blob: f260744bcf7e12530241cf26532dd78625d6f4e2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/vmscan.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Swap reorganised 29.12.95, Stephen Tweedie.
* kswapd added: 7.1.96 sct
* Removed kswapd_ctl limits, and swap out as many pages as needed
* to bring the system back to freepages.high: 2.4.97, Rik van Riel.
* Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
* Multiqueue VM started 5.8.00, Rik van Riel.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/module.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/vmpressure.h>
#include <linux/vmstat.h>
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h> /* for try_to_release_page(),
buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/compaction.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/memcontrol.h>
#include <linux/delayacct.h>
#include <linux/sysctl.h>
#include <linux/oom.h>
#include <linux/pagevec.h>
#include <linux/prefetch.h>
#include <linux/printk.h>
#include <linux/dax.h>
#include <linux/psi.h>
#include <linux/memory.h>
#include <linux/pagewalk.h>
#include <linux/shmem_fs.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/mmu_notifier.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
#include <linux/swapops.h>
#include <linux/balloon_compaction.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>
struct scan_control {
/* How many pages shrink_list() should reclaim */
unsigned long nr_to_reclaim;
/*
* Nodemask of nodes allowed by the caller. If NULL, all nodes
* are scanned.
*/
nodemask_t *nodemask;
/*
* The memory cgroup that hit its limit and as a result is the
* primary target of this reclaim invocation.
*/
struct mem_cgroup *target_mem_cgroup;
/* Writepage batching in laptop mode; RECLAIM_WRITE */
unsigned int may_writepage:1;
/* Can mapped pages be reclaimed? */
unsigned int may_unmap:1;
/* Can pages be swapped as part of reclaim? */
unsigned int may_swap:1;
/*
* Cgroup memory below memory.low is protected as long as we
* don't threaten to OOM. If any cgroup is reclaimed at
* reduced force or passed over entirely due to its memory.low
* setting (memcg_low_skipped), and nothing is reclaimed as a
* result, then go back for one more cycle that reclaims the protected
* memory (memcg_low_reclaim) to avert OOM.
*/
unsigned int memcg_low_reclaim:1;
unsigned int memcg_low_skipped:1;
unsigned int hibernation_mode:1;
/* One of the zones is ready for compaction */
unsigned int compaction_ready:1;
/* Allocation order */
s8 order;
/* Scan (total_size >> priority) pages at once */
s8 priority;
/* The highest zone to isolate pages for reclaim from */
s8 reclaim_idx;
/* This context's GFP mask */
gfp_t gfp_mask;
/* Incremented by the number of inactive pages that were scanned */
unsigned long nr_scanned;
/* Number of pages freed so far during a call to shrink_zones() */
unsigned long nr_reclaimed;
struct {
unsigned int dirty;
unsigned int unqueued_dirty;
unsigned int congested;
unsigned int writeback;
unsigned int immediate;
unsigned int file_taken;
unsigned int taken;
} nr;
/* for recording the reclaimed slab by now */
struct reclaim_state reclaim_state;
};
#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field) \
do { \
if ((_page)->lru.prev != _base) { \
struct page *prev; \
\
prev = lru_to_page(&(_page->lru)); \
prefetch(&prev->_field); \
} \
} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif
#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field) \
do { \
if ((_page)->lru.prev != _base) { \
struct page *prev; \
\
prev = lru_to_page(&(_page->lru)); \
prefetchw(&prev->_field); \
} \
} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif
/*
* From 0 .. 100. Higher means more swappy.
*/
int vm_swappiness = 60;
/*
* The total number of pages which are beyond the high watermark within all
* zones.
*/
unsigned long vm_total_pages;
struct kernfs_node *lru_gen_admin_node;
static void set_task_reclaim_state(struct task_struct *task,
struct reclaim_state *rs)
{
/* Check for an overwrite */
WARN_ON_ONCE(rs && task->reclaim_state);
/* Check for the nulling of an already-nulled member */
WARN_ON_ONCE(!rs && !task->reclaim_state);
task->reclaim_state = rs;
}
int min_filelist_kbytes_handler(struct ctl_table *table, int write,
void __user *buf, size_t *len, loff_t *pos)
{
size_t written;
if (!lru_gen_enabled() || write)
return proc_dointvec(table, write, buf, len, pos);
if (!*len || *pos) {
*len = 0;
return 0;
}
written = min_t(size_t, 2, *len);
if (copy_to_user(buf, "0\n", written))
return -EFAULT;
*len = written;
*pos = written;
return 0;
}
static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);
#ifdef CONFIG_MEMCG
/*
* We allow subsystems to populate their shrinker-related
* LRU lists before register_shrinker_prepared() is called
* for the shrinker, since we don't want to impose
* restrictions on their internal registration order.
* In this case shrink_slab_memcg() may find corresponding
* bit is set in the shrinkers map.
*
* This value is used by the function to detect registering
* shrinkers and to skip do_shrink_slab() calls for them.
*/
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
int id, ret = -ENOMEM;
down_write(&shrinker_rwsem);
/* This may call shrinker, so it must use down_read_trylock() */
id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
if (id < 0)
goto unlock;
if (id >= shrinker_nr_max) {
if (memcg_expand_shrinker_maps(id)) {
idr_remove(&shrinker_idr, id);
goto unlock;
}
shrinker_nr_max = id + 1;
}
shrinker->id = id;
ret = 0;
unlock:
up_write(&shrinker_rwsem);
return ret;
}
static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
int id = shrinker->id;
BUG_ON(id < 0);
down_write(&shrinker_rwsem);
idr_remove(&shrinker_idr, id);
up_write(&shrinker_rwsem);
}
static bool global_reclaim(struct scan_control *sc)
{
return !sc->target_mem_cgroup;
}
/**
* sane_reclaim - is the usual dirty throttling mechanism operational?
* @sc: scan_control in question
*
* The normal page dirty throttling mechanism in balance_dirty_pages() is
* completely broken with the legacy memcg and direct stalling in
* shrink_page_list() is used for throttling instead, which lacks all the
* niceties such as fairness, adaptive pausing, bandwidth proportional
* allocation and configurability.
*
* This function tests whether the vmscan currently in progress can assume
* that the normal dirty throttling mechanism is operational.
*/
static bool sane_reclaim(struct scan_control *sc)
{
struct mem_cgroup *memcg = sc->target_mem_cgroup;
if (!memcg)
return true;
#ifdef CONFIG_CGROUP_WRITEBACK
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
return true;
#endif
return false;
}
static void set_memcg_congestion(pg_data_t *pgdat,
struct mem_cgroup *memcg,
bool congested)
{
struct mem_cgroup_per_node *mn;
if (!memcg)
return;
mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
WRITE_ONCE(mn->congested, congested);
}
static bool memcg_congested(pg_data_t *pgdat,
struct mem_cgroup *memcg)
{
struct mem_cgroup_per_node *mn;
mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
return READ_ONCE(mn->congested);
}
#else
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
return 0;
}
static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
static bool global_reclaim(struct scan_control *sc)
{
return true;
}
static bool sane_reclaim(struct scan_control *sc)
{
return true;
}
static inline void set_memcg_congestion(struct pglist_data *pgdat,
struct mem_cgroup *memcg, bool congested)
{
}
static inline bool memcg_congested(struct pglist_data *pgdat,
struct mem_cgroup *memcg)
{
return false;
}
#endif
/*
* This misses isolated pages which are not accounted for to save counters.
* As the data only determines if reclaim or compaction continues, it is
* not expected that isolated pages will be a dominating factor.
*/
unsigned long zone_reclaimable_pages(struct zone *zone)
{
unsigned long nr;
nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
if (get_nr_swap_pages() > 0)
nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
return nr;
}
/**
* lruvec_lru_size - Returns the number of pages on the given LRU list.
* @lruvec: lru vector
* @lru: lru to use
* @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
*/
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
{
unsigned long lru_size = 0;
int zid;
if (!mem_cgroup_disabled()) {
for (zid = 0; zid < MAX_NR_ZONES; zid++)
lru_size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
} else
lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
unsigned long size;
if (!managed_zone(zone))
continue;
if (!mem_cgroup_disabled())
size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
else
size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
NR_ZONE_LRU_BASE + lru);
lru_size -= min(size, lru_size);
}
return lru_size;
}
/*
* Add a shrinker callback to be called from the vm.
*/
int prealloc_shrinker(struct shrinker *shrinker)
{
unsigned int size = sizeof(*shrinker->nr_deferred);
if (shrinker->flags & SHRINKER_NUMA_AWARE)
size *= nr_node_ids;
shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
if (!shrinker->nr_deferred)
return -ENOMEM;
if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
if (prealloc_memcg_shrinker(shrinker))
goto free_deferred;
}
return 0;
free_deferred:
kfree(shrinker->nr_deferred);
shrinker->nr_deferred = NULL;
return -ENOMEM;
}
void free_prealloced_shrinker(struct shrinker *shrinker)
{
if (!shrinker->nr_deferred)
return;
if (shrinker->flags & SHRINKER_MEMCG_AWARE)
unregister_memcg_shrinker(shrinker);
kfree(shrinker->nr_deferred);
shrinker->nr_deferred = NULL;
}
void register_shrinker_prepared(struct shrinker *shrinker)
{
down_write(&shrinker_rwsem);
list_add_tail(&shrinker->list, &shrinker_list);
#ifdef CONFIG_MEMCG
if (shrinker->flags & SHRINKER_MEMCG_AWARE)
idr_replace(&shrinker_idr, shrinker, shrinker->id);
#endif
up_write(&shrinker_rwsem);
}
int register_shrinker(struct shrinker *shrinker)
{
int err = prealloc_shrinker(shrinker);
if (err)
return err;
register_shrinker_prepared(shrinker);
return 0;
}
EXPORT_SYMBOL(register_shrinker);
/*
* Remove one
*/
void unregister_shrinker(struct shrinker *shrinker)
{
if (!shrinker->nr_deferred)
return;
if (shrinker->flags & SHRINKER_MEMCG_AWARE)
unregister_memcg_shrinker(shrinker);
down_write(&shrinker_rwsem);
list_del(&shrinker->list);
up_write(&shrinker_rwsem);
kfree(shrinker->nr_deferred);
shrinker->nr_deferred = NULL;
}
EXPORT_SYMBOL(unregister_shrinker);
#define SHRINK_BATCH 128
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
struct shrinker *shrinker, int priority)
{
unsigned long freed = 0;
unsigned long long delta;
long total_scan;
long freeable;
long nr;
long new_nr;
int nid = shrinkctl->nid;
long batch_size = shrinker->batch ? shrinker->batch
: SHRINK_BATCH;
long scanned = 0, next_deferred;
if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
nid = 0;
freeable = shrinker->count_objects(shrinker, shrinkctl);
if (freeable == 0 || freeable == SHRINK_EMPTY)
return freeable;
/*
* copy the current shrinker scan count into a local variable
* and zero it so that other concurrent shrinker invocations
* don't also do this scanning work.
*/
nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
total_scan = nr;
if (shrinker->seeks) {
delta = freeable >> priority;
delta *= 4;
do_div(delta, shrinker->seeks);
} else {
/*
* These objects don't require any IO to create. Trim
* them aggressively under memory pressure to keep
* them from causing refetches in the IO caches.
*/
delta = freeable / 2;
}
total_scan += delta;
if (total_scan < 0) {
pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
shrinker->scan_objects, total_scan);
total_scan = freeable;
next_deferred = nr;
} else
next_deferred = total_scan;
/*
* We need to avoid excessive windup on filesystem shrinkers
* due to large numbers of GFP_NOFS allocations causing the
* shrinkers to return -1 all the time. This results in a large
* nr being built up so when a shrink that can do some work
* comes along it empties the entire cache due to nr >>>
* freeable. This is bad for sustaining a working set in
* memory.
*
* Hence only allow the shrinker to scan the entire cache when
* a large delta change is calculated directly.
*/
if (delta < freeable / 4)
total_scan = min(total_scan, freeable / 2);
/*
* Avoid risking looping forever due to too large nr value:
* never try to free more than twice the estimate number of
* freeable entries.
*/
if (total_scan > freeable * 2)
total_scan = freeable * 2;
trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
freeable, delta, total_scan, priority);
/*
* Normally, we should not scan less than batch_size objects in one
* pass to avoid too frequent shrinker calls, but if the slab has less
* than batch_size objects in total and we are really tight on memory,
* we will try to reclaim all available objects, otherwise we can end
* up failing allocations although there are plenty of reclaimable
* objects spread over several slabs with usage less than the
* batch_size.
*
* We detect the "tight on memory" situations by looking at the total
* number of objects we want to scan (total_scan). If it is greater
* than the total number of objects on slab (freeable), we must be
* scanning at high prio and therefore should try to reclaim as much as
* possible.
*/
while (total_scan >= batch_size ||
total_scan >= freeable) {
unsigned long ret;
unsigned long nr_to_scan = min(batch_size, total_scan);
shrinkctl->nr_to_scan = nr_to_scan;
shrinkctl->nr_scanned = nr_to_scan;
ret = shrinker->scan_objects(shrinker, shrinkctl);
if (ret == SHRINK_STOP)
break;
freed += ret;
count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
total_scan -= shrinkctl->nr_scanned;
scanned += shrinkctl->nr_scanned;
cond_resched();
}
if (next_deferred >= scanned)
next_deferred -= scanned;
else
next_deferred = 0;
/*
* move the unused scan count back into the shrinker in a
* manner that handles concurrent updates. If we exhausted the
* scan, there is no need to do an update.
*/
if (next_deferred > 0)
new_nr = atomic_long_add_return(next_deferred,
&shrinker->nr_deferred[nid]);
else
new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
return freed;
}
#ifdef CONFIG_MEMCG
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
struct mem_cgroup *memcg, int priority)
{
struct memcg_shrinker_map *map;
unsigned long ret, freed = 0;
int i;
if (!mem_cgroup_online(memcg))
return 0;
if (!down_read_trylock(&shrinker_rwsem))
return 0;
map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
true);
if (unlikely(!map))
goto unlock;
for_each_set_bit(i, map->map, shrinker_nr_max) {
struct shrink_control sc = {
.gfp_mask = gfp_mask,
.nid = nid,
.memcg = memcg,
};
struct shrinker *shrinker;
shrinker = idr_find(&shrinker_idr, i);
if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
if (!shrinker)
clear_bit(i, map->map);
continue;
}
/* Call non-slab shrinkers even though kmem is disabled */
if (!memcg_kmem_enabled() &&
!(shrinker->flags & SHRINKER_NONSLAB))
continue;
ret = do_shrink_slab(&sc, shrinker, priority);
if (ret == SHRINK_EMPTY) {
clear_bit(i, map->map);
/*
* After the shrinker reported that it had no objects to
* free, but before we cleared the corresponding bit in
* the memcg shrinker map, a new object might have been
* added. To make sure, we have the bit set in this
* case, we invoke the shrinker one more time and reset
* the bit if it reports that it is not empty anymore.
* The memory barrier here pairs with the barrier in
* memcg_set_shrinker_bit():
*
* list_lru_add() shrink_slab_memcg()
* list_add_tail() clear_bit()
* <MB> <MB>
* set_bit() do_shrink_slab()
*/
smp_mb__after_atomic();
ret = do_shrink_slab(&sc, shrinker, priority);
if (ret == SHRINK_EMPTY)
ret = 0;
else
memcg_set_shrinker_bit(memcg, nid, i);
}
freed += ret;
if (rwsem_is_contended(&shrinker_rwsem)) {
freed = freed ? : 1;
break;
}
}
unlock:
up_read(&shrinker_rwsem);
return freed;
}
#else /* CONFIG_MEMCG */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
struct mem_cgroup *memcg, int priority)
{
return 0;
}
#endif /* CONFIG_MEMCG */
/**
* shrink_slab - shrink slab caches
* @gfp_mask: allocation context
* @nid: node whose slab caches to target
* @memcg: memory cgroup whose slab caches to target
* @priority: the reclaim priority
*
* Call the shrink functions to age shrinkable caches.
*
* @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
* unaware shrinkers will receive a node id of 0 instead.
*
* @memcg specifies the memory cgroup to target. Unaware shrinkers
* are called only if it is the root cgroup.
*
* @priority is sc->priority, we take the number of objects and >> by priority
* in order to get the scan target.
*
* Returns the number of reclaimed slab objects.
*/
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
struct mem_cgroup *memcg,
int priority)
{
unsigned long ret, freed = 0;
struct shrinker *shrinker;
/*
* The root memcg might be allocated even though memcg is disabled
* via "cgroup_disable=memory" boot parameter. This could make
* mem_cgroup_is_root() return false, then just run memcg slab
* shrink, but skip global shrink. This may result in premature
* oom.
*/
if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
if (!down_read_trylock(&shrinker_rwsem))
goto out;
list_for_each_entry(shrinker, &shrinker_list, list) {
struct shrink_control sc = {
.gfp_mask = gfp_mask,
.nid = nid,
.memcg = memcg,
};
ret = do_shrink_slab(&sc, shrinker, priority);
if (ret == SHRINK_EMPTY)
ret = 0;
freed += ret;
/*
* Bail out if someone want to register a new shrinker to
* prevent the regsitration from being stalled for long periods
* by parallel ongoing shrinking.
*/
if (rwsem_is_contended(&shrinker_rwsem)) {
freed = freed ? : 1;
break;
}
}
up_read(&shrinker_rwsem);
out:
cond_resched();
return freed;
}
void drop_slab_node(int nid)
{
unsigned long freed;
do {
struct mem_cgroup *memcg = NULL;
freed = 0;
memcg = mem_cgroup_iter(NULL, NULL, NULL);
do {
freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
} while (freed > 10);
}
void drop_slab(void)
{
int nid;
for_each_online_node(nid)
drop_slab_node(nid);
}
static inline int is_page_cache_freeable(struct page *page)
{
/*
* A freeable page cache page is referenced only by the caller
* that isolated the page, the page cache and optional buffer
* heads at page->private.
*/
int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
HPAGE_PMD_NR : 1;
return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
}
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
{
if (current->flags & PF_SWAPWRITE)
return 1;
if (!inode_write_congested(inode))
return 1;
if (inode_to_bdi(inode) == current->backing_dev_info)
return 1;
return 0;
}
/*
* We detected a synchronous write error writing a page out. Probably
* -ENOSPC. We need to propagate that into the address_space for a subsequent
* fsync(), msync() or close().
*
* The tricky part is that after writepage we cannot touch the mapping: nothing
* prevents it from being freed up. But we have a ref on the page and once
* that page is locked, the mapping is pinned.
*
* We're allowed to run sleeping lock_page() here because we know the caller has
* __GFP_FS.
*/
static void handle_write_error(struct address_space *mapping,
struct page *page, int error)
{
lock_page(page);
if (page_mapping(page) == mapping)
mapping_set_error(mapping, error);
unlock_page(page);
}
/* possible outcome of pageout() */
typedef enum {
/* failed to write page out, page is locked */
PAGE_KEEP,
/* move page to the active list, page is locked */
PAGE_ACTIVATE,
/* page has been sent to the disk successfully, page is unlocked */
PAGE_SUCCESS,
/* page is clean and locked */
PAGE_CLEAN,
} pageout_t;
/*
* pageout is called by shrink_page_list() for each dirty page.
* Calls ->writepage().
*/
static pageout_t pageout(struct page *page, struct address_space *mapping,
struct scan_control *sc)
{
/*
* If the page is dirty, only perform writeback if that write
* will be non-blocking. To prevent this allocation from being
* stalled by pagecache activity. But note that there may be
* stalls if we need to run get_block(). We could test
* PagePrivate for that.
*
* If this process is currently in __generic_file_write_iter() against
* this page's queue, we can perform writeback even if that
* will block.
*
* If the page is swapcache, write it back even if that would
* block, for some throttling. This happens by accident, because
* swap_backing_dev_info is bust: it doesn't reflect the
* congestion state of the swapdevs. Easy to fix, if needed.
*/
if (!is_page_cache_freeable(page))
return PAGE_KEEP;
if (!mapping) {
/*
* Some data journaling orphaned pages can have
* page->mapping == NULL while being dirty with clean buffers.
*/
if (page_has_private(page)) {
if (try_to_free_buffers(page)) {
ClearPageDirty(page);
pr_info("%s: orphaned page\n", __func__);
return PAGE_CLEAN;
}
}
return PAGE_KEEP;
}
if (mapping->a_ops->writepage == NULL)
return PAGE_ACTIVATE;
if (!may_write_to_inode(mapping->host, sc))
return PAGE_KEEP;
if (clear_page_dirty_for_io(page)) {
int res;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = SWAP_CLUSTER_MAX,
.range_start = 0,
.range_end = LLONG_MAX,
.for_reclaim = 1,
};
SetPageReclaim(page);
res = mapping->a_ops->writepage(page, &wbc);
if (res < 0)
handle_write_error(mapping, page, res);
if (res == AOP_WRITEPAGE_ACTIVATE) {
ClearPageReclaim(page);
return PAGE_ACTIVATE;
}
if (!PageWriteback(page)) {
/* synchronous write or broken a_ops? */
ClearPageReclaim(page);
}
trace_mm_vmscan_writepage(page);
inc_node_page_state(page, NR_VMSCAN_WRITE);
return PAGE_SUCCESS;
}
return PAGE_CLEAN;
}
/*
* Same as remove_mapping, but if the page is removed from the mapping, it
* gets returned with a refcount of 0.
*/
static int __remove_mapping(struct address_space *mapping, struct page *page,
bool reclaimed)
{
unsigned long flags;
int refcount;
void *shadow = NULL;
BUG_ON(!PageLocked(page));
BUG_ON(mapping != page_mapping(page));
xa_lock_irqsave(&mapping->i_pages, flags);
/*
* The non racy check for a busy page.
*
* Must be careful with the order of the tests. When someone has
* a ref to the page, it may be possible that they dirty it then
* drop the reference. So if PageDirty is tested before page_count
* here, then the following race may occur:
*
* get_user_pages(&page);
* [user mapping goes away]
* write_to(page);
* !PageDirty(page) [good]
* SetPageDirty(page);
* put_page(page);
* !page_count(page) [good, discard it]
*
* [oops, our write_to data is lost]
*
* Reversing the order of the tests ensures such a situation cannot
* escape unnoticed. The smp_rmb is needed to ensure the page->flags
* load is not satisfied before that of page->_refcount.
*
* Note that if SetPageDirty is always performed via set_page_dirty,
* and thus under the i_pages lock, then this ordering is not required.
*/
refcount = 1 + compound_nr(page);
if (!page_ref_freeze(page, refcount))
goto cannot_free;
/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
if (unlikely(PageDirty(page))) {
page_ref_unfreeze(page, refcount);
goto cannot_free;
}
if (PageSwapCache(page)) {
swp_entry_t swap = { .val = page_private(page) };
if (lru_gen_enabled())
shadow = lru_gen_eviction(page);
mem_cgroup_swapout(page, swap);
__delete_from_swap_cache(page, swap, shadow);
xa_unlock_irqrestore(&mapping->i_pages, flags);
put_swap_page(page, swap);
} else {
void (*freepage)(struct page *);
freepage = mapping->a_ops->freepage;
/*
* Remember a shadow entry for reclaimed file cache in
* order to detect refaults, thus thrashing, later on.
*
* But don't store shadows in an address space that is
* already exiting. This is not just an optizimation,
* inode reclaim needs to empty out the radix tree or
* the nodes are lost. Don't plant shadows behind its
* back.
*
* We also don't store shadows for DAX mappings because the
* only page cache pages found in these are zero pages
* covering holes, and because we don't want to mix DAX
* exceptional entries and shadow exceptional entries in the
* same address_space.
