | 
 | 	rds_iw_free_fastreg(pool, ibmr); | 
 |  | 
 | 	/* If we've pinned too many pages, request a flush */ | 
 | 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || | 
 | 	    atomic_read(&pool->dirty_count) >= pool->max_items / 10) | 
 | 		queue_work(rds_wq, &pool->flush_worker); | 
 |  | 
 | 	if (invalidate) { | 
 | 		if (likely(!in_interrupt())) { | 
 | 			rds_iw_flush_mr_pool(pool, 0); | 
 | 		} else { | 
 | 			/* We get here if the user created a MR marked | 
 | 			 * as use_once and invalidate at the same time. */ | 
 | 			queue_work(rds_wq, &pool->flush_worker); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void rds_iw_flush_mrs(void) | 
 | { | 
 | 	struct rds_iw_device *rds_iwdev; | 
 |  | 
 | 	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) { | 
 | 		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | 
 |  | 
 | 		if (pool) | 
 | 			rds_iw_flush_mr_pool(pool, 0); | 
 | 	} | 
 | } | 
 |  | 
 | void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents, | 
 | 		    struct rds_sock *rs, u32 *key_ret) | 
 | { | 
 | 	struct rds_iw_device *rds_iwdev; | 
 | 	struct rds_iw_mr *ibmr = NULL; | 
 | 	struct rdma_cm_id *cm_id; | 
 | 	int ret; | 
 |  | 
 | 	ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id); | 
 | 	if (ret || !cm_id) { | 
 | 		ret = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!rds_iwdev->mr_pool) { | 
 | 		ret = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ibmr = rds_iw_alloc_mr(rds_iwdev); | 
 | 	if (IS_ERR(ibmr)) | 
 | 		return ibmr; | 
 |  | 
 | 	ibmr->cm_id = cm_id; | 
 | 	ibmr->device = rds_iwdev; | 
 |  | 
 | 	ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents); | 
 | 	if (ret == 0) | 
 | 		*key_ret = ibmr->mr->rkey; | 
 | 	else | 
 | 		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret); | 
 |  | 
 | out: | 
 | 	if (ret) { | 
 | 		if (ibmr) | 
 | 			rds_iw_free_mr(ibmr, 0); | 
 | 		ibmr = ERR_PTR(ret); | 
 | 	} | 
 | 	return ibmr; | 
 | } | 
 |  | 
 | /* | 
 |  * iWARP fastreg handling | 
 |  * | 
 |  * The life cycle of a fastreg registration is a bit different from | 
 |  * FMRs. | 
 |  * The idea behind fastreg is to have one MR, to which we bind different | 
 |  * mappings over time. To avoid stalling on the expensive map and invalidate | 
 |  * operations, these operations are pipelined on the same send queue on | 
 |  * which we want to send the message containing the r_key. | 
 |  * | 
 |  * This creates a bit of a problem for us, as we do not have the destination | 
 |  * IP in GET_MR, so the connection must be setup prior to the GET_MR call for | 
 |  * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit | 
 |  * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request | 
 |  * before queuing the SEND. When completions for these arrive, they are | 
 |  * dispatched to the MR has a bit set showing that RDMa can be performed. | 
 |  * | 
 |  * There is another interesting aspect that's related to invalidation. | 
 |  * The application can request that a mapping is invalidated in FREE_MR. | 
 |  * The expectation there is that this invalidation step includes ALL | 
 |  * PREVIOUSLY FREED MRs. | 
 |  */ | 
 | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, | 
 | 				struct rds_iw_mr *ibmr) | 
 | { | 
 | 	struct rds_iw_device *rds_iwdev = pool->device; | 
 | 	struct ib_fast_reg_page_list *page_list = NULL; | 
 | 	struct ib_mr *mr; | 
 | 	int err; | 
 |  | 
 | 	mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size); | 
 | 	if (IS_ERR(mr)) { | 
 | 		err = PTR_ERR(mr); | 
 |  | 
 | 		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages | 
 | 	 * is not filled in. | 
 | 	 */ | 
 | 	page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size); | 
 | 	if (IS_ERR(page_list)) { | 
 | 		err = PTR_ERR(page_list); | 
 |  | 
 | 		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err); | 
 | 		ib_dereg_mr(mr); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	ibmr->page_list = page_list; | 
 | 	ibmr->mr = mr; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping) | 
 | { | 
 | 	struct rds_iw_mr *ibmr = mapping->m_mr; | 
 | 	struct ib_send_wr f_wr, *failed_wr; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Perform a WR for the fast_reg_mr. Each individual page | 
 | 	 * in the sg list is added to the fast reg page list and placed | 
 | 	 * inside the fast_reg_mr WR.  The key used is a rolling 8bit | 
 | 	 * counter, which should guarantee uniqueness. | 
 | 	 */ | 
 | 	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++); | 
 | 	mapping->m_rkey = ibmr->mr->rkey; | 
 |  | 
 | 	memset(&f_wr, 0, sizeof(f_wr)); | 
 | 	f_wr.wr_id = RDS_IW_FAST_REG_WR_ID; | 
 | 	f_wr.opcode = IB_WR_FAST_REG_MR; | 
 | 	f_wr.wr.fast_reg.length = mapping->m_sg.bytes; | 
 | 	f_wr.wr.fast_reg.rkey = mapping->m_rkey; | 
 | 	f_wr.wr.fast_reg.page_list = ibmr->page_list; | 
 | 	f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len; | 
 | 	f_wr.wr.fast_reg.page_shift = PAGE_SHIFT; | 
