| // SPDX-License-Identifier: GPL-2.0-or-later |
| /** |
| * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project. |
| * |
| * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. |
| * Copyright (c) 2002 Richard Russon |
| */ |
| |
| #include <linux/buffer_head.h> |
| #include <linux/slab.h> |
| #include <linux/swap.h> |
| #include <linux/bio.h> |
| |
| #include "attrib.h" |
| #include "aops.h" |
| #include "bitmap.h" |
| #include "debug.h" |
| #include "dir.h" |
| #include "lcnalloc.h" |
| #include "malloc.h" |
| #include "mft.h" |
| #include "ntfs.h" |
| |
| #define MAX_BHS (PAGE_SIZE / NTFS_BLOCK_SIZE) |
| |
| /** |
| * map_mft_record_page - map the page in which a specific mft record resides |
| * @ni: ntfs inode whose mft record page to map |
| * |
| * This maps the page in which the mft record of the ntfs inode @ni is situated |
| * and returns a pointer to the mft record within the mapped page. |
| * |
| * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR() |
| * contains the negative error code returned. |
| */ |
| static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni) |
| { |
| loff_t i_size; |
| ntfs_volume *vol = ni->vol; |
| struct inode *mft_vi = vol->mft_ino; |
| struct page *page; |
| unsigned long index, end_index; |
| unsigned ofs; |
| |
| BUG_ON(ni->page); |
| /* |
| * The index into the page cache and the offset within the page cache |
| * page of the wanted mft record. FIXME: We need to check for |
| * overflowing the unsigned long, but I don't think we would ever get |
| * here if the volume was that big... |
| */ |
| index = (u64)ni->mft_no << vol->mft_record_size_bits >> |
| PAGE_SHIFT; |
| ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; |
| |
| i_size = i_size_read(mft_vi); |
| /* The maximum valid index into the page cache for $MFT's data. */ |
| end_index = i_size >> PAGE_SHIFT; |
| |
| /* If the wanted index is out of bounds the mft record doesn't exist. */ |
| if (unlikely(index >= end_index)) { |
| if (index > end_index || (i_size & ~PAGE_MASK) < ofs + |
| vol->mft_record_size) { |
| page = ERR_PTR(-ENOENT); |
| ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, " |
| "which is beyond the end of the mft. " |
| "This is probably a bug in the ntfs " |
| "driver.", ni->mft_no); |
| goto err_out; |
| } |
| } |
| /* Read, map, and pin the page. */ |
| page = ntfs_map_page(mft_vi->i_mapping, index); |
| if (!IS_ERR(page)) { |
| /* Catch multi sector transfer fixup errors. */ |
| if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) + |
| ofs)))) { |
| ni->page = page; |
| ni->page_ofs = ofs; |
| return page_address(page) + ofs; |
| } |
| ntfs_error(vol->sb, "Mft record 0x%lx is corrupt. " |
| "Run chkdsk.", ni->mft_no); |
| ntfs_unmap_page(page); |
| page = ERR_PTR(-EIO); |
| NVolSetErrors(vol); |
| } |
| err_out: |
| ni->page = NULL; |
| ni->page_ofs = 0; |
| return (void*)page; |
| } |
| |
| /** |
| * map_mft_record - map, pin and lock an mft record |
| * @ni: ntfs inode whose MFT record to map |
| * |
| * First, take the mrec_lock mutex. We might now be sleeping, while waiting |
| * for the mutex if it was already locked by someone else. |
| * |
| * The page of the record is mapped using map_mft_record_page() before being |
| * returned to the caller. |
| * |
| * This in turn uses ntfs_map_page() to get the page containing the wanted mft |
| * record (it in turn calls read_cache_page() which reads it in from disk if |
| * necessary, increments the use count on the page so that it cannot disappear |
| * under us and returns a reference to the page cache page). |
| * |
| * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it |
| * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed |
| * and the post-read mst fixups on each mft record in the page have been |
| * performed, the page gets PG_uptodate set and PG_locked cleared (this is done |
| * in our asynchronous I/O completion handler end_buffer_read_mft_async()). |
| * ntfs_map_page() waits for PG_locked to become clear and checks if |
| * PG_uptodate is set and returns an error code if not. This provides |
| * sufficient protection against races when reading/using the page. |
| * |
| * However there is the write mapping to think about. Doing the above described |
| * checking here will be fine, because when initiating the write we will set |
| * PG_locked and clear PG_uptodate making sure nobody is touching the page |
| * contents. Doing the locking this way means that the commit to disk code in |
| * the page cache code paths is automatically sufficiently locked with us as |
| * we will not touch a page that has been locked or is not uptodate. The only |
| * locking problem then is them locking the page while we are accessing it. |
| * |
| * So that code will end up having to own the mrec_lock of all mft |
| * records/inodes present in the page before I/O can proceed. In that case we |
| * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be |
| * accessing anything without owning the mrec_lock mutex. But we do need to |
| * use them because of the read_cache_page() invocation and the code becomes so |
| * much simpler this way that it is well worth it. |
| * |
| * The mft record is now ours and we return a pointer to it. You need to check |
| * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return |
| * the error code. |
| * |
| * NOTE: Caller is responsible for setting the mft record dirty before calling |