*/
if (reclaimed && page_is_file_cache(page) &&
!mapping_exiting(mapping) && !dax_mapping(mapping))
shadow = workingset_eviction(page);
__delete_from_page_cache(page, shadow);
xa_unlock_irqrestore(&mapping->i_pages, flags);
if (freepage != NULL)
freepage(page);
}
return 1;
cannot_free:
xa_unlock_irqrestore(&mapping->i_pages, flags);
return 0;
}
/*
* Attempt to detach a locked page from its ->mapping. If it is dirty or if
* someone else has a ref on the page, abort and return 0. If it was
* successfully detached, return 1. Assumes the caller has a single ref on
* this page.
*/
int remove_mapping(struct address_space *mapping, struct page *page)
{
if (__remove_mapping(mapping, page, false)) {
/*
* Unfreezing the refcount with 1 rather than 2 effectively
* drops the pagecache ref for us without requiring another
* atomic operation.
*/
page_ref_unfreeze(page, 1);
return 1;
}
return 0;
}
/**
* putback_lru_page - put previously isolated page onto appropriate LRU list
* @page: page to be put back to appropriate lru list
*
* Add previously isolated @page to appropriate LRU list.
* Page may still be unevictable for other reasons.
*
* lru_lock must not be held, interrupts must be enabled.
*/
void putback_lru_page(struct page *page)
{
lru_cache_add(page);
put_page(page); /* drop ref from isolate */
}
enum page_references {
PAGEREF_RECLAIM,
PAGEREF_RECLAIM_CLEAN,
PAGEREF_KEEP,
PAGEREF_ACTIVATE,
};
static enum page_references page_check_references(struct page *page,
struct scan_control *sc)
{
int referenced_ptes, referenced_page;
unsigned long vm_flags;
referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
&vm_flags);
referenced_page = TestClearPageReferenced(page);
/*
* Mlock lost the isolation race with us. Let try_to_unmap()
* move the page to the unevictable list.
*/
if (vm_flags & VM_LOCKED)
return PAGEREF_RECLAIM;
if (referenced_ptes) {
if (PageSwapBacked(page))
return PAGEREF_ACTIVATE;
/*
* All mapped pages start out with page table
* references from the instantiating fault, so we need
* to look twice if a mapped file page is used more
* than once.
*
* Mark it and spare it for another trip around the
* inactive list. Another page table reference will
* lead to its activation.
*
* Note: the mark is set for activated pages as well
* so that recently deactivated but used pages are
* quickly recovered.
*/
SetPageReferenced(page);
if (referenced_page || referenced_ptes > 1)
return PAGEREF_ACTIVATE;
/*
* Activate file-backed executable pages after first usage.
*/
if (vm_flags & VM_EXEC)
return PAGEREF_ACTIVATE;
return PAGEREF_KEEP;
}
/* Reclaim if clean, defer dirty pages to writeback */
if (referenced_page && !PageSwapBacked(page))
return PAGEREF_RECLAIM_CLEAN;
return PAGEREF_RECLAIM;
}
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
bool *dirty, bool *writeback)
{
struct address_space *mapping;
/*
* Anonymous pages are not handled by flushers and must be written
* from reclaim context. Do not stall reclaim based on them
*/
if (!page_is_file_cache(page) ||
(PageAnon(page) && !PageSwapBacked(page))) {
*dirty = false;
*writeback = false;
return;
}
/* By default assume that the page flags are accurate */
*dirty = PageDirty(page);
*writeback = PageWriteback(page);
/* Verify dirty/writeback state if the filesystem supports it */
if (!page_has_private(page))
return;
mapping = page_mapping(page);
if (mapping && mapping->a_ops->is_dirty_writeback)
mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
}
/*
* shrink_page_list() returns the number of reclaimed pages
*/
static unsigned long shrink_page_list(struct list_head *page_list,
struct pglist_data *pgdat,
struct scan_control *sc,
enum ttu_flags ttu_flags,
struct reclaim_stat *stat,
bool ignore_references)
{
LIST_HEAD(ret_pages);
LIST_HEAD(free_pages);
unsigned nr_reclaimed = 0;
unsigned pgactivate = 0;
memset(stat, 0, sizeof(*stat));
cond_resched();
while (!list_empty(page_list)) {
struct address_space *mapping;
struct page *page;
int may_enter_fs;
enum page_references references = PAGEREF_RECLAIM;
bool dirty, writeback;
unsigned int nr_pages;
cond_resched();
page = lru_to_page(page_list);
list_del(&page->lru);
if (!trylock_page(page))
goto keep;
VM_BUG_ON_PAGE(PageActive(page), page);
nr_pages = compound_nr(page);
/* Account the number of base pages even though THP */
sc->nr_scanned += nr_pages;
if (unlikely(!page_evictable(page)))
goto activate_locked;
if (!sc->may_unmap && page_mapped(page))
goto keep_locked;
/* in case the page was found accessed by lru_gen_scan_around() */
if (lru_gen_enabled() && !ignore_references &&
page_mapped(page) && PageReferenced(page))
goto keep_locked;
may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
/*
* The number of dirty pages determines if a node is marked
* reclaim_congested which affects wait_iff_congested. kswapd
* will stall and start writing pages if the tail of the LRU
* is all dirty unqueued pages.
*/
page_check_dirty_writeback(page, &dirty, &writeback);
if (dirty || writeback)
stat->nr_dirty++;
if (dirty && !writeback)
stat->nr_unqueued_dirty++;
/*
* Treat this page as congested if the underlying BDI is or if
* pages are cycling through the LRU so quickly that the
* pages marked for immediate reclaim are making it to the
* end of the LRU a second time.
*/
mapping = page_mapping(page);
if (((dirty || writeback) && mapping &&
inode_write_congested(mapping->host)) ||
(writeback && PageReclaim(page)))
stat->nr_congested++;
/*
* If a page at the tail of the LRU is under writeback, there
* are three cases to consider.
*
* 1) If reclaim is encountering an excessive number of pages
* under writeback and this page is both under writeback and
* PageReclaim then it indicates that pages are being queued
* for IO but are being recycled through the LRU before the
* IO can complete. Waiting on the page itself risks an
* indefinite stall if it is impossible to writeback the
* page due to IO error or disconnected storage so instead
* note that the LRU is being scanned too quickly and the
* caller can stall after page list has been processed.
*
* 2) Global or new memcg reclaim encounters a page that is
* not marked for immediate reclaim, or the caller does not
* have __GFP_FS (or __GFP_IO if it's simply going to swap,
* not to fs). In this case mark the page for immediate
* reclaim and continue scanning.
*
* Require may_enter_fs because we would wait on fs, which
* may not have submitted IO yet. And the loop driver might
* enter reclaim, and deadlock if it waits on a page for
* which it is needed to do the write (loop masks off
* __GFP_IO|__GFP_FS for this reason); but more thought
* would probably show more reasons.
*
* 3) Legacy memcg encounters a page that is already marked
* PageReclaim. memcg does not have any dirty pages
* throttling so we could easily OOM just because too many
* pages are in writeback and there is nothing else to
* reclaim. Wait for the writeback to complete.
*
* In cases 1) and 2) we activate the pages to get them out of
* the way while we continue scanning for clean pages on the
* inactive list and refilling from the active list. The
* observation here is that waiting for disk writes is more
* expensive than potentially causing reloads down the line.
* Since they're marked for immediate reclaim, they won't put
* memory pressure on the cache working set any longer than it
* takes to write them to disk.
*/
if (PageWriteback(page)) {
/* Case 1 above */
if (current_is_kswapd() &&
PageReclaim(page) &&
test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
stat->nr_immediate++;
goto activate_locked;
/* Case 2 above */
} else if (sane_reclaim(sc) ||
!PageReclaim(page) || !may_enter_fs) {
/*
* This is slightly racy - end_page_writeback()
* might have just cleared PageReclaim, then
* setting PageReclaim here end up interpreted
* as PageReadahead - but that does not matter
* enough to care. What we do want is for this
* page to have PageReclaim set next time memcg
* reclaim reaches the tests above, so it will
* then wait_on_page_writeback() to avoid OOM;
* and it's also appropriate in global reclaim.
*/
SetPageReclaim(page);
stat->nr_writeback++;
goto activate_locked;
/* Case 3 above */
} else {
unlock_page(page);
wait_on_page_writeback(page);
/* then go back and try same page again */
list_add_tail(&page->lru, page_list);
continue;
}
}
if (!ignore_references)
references = page_check_references(page, sc);
switch (references) {
case PAGEREF_ACTIVATE:
goto activate_locked;
case PAGEREF_KEEP:
stat->nr_ref_keep += nr_pages;
goto keep_locked;
case PAGEREF_RECLAIM:
case PAGEREF_RECLAIM_CLEAN:
; /* try to reclaim the page below */
}
/*
* Anonymous process memory has backing store?
* Try to allocate it some swap space here.
* Lazyfree page could be freed directly
*/
if (PageAnon(page) && PageSwapBacked(page)) {
if (!PageSwapCache(page)) {
if (!(sc->gfp_mask & __GFP_IO))
goto keep_locked;
if (PageTransHuge(page)) {
/* cannot split THP, skip it */
if (!can_split_huge_page(page, NULL))
goto activate_locked;
/*
* Split pages without a PMD map right
* away. Chances are some or all of the
* tail pages can be freed without IO.
*/
if (!compound_mapcount(page) &&
split_huge_page_to_list(page,
page_list))
goto activate_locked;
}
if (!add_to_swap(page)) {
if (!PageTransHuge(page))
goto activate_locked_split;
/* Fallback to swap normal pages */
if (split_huge_page_to_list(page,
page_list))
goto activate_locked;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
count_vm_event(THP_SWPOUT_FALLBACK);
#endif
if (!add_to_swap(page))
goto activate_locked_split;
}
may_enter_fs = 1;
/* Adding to swap updated mapping */
mapping = page_mapping(page);
}
} else if (unlikely(PageTransHuge(page))) {
/* Split file THP */
if (split_huge_page_to_list(page, page_list))
goto keep_locked;
}
/*
* THP may get split above, need minus tail pages and update
* nr_pages to avoid accounting tail pages twice.
*
* The tail pages that are added into swap cache successfully
* reach here.
*/
if ((nr_pages > 1) && !PageTransHuge(page)) {
sc->nr_scanned -= (nr_pages - 1);
nr_pages = 1;
}
/*
* The page is mapped into the page tables of one or more
* processes. Try to unmap it here.
*/
if (page_mapped(page)) {
enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
if (unlikely(PageTransHuge(page)))
flags |= TTU_SPLIT_HUGE_PMD;
if (!try_to_unmap(page, flags)) {
stat->nr_unmap_fail += nr_pages;
goto activate_locked;
}
}
if (PageDirty(page)) {
/*
* Only kswapd can writeback filesystem pages
* to avoid risk of stack overflow. But avoid
* injecting inefficient single-page IO into
* flusher writeback as much as possible: only
* write pages when we've encountered many
* dirty pages, and when we've already scanned
* the rest of the LRU for clean pages and see
* the same dirty pages again (PageReclaim).
*/
if (page_is_file_cache(page) &&
(!current_is_kswapd() || !PageReclaim(page) ||
!test_bit(PGDAT_DIRTY, &pgdat->flags))) {
/*
* Immediately reclaim when written back.
* Similar in principal to deactivate_page()
* except we already have the page isolated
* and know it's dirty
*/
inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
SetPageReclaim(page);
goto activate_locked;
}
if (references == PAGEREF_RECLAIM_CLEAN)
goto keep_locked;
if (!may_enter_fs)
goto keep_locked;
if (!sc->may_writepage)
goto keep_locked;
/*
* Page is dirty. Flush the TLB if a writable entry
* potentially exists to avoid CPU writes after IO
* starts and then write it out here.
*/
try_to_unmap_flush_dirty();
switch (pageout(page, mapping, sc)) {
case PAGE_KEEP:
goto keep_locked;
case PAGE_ACTIVATE:
goto activate_locked;
case PAGE_SUCCESS:
if (PageWriteback(page))
goto keep;
if (PageDirty(page))
goto keep;
/*
* A synchronous write - probably a ramdisk. Go
* ahead and try to reclaim the page.
*/
if (!trylock_page(page))
goto keep;
if (PageDirty(page) || PageWriteback(page))
goto keep_locked;
mapping = page_mapping(page);
case PAGE_CLEAN:
; /* try to free the page below */
}
}
/*
* If the page has buffers, try to free the buffer mappings
* associated with this page. If we succeed we try to free
* the page as well.
*
* We do this even if the page is PageDirty().
* try_to_release_page() does not perform I/O, but it is
* possible for a page to have PageDirty set, but it is actually
* clean (all its buffers are clean). This happens if the
* buffers were written out directly, with submit_bh(). ext3
* will do this, as well as the blockdev mapping.
* try_to_release_page() will discover that cleanness and will
* drop the buffers and mark the page clean - it can be freed.
*
* Rarely, pages can have buffers and no ->mapping. These are
* the pages which were not successfully invalidated in
* truncate_complete_page(). We try to drop those buffers here
* and if that worked, and the page is no longer mapped into
* process address space (page_count == 1) it can be freed.
* Otherwise, leave the page on the LRU so it is swappable.
*/
if (page_has_private(page)) {
if (!try_to_release_page(page, sc->gfp_mask))
goto activate_locked;
if (!mapping && page_count(page) == 1) {
unlock_page(page);
if (put_page_testzero(page))
goto free_it;
else {
/*
* rare race with speculative reference.
* the speculative reference will free
* this page shortly, so we may
* increment nr_reclaimed here (and
* leave it off the LRU).
*/
nr_reclaimed++;
continue;
}
}
}
if (PageAnon(page) && !PageSwapBacked(page)) {
/* follow __remove_mapping for reference */
if (!page_ref_freeze(page, 1))
goto keep_locked;
if (PageDirty(page)) {
page_ref_unfreeze(page, 1);
goto keep_locked;
}
count_vm_event(PGLAZYFREED);
count_memcg_page_event(page, PGLAZYFREED);
} else if (!mapping || !__remove_mapping(mapping, page, true))
goto keep_locked;
unlock_page(page);
free_it:
/*
* THP may get swapped out in a whole, need account
* all base pages.
*/
nr_reclaimed += nr_pages;
/*
* Is there need to periodically free_page_list? It would
* appear not as the counts should be low
*/
if (unlikely(PageTransHuge(page)))
(*get_compound_page_dtor(page))(page);
else
list_add(&page->lru, &free_pages);
continue;
activate_locked_split:
/*
* The tail pages that are failed to add into swap cache
* reach here. Fixup nr_scanned and nr_pages.
*/
if (nr_pages > 1) {
sc->nr_scanned -= (nr_pages - 1);
nr_pages = 1;
}
activate_locked:
/* Not a candidate for swapping, so reclaim swap space. */
if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
PageMlocked(page)))
try_to_free_swap(page);
VM_BUG_ON_PAGE(PageActive(page), page);
if (!PageMlocked(page)) {
int type = page_is_file_cache(page);
SetPageActive(page);
stat->nr_activate[type] += nr_pages;
count_memcg_page_event(page, PGACTIVATE);
}
keep_locked:
unlock_page(page);
keep:
list_add(&page->lru, &ret_pages);
VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
}
pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
mem_cgroup_uncharge_list(&free_pages);
try_to_unmap_flush();
free_unref_page_list(&free_pages);
list_splice(&ret_pages, page_list);
count_vm_events(PGACTIVATE, pgactivate);
return nr_reclaimed;
}
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
struct list_head *page_list)
{
struct scan_control sc = {
.gfp_mask = GFP_KERNEL,
.priority = DEF_PRIORITY,
.may_unmap = 1,
};
struct reclaim_stat dummy_stat;
unsigned long ret;
struct page *page, *next;
LIST_HEAD(clean_pages);
list_for_each_entry_safe(page, next, page_list, lru) {
if (page_is_file_cache(page) && !PageDirty(page) &&
!__PageMovable(page) && !PageUnevictable(page)) {
ClearPageActive(page);
list_move(&page->lru, &clean_pages);
}
}
ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
TTU_IGNORE_ACCESS, &dummy_stat, true);
list_splice(&clean_pages, page_list);
mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
return ret;
}
/*
* Attempt to remove the specified page from its LRU. Only take this page
* if it is of the appropriate PageActive status. Pages which are being
* freed elsewhere are also ignored.
*
* page: page to consider
* mode: one of the LRU isolation modes defined above
*
* returns 0 on success, -ve errno on failure.
*/
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
{
int ret = -EINVAL;
/* Only take pages on the LRU. */
if (!PageLRU(page))
return ret;
/* Compaction should not handle unevictable pages but CMA can do so */
if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
return ret;
ret = -EBUSY;
/*
* To minimise LRU disruption, the caller can indicate that it only
* wants to isolate pages it will be able to operate on without
* blocking - clean pages for the most part.
*
* ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
* that it is possible to migrate without blocking
*/
if (mode & ISOLATE_ASYNC_MIGRATE) {
/* All the caller can do on PageWriteback is block */
if (PageWriteback(page))
return ret;
if (PageDirty(page)) {
struct address_space *mapping;
bool migrate_dirty;
/*
* Only pages without mappings or that have a
* ->migratepage callback are possible to migrate
* without blocking. However, we can be racing with
* truncation so it's necessary to lock the page
* to stabilise the mapping as truncation holds
* the page lock until after the page is removed
* from the page cache.
*/
if (!trylock_page(page))
return ret;
mapping = page_mapping(page);
migrate_dirty = !mapping || mapping->a_ops->migratepage;
unlock_page(page);
if (!migrate_dirty)
return ret;
}
}
if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
return ret;
if (likely(get_page_unless_zero(page))) {
/*
* Be careful not to clear PageLRU until after we're
* sure the page is not being freed elsewhere -- the
* page release code relies on it.
*/
ClearPageLRU(page);
ret = 0;
}
return ret;
}
/*
* Update LRU sizes after isolating pages. The LRU size updates must
* be complete before mem_cgroup_update_lru_size due to a santity check.
*/
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
enum lru_list lru, unsigned long *nr_zone_taken)
{
int zid;
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
if (!nr_zone_taken[zid])
continue;
update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
}
}
/**
* pgdat->lru_lock is heavily contended. Some of the functions that
* shrink the lists perform better by taking out a batch of pages
* and working on them outside the LRU lock.
*
* For pagecache intensive workloads, this function is the hottest
* spot in the kernel (apart from copy_*_user functions).
*
* Appropriate locks must be held before calling this function.
*
* @nr_to_scan: The number of eligible pages to look through on the list.
* @lruvec: The LRU vector to pull pages from.
* @dst: The temp list to put pages on to.
* @nr_scanned: The number of pages that were scanned.
* @sc: The scan_control struct for this reclaim session
* @mode: One of the LRU isolation modes
* @lru: LRU list id for isolating
*
* returns how many pages were moved onto *@dst.
*/
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
struct lruvec *lruvec, struct list_head *dst,
unsigned long *nr_scanned, struct scan_control *sc,
enum lru_list lru)
{
struct list_head *src = &lruvec->lists[lru];
unsigned long nr_taken = 0;
unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
unsigned long skipped = 0;
unsigned long scan, total_scan, nr_pages;
LIST_HEAD(pages_skipped);
isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
total_scan = 0;
scan = 0;
while (scan < nr_to_scan && !list_empty(src)) {
struct page *page;
page = lru_to_page(src);
prefetchw_prev_lru_page(page, src, flags);
VM_BUG_ON_PAGE(!PageLRU(page), page);
nr_pages = compound_nr(page);
total_scan += nr_pages;
if (page_zonenum(page) > sc->reclaim_idx) {
list_move(&page->lru, &pages_skipped);
nr_skipped[page_zonenum(page)] += nr_pages;
continue;
}
/*
* Do not count skipped pages because that makes the function
* return with no isolated pages if the LRU mostly contains
* ineligible pages. This causes the VM to not reclaim any
* pages, triggering a premature OOM.
*
* Account all tail pages of THP. This would not cause
* premature OOM since __isolate_lru_page() returns -EBUSY
* only when the page is being freed somewhere else.
*/
scan += nr_pages;
switch (__isolate_lru_page(page, mode)) {
case 0:
nr_taken += nr_pages;
nr_zone_taken[page_zonenum(page)] += nr_pages;
list_move(&page->lru, dst);
break;
case -EBUSY:
/* else it is being freed elsewhere */
list_move(&page->lru, src);
continue;
default:
BUG();
}
}
/*
* Splice any skipped pages to the start of the LRU list. Note that
* this disrupts the LRU order when reclaiming for lower zones but
* we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
* scanning would soon rescan the same pages to skip and put the
* system at risk of premature OOM.
*/
if (!list_empty(&pages_skipped)) {
int zid;
list_splice(&pages_skipped, src);
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
if (!nr_skipped[zid])
continue;
__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
skipped += nr_skipped[zid];
}
}
*nr_scanned = total_scan;
trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
total_scan, skipped, nr_taken, mode, lru);
update_lru_sizes(lruvec, lru, nr_zone_taken);
return nr_taken;
}
/**
* isolate_lru_page - tries to isolate a page from its LRU list
* @page: page to isolate from its LRU list
*
* Isolates a @page from an LRU list, clears PageLRU and adjusts the
* vmstat statistic corresponding to whatever LRU list the page was on.
*
* Returns 0 if the page was removed from an LRU list.
* Returns -EBUSY if the page was not on an LRU list.
*
* The returned page will have PageLRU() cleared. If it was found on
* the active list, it will have PageActive set. If it was found on
* the unevictable list, it will have the PageUnevictable bit set. That flag
* may need to be cleared by the caller before letting the page go.
*
* The vmstat statistic corresponding to the list on which the page was
* found will be decremented.
*
* Restrictions:
*
* (1) Must be called with an elevated refcount on the page. This is a
* fundamentnal difference from isolate_lru_pages (which is called
* without a stable reference).
* (2) the lru_lock must not be held.
* (3) interrupts must be enabled.
*/
int isolate_lru_page(struct page *page)
{
int ret = -EBUSY;
VM_BUG_ON_PAGE(!page_count(page), page);
WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
if (PageLRU(page)) {
pg_data_t *pgdat = page_pgdat(page);
struct lruvec *lruvec;
spin_lock_irq(&pgdat->lru_lock);
lruvec = mem_cgroup_page_lruvec(page, pgdat);
if (PageLRU(page)) {
get_page(page);
ClearPageLRU(page);
del_page_from_lru_list(page, lruvec);
ret = 0;
}
spin_unlock_irq(&pgdat->lru_lock);
}
return ret;
}
/*
* A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
* then get resheduled. When there are massive number of tasks doing page
* allocation, such sleeping direct reclaimers may keep piling up on each CPU,
* the LRU list will go small and be scanned faster than necessary, leading to
* unnecessary swapping, thrashing and OOM.
*/
static int too_many_isolated(struct pglist_data *pgdat, int file,
struct scan_control *sc)
{
unsigned long inactive, isolated;
if (current_is_kswapd())
return 0;
if (!sane_reclaim(sc))
return 0;
if (file) {
inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
} else {
inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
}
/*
* GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
* won't get blocked by normal direct-reclaimers, forming a circular
* deadlock.
*/
if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
inactive >>= 3;
return isolated > inactive;
}
/*
* This moves pages from @list to corresponding LRU list.
*
* We move them the other way if the page is referenced by one or more
* processes, from rmap.
*
* If the pages are mostly unmapped, the processing is fast and it is
* appropriate to hold zone_lru_lock across the whole operation. But if
* the pages are mapped, the processing is slow (page_referenced()) so we
* should drop zone_lru_lock around each page. It's impossible to balance
* this, so instead we remove the pages from the LRU while processing them.
* It is safe to rely on PG_active against the non-LRU pages in here because
* nobody will play with that bit on a non-LRU page.
*
* The downside is that we have to touch page->_refcount against each page.
* But we had to alter page->flags anyway.
*
* Returns the number of pages moved to the given lruvec.