 | 	f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE | | 
 | 				IB_ACCESS_REMOTE_READ | | 
 | 				IB_ACCESS_REMOTE_WRITE; | 
 | 	f_wr.wr.fast_reg.iova_start = 0; | 
 | 	f_wr.send_flags = IB_SEND_SIGNALED; | 
 |  | 
 | 	failed_wr = &f_wr; | 
 | 	ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr); | 
 | 	BUG_ON(failed_wr != &f_wr); | 
 | 	if (ret) | 
 | 		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", | 
 | 			__func__, __LINE__, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr) | 
 | { | 
 | 	struct ib_send_wr s_wr, *failed_wr; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!ibmr->cm_id->qp || !ibmr->mr) | 
 | 		goto out; | 
 |  | 
 | 	memset(&s_wr, 0, sizeof(s_wr)); | 
 | 	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID; | 
 | 	s_wr.opcode = IB_WR_LOCAL_INV; | 
 | 	s_wr.ex.invalidate_rkey = ibmr->mr->rkey; | 
 | 	s_wr.send_flags = IB_SEND_SIGNALED; | 
 |  | 
 | 	failed_wr = &s_wr; | 
 | 	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr); | 
 | 	if (ret) { | 
 | 		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", | 
 | 			__func__, __LINE__, ret); | 
 | 		goto out; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, | 
 | 			struct rds_iw_mr *ibmr, | 
 | 			struct scatterlist *sg, | 
 | 			unsigned int sg_len) | 
 | { | 
 | 	struct rds_iw_device *rds_iwdev = pool->device; | 
 | 	struct rds_iw_mapping *mapping = &ibmr->mapping; | 
 | 	u64 *dma_pages; | 
 | 	int i, ret = 0; | 
 |  | 
 | 	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len); | 
 |  | 
 | 	dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg); | 
 | 	if (IS_ERR(dma_pages)) { | 
 | 		ret = PTR_ERR(dma_pages); | 
 | 		dma_pages = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (mapping->m_sg.dma_len > pool->max_message_size) { | 
 | 		ret = -EMSGSIZE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < mapping->m_sg.dma_npages; ++i) | 
 | 		ibmr->page_list->page_list[i] = dma_pages[i]; | 
 |  | 
 | 	ret = rds_iw_rdma_build_fastreg(mapping); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	rds_iw_stats_inc(s_iw_rdma_mr_used); | 
 |  | 
 | out: | 
 | 	kfree(dma_pages); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * "Free" a fastreg MR. | 
 |  */ | 
 | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, | 
 | 		struct rds_iw_mr *ibmr) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	if (!ibmr->mapping.m_sg.dma_len) | 
 | 		return; | 
 |  | 
 | 	ret = rds_iw_rdma_fastreg_inv(ibmr); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	/* Try to post the LOCAL_INV WR to the queue. */ | 
 | 	spin_lock_irqsave(&pool->list_lock, flags); | 
 |  | 
 | 	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list); | 
 | 	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned); | 
 | 	atomic_inc(&pool->dirty_count); | 
 |  | 
 | 	spin_unlock_irqrestore(&pool->list_lock, flags); | 
 | } | 
 |  | 
 | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, | 
 | 				struct list_head *unmap_list, | 
 | 				struct list_head *kill_list, | 
 | 				int *unpinned) | 
 | { | 
 | 	struct rds_iw_mapping *mapping, *next; | 
 | 	unsigned int ncleaned = 0; | 
 | 	LIST_HEAD(laundered); | 
 |  | 
 | 	/* Batched invalidation of fastreg MRs. | 
 | 	 * Why do we do it this way, even though we could pipeline unmap | 
 | 	 * and remap? The reason is the application semantics - when the | 
 | 	 * application requests an invalidation of MRs, it expects all | 
 | 	 * previously released R_Keys to become invalid. | 
 | 	 * | 
 | 	 * If we implement MR reuse naively, we risk memory corruption | 
 | 	 * (this has actually been observed). So the default behavior | 
 | 	 * requires that a MR goes through an explicit unmap operation before | 
 | 	 * we can reuse it again. | 
 | 	 * | 
 | 	 * We could probably improve on this a little, by allowing immediate | 
 | 	 * reuse of a MR on the same socket (eg you could add small | 
 | 	 * cache of unused MRs to strct rds_socket - GET_MR could grab one | 
 | 	 * of these without requiring an explicit invalidate). | 
 | 	 */ | 
 | 	while (!list_empty(unmap_list)) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&pool->list_lock, flags); | 
 | 		list_for_each_entry_safe(mapping, next, unmap_list, m_list) { | 
 | 			*unpinned += mapping->m_sg.len; | 
 | 			list_move(&mapping->m_list, &laundered); | 
 | 			ncleaned++; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&pool->list_lock, flags); | 
 | 	} | 
 |  | 
 | 	/* Move all laundered mappings back to the unmap list. | 
 | 	 * We do not kill any WRs right now - it doesn't seem the | 
 | 	 * fastreg API has a max_remap limit. */ | 
 | 	list_splice_init(&laundered, unmap_list); | 
 |  | 
 | 	return ncleaned; | 
 | } | 
 |  | 
 | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, | 
 | 		struct rds_iw_mr *ibmr) | 
 | { | 
 | 	if (ibmr->page_list) | 
 | 		ib_free_fast_reg_page_list(ibmr->page_list); | 
 | 	if (ibmr->mr) | 
 | 		ib_dereg_mr(ibmr->mr); | 
 | } |