| * unmap_mft_record(). This is obviously only necessary if the caller really |
| * modified the mft record... |
| * Q: Do we want to recycle one of the VFS inode state bits instead? |
| * A: No, the inode ones mean we want to change the mft record, not we want to |
| * write it out. |
| */ |
| MFT_RECORD *map_mft_record(ntfs_inode *ni) |
| { |
| MFT_RECORD *m; |
| |
| ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); |
| |
| /* Make sure the ntfs inode doesn't go away. */ |
| atomic_inc(&ni->count); |
| |
| /* Serialize access to this mft record. */ |
| mutex_lock(&ni->mrec_lock); |
| |
| m = map_mft_record_page(ni); |
| if (!IS_ERR(m)) |
| return m; |
| |
| mutex_unlock(&ni->mrec_lock); |
| atomic_dec(&ni->count); |
| ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m)); |
| return m; |
| } |
| |
| /** |
| * unmap_mft_record_page - unmap the page in which a specific mft record resides |
| * @ni: ntfs inode whose mft record page to unmap |
| * |
| * This unmaps the page in which the mft record of the ntfs inode @ni is |
| * situated and returns. This is a NOOP if highmem is not configured. |
| * |
| * The unmap happens via ntfs_unmap_page() which in turn decrements the use |
| * count on the page thus releasing it from the pinned state. |
| * |
| * We do not actually unmap the page from memory of course, as that will be |
| * done by the page cache code itself when memory pressure increases or |
| * whatever. |
| */ |
| static inline void unmap_mft_record_page(ntfs_inode *ni) |
| { |
| BUG_ON(!ni->page); |
| |
| // TODO: If dirty, blah... |
| ntfs_unmap_page(ni->page); |
| ni->page = NULL; |
| ni->page_ofs = 0; |
| return; |
| } |
| |
| /** |
| * unmap_mft_record - release a mapped mft record |
| * @ni: ntfs inode whose MFT record to unmap |
| * |
| * We release the page mapping and the mrec_lock mutex which unmaps the mft |
| * record and releases it for others to get hold of. We also release the ntfs |
| * inode by decrementing the ntfs inode reference count. |
| * |
| * NOTE: If caller has modified the mft record, it is imperative to set the mft |
| * record dirty BEFORE calling unmap_mft_record(). |
| */ |
| void unmap_mft_record(ntfs_inode *ni) |
| { |
| struct page *page = ni->page; |
| |
| BUG_ON(!page); |
| |
| ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); |
| |
| unmap_mft_record_page(ni); |
| mutex_unlock(&ni->mrec_lock); |
| atomic_dec(&ni->count); |
| /* |
| * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to |
| * ntfs_clear_extent_inode() in the extent inode case, and to the |
| * caller in the non-extent, yet pure ntfs inode case, to do the actual |
| * tear down of all structures and freeing of all allocated memory. |
| */ |
| return; |
| } |
| |
| /** |
| * map_extent_mft_record - load an extent inode and attach it to its base |
| * @base_ni: base ntfs inode |
| * @mref: mft reference of the extent inode to load |
| * @ntfs_ino: on successful return, pointer to the ntfs_inode structure |
| * |
| * Load the extent mft record @mref and attach it to its base inode @base_ni. |
| * Return the mapped extent mft record if IS_ERR(result) is false. Otherwise |
| * PTR_ERR(result) gives the negative error code. |
| * |
| * On successful return, @ntfs_ino contains a pointer to the ntfs_inode |
| * structure of the mapped extent inode. |
| */ |
| MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref, |
| ntfs_inode **ntfs_ino) |
| { |
| MFT_RECORD *m; |
| ntfs_inode *ni = NULL; |
| ntfs_inode **extent_nis = NULL; |
| int i; |
| unsigned long mft_no = MREF(mref); |
| u16 seq_no = MSEQNO(mref); |
| bool destroy_ni = false; |
| |
| ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).", |
| mft_no, base_ni->mft_no); |
| /* Make sure the base ntfs inode doesn't go away. */ |
| atomic_inc(&base_ni->count); |
| /* |
| * Check if this extent inode has already been added to the base inode, |
| * in which case just return it. If not found, add it to the base |
| * inode before returning it. |
| */ |
| mutex_lock(&base_ni->extent_lock); |
| if (base_ni->nr_extents > 0) { |
| extent_nis = base_ni->ext.extent_ntfs_inos; |
| for (i = 0; i < base_ni->nr_extents; i++) { |
| if (mft_no != extent_nis[i]->mft_no) |
| continue; |
| ni = extent_nis[i]; |
| /* Make sure the ntfs inode doesn't go away. */ |
| atomic_inc(&ni->count); |
| break; |
| } |
| } |
| if (likely(ni != NULL)) { |
| mutex_unlock(&base_ni->extent_lock); |
| atomic_dec(&base_ni->count); |
| /* We found the record; just have to map and return it. */ |
| m = map_mft_record(ni); |
| /* map_mft_record() has incremented this on success. */ |
| atomic_dec(&ni->count); |
| if (!IS_ERR(m)) { |
| /* Verify the sequence number. */ |
| if (likely(le16_to_cpu(m->sequence_number) == seq_no)) { |
| ntfs_debug("Done 1."); |
| *ntfs_ino = ni; |
| return m; |
| } |
| unmap_mft_record(ni); |
| ntfs_error(base_ni->vol->sb, "Found stale extent mft " |
| "reference! Corrupt filesystem. " |
| "Run chkdsk."); |
| return ERR_PTR(-EIO); |
| } |
| map_err_out: |
| ntfs_error(base_ni->vol->sb, "Failed to map extent " |
| "mft record, error code %ld.", -PTR_ERR(m)); |
| return m; |
| } |
| /* Record wasn't there. Get a new ntfs inode and initialize it. */ |
| ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no); |
| if (unlikely(!ni)) { |
| mutex_unlock(&base_ni->extent_lock); |
| atomic_dec(&base_ni->count); |
| return ERR_PTR(-ENOMEM); |