*/
static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
struct list_head *list)
{
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
int nr_moved = 0;
LIST_HEAD(pages_to_free);
struct page *page;
while (!list_empty(list)) {
page = lru_to_page(list);
VM_BUG_ON_PAGE(PageLRU(page), page);
list_del(&page->lru);
if (unlikely(!page_evictable(page))) {
spin_unlock_irq(&pgdat->lru_lock);
putback_lru_page(page);
spin_lock_irq(&pgdat->lru_lock);
continue;
}
lruvec = mem_cgroup_page_lruvec(page, pgdat);
SetPageLRU(page);
add_page_to_lru_list(page, lruvec);
if (put_page_testzero(page)) {
del_page_from_lru_list(page, lruvec);
__clear_page_lru_flags(page);
if (unlikely(PageCompound(page))) {
spin_unlock_irq(&pgdat->lru_lock);
(*get_compound_page_dtor(page))(page);
spin_lock_irq(&pgdat->lru_lock);
} else
list_add(&page->lru, &pages_to_free);
} else {
nr_moved += hpage_nr_pages(page);
}
}
/*
* To save our caller's stack, now use input list for pages to free.
*/
list_splice(&pages_to_free, list);
return nr_moved;
}
/*
* If a kernel thread (such as nfsd for loop-back mounts) services
* a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
* In that case we should only throttle if the backing device it is
* writing to is congested. In other cases it is safe to throttle.
*/
static int current_may_throttle(void)
{
return !(current->flags & PF_LESS_THROTTLE) ||
current->backing_dev_info == NULL ||
bdi_write_congested(current->backing_dev_info);
}
/*
* shrink_inactive_list() is a helper for shrink_node(). It returns the number
* of reclaimed pages
*/
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
struct scan_control *sc, enum lru_list lru)
{
LIST_HEAD(page_list);
unsigned long nr_scanned;
unsigned long nr_reclaimed = 0;
unsigned long nr_taken;
struct reclaim_stat stat;
int file = is_file_lru(lru);
enum vm_event_item item;
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
bool stalled = false;
while (unlikely(too_many_isolated(pgdat, file, sc))) {
if (stalled)
return 0;
/* wait a bit for the reclaimer. */
msleep(100);
stalled = true;
/* We are about to die and free our memory. Return now. */
if (fatal_signal_pending(current))
return SWAP_CLUSTER_MAX;
}
lru_add_drain();
spin_lock_irq(&pgdat->lru_lock);
nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
&nr_scanned, sc, lru);
__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
reclaim_stat->recent_scanned[file] += nr_taken;
item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
if (global_reclaim(sc))
__count_vm_events(item, nr_scanned);
__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
spin_unlock_irq(&pgdat->lru_lock);
if (nr_taken == 0)
return 0;
nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
&stat, false);
spin_lock_irq(&pgdat->lru_lock);
item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
if (global_reclaim(sc))
__count_vm_events(item, nr_reclaimed);
__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
move_pages_to_lru(lruvec, &page_list);
__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
spin_unlock_irq(&pgdat->lru_lock);
mem_cgroup_uncharge_list(&page_list);
free_unref_page_list(&page_list);
/*
* If dirty pages are scanned that are not queued for IO, it
* implies that flushers are not doing their job. This can
* happen when memory pressure pushes dirty pages to the end of
* the LRU before the dirty limits are breached and the dirty
* data has expired. It can also happen when the proportion of
* dirty pages grows not through writes but through memory
* pressure reclaiming all the clean cache. And in some cases,
* the flushers simply cannot keep up with the allocation
* rate. Nudge the flusher threads in case they are asleep.
*/
if (stat.nr_unqueued_dirty == nr_taken)
wakeup_flusher_threads(WB_REASON_VMSCAN);
sc->nr.dirty += stat.nr_dirty;
sc->nr.congested += stat.nr_congested;
sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
sc->nr.writeback += stat.nr_writeback;
sc->nr.immediate += stat.nr_immediate;
sc->nr.taken += nr_taken;
if (file)
sc->nr.file_taken += nr_taken;
trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
nr_scanned, nr_reclaimed, &stat, sc->priority, file);
return nr_reclaimed;
}
static void shrink_active_list(unsigned long nr_to_scan,
struct lruvec *lruvec,
struct scan_control *sc,
enum lru_list lru)
{
unsigned long nr_taken;
unsigned long nr_scanned;
unsigned long vm_flags;
LIST_HEAD(l_hold); /* The pages which were snipped off */
LIST_HEAD(l_active);
LIST_HEAD(l_inactive);
struct page *page;
struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
unsigned nr_deactivate, nr_activate;
unsigned nr_rotated = 0;
int file = is_file_lru(lru);
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
lru_add_drain();
spin_lock_irq(&pgdat->lru_lock);
nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
&nr_scanned, sc, lru);
__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
reclaim_stat->recent_scanned[file] += nr_taken;
__count_vm_events(PGREFILL, nr_scanned);
__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
spin_unlock_irq(&pgdat->lru_lock);
while (!list_empty(&l_hold)) {
cond_resched();
page = lru_to_page(&l_hold);
list_del(&page->lru);
if (unlikely(!page_evictable(page))) {
putback_lru_page(page);
continue;
}
if (unlikely(buffer_heads_over_limit)) {
if (page_has_private(page) && trylock_page(page)) {
if (page_has_private(page))
try_to_release_page(page, 0);
unlock_page(page);
}
}
if (page_referenced(page, 0, sc->target_mem_cgroup,
&vm_flags)) {
nr_rotated += hpage_nr_pages(page);
/*
* Identify referenced, file-backed active pages and
* give them one more trip around the active list. So
* that executable code get better chances to stay in
* memory under moderate memory pressure. Anon pages
* are not likely to be evicted by use-once streaming
* IO, plus JVM can create lots of anon VM_EXEC pages,
* so we ignore them here.
*/
if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
list_add(&page->lru, &l_active);
continue;
}
}
ClearPageActive(page); /* we are de-activating */
SetPageWorkingset(page);
list_add(&page->lru, &l_inactive);
}
/*
* Move pages back to the lru list.
*/
spin_lock_irq(&pgdat->lru_lock);
/*
* Count referenced pages from currently used mappings as rotated,
* even though only some of them are actually re-activated. This
* helps balance scan pressure between file and anonymous pages in
* get_scan_count.
*/
reclaim_stat->recent_rotated[file] += nr_rotated;
nr_activate = move_pages_to_lru(lruvec, &l_active);
nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
/* Keep all free pages in l_active list */
list_splice(&l_inactive, &l_active);
__count_vm_events(PGDEACTIVATE, nr_deactivate);
__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
spin_unlock_irq(&pgdat->lru_lock);
mem_cgroup_uncharge_list(&l_active);
free_unref_page_list(&l_active);
trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
nr_deactivate, nr_rotated, sc->priority, file);
}
unsigned long reclaim_pages(struct list_head *page_list)
{
int nid = -1;
unsigned long nr_reclaimed = 0;
LIST_HEAD(node_page_list);
struct reclaim_stat dummy_stat;
struct page *page;
struct scan_control sc = {
.gfp_mask = GFP_KERNEL,
.priority = DEF_PRIORITY,
.may_writepage = 1,
.may_unmap = 1,
.may_swap = 1,
};
while (!list_empty(page_list)) {
page = lru_to_page(page_list);
if (nid == -1) {
nid = page_to_nid(page);
INIT_LIST_HEAD(&node_page_list);
}
if (nid == page_to_nid(page)) {
ClearPageActive(page);
list_move(&page->lru, &node_page_list);
continue;
}
nr_reclaimed += shrink_page_list(&node_page_list,
NODE_DATA(nid),
&sc, 0,
&dummy_stat, false);
while (!list_empty(&node_page_list)) {
page = lru_to_page(&node_page_list);
list_del(&page->lru);
putback_lru_page(page);
}
nid = -1;
}
if (!list_empty(&node_page_list)) {
nr_reclaimed += shrink_page_list(&node_page_list,
NODE_DATA(nid),
&sc, 0,
&dummy_stat, false);
while (!list_empty(&node_page_list)) {
page = lru_to_page(&node_page_list);
list_del(&page->lru);
putback_lru_page(page);
}
}
return nr_reclaimed;
}
/*
* The inactive anon list should be small enough that the VM never has
* to do too much work.
*
* The inactive file list should be small enough to leave most memory
* to the established workingset on the scan-resistant active list,
* but large enough to avoid thrashing the aggregate readahead window.
*
* Both inactive lists should also be large enough that each inactive
* page has a chance to be referenced again before it is reclaimed.
*
* If that fails and refaulting is observed, the inactive list grows.
*
* The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
* on this LRU, maintained by the pageout code. An inactive_ratio
* of 3 means 3:1 or 25% of the pages are kept on the inactive list.
*
* total target max
* memory ratio inactive
* -------------------------------------
* 10MB 1 5MB
* 100MB 1 50MB
* 1GB 3 250MB
* 10GB 10 0.9GB
* 100GB 31 3GB
* 1TB 101 10GB
* 10TB 320 32GB
*/
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
struct scan_control *sc, bool trace)
{
enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
enum lru_list inactive_lru = file * LRU_FILE;
unsigned long inactive, active;
unsigned long inactive_ratio;
unsigned long refaults;
unsigned long gb;
/*
* If we don't have swap space, anonymous page deactivation
* is pointless.
*/
if (!file && !total_swap_pages)
return false;
inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
/*
* When refaults are being observed, it means a new workingset
* is being established. Disable active list protection to get
* rid of the stale workingset quickly.
*/
refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
if (file && lruvec->refaults != refaults) {
inactive_ratio = 0;
} else {
gb = (inactive + active) >> (30 - PAGE_SHIFT);
if (gb)
inactive_ratio = int_sqrt(10 * gb);
else
inactive_ratio = 1;
}
if (trace)
trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
inactive_ratio, file);
return inactive * inactive_ratio < active;
}
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
struct lruvec *lruvec, struct scan_control *sc)
{
if (is_active_lru(lru)) {
if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
shrink_active_list(nr_to_scan, lruvec, sc, lru);
return 0;
}
return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
}
enum scan_balance {
SCAN_EQUAL,
SCAN_FRACT,
SCAN_ANON,
SCAN_FILE,
};
/*
* Low watermark used to prevent fscache thrashing during low memory.
*/
int min_filelist_kbytes;
/*
* Check low watermark used to prevent fscache thrashing during low memory.
*/
static int file_is_low(struct lruvec *lruvec)
{
unsigned long size;
if (!mem_cgroup_disabled())
return false;
size = node_page_state(lruvec_pgdat(lruvec), NR_ACTIVE_FILE);
size += node_page_state(lruvec_pgdat(lruvec), NR_INACTIVE_FILE);
size <<= (PAGE_SHIFT - 10);
return size < min_filelist_kbytes;
}
/*
* Determine how aggressively the anon and file LRU lists should be
* scanned. The relative value of each set of LRU lists is determined
* by looking at the fraction of the pages scanned we did rotate back
* onto the active list instead of evict.
*
* nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
* nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
*/
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
struct scan_control *sc, unsigned long *nr,
unsigned long *lru_pages)
{
int swappiness = mem_cgroup_swappiness(memcg);
struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
u64 fraction[ANON_AND_FILE];
u64 denominator = 0; /* gcc */
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
unsigned long anon_prio, file_prio;
enum scan_balance scan_balance;
unsigned long anon, file;
unsigned long ap, fp;
enum lru_list lru;
/* If we have no swap space, do not bother scanning anon pages. */
if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
scan_balance = SCAN_FILE;
goto out;
}
/*
* Global reclaim will swap to prevent OOM even with no
* swappiness, but memcg users want to use this knob to
* disable swapping for individual groups completely when
* using the memory controller's swap limit feature would be
* too expensive.
*/
if (!global_reclaim(sc) && !swappiness) {
scan_balance = SCAN_FILE;
goto out;
}
/*
* Do not scan file pages when swap is allowed by __GFP_IO and
* file page count is low.
*/
if ((sc->gfp_mask & __GFP_IO) && file_is_low(lruvec)) {
scan_balance = SCAN_ANON;
goto out;
}
/*
* Do not apply any pressure balancing cleverness when the
* system is close to OOM, scan both anon and file equally
* (unless the swappiness setting disagrees with swapping).
*/
if (!sc->priority && swappiness) {
scan_balance = SCAN_EQUAL;
goto out;
}
/*
* Prevent the reclaimer from falling into the cache trap: as
* cache pages start out inactive, every cache fault will tip
* the scan balance towards the file LRU. And as the file LRU
* shrinks, so does the window for rotation from references.
* This means we have a runaway feedback loop where a tiny
* thrashing file LRU becomes infinitely more attractive than
* anon pages. Try to detect this based on file LRU size.
*/
if (global_reclaim(sc)) {
unsigned long pgdatfile;
unsigned long pgdatfree;
int z;
unsigned long total_high_wmark = 0;
pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
node_page_state(pgdat, NR_INACTIVE_FILE);
for (z = 0; z < MAX_NR_ZONES; z++) {
struct zone *zone = &pgdat->node_zones[z];
if (!managed_zone(zone))
continue;
total_high_wmark += high_wmark_pages(zone);
}
if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
/*
* Force SCAN_ANON if there are enough inactive
* anonymous pages on the LRU in eligible zones.
* Otherwise, the small LRU gets thrashed.
*/
if (!inactive_list_is_low(lruvec, false, sc, false) &&
lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
>> sc->priority) {
scan_balance = SCAN_ANON;
goto out;
}
}
}
/*
* If there is enough inactive page cache, i.e. if the size of the
* inactive list is greater than that of the active list *and* the
* inactive list actually has some pages to scan on this priority, we
* do not reclaim anything from the anonymous working set right now.
* Without the second condition we could end up never scanning an
* lruvec even if it has plenty of old anonymous pages unless the
* system is under heavy pressure.
*/
if (!inactive_list_is_low(lruvec, true, sc, false) &&
lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
scan_balance = SCAN_FILE;
goto out;
}
scan_balance = SCAN_FRACT;
/*
* With swappiness at 100, anonymous and file have the same priority.
* This scanning priority is essentially the inverse of IO cost.
*/
anon_prio = swappiness;
file_prio = 200 - anon_prio;
/*
* OK, so we have swap space and a fair amount of page cache
* pages. We use the recently rotated / recently scanned
* ratios to determine how valuable each cache is.
*
* Because workloads change over time (and to avoid overflow)
* we keep these statistics as a floating average, which ends
* up weighing recent references more than old ones.
*/
anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
spin_lock_irq(&pgdat->lru_lock);
if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
reclaim_stat->recent_scanned[0] /= 2;
reclaim_stat->recent_rotated[0] /= 2;
}
if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
reclaim_stat->recent_scanned[1] /= 2;
reclaim_stat->recent_rotated[1] /= 2;
}
/*
* The amount of pressure on anon vs file pages is inversely
* proportional to the fraction of recently scanned pages on
* each list that were recently referenced and in active use.
*/
ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
ap /= reclaim_stat->recent_rotated[0] + 1;
fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
fp /= reclaim_stat->recent_rotated[1] + 1;
spin_unlock_irq(&pgdat->lru_lock);
fraction[0] = ap;
fraction[1] = fp;
denominator = ap + fp + 1;
out:
*lru_pages = 0;
for_each_evictable_lru(lru) {
int file = is_file_lru(lru);
unsigned long lruvec_size;
unsigned long low, min;
unsigned long scan;
lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
mem_cgroup_protection(sc->target_mem_cgroup, memcg,
&min, &low);
if (min || low) {
/*
* Scale a cgroup's reclaim pressure by proportioning
* its current usage to its memory.low or memory.min
* setting.
*
* This is important, as otherwise scanning aggression
* becomes extremely binary -- from nothing as we
* approach the memory protection threshold, to totally
* nominal as we exceed it. This results in requiring
* setting extremely liberal protection thresholds. It
* also means we simply get no protection at all if we
* set it too low, which is not ideal.
*
* If there is any protection in place, we reduce scan
* pressure by how much of the total memory used is
* within protection thresholds.
*
* There is one special case: in the first reclaim pass,
* we skip over all groups that are within their low
* protection. If that fails to reclaim enough pages to
* satisfy the reclaim goal, we come back and override
* the best-effort low protection. However, we still
* ideally want to honor how well-behaved groups are in
* that case instead of simply punishing them all
* equally. As such, we reclaim them based on how much
* memory they are using, reducing the scan pressure
* again by how much of the total memory used is under
* hard protection.
*/
unsigned long cgroup_size = mem_cgroup_size(memcg);
unsigned long protection;
/* memory.low scaling, make sure we retry before OOM */
if (!sc->memcg_low_reclaim && low > min) {
protection = low;
sc->memcg_low_skipped = 1;
} else {
protection = min;
}
/* Avoid TOCTOU with earlier protection check */
cgroup_size = max(cgroup_size, protection);
scan = lruvec_size - lruvec_size * protection /
(cgroup_size + 1);
/*
* Minimally target SWAP_CLUSTER_MAX pages to keep
* reclaim moving forwards, avoiding decremeting
* sc->priority further than desirable.
*/
scan = max(scan, SWAP_CLUSTER_MAX);
} else {
scan = lruvec_size;
}
scan >>= sc->priority;
/*
* If the cgroup's already been deleted, make sure to
* scrape out the remaining cache.
*/
if (!scan && !mem_cgroup_online(memcg))
scan = min(lruvec_size, SWAP_CLUSTER_MAX);
switch (scan_balance) {
case SCAN_EQUAL:
/* Scan lists relative to size */
break;
case SCAN_FRACT:
/*
* Scan types proportional to swappiness and
* their relative recent reclaim efficiency.
* Make sure we don't miss the last page on
* the offlined memory cgroups because of a
* round-off error.
*/
scan = mem_cgroup_online(memcg) ?
div64_u64(scan * fraction[file], denominator) :
DIV64_U64_ROUND_UP(scan * fraction[file],
denominator);
break;
case SCAN_FILE:
case SCAN_ANON:
/* Scan one type exclusively */
if ((scan_balance == SCAN_FILE) != file) {
lruvec_size = 0;
scan = 0;
}
break;
default:
/* Look ma, no brain */
BUG();
}
*lru_pages += lruvec_size;
nr[lru] = scan;
}
}
#ifdef CONFIG_LRU_GEN
/*
* After pages are faulted in, the aging must scan them twice before the
* eviction can consider them. The first scan clears the accessed bit set during
* initial faults. And the second scan makes sure they haven't been used since
* the first scan.
*/
#define MIN_NR_GENS 2
#define MAX_BATCH_SIZE 8192
/******************************************************************************
* shorthand helpers
******************************************************************************/
#define DEFINE_MAX_SEQ() \
unsigned long max_seq = READ_ONCE(lruvec->evictable.max_seq)
#define DEFINE_MIN_SEQ() \
unsigned long min_seq[ANON_AND_FILE] = { \
READ_ONCE(lruvec->evictable.min_seq[0]), \
READ_ONCE(lruvec->evictable.min_seq[1]), \
}
#define for_each_type_zone(type, zone) \
for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
#define for_each_gen_type_zone(gen, type, zone) \
for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
static int page_lru_gen(struct page *page)
{
return ((page->flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
}
static int get_lo_wmark(unsigned long max_seq, unsigned long *min_seq, int swappiness)
{
return max_seq - max(min_seq[!swappiness], min_seq[1]) + 1;
}
static int get_hi_wmark(unsigned long max_seq, unsigned long *min_seq, int swappiness)
{
return max_seq - min(min_seq[!swappiness], min_seq[1]) + 1;
}
static int get_nr_gens(struct lruvec *lruvec, int type)
{
return lruvec->evictable.max_seq - lruvec->evictable.min_seq[type] + 1;
}
static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
{
lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
return get_nr_gens(lruvec, 0) >= MIN_NR_GENS &&
get_nr_gens(lruvec, 0) <= MAX_NR_GENS &&
get_nr_gens(lruvec, 1) >= MIN_NR_GENS &&
get_nr_gens(lruvec, 1) <= MAX_NR_GENS;
}
/******************************************************************************
* refault feedback loop
******************************************************************************/
/*
* A feedback loop modeled after the PID controller. Currently supports the
* proportional (P) and the integral (I) terms; the derivative (D) term can be
* added if necessary. The setpoint (SP) is the desired position; the process
* variable (PV) is the measured position. The error is the difference between
* the SP and the PV. A positive error results in a positive control output
* correction, which, in our case, is to allow eviction.
*
* The P term is the current refault rate refaulted/(evicted+activated), which
* has a weight of 1. The I term is the arithmetic mean of the last N refault
* rates, weighted by geometric series 1/2, 1/4, ..., 1/(1<<N).
*
* Our goal is to make sure upper tiers have similar refault rates as the base
* tier. That is we try to be fair to all tiers by maintaining similar refault
* rates across them.
*/
struct controller_pos {
unsigned long refaulted;
unsigned long total;
int gain;
};
static void read_controller_pos(struct controller_pos *pos, struct lruvec *lruvec,
int type, int tier, int gain)
{
struct lrugen *lrugen = &lruvec->evictable;
int hist = hist_from_seq_or_gen(lrugen->min_seq[type]);
pos->refaulted = lrugen->avg_refaulted[type][tier] +
atomic_long_read(&lrugen->refaulted[hist][type][tier]);
pos->total = lrugen->avg_total[type][tier] +
atomic_long_read(&lrugen->evicted[hist][type][tier]);
if (tier)
pos->total += lrugen->activated[hist][type][tier - 1];
pos->gain = gain;
}
static void reset_controller_pos(struct lruvec *lruvec, int gen, int type)
{
int tier;
int hist = hist_from_seq_or_gen(gen);
struct lrugen *lrugen = &lruvec->evictable;
bool carryover = gen == lru_gen_from_seq(lrugen->min_seq[type]);
if (!carryover && NR_STAT_GENS == 1)
return;
for (tier = 0; tier < MAX_NR_TIERS; tier++) {
if (carryover) {
unsigned long sum;
sum = lrugen->avg_refaulted[type][tier] +
atomic_long_read(&lrugen->refaulted[hist][type][tier]);
WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
sum = lrugen->avg_total[type][tier] +
atomic_long_read(&lrugen->evicted[hist][type][tier]);
if (tier)
sum += lrugen->activated[hist][type][tier - 1];
WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
if (NR_STAT_GENS > 1)
continue;
}
atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
if (tier)
WRITE_ONCE(lrugen->activated[hist][type][tier - 1], 0);
}
}
static bool positive_ctrl_err(struct controller_pos *sp, struct controller_pos *pv)
{
/*
* Allow eviction if the PV has a limited number of refaulted pages or a
* lower refault rate than the SP.
*/
return pv->refaulted < SWAP_CLUSTER_MAX ||
pv->refaulted * max(sp->total, 1UL) * sp->gain <=
sp->refaulted * max(pv->total, 1UL) * pv->gain;
}
/******************************************************************************
* mm_struct list
******************************************************************************/
enum {
MM_SCHED_ACTIVE, /* running processes */
MM_SCHED_INACTIVE, /* sleeping processes */
MM_LOCK_CONTENTION, /* lock contentions */
MM_VMA_INTERVAL, /* VMAs within the range of each PUD/PMD/PTE */
MM_LEAF_OTHER_NODE, /* entries not from the node under reclaim */
MM_LEAF_OTHER_MEMCG, /* entries not from the memcg under reclaim */
MM_LEAF_OLD, /* old entries */
MM_LEAF_YOUNG, /* young entries */
MM_LEAF_DIRTY, /* dirty entries */
MM_LEAF_HOLE, /* non-present entries */
MM_NONLEAF_OLD, /* old non-leaf PMD entries */
MM_NONLEAF_YOUNG, /* young non-leaf PMD entries */
NR_MM_STATS
};
/* mnemonic codes for the stats above */
#define MM_STAT_CODES "aicvnmoydhlu"
struct lru_gen_mm_list {
/* the head of a global or per-memcg mm_struct list */
struct list_head head;
/* protects the list */
spinlock_t lock;
struct {
/* set to max_seq after each round of walk */
unsigned long cur_seq;
/* the next mm on the list to walk */
struct list_head *iter;
/* to wait for the last worker to finish */
struct wait_queue_head wait;
/* the number of concurrent workers */
int nr_workers;
/* stats for debugging */
unsigned long stats[NR_STAT_GENS][NR_MM_STATS];
} nodes[0];
};
static struct lru_gen_mm_list *global_mm_list;
static struct lru_gen_mm_list *alloc_mm_list(void)
{
int nid;
struct lru_gen_mm_list *mm_list;
mm_list = kzalloc(struct_size(mm_list, nodes, nr_node_ids), GFP_KERNEL);
if (!mm_list)
return NULL;
INIT_LIST_HEAD(&mm_list->head);
spin_lock_init(&mm_list->lock);
for_each_node(nid) {
mm_list->nodes[nid].cur_seq = MIN_NR_GENS;
mm_list->nodes[nid].iter = &mm_list->head;
init_waitqueue_head(&mm_list->nodes[nid].wait);
}
return mm_list;
}
static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
{
#ifdef CONFIG_MEMCG
if (!mem_cgroup_disabled())
return memcg ? memcg->mm_list : root_mem_cgroup->mm_list;
#endif
VM_BUG_ON(memcg);
return global_mm_list;
}
void lru_gen_init_mm(struct mm_struct *mm)
{
INIT_LIST_HEAD(&mm->lrugen.list);
#ifdef CONFIG_MEMCG
mm->lrugen.memcg = NULL;
#endif
#ifndef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
atomic_set(&mm->lrugen.nr_cpus, 0);
#endif
nodes_clear(mm->lrugen.nodes);
}
void lru_gen_add_mm(struct mm_struct *mm)
{
struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
VM_BUG_ON_MM(!list_empty(&mm->lrugen.list), mm);
#ifdef CONFIG_MEMCG
VM_BUG_ON_MM(mm->lrugen.memcg, mm);
WRITE_ONCE(mm->lrugen.memcg, memcg);
#endif
spin_lock(&mm_list->lock);
list_add_tail(&mm->lrugen.list, &mm_list->head);
spin_unlock(&mm_list->lock);
}
void lru_gen_del_mm(struct mm_struct *mm)
{
int nid;
#ifdef CONFIG_MEMCG
struct lru_gen_mm_list *mm_list = get_mm_list(mm->lrugen.memcg);
#else
struct lru_gen_mm_list *mm_list = get_mm_list(NULL);
#endif
spin_lock(&mm_list->lock);
for_each_node(nid) {
if (mm_list->nodes[nid].iter != &mm->lrugen.list)
continue;
mm_list->nodes[nid].iter = mm_list->nodes[nid].iter->next;
if (mm_list->nodes[nid].iter == &mm_list->head)
WRITE_ONCE(mm_list->nodes[nid].cur_seq,
mm_list->nodes[nid].cur_seq + 1);
}
list_del_init(&mm->lrugen.list);
spin_unlock(&mm_list->lock);
#ifdef CONFIG_MEMCG
mem_cgroup_put(mm->lrugen.memcg);
WRITE_ONCE(mm->lrugen.memcg, NULL);
#endif
}
#ifdef CONFIG_MEMCG
int lru_gen_alloc_mm_list(struct mem_cgroup *memcg)
{
if (mem_cgroup_disabled())
return 0;
memcg->mm_list = alloc_mm_list();
return memcg->mm_list ? 0 : -ENOMEM;
}
void lru_gen_free_mm_list(struct mem_cgroup *memcg)
{
kfree(memcg->mm_list);
memcg->mm_list = NULL;
}
void lru_gen_migrate_mm(struct mm_struct *mm)
{
struct mem_cgroup *memcg;
lockdep_assert_held(&mm->owner->alloc_lock);
if (mem_cgroup_disabled())
return;
rcu_read_lock();
memcg = mem_cgroup_from_task(mm->owner);
rcu_read_unlock();
if (memcg == mm->lrugen.memcg)
return;
VM_BUG_ON_MM(!mm->lrugen.memcg, mm);
VM_BUG_ON_MM(list_empty(&mm->lrugen.list), mm);
lru_gen_del_mm(mm);
lru_gen_add_mm(mm);
}
static bool mm_has_migrated(struct mm_struct *mm, struct mem_cgroup *memcg)
{
return READ_ONCE(mm->lrugen.memcg) != memcg;
}
#else
static bool mm_has_migrated(struct mm_struct *mm, struct mem_cgroup *memcg)
{
return false;
}
#endif
struct mm_walk_args {
struct mem_cgroup *memcg;
unsigned long max_seq;
unsigned long start_pfn;
unsigned long end_pfn;
unsigned long next_addr;
int node_id;
int swappiness;
int batch_size;
int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
int mm_stats[NR_MM_STATS];
unsigned long bitmap[0];
};
static int size_of_mm_walk_args(void)
{
int size = sizeof(struct mm_walk_args);
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) ||
IS_ENABLED(CONFIG_HAVE_ARCH_PARENT_PMD_YOUNG))
size += sizeof(unsigned long) * BITS_TO_LONGS(PTRS_PER_PMD);
return size;
}
static void reset_mm_stats(struct lru_gen_mm_list *mm_list, bool last,
struct mm_walk_args *args)
{
int i;
int nid = args->node_id;
int hist = hist_from_seq_or_gen(args->max_seq);
lockdep_assert_held(&mm_list->lock);
for (i = 0; i < NR_MM_STATS; i++) {
WRITE_ONCE(mm_list->nodes[nid].stats[hist][i],
mm_list->nodes[nid].stats[hist][i] + args->mm_stats[i]);
args->mm_stats[i] = 0;
}
if (!last || NR_STAT_GENS == 1)
return;
hist = hist_from_seq_or_gen(args->max_seq + 1);
for (i = 0; i < NR_MM_STATS; i++)
WRITE_ONCE(mm_list->nodes[nid].stats[hist][i], 0);
}
static bool should_skip_mm(struct mm_struct *mm, struct mm_walk_args *args)
{
int type;
unsigned long size = 0;
if (!lru_gen_mm_is_active(mm) && !node_isset(args->node_id, mm->lrugen.nodes))
return true;
if (mm_is_oom_victim(mm))
return true;
for (type = !args->swappiness; type < ANON_AND_FILE; type++) {
size += type ? get_mm_counter(mm, MM_FILEPAGES) :
get_mm_counter(mm, MM_ANONPAGES) +
get_mm_counter(mm, MM_SHMEMPAGES);
}
/* leave the legwork to the rmap if mappings are too sparse */
if (size < max(SWAP_CLUSTER_MAX, mm_pgtables_bytes(mm) / PAGE_SIZE))
return true;
return !mmget_not_zero(mm);
}
/* To support multiple workers that concurrently walk an mm_struct list. */
static bool get_next_mm(struct mm_walk_args *args, struct mm_struct **iter)
{
bool last = true;
struct mm_struct *mm = NULL;
int nid = args->node_id;
struct lru_gen_mm_list *mm_list = get_mm_list(args->memcg);
if (*iter)
mmput_async(*iter);
else if (args->max_seq <= READ_ONCE(mm_list->nodes[nid].cur_seq))
return false;
spin_lock(&mm_list->lock);
VM_BUG_ON(args->max_seq > mm_list->nodes[nid].cur_seq + 1);
VM_BUG_ON(*iter && args->max_seq < mm_list->nodes[nid].cur_seq);
VM_BUG_ON(*iter && !mm_list->nodes[nid].nr_workers);
if (args->max_seq <= mm_list->nodes[nid].cur_seq) {
last = *iter;
goto done;
}
if (mm_list->nodes[nid].iter == &mm_list->head) {
VM_BUG_ON(*iter || mm_list->nodes[nid].nr_workers);
mm_list->nodes[nid].iter = mm_list->nodes[nid].iter->next;
}
while (!mm && mm_list->nodes[nid].iter != &mm_list->head) {
mm = list_entry(mm_list->nodes[nid].iter, struct mm_struct, lrugen.list);
mm_list->nodes[nid].iter = mm_list->nodes[nid].iter->next;
if (should_skip_mm(mm, args))
mm = NULL;
args->mm_stats[mm ? MM_SCHED_ACTIVE : MM_SCHED_INACTIVE]++;
}
if (mm_list->nodes[nid].iter == &mm_list->head)
WRITE_ONCE(mm_list->nodes[nid].cur_seq,
mm_list->nodes[nid].cur_seq + 1);
done:
if (*iter && !mm)
mm_list->nodes[nid].nr_workers--;
if (!*iter && mm)
mm_list->nodes[nid].nr_workers++;
last = last && !mm_list->nodes[nid].nr_workers &&
mm_list->nodes[nid].iter == &mm_list->head;
reset_mm_stats(mm_list, last, args);
spin_unlock(&mm_list->lock);
*iter = mm;
if (mm)
node_clear(nid, mm->lrugen.nodes);
return last;
}
/******************************************************************************
* the aging
******************************************************************************/
static void update_batch_size(struct page *page, int old_gen, int new_gen,
struct mm_walk_args *args)
{
int type = page_is_file_cache(page);
int zone = page_zonenum(page);
int delta = hpage_nr_pages(page);
VM_BUG_ON(old_gen >= MAX_NR_GENS);
VM_BUG_ON(new_gen >= MAX_NR_GENS);
args->batch_size++;
args->nr_pages[old_gen][type][zone] -= delta;
args->nr_pages[new_gen][type][zone] += delta;
}
static void reset_batch_size(struct lruvec *lruvec, struct mm_walk_args *args)
{
int gen, type, zone;
struct lrugen *lrugen = &lruvec->evictable;
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
if (!args->batch_size)
return;
args->batch_size = 0;
spin_lock_irq(&pgdat->lru_lock);
for_each_gen_type_zone(gen, type, zone) {
enum lru_list lru = type * LRU_FILE;
int total = args->nr_pages[gen][type][zone];
if (!total)
continue;
args->nr_pages[gen][type][zone] = 0;
WRITE_ONCE(lrugen->sizes[gen][type][zone],
lrugen->sizes[gen][type][zone] + total);
if (lru_gen_is_active(lruvec, gen))
lru += LRU_ACTIVE;
update_lru_size(lruvec, lru, zone, total);
}
spin_unlock_irq(&pgdat->lru_lock);
}
static int page_update_gen(struct page *page, int new_gen)
{
int old_gen;
unsigned long old_flags, new_flags;
VM_BUG_ON(new_gen >= MAX_NR_GENS);
do {
old_flags = READ_ONCE(page->flags);
old_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
if (old_gen < 0) {
new_flags = old_flags | BIT(PG_referenced);
continue;
}
new_flags = (old_flags & ~(LRU_GEN_MASK | LRU_USAGE_MASK | LRU_TIER_FLAGS)) |
((new_gen + 1UL) << LRU_GEN_PGOFF);
} while (new_flags != old_flags &&
cmpxchg(&page->flags, old_flags, new_flags) != old_flags);
return old_gen;
}
static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *walk)
{
struct address_space *mapping;
struct vm_area_struct *vma = walk->vma;
struct mm_walk_args *args = walk->private;
if (is_vm_hugetlb_page(vma) || (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) ||
!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
return true;
if (vma_is_anonymous(vma))
return !args->swappiness;
if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
return true;
mapping = vma->vm_file->f_mapping;
if (!mapping->a_ops->writepage)
return true;
return (shmem_mapping(mapping) && !args->swappiness) || mapping_unevictable(mapping);
}
/*
* Some userspace memory allocators create many single-page VMAs. So instead of
* returning back to the PGD table for each of such VMAs, we finish at least an
* entire PMD table and therefore avoid many zigzags. This optimizes page table
* walks for workloads that have large numbers of tiny VMAs.
*
* We scan PMD tables in two passes. The first pass reaches to PTE tables and
* doesn't take the PMD lock. The second pass clears the accessed bit on PMD
* entries and needs to take the PMD lock. The second pass is only done on the
* PMD entries that first pass has found the accessed bit is set, namely
* 1) leaf entries mapping huge pages from the node under reclaim, and
* 2) non-leaf entries whose leaf entries only map pages from the node under
* reclaim, when CONFIG_HAVE_ARCH_PARENT_PMD_YOUNG=y.
*/
static bool get_next_vma(struct mm_walk *walk, unsigned long mask, unsigned long size,
unsigned long *start, unsigned long *end)
{
unsigned long next = round_up(*end, size);
struct mm_walk_args *args = walk->private;
VM_BUG_ON(mask & size);
VM_BUG_ON(*start >= *end);
VM_BUG_ON((next & mask) != (*start & mask));
while (walk->vma) {
if (next >= walk->vma->vm_end) {
walk->vma = walk->vma->vm_next;
continue;
}
if ((next & mask) != (walk->vma->vm_start & mask))
return false;
if (should_skip_vma(walk->vma->vm_start, walk->vma->vm_end, walk)) {
walk->vma = walk->vma->vm_next;
continue;
}
*start = max(next, walk->vma->vm_start);
next = (next | ~mask) + 1;
/* rounded-up boundaries can wrap to 0 */
*end = next && next < walk->vma->vm_end ? next : walk->vma->vm_end;
args->mm_stats[MM_VMA_INTERVAL]++;
return true;
}
return false;
}
static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
struct mm_walk *walk)
{
int i;
pte_t *pte;
spinlock_t *ptl;
unsigned long addr;
int remote = 0;
struct mm_walk_args *args = walk->private;
int old_gen, new_gen = lru_gen_from_seq(args->max_seq);
VM_BUG_ON(pmd_trans_huge(*pmd) || pmd_devmap(*pmd));
pte = pte_offset_map_lock(walk->mm, pmd, start & PMD_MASK, &ptl);
arch_enter_lazy_mmu_mode();
restart:
i = (start >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
for (addr = start; addr != end; i++, addr += PAGE_SIZE) {
struct page *page;
unsigned long pfn = pte_pfn(pte[i]);
if (!pte_present(pte[i]) || is_zero_pfn(pfn)) {
args->mm_stats[MM_LEAF_HOLE]++;
continue;
}
if (WARN_ON_ONCE(pte_devmap(pte[i]) || pte_special(pte[i])))
continue;
if (!pte_young(pte[i])) {
args->mm_stats[MM_LEAF_OLD]++;
continue;
}
VM_BUG_ON(!pfn_valid(pfn));
if (pfn < args->start_pfn || pfn >= args->end_pfn) {
args->mm_stats[MM_LEAF_OTHER_NODE]++;
remote++;
continue;
}
page = compound_head(pfn_to_page(pfn));
if (page_to_nid(page) != args->node_id) {
args->mm_stats[MM_LEAF_OTHER_NODE]++;
remote++;
continue;
}
if (page_memcg_rcu(page) != args->memcg) {
args->mm_stats[MM_LEAF_OTHER_MEMCG]++;
continue;
}
VM_BUG_ON(addr < walk->vma->vm_start || addr >= walk->vma->vm_end);
if (!ptep_test_and_clear_young(walk->vma, addr, pte + i))
continue;
if (pte_dirty(pte[i]) && !PageDirty(page) &&
!(PageAnon(page) && PageSwapBacked(page) && !PageSwapCache(page))) {
set_page_dirty(page);
args->mm_stats[MM_LEAF_DIRTY]++;
}
old_gen = page_update_gen(page, new_gen);
if (old_gen >= 0 && old_gen != new_gen)
update_batch_size(page, old_gen, new_gen, args);
args->mm_stats[MM_LEAF_YOUNG]++;
}
if (i < PTRS_PER_PTE && get_next_vma(walk, PMD_MASK, PAGE_SIZE, &start, &end))
goto restart;
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(pte, ptl);
return IS_ENABLED(CONFIG_HAVE_ARCH_PARENT_PMD_YOUNG) && !remote;
}
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HAVE_ARCH_PARENT_PMD_YOUNG)
static void __walk_pmd_range(pud_t *pud, unsigned long start,
struct vm_area_struct *vma, struct mm_walk *walk)
{
int i;
pmd_t *pmd;
spinlock_t *ptl;
struct mm_walk_args *args = walk->private;
int old_gen, new_gen = lru_gen_from_seq(args->max_seq);
VM_BUG_ON(pud_trans_huge(*pud) || pud_devmap(*pud));
start &= PUD_MASK;
pmd = pmd_offset(pud, start);
ptl = pmd_lock(walk->mm, pmd);
arch_enter_lazy_mmu_mode();
for_each_set_bit(i, args->bitmap, PTRS_PER_PMD) {
struct page *page;
unsigned long pfn = pmd_pfn(pmd[i]);
unsigned long addr = start + i * PMD_SIZE;
if (!pmd_present(pmd[i]) || is_huge_zero_pmd(pmd[i])) {
args->mm_stats[MM_LEAF_HOLE]++;
continue;
}
if (WARN_ON_ONCE(pmd_devmap(pmd[i])))
continue;
if (!pmd_young(pmd[i])) {
args->mm_stats[MM_LEAF_OLD]++;
continue;
}
if (!pmd_trans_huge(pmd[i])) {
if (IS_ENABLED(CONFIG_HAVE_ARCH_PARENT_PMD_YOUNG) &&
pmdp_test_and_clear_young(vma, addr, pmd + i))
args->mm_stats[MM_NONLEAF_YOUNG]++;
continue;
}
VM_BUG_ON(!pfn_valid(pfn));
if (pfn < args->start_pfn || pfn >= args->end_pfn) {
args->mm_stats[MM_LEAF_OTHER_NODE]++;
continue;
}
page = pfn_to_page(pfn);
VM_BUG_ON_PAGE(PageTail(page), page);
if (page_to_nid(page) != args->node_id) {
args->mm_stats[MM_LEAF_OTHER_NODE]++;
continue;
}
if (page_memcg_rcu(page) != args->memcg) {
args->mm_stats[MM_LEAF_OTHER_MEMCG]++;
continue;
}
VM_BUG_ON(addr < vma->vm_start || addr >= vma->vm_end);
if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
continue;
if (pmd_dirty(pmd[i]) && !PageDirty(page) &&
!(PageAnon(page) && PageSwapBacked(page) && !PageSwapCache(page))) {
set_page_dirty(page);
args->mm_stats[MM_LEAF_DIRTY]++;
}
old_gen = page_update_gen(page, new_gen);
if (old_gen >= 0 && old_gen != new_gen)
update_batch_size(page, old_gen, new_gen, args);
args->mm_stats[MM_LEAF_YOUNG]++;
}
arch_leave_lazy_mmu_mode();
spin_unlock(ptl);
bitmap_zero(args->bitmap, PTRS_PER_PMD);
}
#else
static void __walk_pmd_range(pud_t *pud, unsigned long start,
struct vm_area_struct *vma, struct mm_walk *walk)
{
}
#endif
static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
struct mm_walk *walk)
{
int i;
pmd_t *pmd;
unsigned long next;
unsigned long addr;
struct vm_area_struct *vma;
int leaf = 0;
int nonleaf = 0;
struct mm_walk_args *args = walk->private;
VM_BUG_ON(pud_trans_huge(*pud) || pud_devmap(*pud));
pmd = pmd_offset(pud, start & PUD_MASK);
restart:
vma = walk->vma;
i = (start >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
for (addr = start; addr != end; i++, addr = next) {
pmd_t val = pmd_read_atomic(pmd + i);
/* for pmd_read_atomic() */
barrier();
next = pmd_addr_end(addr, end);
if (!pmd_present(val)) {
args->mm_stats[MM_LEAF_HOLE]++;
continue;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (pmd_trans_huge(val)) {
unsigned long pfn = pmd_pfn(val);
if (is_huge_zero_pmd(val)) {
args->mm_stats[MM_LEAF_HOLE]++;
continue;
}
if (!pmd_young(val)) {
args->mm_stats[MM_LEAF_OLD]++;
continue;
}
if (pfn < args->start_pfn || pfn >= args->end_pfn) {
args->mm_stats[MM_LEAF_OTHER_NODE]++;
continue;
}
__set_bit(i, args->bitmap);
leaf++;
continue;
}
#endif
#ifdef CONFIG_HAVE_ARCH_PARENT_PMD_YOUNG
if (!pmd_young(val)) {
args->mm_stats[MM_NONLEAF_OLD]++;
continue;
}
#endif
if (walk_pte_range(&val, addr, next, walk)) {
__set_bit(i, args->bitmap);
nonleaf++;
}
}
if (leaf) {
__walk_pmd_range(pud, start, vma, walk);
leaf = nonleaf = 0;
}
if (i < PTRS_PER_PMD && get_next_vma(walk, PUD_MASK, PMD_SIZE, &start, &end))
goto restart;
if (nonleaf)
__walk_pmd_range(pud, start, vma, walk);
}
static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
struct mm_walk *walk)
{
int i;
pud_t *pud;
unsigned long addr;
unsigned long next;
struct mm_walk_args *args = walk->private;
pud = pud_offset(p4d, start & P4D_MASK);
restart:
i = (start >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
for (addr = start; addr != end; i++, addr = next) {
pud_t val = READ_ONCE(pud[i]);
next = pud_addr_end(addr, end);
if (!pud_present(val) || WARN_ON_ONCE(pud_trans_huge(val) || pud_devmap(val)))
continue;
walk_pmd_range(&val, addr, next, walk);
if (args->batch_size >= MAX_BATCH_SIZE) {
end = (addr | ~PUD_MASK) + 1;
goto done;
}
}
if (i < PTRS_PER_PUD && get_next_vma(walk, P4D_MASK, PUD_SIZE, &start, &end))
goto restart;
end = round_up(end, P4D_SIZE);
done:
/* rounded-up boundaries can wrap to 0 */
args->next_addr = end && walk->vma ? max(end, walk->vma->vm_start) : 0;
return -EAGAIN;
}
static void walk_mm(struct mm_walk_args *args, struct mm_struct *mm)
{
static const struct mm_walk_ops mm_walk_ops = {
.test_walk = should_skip_vma,
.p4d_entry = walk_pud_range,
};
int err;
struct mem_cgroup *memcg = args->memcg;
struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(args->node_id), memcg);
args->next_addr = FIRST_USER_ADDRESS;
do {
unsigned long start = args->next_addr;
unsigned long end = mm->highest_vm_end;
err = -EBUSY;
rcu_read_lock();
#ifdef CONFIG_MEMCG
if (memcg && atomic_read(&memcg->moving_account)) {