| } |
| ni->vol = base_ni->vol; |
| ni->seq_no = seq_no; |
| ni->nr_extents = -1; |
| ni->ext.base_ntfs_ino = base_ni; |
| /* Now map the record. */ |
| m = map_mft_record(ni); |
| if (IS_ERR(m)) { |
| mutex_unlock(&base_ni->extent_lock); |
| atomic_dec(&base_ni->count); |
| ntfs_clear_extent_inode(ni); |
| goto map_err_out; |
| } |
| /* Verify the sequence number if it is present. */ |
| if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) { |
| ntfs_error(base_ni->vol->sb, "Found stale extent mft " |
| "reference! Corrupt filesystem. Run chkdsk."); |
| destroy_ni = true; |
| m = ERR_PTR(-EIO); |
| goto unm_err_out; |
| } |
| /* Attach extent inode to base inode, reallocating memory if needed. */ |
| if (!(base_ni->nr_extents & 3)) { |
| ntfs_inode **tmp; |
| int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *); |
| |
| tmp = kmalloc(new_size, GFP_NOFS); |
| if (unlikely(!tmp)) { |
| ntfs_error(base_ni->vol->sb, "Failed to allocate " |
| "internal buffer."); |
| destroy_ni = true; |
| m = ERR_PTR(-ENOMEM); |
| goto unm_err_out; |
| } |
| if (base_ni->nr_extents) { |
| BUG_ON(!base_ni->ext.extent_ntfs_inos); |
| memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size - |
| 4 * sizeof(ntfs_inode *)); |
| kfree(base_ni->ext.extent_ntfs_inos); |
| } |
| base_ni->ext.extent_ntfs_inos = tmp; |
| } |
| base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni; |
| mutex_unlock(&base_ni->extent_lock); |
| atomic_dec(&base_ni->count); |
| ntfs_debug("Done 2."); |
| *ntfs_ino = ni; |
| return m; |
| unm_err_out: |
| unmap_mft_record(ni); |
| mutex_unlock(&base_ni->extent_lock); |
| atomic_dec(&base_ni->count); |
| /* |
| * If the extent inode was not attached to the base inode we need to |
| * release it or we will leak memory. |
| */ |
| if (destroy_ni) |
| ntfs_clear_extent_inode(ni); |
| return m; |
| } |
| |
| #ifdef NTFS_RW |
| |
| /** |
| * __mark_mft_record_dirty - set the mft record and the page containing it dirty |
| * @ni: ntfs inode describing the mapped mft record |
| * |
| * Internal function. Users should call mark_mft_record_dirty() instead. |
| * |
| * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni, |
| * as well as the page containing the mft record, dirty. Also, mark the base |
| * vfs inode dirty. This ensures that any changes to the mft record are |
| * written out to disk. |
| * |
| * NOTE: We only set I_DIRTY_DATASYNC (and not I_DIRTY_PAGES) |
| * on the base vfs inode, because even though file data may have been modified, |
| * it is dirty in the inode meta data rather than the data page cache of the |
| * inode, and thus there are no data pages that need writing out. Therefore, a |
| * full mark_inode_dirty() is overkill. A mark_inode_dirty_sync(), on the |
| * other hand, is not sufficient, because ->write_inode needs to be called even |
| * in case of fdatasync. This needs to happen or the file data would not |
| * necessarily hit the device synchronously, even though the vfs inode has the |
| * O_SYNC flag set. Also, I_DIRTY_DATASYNC simply "feels" better than just |
| * I_DIRTY_SYNC, since the file data has not actually hit the block device yet, |
| * which is not what I_DIRTY_SYNC on its own would suggest. |
| */ |
| void __mark_mft_record_dirty(ntfs_inode *ni) |
| { |
| ntfs_inode *base_ni; |
| |
| ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); |
| BUG_ON(NInoAttr(ni)); |
| mark_ntfs_record_dirty(ni->page, ni->page_ofs); |
| /* Determine the base vfs inode and mark it dirty, too. */ |
| mutex_lock(&ni->extent_lock); |
| if (likely(ni->nr_extents >= 0)) |
| base_ni = ni; |
| else |
| base_ni = ni->ext.base_ntfs_ino; |
| mutex_unlock(&ni->extent_lock); |
| __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_DATASYNC); |
| } |
| |
| static const char *ntfs_please_email = "Please email " |
| "linux-ntfs-dev@lists.sourceforge.net and say that you saw " |
| "this message. Thank you."; |
| |
| /** |
| * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror |
| * @vol: ntfs volume on which the mft record to synchronize resides |
| * @mft_no: mft record number of mft record to synchronize |
| * @m: mapped, mst protected (extent) mft record to synchronize |
| * |
| * Write the mapped, mst protected (extent) mft record @m with mft record |
| * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol, |
| * bypassing the page cache and the $MFTMirr inode itself. |
| * |
| * This function is only for use at umount time when the mft mirror inode has |
| * already been disposed off. We BUG() if we are called while the mft mirror |
| * inode is still attached to the volume. |
| * |
| * On success return 0. On error return -errno. |
| * |
| * NOTE: This function is not implemented yet as I am not convinced it can |
| * actually be triggered considering the sequence of commits we do in super.c:: |
| * ntfs_put_super(). But just in case we provide this place holder as the |
| * alternative would be either to BUG() or to get a NULL pointer dereference |
| * and Oops. |
| */ |
| static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol, |
| const unsigned long mft_no, MFT_RECORD *m) |
| { |
| BUG_ON(vol->mftmirr_ino); |
| ntfs_error(vol->sb, "Umount time mft mirror syncing is not " |
| "implemented yet. %s", ntfs_please_email); |
| return -EOPNOTSUPP; |
| } |
| |
| /** |
| * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror |
| * @vol: ntfs volume on which the mft record to synchronize resides |