args->mm_stats[MM_LOCK_CONTENTION]++;
goto contended;
}
#endif
if (!down_read_trylock(&mm->mmap_sem)) {
args->mm_stats[MM_LOCK_CONTENTION]++;
goto contended;
}
err = walk_page_range(mm, start, end, &mm_walk_ops, args);
up_read(&mm->mmap_sem);
reset_batch_size(lruvec, args);
contended:
rcu_read_unlock();
cond_resched();
} while (err == -EAGAIN && args->next_addr &&
!mm_is_oom_victim(mm) && !mm_has_migrated(mm, memcg));
}
static bool mmu_notifier_start_batch(struct mm_struct *mm, void *priv)
{
struct mm_walk_args *args = priv;
struct mem_cgroup *memcg = args->memcg;
VM_BUG_ON(!rcu_read_lock_held());
#ifdef CONFIG_MEMCG
if (memcg && atomic_read(&memcg->moving_account)) {
args->mm_stats[MM_LOCK_CONTENTION]++;
return false;
}
#endif
return !mm_is_oom_victim(mm) && !mm_has_migrated(mm, memcg);
}
static bool mmu_notifier_end_batch(void *priv, bool last)
{
struct lruvec *lruvec;
struct mm_walk_args *args = priv;
VM_BUG_ON(!rcu_read_lock_held());
if (!last && args->batch_size < MAX_BATCH_SIZE)
return false;
lruvec = mem_cgroup_lruvec(NODE_DATA(args->node_id), args->memcg);
reset_batch_size(lruvec, args);
return true;
}
static struct page *mmu_notifier_get_page(void *priv, unsigned long pfn, bool young)
{
struct page *page;
struct mm_walk_args *args = priv;
if (pfn == -1 || is_zero_pfn(pfn)) {
args->mm_stats[MM_LEAF_HOLE]++;
return NULL;
}
if (!young) {
args->mm_stats[MM_LEAF_OLD]++;
return NULL;
}
VM_BUG_ON(!pfn_valid(pfn));
if (pfn < args->start_pfn || pfn >= args->end_pfn) {
args->mm_stats[MM_LEAF_OTHER_NODE]++;
return NULL;
}
page = compound_head(pfn_to_page(pfn));
if (page_to_nid(page) != args->node_id) {
args->mm_stats[MM_LEAF_OTHER_NODE]++;
return NULL;
}
if (page_memcg_rcu(page) != args->memcg) {
args->mm_stats[MM_LEAF_OTHER_MEMCG]++;
return NULL;
}
if (!PageLRU(page)) {
args->mm_stats[MM_LEAF_HOLE]++;
return NULL;
}
return get_page_unless_zero(page) ? page : NULL;
}
static void mmu_notifier_update_page(void *priv, struct page *page)
{
struct mm_walk_args *args = priv;
int old_gen, new_gen = lru_gen_from_seq(args->max_seq);
if (page_memcg_rcu(page) != args->memcg) {
args->mm_stats[MM_LEAF_OTHER_MEMCG]++;
return;
}
if (!PageLRU(page)) {
args->mm_stats[MM_LEAF_HOLE]++;
return;
}
old_gen = page_update_gen(page, new_gen);
if (old_gen >= 0 && old_gen != new_gen)
update_batch_size(page, old_gen, new_gen, args);
args->mm_stats[MM_LEAF_YOUNG]++;
}
static void call_mmu_notifier(struct mm_walk_args *args, struct mm_struct *mm)
{
struct mmu_notifier_walk walk = {
.start_batch = mmu_notifier_start_batch,
.end_batch = mmu_notifier_end_batch,
.get_page = mmu_notifier_get_page,
.update_page = mmu_notifier_update_page,
.private = args,
};
mmu_notifier_clear_young_walk(mm, &walk);
}
static void page_inc_gen(struct page *page, struct lruvec *lruvec, bool front)
{
int old_gen, new_gen;
unsigned long old_flags, new_flags;
int type = page_is_file_cache(page);
int zone = page_zonenum(page);
struct lrugen *lrugen = &lruvec->evictable;
old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
do {
old_flags = READ_ONCE(page->flags);
/* in case the aging has updated old_gen */
new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
VM_BUG_ON_PAGE(new_gen < 0, page);
if (new_gen >= 0 && new_gen != old_gen)
goto sort;
new_gen = (old_gen + 1) % MAX_NR_GENS;
new_flags = (old_flags & ~(LRU_GEN_MASK | LRU_USAGE_MASK | LRU_TIER_FLAGS)) |
((new_gen + 1UL) << LRU_GEN_PGOFF);
/* mark the page for reclaim if it's pending writeback */
if (front)
new_flags |= BIT(PG_reclaim);
} while (cmpxchg(&page->flags, old_flags, new_flags) != old_flags);
lru_gen_update_size(page, lruvec, old_gen, new_gen);
sort:
if (front)
list_move(&page->lru, &lrugen->lists[new_gen][type][zone]);
else
list_move_tail(&page->lru, &lrugen->lists[new_gen][type][zone]);
}
static bool try_inc_min_seq(struct lruvec *lruvec, int type)
{
int gen, zone;
bool success = false;
struct lrugen *lrugen = &lruvec->evictable;
VM_BUG_ON(!seq_is_valid(lruvec));
while (get_nr_gens(lruvec, type) > MIN_NR_GENS) {
gen = lru_gen_from_seq(lrugen->min_seq[type]);
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
if (!list_empty(&lrugen->lists[gen][type][zone]))
return success;
}
reset_controller_pos(lruvec, gen, type);
WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
success = true;
}
return success;
}
static bool inc_min_seq(struct lruvec *lruvec, int type)
{
int gen, zone;
int batch_size = 0;
struct lrugen *lrugen = &lruvec->evictable;
VM_BUG_ON(!seq_is_valid(lruvec));
if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
return true;
gen = lru_gen_from_seq(lrugen->min_seq[type]);
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
struct list_head *head = &lrugen->lists[gen][type][zone];
while (!list_empty(head)) {
struct page *page = lru_to_page(head);
VM_BUG_ON_PAGE(PageTail(page), page);
VM_BUG_ON_PAGE(PageUnevictable(page), page);
VM_BUG_ON_PAGE(PageActive(page), page);
VM_BUG_ON_PAGE(page_is_file_cache(page) != type, page);
VM_BUG_ON_PAGE(page_zonenum(page) != zone, page);
prefetchw_prev_lru_page(page, head, flags);
page_inc_gen(page, lruvec, false);
if (++batch_size == MAX_BATCH_SIZE)
return false;
}
VM_BUG_ON(lrugen->sizes[gen][type][zone]);
}
reset_controller_pos(lruvec, gen, type);
WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
return true;
}
static void inc_max_seq(struct lruvec *lruvec, unsigned long max_seq)
{
int gen, type, zone;
struct lrugen *lrugen = &lruvec->evictable;
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
spin_lock_irq(&pgdat->lru_lock);
VM_BUG_ON(!seq_is_valid(lruvec));
if (lrugen->max_seq != max_seq)
goto unlock;
for (type = 0; type < ANON_AND_FILE; type++) {
if (try_inc_min_seq(lruvec, type))
continue;
while (!inc_min_seq(lruvec, type)) {
spin_unlock_irq(&pgdat->lru_lock);
cond_resched();
spin_lock_irq(&pgdat->lru_lock);
}
}
gen = lru_gen_from_seq(lrugen->max_seq - 1);
for_each_type_zone(type, zone) {
enum lru_list lru = type * LRU_FILE;
long total = lrugen->sizes[gen][type][zone];
if (!total)
continue;
WARN_ON_ONCE(total != (int)total);
update_lru_size(lruvec, lru, zone, total);
update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -total);
}
gen = lru_gen_from_seq(lrugen->max_seq + 1);
for_each_type_zone(type, zone) {
VM_BUG_ON(lrugen->sizes[gen][type][zone]);
VM_BUG_ON(!list_empty(&lrugen->lists[gen][type][zone]));
}
for (type = 0; type < ANON_AND_FILE; type++)
reset_controller_pos(lruvec, gen, type);
WRITE_ONCE(lrugen->timestamps[gen], jiffies);
/* make sure all preceding modifications appear first */
smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
unlock:
spin_unlock_irq(&pgdat->lru_lock);
}
/* Main function used by the foreground, the background and the user-triggered aging. */
static bool walk_mm_list(struct lruvec *lruvec, unsigned long max_seq,
struct scan_control *sc, int swappiness, struct mm_walk_args *args)
{
bool last;
bool alloc = !args;
struct mm_struct *mm = NULL;
struct lrugen *lrugen = &lruvec->evictable;
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
int nid = pgdat->node_id;
struct mem_cgroup *memcg = lruvec_memcg(lruvec);
struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
VM_BUG_ON(max_seq > READ_ONCE(lrugen->max_seq));
if (alloc) {
args = kvzalloc_node(size_of_mm_walk_args(), GFP_KERNEL, nid);
if (WARN_ON_ONCE(!args))
return false;
}
args->memcg = memcg;
args->max_seq = max_seq;
args->start_pfn = pgdat->node_start_pfn;
args->end_pfn = pgdat_end_pfn(pgdat);
args->node_id = nid;
args->swappiness = swappiness;
do {
last = get_next_mm(args, &mm);
if (mm) {
walk_mm(args, mm);
call_mmu_notifier(args, mm);
}
cond_resched();
} while (mm);
if (alloc)
kvfree(args);
if (!last) {
/* the foreground aging prefers not to wait */
if (!current_is_kswapd() && sc->priority < DEF_PRIORITY - 2)
wait_event_killable(mm_list->nodes[nid].wait,
max_seq < READ_ONCE(lrugen->max_seq));
return max_seq < READ_ONCE(lrugen->max_seq);
}
VM_BUG_ON(max_seq != READ_ONCE(lrugen->max_seq));
inc_max_seq(lruvec, max_seq);
kernfs_notify(lru_gen_admin_node);
/* either we see any waiters or they will see updated max_seq */
if (wq_has_sleeper(&mm_list->nodes[nid].wait))
wake_up_all(&mm_list->nodes[nid].wait);
wakeup_flusher_threads(WB_REASON_VMSCAN);
return true;
}
void lru_gen_scan_around(struct page_vma_mapped_walk *pvmw)
{
int i;
pte_t *pte;
int old_gen, new_gen;
unsigned long start;
unsigned long end;
unsigned long addr;
struct lruvec *lruvec;
struct mem_cgroup *memcg;
struct pglist_data *pgdat = page_pgdat(pvmw->page);
unsigned long bitmap[BITS_TO_LONGS(SWAP_CLUSTER_MAX * 2)] = {};
lockdep_assert_held(pvmw->ptl);
VM_BUG_ON_PAGE(PageTail(pvmw->page), pvmw->page);
start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
end = pmd_addr_end(pvmw->address, pvmw->vma->vm_end);
if (end - start > SWAP_CLUSTER_MAX * 2 * PAGE_SIZE) {
if (pvmw->address - start < SWAP_CLUSTER_MAX * PAGE_SIZE)
end = start + SWAP_CLUSTER_MAX * 2 * PAGE_SIZE;
else if (end - pvmw->address < SWAP_CLUSTER_MAX * PAGE_SIZE)
start = end - SWAP_CLUSTER_MAX * 2 * PAGE_SIZE;
else {
start = pvmw->address - SWAP_CLUSTER_MAX * PAGE_SIZE;
end = pvmw->address + SWAP_CLUSTER_MAX * PAGE_SIZE;
}
}
pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
arch_enter_lazy_mmu_mode();
memcg = lock_page_memcg(pvmw->page);
if (WARN_ON_ONCE(!mem_cgroup_disabled() && !memcg))
goto out;
spin_lock_irq(&pgdat->lru_lock);
lruvec = mem_cgroup_lruvec(pgdat, memcg);
new_gen = lru_gen_from_seq(lruvec->evictable.max_seq);
for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
struct page *page;
unsigned long pfn = pte_pfn(pte[i]);
if (!pte_present(pte[i]) || is_zero_pfn(pfn))
continue;
if (WARN_ON_ONCE(pte_devmap(pte[i]) || pte_special(pte[i])))
continue;
if (!pte_young(pte[i]))
continue;
VM_BUG_ON(!pfn_valid(pfn));
if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
continue;
page = compound_head(pfn_to_page(pfn));
if (page_to_nid(page) != pgdat->node_id)
continue;
if (page_memcg_rcu(page) != memcg)
continue;
VM_BUG_ON(addr < pvmw->vma->vm_start || addr >= pvmw->vma->vm_end);
if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
continue;
if (pte_dirty(pte[i]) && !PageDirty(page) &&
!(PageAnon(page) && PageSwapBacked(page) && !PageSwapCache(page)))
__set_bit(i, bitmap);
old_gen = page_update_gen(page, new_gen);
if (old_gen >= 0 && old_gen != new_gen)
lru_gen_update_size(page, lruvec, old_gen, new_gen);
}
spin_unlock_irq(&pgdat->lru_lock);
unlock_page_memcg(pvmw->page);
out:
arch_leave_lazy_mmu_mode();
for_each_set_bit(i, bitmap, SWAP_CLUSTER_MAX * 2)
set_page_dirty(pte_page(pte[i]));
}
/******************************************************************************
* the eviction
******************************************************************************/
static bool should_skip_page(struct page *page, struct scan_control *sc)
{
if (!sc->may_unmap && page_mapped(page))
return true;
if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
(PageDirty(page) || (PageAnon(page) && !PageSwapCache(page))))
return true;
if (!get_page_unless_zero(page))
return true;
return false;
}
static bool sort_page(struct page *page, struct lruvec *lruvec, int tier_to_isolate)
{
bool success;
int gen = page_lru_gen(page);
int type = page_is_file_cache(page);
int zone = page_zonenum(page);
int tier = lru_tier_from_usage(page_tier_usage(page));
struct lrugen *lrugen = &lruvec->evictable;
VM_BUG_ON_PAGE(gen == -1, page);
VM_BUG_ON_PAGE(tier_to_isolate < 0, page);
/* a lazy-free page that has been written into? */
if (type && PageDirty(page) && PageAnon(page)) {
success = lru_gen_deletion(page, lruvec);
VM_BUG_ON_PAGE(!success, page);
SetPageSwapBacked(page);
add_page_to_lru_list_tail(page, lruvec);
return true;
}
/* page_update_gen() has updated the gen #? */
if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
list_move(&page->lru, &lrugen->lists[gen][type][zone]);
return true;
}
/* activate this page if its tier has a higher refault rate */
if (tier_to_isolate < tier) {
int hist = hist_from_seq_or_gen(gen);
page_inc_gen(page, lruvec, false);
WRITE_ONCE(lrugen->activated[hist][type][tier - 1],
lrugen->activated[hist][type][tier - 1] + hpage_nr_pages(page));
inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE);
return true;
}
/* mark this page for reclaim if it's pending writeback */
if (PageWriteback(page) || (type && PageDirty(page))) {
page_inc_gen(page, lruvec, true);
return true;
}
return false;
}
static void isolate_page(struct page *page, struct lruvec *lruvec)
{
bool success;
success = lru_gen_deletion(page, lruvec);
VM_BUG_ON_PAGE(!success, page);
ClearPageLRU(page);
if (PageActive(page)) {
ClearPageActive(page);
/* make sure shrink_page_list() rejects this page */
SetPageReferenced(page);
return;
}
/* make sure shrink_page_list() doesn't try to write this page */
ClearPageReclaim(page);
/* make sure shrink_page_list() doesn't reject this page */
ClearPageReferenced(page);
}
static int scan_pages(struct lruvec *lruvec, struct scan_control *sc, long *nr_to_scan,
int type, int tier, struct list_head *list)
{
bool success;
int gen, zone;
enum vm_event_item item;
int sorted = 0;
int scanned = 0;
int isolated = 0;
int batch_size = 0;
struct lrugen *lrugen = &lruvec->evictable;
struct mem_cgroup *memcg = lruvec_memcg(lruvec);
VM_BUG_ON(!list_empty(list));
if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
return -ENOENT;
gen = lru_gen_from_seq(lrugen->min_seq[type]);
for (zone = sc->reclaim_idx; zone >= 0; zone--) {
LIST_HEAD(moved);
int skipped = 0;
struct list_head *head = &lrugen->lists[gen][type][zone];
while (!list_empty(head)) {
struct page *page = lru_to_page(head);
int delta = hpage_nr_pages(page);
VM_BUG_ON_PAGE(PageTail(page), page);
VM_BUG_ON_PAGE(PageUnevictable(page), page);
VM_BUG_ON_PAGE(PageActive(page), page);
VM_BUG_ON_PAGE(page_is_file_cache(page) != type, page);
VM_BUG_ON_PAGE(page_zonenum(page) != zone, page);
prefetchw_prev_lru_page(page, head, flags);
scanned += delta;
if (sort_page(page, lruvec, tier))
sorted += delta;
else if (should_skip_page(page, sc)) {
list_move(&page->lru, &moved);
skipped += delta;
} else {
isolate_page(page, lruvec);
list_add(&page->lru, list);
isolated += delta;
}
if (scanned >= *nr_to_scan || isolated >= SWAP_CLUSTER_MAX ||
++batch_size == MAX_BATCH_SIZE)
break;
}
list_splice(&moved, head);
__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
if (scanned >= *nr_to_scan || isolated >= SWAP_CLUSTER_MAX ||
batch_size == MAX_BATCH_SIZE)
break;
}
success = try_inc_min_seq(lruvec, type);
item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
if (global_reclaim(sc)) {
__count_vm_events(item, isolated);
__count_vm_events(PGREFILL, sorted);
}
__count_memcg_events(memcg, item, isolated);
__count_memcg_events(memcg, PGREFILL, sorted);
*nr_to_scan -= scanned;
if (*nr_to_scan <= 0 || success || isolated)
return isolated;
/*
* We may have trouble finding eligible pages due to reclaim_idx,
* may_unmap and may_writepage. The following check makes sure we won't
* be stuck if we aren't making enough progress.
*/
return batch_size == MAX_BATCH_SIZE && sorted >= SWAP_CLUSTER_MAX ? 0 : -ENOENT;
}
static int get_tier_to_isolate(struct lruvec *lruvec, int type)
{
int tier;
struct controller_pos sp, pv;
/*
* Ideally we don't want to evict upper tiers that have higher refault
* rates. However, we need to leave a margin for the fluctuations in
* refault rates. So we use a larger gain factor to make sure upper
* tiers are indeed more active. We choose 2 because the lowest upper
* tier would have twice of the refault rate of the base tier, according
* to their numbers of accesses.
*/
read_controller_pos(&sp, lruvec, type, 0, 1);
for (tier = 1; tier < MAX_NR_TIERS; tier++) {
read_controller_pos(&pv, lruvec, type, tier, 2);
if (!positive_ctrl_err(&sp, &pv))
break;
}
return tier - 1;
}
static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_to_isolate)
{
int type, tier;
struct controller_pos sp, pv;
int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
/*
* Compare the refault rates between the base tiers of anon and file to
* determine which type to evict. Also need to compare the refault rates
* of the upper tiers of the selected type with that of the base tier of
* the other type to determine which tier of the selected type to evict.
*/
read_controller_pos(&sp, lruvec, 0, 0, gain[0]);
read_controller_pos(&pv, lruvec, 1, 0, gain[1]);
type = positive_ctrl_err(&sp, &pv);
read_controller_pos(&sp, lruvec, !type, 0, gain[!type]);
for (tier = 1; tier < MAX_NR_TIERS; tier++) {
read_controller_pos(&pv, lruvec, type, tier, gain[type]);
if (!positive_ctrl_err(&sp, &pv))
break;
}
*tier_to_isolate = tier - 1;
return type;
}
static int isolate_pages(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
long *nr_to_scan, int *type_to_scan, struct list_head *list)
{
int i;
int type;
int isolated;
int tier = -1;
DEFINE_MAX_SEQ();
DEFINE_MIN_SEQ();
VM_BUG_ON(!seq_is_valid(lruvec));
if (get_hi_wmark(max_seq, min_seq, swappiness) == MIN_NR_GENS)
return 0;
/*
* Try to select a type based on generations and swappiness, and if that
* fails, fall back to get_type_to_scan(). When anon and file are both
* available from the same generation, swappiness 200 is interpreted as
* anon first and swappiness 1 is interpreted as file first.
*/
type = !swappiness || min_seq[0] > min_seq[1] ||
(min_seq[0] == min_seq[1] && swappiness != 200 &&
(swappiness == 1 || get_type_to_scan(lruvec, swappiness, &tier)));
if (tier == -1)
tier = get_tier_to_isolate(lruvec, type);
for (i = !swappiness; i < ANON_AND_FILE; i++) {
isolated = scan_pages(lruvec, sc, nr_to_scan, type, tier, list);
if (isolated >= 0)
break;
type = !type;
tier = get_tier_to_isolate(lruvec, type);
}
if (isolated < 0)
isolated = *nr_to_scan = 0;
*type_to_scan = type;
return isolated;
}
/* Main function used by the foreground, the background and the user-triggered eviction. */
static bool evict_pages(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
long *nr_to_scan)
{
int type;
int isolated;
int reclaimed;
LIST_HEAD(list);
struct page *page;
enum vm_event_item item;
struct reclaim_stat stat;
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
spin_lock_irq(&pgdat->lru_lock);
isolated = isolate_pages(lruvec, sc, swappiness, nr_to_scan, &type, &list);
VM_BUG_ON(list_empty(&list) == !!isolated);
if (isolated)
__mod_node_page_state(pgdat, NR_ISOLATED_ANON + type, isolated);
spin_unlock_irq(&pgdat->lru_lock);
if (!isolated)
goto done;
reclaimed = shrink_page_list(&list, pgdat, sc, 0, &stat, false);
/*
* We need to prevent rejected pages from being added back to the same
* lists they were isolated from. Otherwise we may risk looping on them
* forever. We use PageActive() or !PageReferenced() && PageWorkingset()
* to tell lru_gen_addition() not to add them to the oldest generation.
*/
list_for_each_entry(page, &list, lru) {
if (PageMlocked(page))
continue;
if (page_mapped(page) && PageReferenced(page))
SetPageActive(page);
else if (!PageActive(page))
SetPageWorkingset(page);
ClearPageReferenced(page);
}
spin_lock_irq(&pgdat->lru_lock);
move_pages_to_lru(lruvec, &list);
__mod_node_page_state(pgdat, NR_ISOLATED_ANON + type, -isolated);
item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
if (global_reclaim(sc))
__count_vm_events(item, reclaimed);
__count_memcg_events(lruvec_memcg(lruvec), item, reclaimed);
spin_unlock_irq(&pgdat->lru_lock);
mem_cgroup_uncharge_list(&list);
free_unref_page_list(&list);
sc->nr_reclaimed += reclaimed;
done:
return *nr_to_scan > 0 && sc->nr_reclaimed < sc->nr_to_reclaim;
}
/******************************************************************************
* page reclaim
******************************************************************************/
static int get_swappiness(struct lruvec *lruvec)
{
struct mem_cgroup *memcg = lruvec_memcg(lruvec);
int swappiness = mem_cgroup_get_nr_swap_pages(memcg) >= (long)SWAP_CLUSTER_MAX ?
mem_cgroup_swappiness(memcg) : 0;
VM_BUG_ON(swappiness > 200U);
return swappiness;
}
static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
{
int gen, type, zone;
long nr_to_scan = 0;
struct lrugen *lrugen = &lruvec->evictable;
DEFINE_MAX_SEQ();
DEFINE_MIN_SEQ();
lru_add_drain();
for (type = !swappiness; type < ANON_AND_FILE; type++) {
unsigned long seq;
for (seq = min_seq[type]; seq <= max_seq; seq++) {
gen = lru_gen_from_seq(seq);
for (zone = 0; zone <= sc->reclaim_idx; zone++)
nr_to_scan += READ_ONCE(lrugen->sizes[gen][type][zone]);
}
}
nr_to_scan = max(nr_to_scan, 0L);
nr_to_scan = round_up(nr_to_scan >> sc->priority, SWAP_CLUSTER_MAX);
if (get_hi_wmark(max_seq, min_seq, swappiness) > MIN_NR_GENS)
return nr_to_scan;
if (!arch_has_hw_pte_young()) {
inc_max_seq(lruvec, max_seq);
return nr_to_scan;
}
/* kswapd uses lru_gen_age_node() */
if (current_is_kswapd())
return 0;
return walk_mm_list(lruvec, max_seq, sc, swappiness, NULL) ? nr_to_scan : 0;
}
static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
struct blk_plug plug;
long scanned = 0;
struct mem_cgroup *memcg = lruvec_memcg(lruvec);
enum mem_cgroup_protection prot = mem_cgroup_protected(sc->target_mem_cgroup, memcg);
blk_start_plug(&plug);
while (true) {
long nr_to_scan;
int swappiness = sc->may_swap ? get_swappiness(lruvec) : 0;
nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness) - scanned;
if (nr_to_scan < (long)SWAP_CLUSTER_MAX)
break;
scanned += nr_to_scan;
if (!evict_pages(lruvec, sc, swappiness, &nr_to_scan))
break;
scanned -= nr_to_scan;
if (prot == MEMCG_PROT_MIN || (prot == MEMCG_PROT_LOW && !sc->memcg_low_reclaim))
break;
cond_resched();
}
blk_finish_plug(&plug);
}
/******************************************************************************
* the background aging
******************************************************************************/
static int lru_gen_spread = MIN_NR_GENS;
static void try_walk_mm_list(struct lruvec *lruvec, struct scan_control *sc)
{
int gen, type, zone;
long old_and_young[2] = {};
int spread = READ_ONCE(lru_gen_spread);
int swappiness = get_swappiness(lruvec);
struct lrugen *lrugen = &lruvec->evictable;
struct pglist_data *pgdat = lruvec_pgdat(lruvec);
DEFINE_MAX_SEQ();
DEFINE_MIN_SEQ();
lru_add_drain();
for (type = !swappiness; type < ANON_AND_FILE; type++) {
unsigned long seq;
for (seq = min_seq[type]; seq <= max_seq; seq++) {
gen = lru_gen_from_seq(seq);
for (zone = 0; zone < MAX_NR_ZONES; zone++)
old_and_young[seq == max_seq] +=
READ_ONCE(lrugen->sizes[gen][type][zone]);
}
}
old_and_young[0] = max(old_and_young[0], 0L);
old_and_young[1] = max(old_and_young[1], 0L);
/* try to spread pages out across spread+1 generations */
if (old_and_young[0] >= old_and_young[1] * spread &&
get_lo_wmark(max_seq, min_seq, swappiness) > max(spread, MIN_NR_GENS))
return;
walk_mm_list(lruvec, max_seq, sc, swappiness, pgdat->mm_walk_args);
}
static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
{
struct mem_cgroup *memcg;
VM_BUG_ON(!current_is_kswapd());
if (!arch_has_hw_pte_young())
return;
memcg = mem_cgroup_iter(NULL, NULL, NULL);
do {
struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
enum mem_cgroup_protection prot = mem_cgroup_protected(sc->target_mem_cgroup,
memcg);
if (prot != MEMCG_PROT_MIN && (prot != MEMCG_PROT_LOW || sc->memcg_low_reclaim))
try_walk_mm_list(lruvec, sc);
cond_resched();
} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
}
/******************************************************************************
* state change
******************************************************************************/
#ifdef CONFIG_LRU_GEN_ENABLED
DEFINE_STATIC_KEY_TRUE(lru_gen_static_key);
#else
DEFINE_STATIC_KEY_FALSE(lru_gen_static_key);
#endif
static DEFINE_MUTEX(lru_gen_state_mutex);
static int lru_gen_nr_swapfiles __read_mostly;
static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
{
int gen, type, zone;
enum lru_list lru;
struct lrugen *lrugen = &lruvec->evictable;
for_each_evictable_lru(lru) {
type = is_file_lru(lru);
if (lrugen->enabled[type] && !list_empty(&lruvec->lists[lru]))
return false;
}
for_each_gen_type_zone(gen, type, zone) {
if (!lrugen->enabled[type] && !list_empty(&lrugen->lists[gen][type][zone]))
return false;
VM_WARN_ON_ONCE(!lrugen->enabled[type] && lrugen->sizes[gen][type][zone]);
}
return true;
}
static bool fill_lru_gen_lists(struct lruvec *lruvec)
{
enum lru_list lru;
int batch_size = 0;
for_each_evictable_lru(lru) {
int type = is_file_lru(lru);
bool active = is_active_lru(lru);
struct list_head *head = &lruvec->lists[lru];
if (!lruvec->evictable.enabled[type])
continue;
while (!list_empty(head)) {
bool success;
struct page *page = lru_to_page(head);
VM_BUG_ON_PAGE(PageTail(page), page);
VM_BUG_ON_PAGE(PageUnevictable(page), page);
VM_BUG_ON_PAGE(PageActive(page) != active, page);
VM_BUG_ON_PAGE(page_lru_gen(page) != -1, page);
VM_BUG_ON_PAGE(page_is_file_cache(page) != type, page);
prefetchw_prev_lru_page(page, head, flags);
del_page_from_lru_list(page, lruvec);
success = lru_gen_addition(page, lruvec, true);
VM_BUG_ON(!success);
if (++batch_size == MAX_BATCH_SIZE)
return false;
}
}
return true;
}
static bool drain_lru_gen_lists(struct lruvec *lruvec)
{
int gen, type, zone;
int batch_size = 0;
for_each_gen_type_zone(gen, type, zone) {
struct list_head *head = &lruvec->evictable.lists[gen][type][zone];
if (lruvec->evictable.enabled[type])
continue;
while (!list_empty(head)) {
bool success;
struct page *page = lru_to_page(head);
VM_BUG_ON_PAGE(PageTail(page), page);
VM_BUG_ON_PAGE(PageUnevictable(page), page);
VM_BUG_ON_PAGE(PageActive(page), page);
VM_BUG_ON_PAGE(page_is_file_cache(page) != type, page);
VM_BUG_ON_PAGE(page_zonenum(page) != zone, page);
prefetchw_prev_lru_page(page, head, flags);
success = lru_gen_deletion(page, lruvec);
VM_BUG_ON(!success);
add_page_to_lru_list(page, lruvec);
if (++batch_size == MAX_BATCH_SIZE)
return false;
}
}
return true;
}
/*
* For file page tracking, we enable/disable it according to the main switch.
* For anon page tracking, we only enabled it when the main switch is on and
* there is at least one swapfile; we disable it when there are no swapfiles
* regardless of the value of the main switch. Otherwise, we will eventually
* reach the max size of the sliding window and have to call inc_min_seq(),
* which brings an unnecessary overhead.
*/
void lru_gen_set_state(bool enable, bool main, bool swap)
{
struct mem_cgroup *memcg;
mem_hotplug_begin();
mutex_lock(&lru_gen_state_mutex);
cgroup_lock();
main = main && enable != lru_gen_enabled();
swap = swap && !(enable ? lru_gen_nr_swapfiles++ : --lru_gen_nr_swapfiles);
swap = swap && lru_gen_enabled();
if (!main && !swap)
goto unlock;
if (main) {
if (enable)
static_branch_enable(&lru_gen_static_key);
else
static_branch_disable(&lru_gen_static_key);
}
memcg = mem_cgroup_iter(NULL, NULL, NULL);
do {
int nid;
for_each_node_state(nid, N_MEMORY) {
struct pglist_data *pgdat = NODE_DATA(nid);
struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
struct lrugen *lrugen = &lruvec->evictable;
spin_lock_irq(&pgdat->lru_lock);
VM_BUG_ON(!seq_is_valid(lruvec));
VM_BUG_ON(!state_is_valid(lruvec));
WRITE_ONCE(lrugen->enabled[0], lru_gen_enabled() && lru_gen_nr_swapfiles);
WRITE_ONCE(lrugen->enabled[1], lru_gen_enabled());
while (!(enable ? fill_lru_gen_lists(lruvec) :
drain_lru_gen_lists(lruvec))) {
spin_unlock_irq(&pgdat->lru_lock);
cond_resched();
spin_lock_irq(&pgdat->lru_lock);
}
spin_unlock_irq(&pgdat->lru_lock);
}
cond_resched();
} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
unlock:
cgroup_unlock();
mutex_unlock(&lru_gen_state_mutex);
mem_hotplug_done();
}
static int __meminit __maybe_unused lru_gen_online_mem(struct notifier_block *self,
unsigned long action, void *arg)
{
struct mem_cgroup *memcg;
struct memory_notify *mnb = arg;
int nid = mnb->status_change_nid;
if (action != MEM_GOING_ONLINE || nid == NUMA_NO_NODE)
return NOTIFY_DONE;
mutex_lock(&lru_gen_state_mutex);
cgroup_lock();
memcg = mem_cgroup_iter(NULL, NULL, NULL);
do {
struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
struct lrugen *lrugen = &lruvec->evictable;
VM_BUG_ON(!seq_is_valid(lruvec));
VM_BUG_ON(!state_is_valid(lruvec));
WRITE_ONCE(lrugen->enabled[0], lru_gen_enabled() && lru_gen_nr_swapfiles);
WRITE_ONCE(lrugen->enabled[1], lru_gen_enabled());
} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
cgroup_unlock();
mutex_unlock(&lru_gen_state_mutex);
return NOTIFY_DONE;
}
static void lru_gen_start_kswapd(int nid)
{
struct pglist_data *pgdat = NODE_DATA(nid);
pgdat->mm_walk_args = kvzalloc_node(size_of_mm_walk_args(), GFP_KERNEL, nid);
WARN_ON_ONCE(!pgdat->mm_walk_args);
}
static void lru_gen_stop_kswapd(int nid)
{
struct pglist_data *pgdat = NODE_DATA(nid);
kvfree(pgdat->mm_walk_args);
}
/******************************************************************************
* sysfs interface
******************************************************************************/
static ssize_t show_lru_gen_spread(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", READ_ONCE(lru_gen_spread));
}
static int advance_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness);
static int advance_min_seq(struct lruvec *lruvec, unsigned long seq, int swappiness,
unsigned long nr_to_reclaim);
static int advance_seq(char cmd, int memcg_id, int nid, unsigned long seq,
int swappiness, unsigned long nr_to_reclaim);
static ssize_t store_lru_gen_spread(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t len)
{
int spread;
if (kstrtoint(buf, 10, &spread) || spread >= MAX_NR_GENS)
return -EINVAL;
WRITE_ONCE(lru_gen_spread, spread);
return len;
}
static struct kobj_attribute lru_gen_spread_attr = __ATTR(
spread, 0644, show_lru_gen_spread, store_lru_gen_spread
);
static ssize_t show_lru_gen_enabled(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", lru_gen_enabled());
}
static ssize_t store_lru_gen_enabled(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t len)
{
int enable;
if (kstrtoint(buf, 10, &enable))
return -EINVAL;
lru_gen_set_state(enable, true, false);
return len;
}
static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
enabled, 0644, show_lru_gen_enabled, store_lru_gen_enabled
);
int print_node_mglru(struct lruvec *lruvec, char *buf, int orig_pos)
{
unsigned long seq;
struct lrugen *lrugen = &lruvec->evictable;
DEFINE_MAX_SEQ();
DEFINE_MIN_SEQ();
int print_pos = orig_pos;
seq = min(min_seq[0], min_seq[1]);
for (; seq <= max_seq; seq++) {
int gen, type, zone;
unsigned int msecs;
gen = lru_gen_from_seq(seq);
msecs = jiffies_to_msecs(jiffies - READ_ONCE(lrugen->timestamps[gen]));
print_pos += snprintf(buf + print_pos, PAGE_SIZE - print_pos,
" %10lu %10u", seq, msecs);
for (type = 0; type < ANON_AND_FILE; type++) {
long size = 0;
if (seq < min_seq[type]) {
print_pos += snprintf(buf + print_pos,
PAGE_SIZE - print_pos, " -0 ");
continue;
}
for (zone = 0; zone < MAX_NR_ZONES; zone++)
size += READ_ONCE(lrugen->sizes[gen][type][zone]);
print_pos += snprintf(buf + print_pos,
PAGE_SIZE - print_pos, " %10lu ", max(size, 0L));
}
print_pos += snprintf(buf + print_pos, PAGE_SIZE - print_pos, "\n");
}
return print_pos - orig_pos;
}
static ssize_t show_lru_gen_admin(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct lruvec *lruvec;
struct mem_cgroup *memcg;
char *path = kvmalloc(PATH_MAX, GFP_KERNEL);
int buf_len = 0;
if (!path)
return -EINVAL;
path[0] = 0;
buf[0] = 0;
memcg = mem_cgroup_iter(NULL, NULL, NULL);
do {
int nid;
for_each_node_state(nid, N_MEMORY) {
lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
if (lruvec) {
if (nid == first_memory_node) {
#ifdef CONFIG_MEMCG
if (memcg)
cgroup_path(memcg->css.cgroup, path, PATH_MAX);
else
path[0] = 0;
#endif
buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len,
"memcg %5hu %s\n", mem_cgroup_id(memcg), path);
}
buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len,
" node %5d\n", nid);
buf_len += print_node_mglru(lruvec, buf, buf_len);
}
}
} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
if (buf_len >= PAGE_SIZE)
buf_len = PAGE_SIZE - 1;
buf[buf_len] = 0;
kvfree(path);
return buf_len;
}
static ssize_t store_lru_gen_admin(struct kobject *kobj, struct kobj_attribute *attr,
const char *src, size_t len)
{
void *buf;
char *cur, *next;
int err = 0;
buf = kvmalloc(len + 1, GFP_USER);
if (!buf)
return -ENOMEM;
memcpy(buf, src, len);
next = buf;
next[len] = '\0';
while ((cur = strsep(&next, ",;\n"))) {
int n;
int end;
char cmd;
unsigned int memcg_id;
unsigned int nid;
unsigned long seq;
unsigned int swappiness = -1;
unsigned long nr_to_reclaim = -1;
cur = skip_spaces(cur);
if (!*cur)
continue;
n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
&seq, &end, &swappiness, &end, &nr_to_reclaim, &end);
if (n < 4 || cur[end]) {
err = -EINVAL;
break;
}
err = advance_seq(cmd, memcg_id, nid, seq, swappiness, nr_to_reclaim);
if (err)
break;
}
kvfree(buf);
return err ? : len;
}
static struct kobj_attribute lru_gen_admin_attr = __ATTR(
admin, 0644, show_lru_gen_admin, store_lru_gen_admin
);
static struct attribute *lru_gen_attrs[] = {
&lru_gen_spread_attr.attr,
&lru_gen_enabled_attr.attr,
&lru_gen_admin_attr.attr,
NULL
};
static struct attribute_group lru_gen_attr_group = {
.name = "lru_gen",
.attrs = lru_gen_attrs,
};
/******************************************************************************
* debugfs interface
******************************************************************************/
static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
{
struct mem_cgroup *memcg;
loff_t nr_to_skip = *pos;
m->private = kzalloc(PATH_MAX, GFP_KERNEL);
if (!m->private)
return ERR_PTR(-ENOMEM);
memcg = mem_cgroup_iter(NULL, NULL, NULL);
do {
int nid;
for_each_node_state(nid, N_MEMORY) {
if (!nr_to_skip--)
return mem_cgroup_lruvec(NODE_DATA(nid), memcg);
}
} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
return NULL;
}
static void lru_gen_seq_stop(struct seq_file *m, void *v)
{
if (!IS_ERR_OR_NULL(v))
mem_cgroup_iter_break(NULL, lruvec_memcg(v));
kfree(m->private);
m->private = NULL;
}
static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
{
int nid = lruvec_pgdat(v)->node_id;
struct mem_cgroup *memcg = lruvec_memcg(v);
++*pos;
nid = next_memory_node(nid);
if (nid == MAX_NUMNODES) {
memcg = mem_cgroup_iter(NULL, memcg, NULL);
if (!memcg)
return NULL;
nid = first_memory_node;
}
return mem_cgroup_lruvec(NODE_DATA(nid), memcg);
}
static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
unsigned long max_seq, unsigned long *min_seq,
unsigned long seq)
{
int i;
int type, tier;
int hist = hist_from_seq_or_gen(seq);
struct lrugen *lrugen = &lruvec->evictable;
int nid = lruvec_pgdat(lruvec)->node_id;
struct mem_cgroup *memcg = lruvec_memcg(lruvec);
struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
for (tier = 0; tier < MAX_NR_TIERS; tier++) {
seq_printf(m, " %10d", tier);
for (type = 0; type < ANON_AND_FILE; type++) {
unsigned long n[3] = {};
if (seq == max_seq) {
n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
seq_printf(m, " %10luR %10luT %10lu ", n[0], n[1], n[2]);
} else if (seq == min_seq[type] || NR_STAT_GENS > 1) {
n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
if (tier)
n[2] = READ_ONCE(lrugen->activated[hist][type][tier - 1]);
seq_printf(m, " %10lur %10lue %10lua", n[0], n[1], n[2]);
} else
seq_puts(m, " 0 0 0 ");
}
seq_putc(m, '\n');
}
seq_puts(m, " ");
for (i = 0; i < NR_MM_STATS; i++) {
if (seq == max_seq && NR_STAT_GENS == 1)
seq_printf(m, " %10lu%c", READ_ONCE(mm_list->nodes[nid].stats[hist][i]),
toupper(MM_STAT_CODES[i]));
else if (seq != max_seq && NR_STAT_GENS > 1)
seq_printf(m, " %10lu%c", READ_ONCE(mm_list->nodes[nid].stats[hist][i]),
MM_STAT_CODES[i]);
else
seq_puts(m, " 0 ");
}
seq_putc(m, '\n');
}
static int lru_gen_seq_show(struct seq_file *m, void *v)
{
unsigned long seq;
bool full = !debugfs_real_fops(m->file)->write;
struct lruvec *lruvec = v;
struct lrugen *lrugen = &lruvec->evictable;
int nid = lruvec_pgdat(lruvec)->node_id;
struct mem_cgroup *memcg = lruvec_memcg(lruvec);
DEFINE_MAX_SEQ();
DEFINE_MIN_SEQ();
if (nid == first_memory_node) {
#ifdef CONFIG_MEMCG
if (memcg)
cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
#endif
seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), (char *)m->private);
}
seq_printf(m, " node %5d\n", nid);
seq = full ? (max_seq < MAX_NR_GENS ? 0 : max_seq - MAX_NR_GENS + 1) :
min(min_seq[0], min_seq[1]);
for (; seq <= max_seq; seq++) {
int gen, type, zone;
unsigned int msecs;
gen = lru_gen_from_seq(seq);
msecs = jiffies_to_msecs(jiffies - READ_ONCE(lrugen->timestamps[gen]));
seq_printf(m, " %10lu %10u", seq, msecs);
for (type = 0; type < ANON_AND_FILE; type++) {
long size = 0;
if (seq < min_seq[type]) {
seq_puts(m, " -0 ");
continue;
}
for (zone = 0; zone < MAX_NR_ZONES; zone++)
size += READ_ONCE(lrugen->sizes[gen][type][zone]);
seq_printf(m, " %10lu ", max(size, 0L));
}
seq_putc(m, '\n');
if (full)
lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
}
return 0;
}
static const struct seq_operations lru_gen_seq_ops = {
.start = lru_gen_seq_start,
.stop = lru_gen_seq_stop,
.next = lru_gen_seq_next,
.show = lru_gen_seq_show,
};
static int advance_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
{
struct scan_control sc = {
.target_mem_cgroup = lruvec_memcg(lruvec),
};
DEFINE_MAX_SEQ();
if (seq == max_seq)
walk_mm_list(lruvec, max_seq, &sc, swappiness, NULL);
return seq > max_seq ? -EINVAL : 0;
}
static int advance_min_seq(struct lruvec *lruvec, unsigned long seq, int swappiness,
unsigned long nr_to_reclaim)
{
struct blk_plug plug;
int err = -EINTR;
long nr_to_scan = LONG_MAX;
struct scan_control sc = {
.nr_to_reclaim = nr_to_reclaim,
.target_mem_cgroup = lruvec_memcg(lruvec),
.may_writepage = 1,
.may_unmap = 1,
.may_swap = 1,
.reclaim_idx = MAX_NR_ZONES - 1,
.gfp_mask = GFP_KERNEL,
};
DEFINE_MAX_SEQ();
if (seq >= max_seq - 1)
return -EINVAL;
blk_start_plug(&plug);
while (!signal_pending(current)) {
DEFINE_MIN_SEQ();
if (seq < min(min_seq[!swappiness], min_seq[swappiness < 200]) ||
!evict_pages(lruvec, &sc, swappiness, &nr_to_scan)) {
err = 0;
break;
}
cond_resched();
}
blk_finish_plug(&plug);
return err;
}
static int advance_seq(char cmd, int memcg_id, int nid, unsigned long seq,
int swappiness, unsigned long nr_to_reclaim)
{
struct lruvec *lruvec;
int err = -EINVAL;
struct mem_cgroup *memcg = NULL;
if (!mem_cgroup_disabled()) {
rcu_read_lock();
memcg = mem_cgroup_from_id(memcg_id);
#ifdef CONFIG_MEMCG
if (memcg && !css_tryget(&memcg->css))
memcg = NULL;
#endif
rcu_read_unlock();
if (!memcg)
goto done;
}
if (memcg_id != mem_cgroup_id(memcg))
goto done;
if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
goto done;
lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
if (swappiness == -1)
swappiness = get_swappiness(lruvec);
else if (swappiness > 200U)
goto done;
switch (cmd) {
case '+':
err = advance_max_seq(lruvec, seq, swappiness);
break;
case '-':
err = advance_min_seq(lruvec, seq, swappiness, nr_to_reclaim);
break;
}
done:
mem_cgroup_put(memcg);
return err;
}
static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
size_t len, loff_t *pos)
{
void *buf;
char *cur, *next;
int err = 0;
buf = kvmalloc(len + 1, GFP_USER);
if (!buf)
return -ENOMEM;
if (copy_from_user(buf, src, len)) {
kvfree(buf);
return -EFAULT;
}
next = buf;
next[len] = '\0';
while ((cur = strsep(&next, ",;\n"))) {
int n;
int end;
char cmd;
unsigned int memcg_id;
unsigned int nid;
unsigned long seq;
unsigned int swappiness = -1;
unsigned long nr_to_reclaim = -1;
cur = skip_spaces(cur);
if (!*cur)
continue;
n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
&seq, &end, &swappiness, &end, &nr_to_reclaim, &end);
if (n < 4 || cur[end]) {
err = -EINVAL;
break;
}
err = advance_seq(cmd, memcg_id, nid, seq, swappiness, nr_to_reclaim);
if (err)
break;
}
kvfree(buf);
return err ? : len;
}
static int lru_gen_seq_open(struct inode *inode, struct file *file)
{
return seq_open(file, &lru_gen_seq_ops);
}
static const struct file_operations lru_gen_rw_fops = {
.open = lru_gen_seq_open,
.read = seq_read,
.write = lru_gen_seq_write,
.llseek = seq_lseek,
.release = seq_release,
};
static const struct file_operations lru_gen_ro_fops = {
.open = lru_gen_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
/******************************************************************************
* initialization
******************************************************************************/
void lru_gen_init_lruvec(struct lruvec *lruvec)
{
int i;
int gen, type, zone;
struct lrugen *lrugen = &lruvec->evictable;
lrugen->max_seq = MIN_NR_GENS + 1;
lrugen->enabled[0] = lru_gen_enabled() && lru_gen_nr_swapfiles;
lrugen->enabled[1] = lru_gen_enabled();
for (i = 0; i <= MIN_NR_GENS + 1; i++)
lrugen->timestamps[i] = jiffies;
for_each_gen_type_zone(gen, type, zone)
INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
}
static int __init init_lru_gen(void)
{
struct kernfs_node *tmp;
BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
BUILD_BUG_ON(sizeof(MM_STAT_CODES) != NR_MM_STATS + 1);
VM_BUG_ON(PMD_SIZE / PAGE_SIZE != PTRS_PER_PTE);
VM_BUG_ON(PUD_SIZE / PMD_SIZE != PTRS_PER_PMD);
VM_BUG_ON(P4D_SIZE / PUD_SIZE != PTRS_PER_PUD);
if (mem_cgroup_disabled()) {
global_mm_list = alloc_mm_list();
if (WARN_ON_ONCE(!global_mm_list))
return -ENOMEM;
}
if (hotplug_memory_notifier(lru_gen_online_mem, 0))
pr_err("lru_gen: failed to subscribe hotplug notifications\n");
if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
pr_err("lru_gen: failed to create sysfs group\n");
tmp = kernfs_find_and_get(mm_kobj->sd, "lru_gen");
lru_gen_admin_node = kernfs_find_and_get(tmp, "admin");
debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
return 0;
};
/*
* We want to run as early as possible because debug code may call mm_alloc()
* and mmput(). Our only dependency mm_kobj is initialized one stage earlier.