| * @mft_no: mft record number of mft record to synchronize |
| * @m: mapped, mst protected (extent) mft record to synchronize |
| * @sync: if true, wait for i/o completion |
| * |
| * Write the mapped, mst protected (extent) mft record @m with mft record |
| * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol. |
| * |
| * On success return 0. On error return -errno and set the volume errors flag |
| * in the ntfs volume @vol. |
| * |
| * NOTE: We always perform synchronous i/o and ignore the @sync parameter. |
| * |
| * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just |
| * schedule i/o via ->writepage or do it via kntfsd or whatever. |
| */ |
| int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no, |
| MFT_RECORD *m, int sync) |
| { |
| struct page *page; |
| unsigned int blocksize = vol->sb->s_blocksize; |
| int max_bhs = vol->mft_record_size / blocksize; |
| struct buffer_head *bhs[MAX_BHS]; |
| struct buffer_head *bh, *head; |
| u8 *kmirr; |
| runlist_element *rl; |
| unsigned int block_start, block_end, m_start, m_end, page_ofs; |
| int i_bhs, nr_bhs, err = 0; |
| unsigned char blocksize_bits = vol->sb->s_blocksize_bits; |
| |
| ntfs_debug("Entering for inode 0x%lx.", mft_no); |
| BUG_ON(!max_bhs); |
| if (WARN_ON(max_bhs > MAX_BHS)) |
| return -EINVAL; |
| if (unlikely(!vol->mftmirr_ino)) { |
| /* This could happen during umount... */ |
| err = ntfs_sync_mft_mirror_umount(vol, mft_no, m); |
| if (likely(!err)) |
| return err; |
| goto err_out; |
| } |
| /* Get the page containing the mirror copy of the mft record @m. */ |
| page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >> |
| (PAGE_SHIFT - vol->mft_record_size_bits)); |
| if (IS_ERR(page)) { |
| ntfs_error(vol->sb, "Failed to map mft mirror page."); |
| err = PTR_ERR(page); |
| goto err_out; |
| } |
| lock_page(page); |
| BUG_ON(!PageUptodate(page)); |
| ClearPageUptodate(page); |
| /* Offset of the mft mirror record inside the page. */ |
| page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; |
| /* The address in the page of the mirror copy of the mft record @m. */ |
| kmirr = page_address(page) + page_ofs; |
| /* Copy the mst protected mft record to the mirror. */ |
| memcpy(kmirr, m, vol->mft_record_size); |
| /* Create uptodate buffers if not present. */ |
| if (unlikely(!page_has_buffers(page))) { |
| struct buffer_head *tail; |
| |
| bh = head = alloc_page_buffers(page, blocksize, true); |
| do { |
| set_buffer_uptodate(bh); |
| tail = bh; |
| bh = bh->b_this_page; |
| } while (bh); |
| tail->b_this_page = head; |
| attach_page_buffers(page, head); |
| } |
| bh = head = page_buffers(page); |
| BUG_ON(!bh); |
| rl = NULL; |
| nr_bhs = 0; |
| block_start = 0; |
| m_start = kmirr - (u8*)page_address(page); |
| m_end = m_start + vol->mft_record_size; |
| do { |
| block_end = block_start + blocksize; |
| /* If the buffer is outside the mft record, skip it. */ |
| if (block_end <= m_start) |
| continue; |
| if (unlikely(block_start >= m_end)) |
| break; |
| /* Need to map the buffer if it is not mapped already. */ |
| if (unlikely(!buffer_mapped(bh))) { |
| VCN vcn; |
| LCN lcn; |
| unsigned int vcn_ofs; |
| |
| bh->b_bdev = vol->sb->s_bdev; |
| /* Obtain the vcn and offset of the current block. */ |
| vcn = ((VCN)mft_no << vol->mft_record_size_bits) + |
| (block_start - m_start); |
| vcn_ofs = vcn & vol->cluster_size_mask; |
| vcn >>= vol->cluster_size_bits; |
| if (!rl) { |
| down_read(&NTFS_I(vol->mftmirr_ino)-> |
| runlist.lock); |
| rl = NTFS_I(vol->mftmirr_ino)->runlist.rl; |
| /* |
| * $MFTMirr always has the whole of its runlist |
| * in memory. |
| */ |
| BUG_ON(!rl); |
| } |
| /* Seek to element containing target vcn. */ |
| while (rl->length && rl[1].vcn <= vcn) |
| rl++; |
| lcn = ntfs_rl_vcn_to_lcn(rl, vcn); |
| /* For $MFTMirr, only lcn >= 0 is a successful remap. */ |
| if (likely(lcn >= 0)) { |
| /* Setup buffer head to correct block. */ |
| bh->b_blocknr = ((lcn << |
| vol->cluster_size_bits) + |
| vcn_ofs) >> blocksize_bits; |
| set_buffer_mapped(bh); |
| } else { |
| bh->b_blocknr = -1; |
| ntfs_error(vol->sb, "Cannot write mft mirror " |
| "record 0x%lx because its " |
| "location on disk could not " |
| "be determined (error code " |
| "%lli).", mft_no, |
| (long long)lcn); |
| err = -EIO; |
| } |
| } |
| BUG_ON(!buffer_uptodate(bh)); |
| BUG_ON(!nr_bhs && (m_start != block_start)); |
| BUG_ON(nr_bhs >= max_bhs); |
| bhs[nr_bhs++] = bh; |
| BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); |
| } while (block_start = block_end, (bh = bh->b_this_page) != head); |
| if (unlikely(rl)) |
| up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock); |
| if (likely(!err)) { |
| /* Lock buffers and start synchronous write i/o on them. */ |
| for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { |
| struct buffer_head *tbh = bhs[i_bhs]; |
| |
| if (!trylock_buffer(tbh)) |
| BUG(); |
| BUG_ON(!buffer_uptodate(tbh)); |
| clear_buffer_dirty(tbh); |
| get_bh(tbh); |
| tbh->b_end_io = end_buffer_write_sync; |
| submit_bh(REQ_OP_WRITE, 0, tbh); |
| } |
| /* Wait on i/o completion of buffers. */ |
| for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { |
| struct buffer_head *tbh = bhs[i_bhs]; |
| |
| wait_on_buffer(tbh); |
| if (unlikely(!buffer_uptodate(tbh))) { |
| err = -EIO; |
| /* |
| * Set the buffer uptodate so the page and |
| * buffer states do not become out of sync. |