*/
arch_initcall(init_lru_gen);
#else /* CONFIG_LRU_GEN */
static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
}
static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
{
}
static void lru_gen_start_kswapd(int nid)
{
}
static void lru_gen_stop_kswapd(int nid)
{
}
#endif /* CONFIG_LRU_GEN */
/*
* This is a basic per-node page freer. Used by both kswapd and direct reclaim.
*/
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
struct scan_control *sc, unsigned long *lru_pages)
{
struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
unsigned long nr[NR_LRU_LISTS];
unsigned long targets[NR_LRU_LISTS];
unsigned long nr_to_scan;
enum lru_list lru;
unsigned long nr_reclaimed = 0;
unsigned long nr_to_reclaim = sc->nr_to_reclaim;
struct blk_plug plug;
bool scan_adjusted;
if (lru_gen_enabled()) {
*lru_pages = 0;
lru_gen_shrink_lruvec(lruvec, sc);
return;
}
get_scan_count(lruvec, memcg, sc, nr, lru_pages);
/* Record the original scan target for proportional adjustments later */
memcpy(targets, nr, sizeof(nr));
/*
* Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
* event that can occur when there is little memory pressure e.g.
* multiple streaming readers/writers. Hence, we do not abort scanning
* when the requested number of pages are reclaimed when scanning at
* DEF_PRIORITY on the assumption that the fact we are direct
* reclaiming implies that kswapd is not keeping up and it is best to
* do a batch of work at once. For memcg reclaim one check is made to
* abort proportional reclaim if either the file or anon lru has already
* dropped to zero at the first pass.
*/
scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
sc->priority == DEF_PRIORITY);
blk_start_plug(&plug);
while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
nr[LRU_INACTIVE_FILE]) {
unsigned long nr_anon, nr_file, percentage;
unsigned long nr_scanned;
for_each_evictable_lru(lru) {
if (nr[lru]) {
nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
nr[lru] -= nr_to_scan;
nr_reclaimed += shrink_list(lru, nr_to_scan,
lruvec, sc);
}
}
cond_resched();
if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
continue;
/*
* For kswapd and memcg, reclaim at least the number of pages
* requested. Ensure that the anon and file LRUs are scanned
* proportionally what was requested by get_scan_count(). We
* stop reclaiming one LRU and reduce the amount scanning
* proportional to the original scan target.
*/
nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
/*
* It's just vindictive to attack the larger once the smaller
* has gone to zero. And given the way we stop scanning the
* smaller below, this makes sure that we only make one nudge
* towards proportionality once we've got nr_to_reclaim.
*/
if (!nr_file || !nr_anon)
break;
if (nr_file > nr_anon) {
unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
targets[LRU_ACTIVE_ANON] + 1;
lru = LRU_BASE;
percentage = nr_anon * 100 / scan_target;
} else {
unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
targets[LRU_ACTIVE_FILE] + 1;
lru = LRU_FILE;
percentage = nr_file * 100 / scan_target;
}
/* Stop scanning the smaller of the LRU */
nr[lru] = 0;
nr[lru + LRU_ACTIVE] = 0;
/*
* Recalculate the other LRU scan count based on its original
* scan target and the percentage scanning already complete
*/
lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
nr_scanned = targets[lru] - nr[lru];
nr[lru] = targets[lru] * (100 - percentage) / 100;
nr[lru] -= min(nr[lru], nr_scanned);
lru += LRU_ACTIVE;
nr_scanned = targets[lru] - nr[lru];
nr[lru] = targets[lru] * (100 - percentage) / 100;
nr[lru] -= min(nr[lru], nr_scanned);
scan_adjusted = true;
}
blk_finish_plug(&plug);
sc->nr_reclaimed += nr_reclaimed;
/*
* Even if we did not try to evict anon pages at all, we want to
* rebalance the anon lru active/inactive ratio.
*/
if (inactive_list_is_low(lruvec, false, sc, true))
shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
sc, LRU_ACTIVE_ANON);
}
/* Use reclaim/compaction for costly allocs or under memory pressure */
static bool in_reclaim_compaction(struct scan_control *sc)
{
if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
sc->priority < DEF_PRIORITY - 2))
return true;
return false;
}
/*
* Reclaim/compaction is used for high-order allocation requests. It reclaims
* order-0 pages before compacting the zone. should_continue_reclaim() returns
* true if more pages should be reclaimed such that when the page allocator
* calls try_to_compact_zone() that it will have enough free pages to succeed.
* It will give up earlier than that if there is difficulty reclaiming pages.
*/
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
unsigned long nr_reclaimed,
struct scan_control *sc)
{
unsigned long pages_for_compaction;
unsigned long inactive_lru_pages;
int z;
/* If not in reclaim/compaction mode, stop */
if (!in_reclaim_compaction(sc))
return false;
/*
* Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
* number of pages that were scanned. This will return to the caller
* with the risk reclaim/compaction and the resulting allocation attempt
* fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
* allocations through requiring that the full LRU list has been scanned
* first, by assuming that zero delta of sc->nr_scanned means full LRU
* scan, but that approximation was wrong, and there were corner cases
* where always a non-zero amount of pages were scanned.
*/
if (!nr_reclaimed)
return false;
/* If compaction would go ahead or the allocation would succeed, stop */
for (z = 0; z <= sc->reclaim_idx; z++) {
struct zone *zone = &pgdat->node_zones[z];
if (!managed_zone(zone))
continue;
switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
case COMPACT_SUCCESS:
case COMPACT_CONTINUE:
return false;
default:
/* check next zone */
;
}
}
/*
* If we have not reclaimed enough pages for compaction and the
* inactive lists are large enough, continue reclaiming
*/
pages_for_compaction = compact_gap(sc->order);
inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
if (get_nr_swap_pages() > 0)
inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
return inactive_lru_pages > pages_for_compaction;
}
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
(memcg && memcg_congested(pgdat, memcg));
}
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
{
struct reclaim_state *reclaim_state = current->reclaim_state;
unsigned long nr_reclaimed, nr_scanned;
bool reclaimable = false;
do {
struct mem_cgroup *root = sc->target_mem_cgroup;
unsigned long node_lru_pages = 0;
struct mem_cgroup *memcg;
memset(&sc->nr, 0, sizeof(sc->nr));
nr_reclaimed = sc->nr_reclaimed;
nr_scanned = sc->nr_scanned;
memcg = mem_cgroup_iter(root, NULL, NULL);
do {
unsigned long lru_pages;
unsigned long reclaimed;
unsigned long scanned;
/*
* This loop can become CPU-bound when target memcgs
* aren't eligible for reclaim - either because they
* don't have any reclaimable pages, or because their
* memory is explicitly protected. Avoid soft lockups.
*/
cond_resched();
switch (mem_cgroup_protected(root, memcg)) {
case MEMCG_PROT_MIN:
/*
* Hard protection.
* If there is no reclaimable memory, OOM.
*/
continue;
case MEMCG_PROT_LOW:
/*
* Soft protection.
* Respect the protection only as long as
* there is an unprotected supply
* of reclaimable memory from other cgroups.
*/
if (!sc->memcg_low_reclaim) {
sc->memcg_low_skipped = 1;
continue;
}
memcg_memory_event(memcg, MEMCG_LOW);
break;
case MEMCG_PROT_NONE:
/*
* All protection thresholds breached. We may
* still choose to vary the scan pressure
* applied based on by how much the cgroup in
* question has exceeded its protection
* thresholds (see get_scan_count).
*/
break;
}
reclaimed = sc->nr_reclaimed;
scanned = sc->nr_scanned;
shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
node_lru_pages += lru_pages;
shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
sc->priority);
/* Record the group's reclaim efficiency */
vmpressure(sc->gfp_mask, memcg, false,
sc->nr_scanned - scanned,
sc->nr_reclaimed - reclaimed);
} while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
if (reclaim_state) {
sc->nr_reclaimed += reclaim_state->reclaimed_slab;
reclaim_state->reclaimed_slab = 0;
}
/* Record the subtree's reclaim efficiency */
vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
sc->nr_scanned - nr_scanned,
sc->nr_reclaimed - nr_reclaimed);
if (sc->nr_reclaimed - nr_reclaimed)
reclaimable = true;
if (current_is_kswapd()) {
/*
* If reclaim is isolating dirty pages under writeback,
* it implies that the long-lived page allocation rate
* is exceeding the page laundering rate. Either the
* global limits are not being effective at throttling
* processes due to the page distribution throughout
* zones or there is heavy usage of a slow backing
* device. The only option is to throttle from reclaim
* context which is not ideal as there is no guarantee
* the dirtying process is throttled in the same way
* balance_dirty_pages() manages.
*
* Once a node is flagged PGDAT_WRITEBACK, kswapd will
* count the number of pages under pages flagged for
* immediate reclaim and stall if any are encountered
* in the nr_immediate check below.
*/
if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
set_bit(PGDAT_WRITEBACK, &pgdat->flags);
/*
* Tag a node as congested if all the dirty pages
* scanned were backed by a congested BDI and
* wait_iff_congested will stall.
*/
if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
set_bit(PGDAT_CONGESTED, &pgdat->flags);
/* Allow kswapd to start writing pages during reclaim.*/
if (sc->nr.unqueued_dirty == sc->nr.file_taken)
set_bit(PGDAT_DIRTY, &pgdat->flags);
/*
* If kswapd scans pages marked marked for immediate
* reclaim and under writeback (nr_immediate), it
* implies that pages are cycling through the LRU
* faster than they are written so also forcibly stall.
*/
if (sc->nr.immediate)
congestion_wait(BLK_RW_ASYNC, HZ/10);
}
/*
* Legacy memcg will stall in page writeback so avoid forcibly
* stalling in wait_iff_congested().
*/
if (!global_reclaim(sc) && sane_reclaim(sc) &&
sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
set_memcg_congestion(pgdat, root, true);
/*
* Stall direct reclaim for IO completions if underlying BDIs
* and node is congested. Allow kswapd to continue until it
* starts encountering unqueued dirty pages or cycling through
* the LRU too quickly.
*/
if (!sc->hibernation_mode && !current_is_kswapd() &&
current_may_throttle() && pgdat_memcg_congested(pgdat, root))
wait_iff_congested(BLK_RW_ASYNC, HZ/10);
} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
sc));
/*
* Kswapd gives up on balancing particular nodes after too
* many failures to reclaim anything from them and goes to
* sleep. On reclaim progress, reset the failure counter. A
* successful direct reclaim run will revive a dormant kswapd.
*/
if (reclaimable)
pgdat->kswapd_failures = 0;
return reclaimable;
}
/*
* Returns true if compaction should go ahead for a costly-order request, or
* the allocation would already succeed without compaction. Return false if we
* should reclaim first.
*/
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
unsigned long watermark;
enum compact_result suitable;
if (!gfp_compaction_allowed(sc->gfp_mask))
return false;
suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
if (suitable == COMPACT_SUCCESS)
/* Allocation should succeed already. Don't reclaim. */
return true;
if (suitable == COMPACT_SKIPPED)
/* Compaction cannot yet proceed. Do reclaim. */
return false;
/*
* Compaction is already possible, but it takes time to run and there
* are potentially other callers using the pages just freed. So proceed
* with reclaim to make a buffer of free pages available to give
* compaction a reasonable chance of completing and allocating the page.
* Note that we won't actually reclaim the whole buffer in one attempt
* as the target watermark in should_continue_reclaim() is lower. But if
* we are already above the high+gap watermark, don't reclaim at all.
*/
watermark = high_wmark_pages(zone) + compact_gap(sc->order);
return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
}
/*
* This is the direct reclaim path, for page-allocating processes. We only
* try to reclaim pages from zones which will satisfy the caller's allocation
* request.
*
* If a zone is deemed to be full of pinned pages then just give it a light
* scan then give up on it.
*/
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
{
struct zoneref *z;
struct zone *zone;
unsigned long nr_soft_reclaimed;
unsigned long nr_soft_scanned;
gfp_t orig_mask;
pg_data_t *last_pgdat = NULL;
/*
* If the number of buffer_heads in the machine exceeds the maximum
* allowed level, force direct reclaim to scan the highmem zone as
* highmem pages could be pinning lowmem pages storing buffer_heads
*/
orig_mask = sc->gfp_mask;
if (buffer_heads_over_limit) {
sc->gfp_mask |= __GFP_HIGHMEM;
sc->reclaim_idx = gfp_zone(sc->gfp_mask);
}
for_each_zone_zonelist_nodemask(zone, z, zonelist,
sc->reclaim_idx, sc->nodemask) {
/*
* Take care memory controller reclaiming has small influence
* to global LRU.
*/
if (global_reclaim(sc)) {
if (!cpuset_zone_allowed(zone,
GFP_KERNEL | __GFP_HARDWALL))
continue;
/*
* If we already have plenty of memory free for
* compaction in this zone, don't free any more.
* Even though compaction is invoked for any
* non-zero order, only frequent costly order
* reclamation is disruptive enough to become a
* noticeable problem, like transparent huge
* page allocations.
*/
if (IS_ENABLED(CONFIG_COMPACTION) &&
sc->order > PAGE_ALLOC_COSTLY_ORDER &&
compaction_ready(zone, sc)) {
sc->compaction_ready = true;
continue;
}
/*
* Shrink each node in the zonelist once. If the
* zonelist is ordered by zone (not the default) then a
* node may be shrunk multiple times but in that case
* the user prefers lower zones being preserved.
*/
if (zone->zone_pgdat == last_pgdat)
continue;
/*
* This steals pages from memory cgroups over softlimit
* and returns the number of reclaimed pages and
* scanned pages. This works for global memory pressure
* and balancing, not for a memcg's limit.
*/
nr_soft_scanned = 0;
nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
sc->order, sc->gfp_mask,
&nr_soft_scanned);
sc->nr_reclaimed += nr_soft_reclaimed;
sc->nr_scanned += nr_soft_scanned;
/* need some check for avoid more shrink_zone() */
}
/* See comment about same check for global reclaim above */
if (zone->zone_pgdat == last_pgdat)
continue;
last_pgdat = zone->zone_pgdat;
shrink_node(zone->zone_pgdat, sc);
}
/*
* Restore to original mask to avoid the impact on the caller if we
* promoted it to __GFP_HIGHMEM.
*/
sc->gfp_mask = orig_mask;
}
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
struct mem_cgroup *memcg;
if (lru_gen_enabled())
return;
memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
do {
unsigned long refaults;
struct lruvec *lruvec;
lruvec = mem_cgroup_lruvec(pgdat, memcg);
refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
lruvec->refaults = refaults;
} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}
/*
* This is the main entry point to direct page reclaim.
*
* If a full scan of the inactive list fails to free enough memory then we
* are "out of memory" and something needs to be killed.
*
* If the caller is !__GFP_FS then the probability of a failure is reasonably
* high - the zone may be full of dirty or under-writeback pages, which this
* caller can't do much about. We kick the writeback threads and take explicit
* naps in the hope that some of these pages can be written. But if the
* allocating task holds filesystem locks which prevent writeout this might not
* work, and the allocation attempt will fail.
*
* returns: 0, if no pages reclaimed
* else, the number of pages reclaimed
*/
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
struct scan_control *sc)
{
int initial_priority = sc->priority;
pg_data_t *last_pgdat;
struct zoneref *z;
struct zone *zone;
retry:
delayacct_freepages_start();
if (global_reclaim(sc))
__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
do {
vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
sc->priority);
sc->nr_scanned = 0;
shrink_zones(zonelist, sc);
if (sc->nr_reclaimed >= sc->nr_to_reclaim)
break;
if (sc->compaction_ready)
break;
/*
* If we're getting trouble reclaiming, start doing
* writepage even in laptop mode.
*/
if (sc->priority < DEF_PRIORITY - 2)
sc->may_writepage = 1;
} while (--sc->priority >= 0);
last_pgdat = NULL;
for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
sc->nodemask) {
if (zone->zone_pgdat == last_pgdat)
continue;
last_pgdat = zone->zone_pgdat;
snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
}
delayacct_freepages_end();
if (sc->nr_reclaimed)
return sc->nr_reclaimed;
/* Aborted reclaim to try compaction? don't OOM, then */
if (sc->compaction_ready)
return 1;
/* Untapped cgroup reserves? Don't OOM, retry. */
if (sc->memcg_low_skipped) {
sc->priority = initial_priority;
sc->memcg_low_reclaim = 1;
sc->memcg_low_skipped = 0;
goto retry;
}
return 0;
}
static bool allow_direct_reclaim(pg_data_t *pgdat)
{
struct zone *zone;
unsigned long pfmemalloc_reserve = 0;
unsigned long free_pages = 0;
int i;
bool wmark_ok;
if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
return true;
for (i = 0; i <= ZONE_NORMAL; i++) {
zone = &pgdat->node_zones[i];
if (!managed_zone(zone))
continue;
if (!zone_reclaimable_pages(zone))
continue;
pfmemalloc_reserve += min_wmark_pages(zone);
free_pages += zone_page_state(zone, NR_FREE_PAGES);
}
/* If there are no reserves (unexpected config) then do not throttle */
if (!pfmemalloc_reserve)
return true;
wmark_ok = free_pages > pfmemalloc_reserve / 2;
/* kswapd must be awake if processes are being throttled */
if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
if (READ_ONCE(pgdat->kswapd_classzone_idx) > ZONE_NORMAL)
WRITE_ONCE(pgdat->kswapd_classzone_idx, ZONE_NORMAL);
wake_up_interruptible(&pgdat->kswapd_wait);
}
return wmark_ok;
}
/*
* Throttle direct reclaimers if backing storage is backed by the network
* and the PFMEMALLOC reserve for the preferred node is getting dangerously
* depleted. kswapd will continue to make progress and wake the processes
* when the low watermark is reached.
*
* Returns true if a fatal signal was delivered during throttling. If this
* happens, the page allocator should not consider triggering the OOM killer.
*/
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
nodemask_t *nodemask)
{
struct zoneref *z;
struct zone *zone;
pg_data_t *pgdat = NULL;
/*
* Kernel threads should not be throttled as they may be indirectly
* responsible for cleaning pages necessary for reclaim to make forward
* progress. kjournald for example may enter direct reclaim while
* committing a transaction where throttling it could forcing other
* processes to block on log_wait_commit().
*/
if (current->flags & PF_KTHREAD)
goto out;
/*
* If a fatal signal is pending, this process should not throttle.
* It should return quickly so it can exit and free its memory
*/
if (fatal_signal_pending(current))
goto out;
/*
* Check if the pfmemalloc reserves are ok by finding the first node
* with a usable ZONE_NORMAL or lower zone. The expectation is that
* GFP_KERNEL will be required for allocating network buffers when
* swapping over the network so ZONE_HIGHMEM is unusable.
*
* Throttling is based on the first usable node and throttled processes
* wait on a queue until kswapd makes progress and wakes them. There
* is an affinity then between processes waking up and where reclaim
* progress has been made assuming the process wakes on the same node.
* More importantly, processes running on remote nodes will not compete
* for remote pfmemalloc reserves and processes on different nodes
* should make reasonable progress.
*/
for_each_zone_zonelist_nodemask(zone, z, zonelist,
gfp_zone(gfp_mask), nodemask) {
if (zone_idx(zone) > ZONE_NORMAL)
continue;
/* Throttle based on the first usable node */
pgdat = zone->zone_pgdat;
if (allow_direct_reclaim(pgdat))
goto out;
break;
}
/* If no zone was usable by the allocation flags then do not throttle */
if (!pgdat)
goto out;
/* Account for the throttling */
count_vm_event(PGSCAN_DIRECT_THROTTLE);
/*
* If the caller cannot enter the filesystem, it's possible that it
* is due to the caller holding an FS lock or performing a journal
* transaction in the case of a filesystem like ext[3|4]. In this case,
* it is not safe to block on pfmemalloc_wait as kswapd could be
* blocked waiting on the same lock. Instead, throttle for up to a
* second before continuing.
*/
if (!(gfp_mask & __GFP_FS)) {
wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
allow_direct_reclaim(pgdat), HZ);
goto check_pending;
}
/* Throttle until kswapd wakes the process */
wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
allow_direct_reclaim(pgdat));
check_pending:
if (fatal_signal_pending(current))
return true;
out:
return false;
}
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
gfp_t gfp_mask, nodemask_t *nodemask)
{
unsigned long nr_reclaimed;
struct scan_control sc = {
.nr_to_reclaim = SWAP_CLUSTER_MAX,
.gfp_mask = current_gfp_context(gfp_mask),
.reclaim_idx = gfp_zone(gfp_mask),
.order = order,
.nodemask = nodemask,
.priority = DEF_PRIORITY,
.may_writepage = !laptop_mode,
.may_unmap = 1,
.may_swap = 1,
};
/*
* scan_control uses s8 fields for order, priority, and reclaim_idx.
* Confirm they are large enough for max values.
*/
BUILD_BUG_ON(MAX_ORDER > S8_MAX);
BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
/*
* Do not enter reclaim if fatal signal was delivered while throttled.
* 1 is returned so that the page allocator does not OOM kill at this
* point.
*/
if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
return 1;
set_task_reclaim_state(current, &sc.reclaim_state);
trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
set_task_reclaim_state(current, NULL);
return nr_reclaimed;
}
#ifdef CONFIG_MEMCG
/* Only used by soft limit reclaim. Do not reuse for anything else. */
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
gfp_t gfp_mask, bool noswap,
pg_data_t *pgdat,
unsigned long *nr_scanned)
{
struct scan_control sc = {
.nr_to_reclaim = SWAP_CLUSTER_MAX,
.target_mem_cgroup = memcg,
.may_writepage = !laptop_mode,
.may_unmap = 1,
.reclaim_idx = MAX_NR_ZONES - 1,
.may_swap = !noswap,
};
unsigned long lru_pages;
WARN_ON_ONCE(!current->reclaim_state);
sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
sc.gfp_mask);
/*
* NOTE: Although we can get the priority field, using it
* here is not a good idea, since it limits the pages we can scan.
* if we don't reclaim here, the shrink_node from balance_pgdat
* will pick up pages from other mem cgroup's as well. We hack
* the priority and make it zero.
*/
shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
*nr_scanned = sc.nr_scanned;
return sc.nr_reclaimed;
}
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
unsigned long nr_pages,
gfp_t gfp_mask,
bool may_swap)
{
struct zonelist *zonelist;
unsigned long nr_reclaimed;
unsigned long pflags;
int nid;
unsigned int noreclaim_flag;
struct scan_control sc = {
.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
.reclaim_idx = MAX_NR_ZONES - 1,
.target_mem_cgroup = memcg,
.priority = DEF_PRIORITY,
.may_writepage = !laptop_mode,
.may_unmap = 1,
.may_swap = may_swap,
};
set_task_reclaim_state(current, &sc.reclaim_state);
/*
* Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
* take care of from where we get pages. So the node where we start the
* scan does not need to be the current node.
*/
nid = mem_cgroup_select_victim_node(memcg);
zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
psi_memstall_enter(&pflags);
noreclaim_flag = memalloc_noreclaim_save();
nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
memalloc_noreclaim_restore(noreclaim_flag);
psi_memstall_leave(&pflags);
trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
set_task_reclaim_state(current, NULL);
return nr_reclaimed;
}
#endif
static void age_active_anon(struct pglist_data *pgdat,
struct scan_control *sc)
{
struct mem_cgroup *memcg;
if (lru_gen_enabled()) {
lru_gen_age_node(pgdat, sc);
return;
}
if (!total_swap_pages)
return;
memcg = mem_cgroup_iter(NULL, NULL, NULL);
do {
struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
if (inactive_list_is_low(lruvec, false, sc, true))
shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
sc, LRU_ACTIVE_ANON);
memcg = mem_cgroup_iter(NULL, memcg, NULL);
} while (memcg);
}
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
int i;
struct zone *zone;
/*
* Check for watermark boosts top-down as the higher zones
* are more likely to be boosted. Both watermarks and boosts
* should not be checked at the time time as reclaim would
* start prematurely when there is no boosting and a lower
* zone is balanced.