| */ |
| set_buffer_uptodate(tbh); |
| } |
| } |
| } else /* if (unlikely(err)) */ { |
| /* Clean the buffers. */ |
| for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) |
| clear_buffer_dirty(bhs[i_bhs]); |
| } |
| /* Current state: all buffers are clean, unlocked, and uptodate. */ |
| /* Remove the mst protection fixups again. */ |
| post_write_mst_fixup((NTFS_RECORD*)kmirr); |
| flush_dcache_page(page); |
| SetPageUptodate(page); |
| unlock_page(page); |
| ntfs_unmap_page(page); |
| if (likely(!err)) { |
| ntfs_debug("Done."); |
| } else { |
| ntfs_error(vol->sb, "I/O error while writing mft mirror " |
| "record 0x%lx!", mft_no); |
| err_out: |
| ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error " |
| "code %i). Volume will be left marked dirty " |
| "on umount. Run ntfsfix on the partition " |
| "after umounting to correct this.", -err); |
| NVolSetErrors(vol); |
| } |
| return err; |
| } |
| |
| /** |
| * write_mft_record_nolock - write out a mapped (extent) mft record |
| * @ni: ntfs inode describing the mapped (extent) mft record |
| * @m: mapped (extent) mft record to write |
| * @sync: if true, wait for i/o completion |
| * |
| * Write the mapped (extent) mft record @m described by the (regular or extent) |
| * ntfs inode @ni to backing store. If the mft record @m has a counterpart in |
| * the mft mirror, that is also updated. |
| * |
| * We only write the mft record if the ntfs inode @ni is dirty and the first |
| * buffer belonging to its mft record is dirty, too. We ignore the dirty state |
| * of subsequent buffers because we could have raced with |
| * fs/ntfs/aops.c::mark_ntfs_record_dirty(). |
| * |
| * On success, clean the mft record and return 0. On error, leave the mft |
| * record dirty and return -errno. |
| * |
| * NOTE: We always perform synchronous i/o and ignore the @sync parameter. |
| * However, if the mft record has a counterpart in the mft mirror and @sync is |
| * true, we write the mft record, wait for i/o completion, and only then write |
| * the mft mirror copy. This ensures that if the system crashes either the mft |
| * or the mft mirror will contain a self-consistent mft record @m. If @sync is |
| * false on the other hand, we start i/o on both and then wait for completion |
| * on them. This provides a speedup but no longer guarantees that you will end |
| * up with a self-consistent mft record in the case of a crash but if you asked |
| * for asynchronous writing you probably do not care about that anyway. |
| * |
| * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just |
| * schedule i/o via ->writepage or do it via kntfsd or whatever. |
| */ |
| int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync) |
| { |
| ntfs_volume *vol = ni->vol; |
| struct page *page = ni->page; |
| unsigned int blocksize = vol->sb->s_blocksize; |
| unsigned char blocksize_bits = vol->sb->s_blocksize_bits; |
| int max_bhs = vol->mft_record_size / blocksize; |
| struct buffer_head *bhs[MAX_BHS]; |
| struct buffer_head *bh, *head; |
| runlist_element *rl; |
| unsigned int block_start, block_end, m_start, m_end; |
| int i_bhs, nr_bhs, err = 0; |
| |
| ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); |
| BUG_ON(NInoAttr(ni)); |
| BUG_ON(!max_bhs); |
| BUG_ON(!PageLocked(page)); |
| if (WARN_ON(max_bhs > MAX_BHS)) { |
| err = -EINVAL; |
| goto err_out; |
| } |
| /* |
| * If the ntfs_inode is clean no need to do anything. If it is dirty, |
| * mark it as clean now so that it can be redirtied later on if needed. |
| * There is no danger of races since the caller is holding the locks |
| * for the mft record @m and the page it is in. |
| */ |
| if (!NInoTestClearDirty(ni)) |
| goto done; |
| bh = head = page_buffers(page); |
| BUG_ON(!bh); |
| rl = NULL; |
| nr_bhs = 0; |
| block_start = 0; |
| m_start = ni->page_ofs; |
| m_end = m_start + vol->mft_record_size; |
| do { |
| block_end = block_start + blocksize; |
| /* If the buffer is outside the mft record, skip it. */ |
| if (block_end <= m_start) |
| continue; |
| if (unlikely(block_start >= m_end)) |
| break; |
| /* |
| * If this block is not the first one in the record, we ignore |
| * the buffer's dirty state because we could have raced with a |
| * parallel mark_ntfs_record_dirty(). |
| */ |
| if (block_start == m_start) { |
| /* This block is the first one in the record. */ |
| if (!buffer_dirty(bh)) { |
| BUG_ON(nr_bhs); |
| /* Clean records are not written out. */ |
| break; |
| } |
| } |
| /* Need to map the buffer if it is not mapped already. */ |
| if (unlikely(!buffer_mapped(bh))) { |
| VCN vcn; |
| LCN lcn; |
| unsigned int vcn_ofs; |
| |
| bh->b_bdev = vol->sb->s_bdev; |
| /* Obtain the vcn and offset of the current block. */ |
| vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) + |
| (block_start - m_start); |
| vcn_ofs = vcn & vol->cluster_size_mask; |
| vcn >>= vol->cluster_size_bits; |
| if (!rl) { |
| down_read(&NTFS_I(vol->mft_ino)->runlist.lock); |
| rl = NTFS_I(vol->mft_ino)->runlist.rl; |
| BUG_ON(!rl); |
| } |
| /* Seek to element containing target vcn. */ |
| while (rl->length && rl[1].vcn <= vcn) |
| rl++; |
| lcn = ntfs_rl_vcn_to_lcn(rl, vcn); |
| /* For $MFT, only lcn >= 0 is a successful remap. */ |
| if (likely(lcn >= 0)) { |
| /* Setup buffer head to correct block. */ |
| bh->b_blocknr = ((lcn << |
| vol->cluster_size_bits) + |
| vcn_ofs) >> blocksize_bits; |
| set_buffer_mapped(bh); |
| } else { |
| bh->b_blocknr = -1; |
| ntfs_error(vol->sb, "Cannot write mft record " |
| "0x%lx because its location " |
| "on disk could not be " |
| "determined (error code %lli).", |
| ni->mft_no, (long long)lcn); |
| err = -EIO; |
| } |
| } |
| BUG_ON(!buffer_uptodate(bh)); |
| BUG_ON(!nr_bhs && (m_start != block_start)); |
| BUG_ON(nr_bhs >= max_bhs); |
| bhs[nr_bhs++] = bh; |
| BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); |
| } while (block_start = block_end, (bh = bh->b_this_page) != head); |
| if (unlikely(rl)) |
| up_read(&NTFS_I(vol->mft_ino)->runlist.lock); |
| if (!nr_bhs) |
| goto done; |
| if (unlikely(err)) |
| goto cleanup_out; |
| /* Apply the mst protection fixups. */ |
| err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size); |
| if (err) { |
| ntfs_error(vol->sb, "Failed to apply mst fixups!"); |
| goto cleanup_out; |
| } |
| flush_dcache_mft_record_page(ni); |
| /* Lock buffers and start synchronous write i/o on them. */ |
| for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { |
| struct buffer_head *tbh = bhs[i_bhs]; |
| |
| if (!trylock_buffer(tbh)) |
| BUG(); |
| BUG_ON(!buffer_uptodate(tbh)); |
| clear_buffer_dirty(tbh); |
| get_bh(tbh); |
| tbh->b_end_io = end_buffer_write_sync; |
| submit_bh(REQ_OP_WRITE, 0, tbh); |
| } |
| /* Synchronize the mft mirror now if not @sync. */ |
| if (!sync && ni->mft_no < vol->mftmirr_size) |
| ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); |
| /* Wait on i/o completion of buffers. */ |
| for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { |
| struct buffer_head *tbh = bhs[i_bhs]; |
| |
| wait_on_buffer(tbh); |
| if (unlikely(!buffer_uptodate(tbh))) { |
| err = -EIO; |
| /* |
| * Set the buffer uptodate so the page and buffer |
| * states do not become out of sync. |
| */ |
| if (PageUptodate(page)) |
| set_buffer_uptodate(tbh); |
| } |
| } |
| /* If @sync, now synchronize the mft mirror. */ |
| if (sync && ni->mft_no < vol->mftmirr_size) |
| ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); |
| /* Remove the mst protection fixups again. */ |
| post_write_mst_fixup((NTFS_RECORD*)m); |
| flush_dcache_mft_record_page(ni); |
| if (unlikely(err)) { |
| /* I/O error during writing. This is really bad! */ |
| ntfs_error(vol->sb, "I/O error while writing mft record " |
| "0x%lx! Marking base inode as bad. You " |
| "should unmount the volume and run chkdsk.", |
| ni->mft_no); |
| goto err_out; |
| } |
| done: |
| ntfs_debug("Done."); |
| return 0; |
| cleanup_out: |
| /* Clean the buffers. */ |
| for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) |
| clear_buffer_dirty(bhs[i_bhs]); |
| err_out: |
| /* |
| * Current state: all buffers are clean, unlocked, and uptodate. |
| * The caller should mark the base inode as bad so that no more i/o |
| * happens. ->clear_inode() will still be invoked so all extent inodes |
| * and other allocated memory will be freed. |
| */ |
| if (err == -ENOMEM) { |
| ntfs_error(vol->sb, "Not enough memory to write mft record. " |
| "Redirtying so the write is retried later."); |
| mark_mft_record_dirty(ni); |
| err = 0; |
| } else |
| NVolSetErrors(vol); |
| return err; |
| } |
| |
| /** |
| * ntfs_may_write_mft_record - check if an mft record may be written out |
| * @vol: [IN] ntfs volume on which the mft record to check resides |
| * @mft_no: [IN] mft record number of the mft record to check |
| * @m: [IN] mapped mft record to check |
| * @locked_ni: [OUT] caller has to unlock this ntfs inode if one is returned |
| * |
| * Check if the mapped (base or extent) mft record @m with mft record number |
| * @mft_no belonging to the ntfs volume @vol may be written out. If necessary |
| * and possible the ntfs inode of the mft record is locked and the base vfs |
| * inode is pinned. The locked ntfs inode is then returned in @locked_ni. The |
| * caller is responsible for unlocking the ntfs inode and unpinning the base |
| * vfs inode. |
| * |
| * Return 'true' if the mft record may be written out and 'false' if not. |
| * |
| * The caller has locked the page and cleared the uptodate flag on it which |
| * means that we can safely write out any dirty mft records that do not have |
| * their inodes in icache as determined by ilookup5() as anyone |
| * opening/creating such an inode would block when attempting to map the mft |
| * record in read_cache_page() until we are finished with the write out. |
| * |
| * Here is a description of the tests we perform: |
| * |
| * If the inode is found in icache we know the mft record must be a base mft |
| * record. If it is dirty, we do not write it and return 'false' as the vfs |
| * inode write paths will result in the access times being updated which would |
| * cause the base mft record to be redirtied and written out again. (We know |
| * the access time update will modify the base mft record because Windows |
| * chkdsk complains if the standard information attribute is not in the base |
| * mft record.) |
| * |
| * If the inode is in icache and not dirty, we attempt to lock the mft record |
| * and if we find the lock was already taken, it is not safe to write the mft |
| * record and we return 'false'. |
| * |
| * If we manage to obtain the lock we have exclusive access to the mft record, |
| * which also allows us safe writeout of the mft record. We then set |
| * @locked_ni to the locked ntfs inode and return 'true'. |
| * |