*/
for (i = classzone_idx; i >= 0; i--) {
zone = pgdat->node_zones + i;
if (!managed_zone(zone))
continue;
if (zone->watermark_boost)
return true;
}
return false;
}
/*
* Returns true if there is an eligible zone balanced for the request order
* and classzone_idx
*/
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
{
int i;
unsigned long mark = -1;
struct zone *zone;
/*
* Check watermarks bottom-up as lower zones are more likely to
* meet watermarks.
*/
for (i = 0; i <= classzone_idx; i++) {
zone = pgdat->node_zones + i;
if (!managed_zone(zone))
continue;
mark = high_wmark_pages(zone);
if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
return true;
}
/*
* If a node has no populated zone within classzone_idx, it does not
* need balancing by definition. This can happen if a zone-restricted
* allocation tries to wake a remote kswapd.
*/
if (mark == -1)
return true;
return false;
}
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
clear_bit(PGDAT_CONGESTED, &pgdat->flags);
clear_bit(PGDAT_DIRTY, &pgdat->flags);
clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}
/*
* Prepare kswapd for sleeping. This verifies that there are no processes
* waiting in throttle_direct_reclaim() and that watermarks have been met.
*
* Returns true if kswapd is ready to sleep
*/
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
{
/*
* The throttled processes are normally woken up in balance_pgdat() as
* soon as allow_direct_reclaim() is true. But there is a potential
* race between when kswapd checks the watermarks and a process gets
* throttled. There is also a potential race if processes get
* throttled, kswapd wakes, a large process exits thereby balancing the
* zones, which causes kswapd to exit balance_pgdat() before reaching
* the wake up checks. If kswapd is going to sleep, no process should
* be sleeping on pfmemalloc_wait, so wake them now if necessary. If
* the wake up is premature, processes will wake kswapd and get
* throttled again. The difference from wake ups in balance_pgdat() is
* that here we are under prepare_to_wait().
*/
if (waitqueue_active(&pgdat->pfmemalloc_wait))
wake_up_all(&pgdat->pfmemalloc_wait);
/* Hopeless node, leave it to direct reclaim */
if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
return true;
if (pgdat_balanced(pgdat, order, classzone_idx)) {
clear_pgdat_congested(pgdat);
return true;
}
return false;
}
/*
* kswapd shrinks a node of pages that are at or below the highest usable
* zone that is currently unbalanced.
*
* Returns true if kswapd scanned at least the requested number of pages to
* reclaim or if the lack of progress was due to pages under writeback.
* This is used to determine if the scanning priority needs to be raised.
*/
static bool kswapd_shrink_node(pg_data_t *pgdat,
struct scan_control *sc)
{
struct zone *zone;
int z;
/* Reclaim a number of pages proportional to the number of zones */
sc->nr_to_reclaim = 0;
for (z = 0; z <= sc->reclaim_idx; z++) {
zone = pgdat->node_zones + z;
if (!managed_zone(zone))
continue;
sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
}
/*
* Historically care was taken to put equal pressure on all zones but
* now pressure is applied based on node LRU order.
*/
shrink_node(pgdat, sc);
/*
* Fragmentation may mean that the system cannot be rebalanced for
* high-order allocations. If twice the allocation size has been
* reclaimed then recheck watermarks only at order-0 to prevent
* excessive reclaim. Assume that a process requested a high-order
* can direct reclaim/compact.
*/
if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
sc->order = 0;
return sc->nr_scanned >= sc->nr_to_reclaim;
}
/*
* For kswapd, balance_pgdat() will reclaim pages across a node from zones
* that are eligible for use by the caller until at least one zone is
* balanced.
*
* Returns the order kswapd finished reclaiming at.
*
* kswapd scans the zones in the highmem->normal->dma direction. It skips
* zones which have free_pages > high_wmark_pages(zone), but once a zone is
* found to have free_pages <= high_wmark_pages(zone), any page in that zone
* or lower is eligible for reclaim until at least one usable zone is
* balanced.
*/
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
{
int i;
unsigned long nr_soft_reclaimed;
unsigned long nr_soft_scanned;
unsigned long pflags;
unsigned long nr_boost_reclaim;
unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
bool boosted;
struct zone *zone;
struct scan_control sc = {
.gfp_mask = GFP_KERNEL,
.order = order,
.may_unmap = 1,
};
set_task_reclaim_state(current, &sc.reclaim_state);
psi_memstall_enter(&pflags);
__fs_reclaim_acquire();
count_vm_event(PAGEOUTRUN);
/*
* Account for the reclaim boost. Note that the zone boost is left in
* place so that parallel allocations that are near the watermark will
* stall or direct reclaim until kswapd is finished.
*/
nr_boost_reclaim = 0;
for (i = 0; i <= classzone_idx; i++) {
zone = pgdat->node_zones + i;
if (!managed_zone(zone))
continue;
nr_boost_reclaim += zone->watermark_boost;
zone_boosts[i] = zone->watermark_boost;
}
boosted = nr_boost_reclaim;
restart:
sc.priority = DEF_PRIORITY;
do {
unsigned long nr_reclaimed = sc.nr_reclaimed;
bool raise_priority = true;
bool balanced;
bool ret;
sc.reclaim_idx = classzone_idx;
/*
* If the number of buffer_heads exceeds the maximum allowed
* then consider reclaiming from all zones. This has a dual
* purpose -- on 64-bit systems it is expected that
* buffer_heads are stripped during active rotation. On 32-bit
* systems, highmem pages can pin lowmem memory and shrinking
* buffers can relieve lowmem pressure. Reclaim may still not
* go ahead if all eligible zones for the original allocation
* request are balanced to avoid excessive reclaim from kswapd.
*/
if (buffer_heads_over_limit) {
for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
zone = pgdat->node_zones + i;
if (!managed_zone(zone))
continue;
sc.reclaim_idx = i;
break;
}
}
/*
* If the pgdat is imbalanced then ignore boosting and preserve
* the watermarks for a later time and restart. Note that the
* zone watermarks will be still reset at the end of balancing
* on the grounds that the normal reclaim should be enough to
* re-evaluate if boosting is required when kswapd next wakes.
*/
balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
if (!balanced && nr_boost_reclaim) {
nr_boost_reclaim = 0;
goto restart;
}
/*
* If boosting is not active then only reclaim if there are no
* eligible zones. Note that sc.reclaim_idx is not used as
* buffer_heads_over_limit may have adjusted it.
*/
if (!nr_boost_reclaim && balanced)
goto out;
/* Limit the priority of boosting to avoid reclaim writeback */
if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
raise_priority = false;
/*
* Do not writeback or swap pages for boosted reclaim. The
* intent is to relieve pressure not issue sub-optimal IO
* from reclaim context. If no pages are reclaimed, the
* reclaim will be aborted.
*/
sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
sc.may_swap = !nr_boost_reclaim;
/*
* Do some background aging of the anon list, to give
* pages a chance to be referenced before reclaiming. All
* pages are rotated regardless of classzone as this is
* about consistent aging.
*/
age_active_anon(pgdat, &sc);
/*
* If we're getting trouble reclaiming, start doing writepage
* even in laptop mode.
*/
if (sc.priority < DEF_PRIORITY - 2)
sc.may_writepage = 1;
/* Call soft limit reclaim before calling shrink_node. */
sc.nr_scanned = 0;
nr_soft_scanned = 0;
nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
sc.gfp_mask, &nr_soft_scanned);
sc.nr_reclaimed += nr_soft_reclaimed;
/*
* There should be no need to raise the scanning priority if
* enough pages are already being scanned that that high
* watermark would be met at 100% efficiency.
*/
if (kswapd_shrink_node(pgdat, &sc))
raise_priority = false;
/*
* If the low watermark is met there is no need for processes
* to be throttled on pfmemalloc_wait as they should not be
* able to safely make forward progress. Wake them
*/
if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
allow_direct_reclaim(pgdat))
wake_up_all(&pgdat->pfmemalloc_wait);
/* Check if kswapd should be suspending */
__fs_reclaim_release();
ret = try_to_freeze();
__fs_reclaim_acquire();
if (ret || kthread_should_stop())
break;
/*
* Raise priority if scanning rate is too low or there was no
* progress in reclaiming pages
*/
nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
/*
* If reclaim made no progress for a boost, stop reclaim as
* IO cannot be queued and it could be an infinite loop in
* extreme circumstances.
*/
if (nr_boost_reclaim && !nr_reclaimed)
break;
if (raise_priority || !nr_reclaimed)
sc.priority--;
} while (sc.priority >= 1);
if (!sc.nr_reclaimed)
pgdat->kswapd_failures++;
out:
/* If reclaim was boosted, account for the reclaim done in this pass */
if (boosted) {
unsigned long flags;
for (i = 0; i <= classzone_idx; i++) {
if (!zone_boosts[i])
continue;
/* Increments are under the zone lock */
zone = pgdat->node_zones + i;
spin_lock_irqsave(&zone->lock, flags);
zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
spin_unlock_irqrestore(&zone->lock, flags);
}
/*
* As there is now likely space, wakeup kcompact to defragment
* pageblocks.
*/
wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
}
snapshot_refaults(NULL, pgdat);
__fs_reclaim_release();
psi_memstall_leave(&pflags);
set_task_reclaim_state(current, NULL);
/*
* Return the order kswapd stopped reclaiming at as
* prepare_kswapd_sleep() takes it into account. If another caller
* entered the allocator slow path while kswapd was awake, order will
* remain at the higher level.
*/
return sc.order;
}
/*
* The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
* reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
* a valid index then either kswapd runs for first time or kswapd couldn't sleep
* after previous reclaim attempt (node is still unbalanced). In that case
* return the zone index of the previous kswapd reclaim cycle.
*/
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
enum zone_type prev_classzone_idx)
{
enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
return curr_idx == MAX_NR_ZONES ? prev_classzone_idx : curr_idx;
}
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
unsigned int classzone_idx)
{
long remaining = 0;
DEFINE_WAIT(wait);
if (freezing(current) || kthread_should_stop())
return;
prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
/*
* Try to sleep for a short interval. Note that kcompactd will only be
* woken if it is possible to sleep for a short interval. This is
* deliberate on the assumption that if reclaim cannot keep an
* eligible zone balanced that it's also unlikely that compaction will
* succeed.
*/
if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
/*
* Compaction records what page blocks it recently failed to
* isolate pages from and skips them in the future scanning.
* When kswapd is going to sleep, it is reasonable to assume
* that pages and compaction may succeed so reset the cache.
*/
reset_isolation_suitable(pgdat);
/*
* We have freed the memory, now we should compact it to make
* allocation of the requested order possible.
*/
wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
remaining = schedule_timeout(HZ/10);
/*
* If woken prematurely then reset kswapd_classzone_idx and
* order. The values will either be from a wakeup request or
* the previous request that slept prematurely.
*/
if (remaining) {
WRITE_ONCE(pgdat->kswapd_classzone_idx,
kswapd_classzone_idx(pgdat, classzone_idx));
if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
}
finish_wait(&pgdat->kswapd_wait, &wait);
prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
}
/*
* After a short sleep, check if it was a premature sleep. If not, then
* go fully to sleep until explicitly woken up.
*/
if (!remaining &&
prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
/*
* vmstat counters are not perfectly accurate and the estimated
* value for counters such as NR_FREE_PAGES can deviate from the
* true value by nr_online_cpus * threshold. To avoid the zone
* watermarks being breached while under pressure, we reduce the
* per-cpu vmstat threshold while kswapd is awake and restore
* them before going back to sleep.
*/
set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
if (!kthread_should_stop())
schedule();
set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
} else {
if (remaining)
count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
else
count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
}
finish_wait(&pgdat->kswapd_wait, &wait);
}
/*
* The background pageout daemon, started as a kernel thread
* from the init process.
*
* This basically trickles out pages so that we have _some_
* free memory available even if there is no other activity
* that frees anything up. This is needed for things like routing
* etc, where we otherwise might have all activity going on in
* asynchronous contexts that cannot page things out.
*
* If there are applications that are active memory-allocators
* (most normal use), this basically shouldn't matter.
*/
static int kswapd(void *p)
{
unsigned int alloc_order, reclaim_order;
unsigned int classzone_idx = MAX_NR_ZONES - 1;
pg_data_t *pgdat = (pg_data_t*)p;
struct task_struct *tsk = current;
const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
if (!cpumask_empty(cpumask))
set_cpus_allowed_ptr(tsk, cpumask);
/*
* Tell the memory management that we're a "memory allocator",
* and that if we need more memory we should get access to it
* regardless (see "__alloc_pages()"). "kswapd" should
* never get caught in the normal page freeing logic.
*
* (Kswapd normally doesn't need memory anyway, but sometimes
* you need a small amount of memory in order to be able to
* page out something else, and this flag essentially protects
* us from recursively trying to free more memory as we're
* trying to free the first piece of memory in the first place).
*/
tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
set_freezable();
WRITE_ONCE(pgdat->kswapd_order, 0);
WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
for ( ; ; ) {
bool ret;
alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
kswapd_try_sleep:
kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
classzone_idx);
/* Read the new order and classzone_idx */
alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
WRITE_ONCE(pgdat->kswapd_order, 0);
WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
ret = try_to_freeze();
if (kthread_should_stop())
break;
/*
* We can speed up thawing tasks if we don't call balance_pgdat
* after returning from the refrigerator
*/
if (ret)
continue;
/*
* Reclaim begins at the requested order but if a high-order
* reclaim fails then kswapd falls back to reclaiming for
* order-0. If that happens, kswapd will consider sleeping
* for the order it finished reclaiming at (reclaim_order)
* but kcompactd is woken to compact for the original
* request (alloc_order).
*/
trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
alloc_order);
reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
if (reclaim_order < alloc_order)
goto kswapd_try_sleep;
}
tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
return 0;
}
/*
* A zone is low on free memory or too fragmented for high-order memory. If
* kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
* pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
* has failed or is not needed, still wake up kcompactd if only compaction is
* needed.
*/
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
enum zone_type classzone_idx)
{
pg_data_t *pgdat;
enum zone_type curr_idx;
if (!managed_zone(zone))
return;
if (!cpuset_zone_allowed(zone, gfp_flags))
return;
pgdat = zone->zone_pgdat;
curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
if (curr_idx == MAX_NR_ZONES || curr_idx < classzone_idx)
WRITE_ONCE(pgdat->kswapd_classzone_idx, classzone_idx);
if (READ_ONCE(pgdat->kswapd_order) < order)
WRITE_ONCE(pgdat->kswapd_order, order);
if (!waitqueue_active(&pgdat->kswapd_wait))
return;
/* Hopeless node, leave it to direct reclaim if possible */
if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
(pgdat_balanced(pgdat, order, classzone_idx) &&
!pgdat_watermark_boosted(pgdat, classzone_idx))) {
/*
* There may be plenty of free memory available, but it's too
* fragmented for high-order allocations. Wake up kcompactd
* and rely on compaction_suitable() to determine if it's
* needed. If it fails, it will defer subsequent attempts to
* ratelimit its work.
*/
if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
wakeup_kcompactd(pgdat, order, classzone_idx);
return;
}
trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
gfp_flags);
wake_up_interruptible(&pgdat->kswapd_wait);
}
#ifdef CONFIG_HIBERNATION
/*
* Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
* freed pages.
*
* Rather than trying to age LRUs the aim is to preserve the overall
* LRU order by reclaiming preferentially
* inactive > active > active referenced > active mapped
*/
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
{
struct scan_control sc = {
.nr_to_reclaim = nr_to_reclaim,
.gfp_mask = GFP_HIGHUSER_MOVABLE,
.reclaim_idx = MAX_NR_ZONES - 1,
.priority = DEF_PRIORITY,
.may_writepage = 1,
.may_unmap = 1,
.may_swap = 1,
.hibernation_mode = 1,
};
struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
unsigned long nr_reclaimed;
unsigned int noreclaim_flag;
fs_reclaim_acquire(sc.gfp_mask);
noreclaim_flag = memalloc_noreclaim_save();
set_task_reclaim_state(current, &sc.reclaim_state);
nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
set_task_reclaim_state(current, NULL);
memalloc_noreclaim_restore(noreclaim_flag);
fs_reclaim_release(sc.gfp_mask);
return nr_reclaimed;
}
#endif /* CONFIG_HIBERNATION */
/* It's optimal to keep kswapds on the same CPUs as their memory, but
not required for correctness. So if the last cpu in a node goes
away, we get changed to run anywhere: as the first one comes back,
restore their cpu bindings. */
static int kswapd_cpu_online(unsigned int cpu)
{
int nid;
for_each_node_state(nid, N_MEMORY) {
pg_data_t *pgdat = NODE_DATA(nid);
const struct cpumask *mask;
mask = cpumask_of_node(pgdat->node_id);
if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
/* One of our CPUs online: restore mask */
set_cpus_allowed_ptr(pgdat->kswapd, mask);
}
return 0;
}
/*
* This kswapd start function will be called by init and node-hot-add.
* On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
*/
int kswapd_run(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
int ret = 0;
if (pgdat->kswapd)
return 0;
lru_gen_start_kswapd(nid);
pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
if (IS_ERR(pgdat->kswapd)) {
/* failure at boot is fatal */
BUG_ON(system_state < SYSTEM_RUNNING);
pr_err("Failed to start kswapd on node %d\n", nid);
ret = PTR_ERR(pgdat->kswapd);
pgdat->kswapd = NULL;
}
return ret;
}
/*
* Called by memory hotplug when all memory in a node is offlined. Caller must
* hold mem_hotplug_begin/end().
*/
void kswapd_stop(int nid)
{
struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
if (kswapd) {
kthread_stop(kswapd);
NODE_DATA(nid)->kswapd = NULL;
lru_gen_stop_kswapd(nid);
}
}
static int __init kswapd_init(void)
{
int nid, ret;
swap_setup();
for_each_node_state(nid, N_MEMORY)
kswapd_run(nid);
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
"mm/vmscan:online", kswapd_cpu_online,
NULL);
WARN_ON(ret < 0);
return 0;
}
module_init(kswapd_init)
#ifdef CONFIG_NUMA
/*
* Node reclaim mode
*
* If non-zero call node_reclaim when the number of free pages falls below
* the watermarks.
*/
int node_reclaim_mode __read_mostly;
#define RECLAIM_OFF 0
#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
/*
* Priority for NODE_RECLAIM. This determines the fraction of pages
* of a node considered for each zone_reclaim. 4 scans 1/16th of
* a zone.
*/
#define NODE_RECLAIM_PRIORITY 4
/*
* Percentage of pages in a zone that must be unmapped for node_reclaim to
* occur.
*/
int sysctl_min_unmapped_ratio = 1;
/*
* If the number of slab pages in a zone grows beyond this percentage then
* slab reclaim needs to occur.
*/
int sysctl_min_slab_ratio = 5;
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
{
unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
node_page_state(pgdat, NR_ACTIVE_FILE);
/*
* It's possible for there to be more file mapped pages than
* accounted for by the pages on the file LRU lists because
* tmpfs pages accounted for as ANON can also be FILE_MAPPED
*/
return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}
/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
{
unsigned long nr_pagecache_reclaimable;
unsigned long delta = 0;
/*
* If RECLAIM_UNMAP is set, then all file pages are considered
* potentially reclaimable. Otherwise, we have to worry about
* pages like swapcache and node_unmapped_file_pages() provides
* a better estimate
*/
if (node_reclaim_mode & RECLAIM_UNMAP)
nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
else
nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
/* If we can't clean pages, remove dirty pages from consideration */
if (!(node_reclaim_mode & RECLAIM_WRITE))
delta += node_page_state(pgdat, NR_FILE_DIRTY);
/* Watch for any possible underflows due to delta */
if (unlikely(delta > nr_pagecache_reclaimable))
delta = nr_pagecache_reclaimable;
return nr_pagecache_reclaimable - delta;
}
/*
* Try to free up some pages from this node through reclaim.
*/
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
{
/* Minimum pages needed in order to stay on node */
const unsigned long nr_pages = 1 << order;
struct task_struct *p = current;
unsigned int noreclaim_flag;
struct scan_control sc = {
.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
.gfp_mask = current_gfp_context(gfp_mask),
.order = order,
.priority = NODE_RECLAIM_PRIORITY,
.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
.may_swap = 1,
.reclaim_idx = gfp_zone(gfp_mask),
};
trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
sc.gfp_mask);
cond_resched();
fs_reclaim_acquire(sc.gfp_mask);
/*
* We need to be able to allocate from the reserves for RECLAIM_UNMAP
* and we also need to be able to write out pages for RECLAIM_WRITE
* and RECLAIM_UNMAP.
*/
noreclaim_flag = memalloc_noreclaim_save();
p->flags |= PF_SWAPWRITE;
set_task_reclaim_state(p, &sc.reclaim_state);
if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
/*
* Free memory by calling shrink node with increasing
* priorities until we have enough memory freed.
*/
do {
shrink_node(pgdat, &sc);
} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
}
set_task_reclaim_state(p, NULL);
current->flags &= ~PF_SWAPWRITE;
memalloc_noreclaim_restore(noreclaim_flag);
fs_reclaim_release(sc.gfp_mask);
trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
return sc.nr_reclaimed >= nr_pages;
}
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
{
int ret;
/*
* Node reclaim reclaims unmapped file backed pages and
* slab pages if we are over the defined limits.
*
* A small portion of unmapped file backed pages is needed for
* file I/O otherwise pages read by file I/O will be immediately
* thrown out if the node is overallocated. So we do not reclaim
* if less than a specified percentage of the node is used by
* unmapped file backed pages.
*/
if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
return NODE_RECLAIM_FULL;
/*
* Do not scan if the allocation should not be delayed.
*/
if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
return NODE_RECLAIM_NOSCAN;
/*
* Only run node reclaim on the local node or on nodes that do not
* have associated processors. This will favor the local processor
* over remote processors and spread off node memory allocations
* as wide as possible.
*/
if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
return NODE_RECLAIM_NOSCAN;
if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
return NODE_RECLAIM_NOSCAN;
ret = __node_reclaim(pgdat, gfp_mask, order);
clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
if (!ret)
count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
return ret;
}
#endif
/*
* page_evictable - test whether a page is evictable
* @page: the page to test
*
* Test whether page is evictable--i.e., should be placed on active/inactive
* lists vs unevictable list.
*
* Reasons page might not be evictable:
* (1) page's mapping marked unevictable
* (2) page is part of an mlocked VMA
*
*/
int page_evictable(struct page *page)
{
int ret;
/* Prevent address_space of inode and swap cache from being freed */
rcu_read_lock();
ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
rcu_read_unlock();
return ret;
}
/**
* check_move_unevictable_pages - check pages for evictability and move to
* appropriate zone lru list
* @pvec: pagevec with lru pages to check
*
* Checks pages for evictability, if an evictable page is in the unevictable
* lru list, moves it to the appropriate evictable lru list. This function
* should be only used for lru pages.
*/
void check_move_unevictable_pages(struct pagevec *pvec)
{
struct lruvec *lruvec;
struct pglist_data *pgdat = NULL;
int pgscanned = 0;
int pgrescued = 0;
int i;
for (i = 0; i < pvec->nr; i++) {
struct page *page = pvec->pages[i];
struct pglist_data *pagepgdat = page_pgdat(page);
pgscanned++;
if (pagepgdat != pgdat) {
if (pgdat)
spin_unlock_irq(&pgdat->lru_lock);
pgdat = pagepgdat;
spin_lock_irq(&pgdat->lru_lock);
}
lruvec = mem_cgroup_page_lruvec(page, pgdat);
if (!PageLRU(page) || !PageUnevictable(page))
continue;
if (page_evictable(page)) {
del_page_from_lru_list(page, lruvec);
ClearPageUnevictable(page);
add_page_to_lru_list(page, lruvec);
pgrescued++;
}
}
if (pgdat) {
__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
spin_unlock_irq(&pgdat->lru_lock);
}
}
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);