| * Note we cannot just lock the mft record and sleep while waiting for the lock |
| * because this would deadlock due to lock reversal (normally the mft record is |
| * locked before the page is locked but we already have the page locked here |
| * when we try to lock the mft record). |
| * |
| * If the inode is not in icache we need to perform further checks. |
| * |
| * If the mft record is not a FILE record or it is a base mft record, we can |
| * safely write it and return 'true'. |
| * |
| * We now know the mft record is an extent mft record. We check if the inode |
| * corresponding to its base mft record is in icache and obtain a reference to |
| * it if it is. If it is not, we can safely write it and return 'true'. |
| * |
| * We now have the base inode for the extent mft record. We check if it has an |
| * ntfs inode for the extent mft record attached and if not it is safe to write |
| * the extent mft record and we return 'true'. |
| * |
| * The ntfs inode for the extent mft record is attached to the base inode so we |
| * attempt to lock the extent mft record and if we find the lock was already |
| * taken, it is not safe to write the extent mft record and we return 'false'. |
| * |
| * If we manage to obtain the lock we have exclusive access to the extent mft |
| * record, which also allows us safe writeout of the extent mft record. We |
| * set the ntfs inode of the extent mft record clean and then set @locked_ni to |
| * the now locked ntfs inode and return 'true'. |
| * |
| * Note, the reason for actually writing dirty mft records here and not just |
| * relying on the vfs inode dirty code paths is that we can have mft records |
| * modified without them ever having actual inodes in memory. Also we can have |
| * dirty mft records with clean ntfs inodes in memory. None of the described |
| * cases would result in the dirty mft records being written out if we only |
| * relied on the vfs inode dirty code paths. And these cases can really occur |
| * during allocation of new mft records and in particular when the |
| * initialized_size of the $MFT/$DATA attribute is extended and the new space |
| * is initialized using ntfs_mft_record_format(). The clean inode can then |
| * appear if the mft record is reused for a new inode before it got written |
| * out. |
| */ |
| bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no, |
| const MFT_RECORD *m, ntfs_inode **locked_ni) |
| { |
| struct super_block *sb = vol->sb; |
| struct inode *mft_vi = vol->mft_ino; |
| struct inode *vi; |
| ntfs_inode *ni, *eni, **extent_nis; |
| int i; |
| ntfs_attr na; |
| |
| ntfs_debug("Entering for inode 0x%lx.", mft_no); |
| /* |
| * Normally we do not return a locked inode so set @locked_ni to NULL. |
| */ |
| BUG_ON(!locked_ni); |
| *locked_ni = NULL; |
| /* |
| * Check if the inode corresponding to this mft record is in the VFS |
| * inode cache and obtain a reference to it if it is. |
| */ |
| ntfs_debug("Looking for inode 0x%lx in icache.", mft_no); |
| na.mft_no = mft_no; |
| na.name = NULL; |
| na.name_len = 0; |
| na.type = AT_UNUSED; |
| /* |
| * Optimize inode 0, i.e. $MFT itself, since we have it in memory and |
| * we get here for it rather often. |
| */ |
| if (!mft_no) { |
| /* Balance the below iput(). */ |
| vi = igrab(mft_vi); |
| BUG_ON(vi != mft_vi); |
| } else { |
| /* |
| * Have to use ilookup5_nowait() since ilookup5() waits for the |
| * inode lock which causes ntfs to deadlock when a concurrent |
| * inode write via the inode dirty code paths and the page |
| * dirty code path of the inode dirty code path when writing |
| * $MFT occurs. |
| */ |
| vi = ilookup5_nowait(sb, mft_no, ntfs_test_inode, &na); |
| } |
| if (vi) { |
| ntfs_debug("Base inode 0x%lx is in icache.", mft_no); |
| /* The inode is in icache. */ |
| ni = NTFS_I(vi); |
| /* Take a reference to the ntfs inode. */ |
| atomic_inc(&ni->count); |
| /* If the inode is dirty, do not write this record. */ |
| if (NInoDirty(ni)) { |
| ntfs_debug("Inode 0x%lx is dirty, do not write it.", |
| mft_no); |
| atomic_dec(&ni->count); |
| iput(vi); |
| return false; |
| } |
| ntfs_debug("Inode 0x%lx is not dirty.", mft_no); |
| /* The inode is not dirty, try to take the mft record lock. */ |
| if (unlikely(!mutex_trylock(&ni->mrec_lock))) { |
| ntfs_debug("Mft record 0x%lx is already locked, do " |
| "not write it.", mft_no); |
| atomic_dec(&ni->count); |
| iput(vi); |
| return false; |
| } |
| ntfs_debug("Managed to lock mft record 0x%lx, write it.", |
| mft_no); |
| /* |
| * The write has to occur while we hold the mft record lock so |
| * return the locked ntfs inode. |
| */ |
| *locked_ni = ni; |
| return true; |
| } |
| ntfs_debug("Inode 0x%lx is not in icache.", mft_no); |
| /* The inode is not in icache. */ |
| /* Write the record if it is not a mft record (type "FILE"). */ |
| if (!ntfs_is_mft_record(m->magic)) { |
| ntfs_debug("Mft record 0x%lx is not a FILE record, write it.", |
| mft_no); |
| return true; |
| } |
| /* Write the mft record if it is a base inode. */ |
| if (!m->base_mft_record) { |
| ntfs_debug("Mft record 0x%lx is a base record, write it.", |
| mft_no); |
| return true; |
| } |
| /* |
| * This is an extent mft record. Check if the inode corresponding to |
| * its base mft record is in icache and obtain a reference to it if it |
| * is. |
| */ |
| na.mft_no = MREF_LE(m->base_mft_record); |
| ntfs_debug("Mft record 0x%lx is an extent record. Looking for base " |
| "inode 0x%lx in icache.", mft_no, na.mft_no); |
| if (!na.mft_no) { |
| /* Balance the below iput(). */ |
| vi = igrab(mft_vi); |
| BUG_ON(vi != mft_vi); |
| } else |
| vi = ilookup5_nowait(sb, na.mft_no, ntfs_test_inode, |
| &na); |
| if (!vi) { |
| /* |
| * The base inode is not in icache, write this extent mft |
| * record. |
| */ |
| ntfs_debug("Base inode 0x%lx is not in icache, write the " |
| "extent record.", na.mft_no); |
| return true; |
| } |
| ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no); |
| /* |
| * The base inode is in icache. Check if it has the extent inode |
| * corresponding to this extent mft record attached. |
| */ |
| ni = NTFS_I(vi); |
| mutex_lock(&ni->extent_lock); |
| if (ni->nr_extents <= 0) { |
| /* |
| * The base inode has no attached extent inodes, write this |
| * extent mft record. |
| */ |
| mutex_unlock(&ni->extent_lock); |
| iput(vi); |
| ntfs_debug("Base inode 0x%lx has no attached extent inodes, " |
| "write the extent record.", na.mft_no); |
| return true; |
| } |
| /* Iterate over the attached extent inodes. */ |
| extent_nis = ni->ext.extent_ntfs_inos; |
| for (eni = NULL, i = 0; i < ni->nr_extents; ++i) { |
| if (mft_no == extent_nis[i]->mft_no) { |
| /* |
| * Found the extent inode corresponding to this extent |
| * mft record. |
| */ |
| eni = extent_nis[i]; |
| break; |
| } |
| } |
| /* |
| * If the extent inode was not attached to the base inode, write this |
| * extent mft record. |
| */ |
| if (!eni) { |
| mutex_unlock(&ni->extent_lock); |
| iput(vi); |
| ntfs_debug("Extent inode 0x%lx is not attached to its base " |
| "inode 0x%lx, write the extent record.", |
| mft_no, na.mft_no); |
| return true; |
| } |
| ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.", |
| mft_no, na.mft_no); |
| /* Take a reference to the extent ntfs inode. */ |
| atomic_inc(&eni->count); |
| mutex_unlock(&ni->extent_lock); |
| /* |
| * Found the extent inode coresponding to this extent mft record. |
| * Try to take the mft record lock. |
| */ |
| if (unlikely(!mutex_trylock(&eni->mrec_lock))) { |
| atomic_dec(&eni->count); |
| iput(vi); |
| ntfs_debug("Extent mft record 0x%lx is already locked, do " |
| "not write it.", mft_no); |
| return false; |
| } |
| ntfs_debug("Managed to lock extent mft record 0x%lx, write it.", |
| mft_no); |
| if (NInoTestClearDirty(eni)) |
| ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.", |
| mft_no); |
| /* |
| * The write has to occur while we hold the mft record lock so return |
| * the locked extent ntfs inode. |
| */ |
| *locked_ni = eni; |
| return true; |
| } |
| |
| static const char *es = " Leaving inconsistent metadata. Unmount and run " |
| "chkdsk."; |
| |
| /** |
| * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name |
| * @vol: volume on which to search for a free mft record |
| * @base_ni: open base inode if allocating an extent mft record or NULL |
| * |
| * Search for a free mft record in the mft bitmap attribute on the ntfs volume |
| * @vol. |
| * |
| * If @base_ni is NULL start the search at the default allocator position. |
| * |
| * If @base_ni is not NULL start the search at the mft record after the base |
| * mft record @base_ni. |
| * |
| * Return the free mft record on success and -errno on error. An error code of |
| * -ENOSPC means that there are no free mft records in the currently |
| * initialized mft bitmap. |
| * |
| * Locking: Caller must hold vol->mftbmp_lock for writing. |
| */ |
| static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol, |
| ntfs_inode *base_ni) |
| { |
| s64 pass_end, ll, data_pos, pass_start, ofs, bit; |
| unsigned long flags; |
| struct address_space *mftbmp_mapping; |
| u8 *buf, *byte; |
| struct page *page; |
| unsigned int page_ofs, size; |
| u8 pass, b; |
| |
| ntfs_debug("Searching for free mft record in the currently " |
| "initialized mft bitmap."); |
| mftbmp_mapping = vol->mftbmp_ino->i_mapping; |
| /* |
| * Set the end of the pass making sure we do not overflow the mft |
| * bitmap. |
| */ |
| read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags); |
| pass_end = NTFS_I(vol->mft_ino)->allocated_size >> |
| vol->mft_record_size_bits; |
| read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags); |
| read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); |
| ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3; |
| read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); |
| if (pass_end > ll) |
| pass_end = ll; |
| pass = 1; |
| if (!base_ni) |
| data_pos = vol->mft_data_pos; |
| else |
| data_pos = base_ni->mft_no + 1; |
| if (data_pos < 24) |
| data_pos = 24; |
| if (data_pos >= pass_end) { |
| data_pos = 24; |
| pass = 2; |
| /* This happens on a freshly formatted volume. */ |
| if (data_pos >= pass_end) |
| return -ENOSPC; |
| } |
| pass_start = data_pos; |
| ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, " |
| "pass_end 0x%llx, data_pos 0x%llx.", pass, |
| (long long)pass_start, (long long)pass_end, |
| (long long)data_pos); |
| /* Loop until a free mft record is found. */ |
| for (; pass <= 2;) { |
| /* Cap size to pass_end. */ |
| ofs = data_pos >> 3; |
| page_ofs = ofs & ~PAGE_MASK; |
| size = PAGE_SIZE - page_ofs; |
| ll = ((pass_end + 7) >> 3) - ofs; |
| if (size > ll) |
| size = ll; |
| size <<= 3; |
| /* |
| * If we are still within the active pass, search the next page |
| * for a zero bit. |
| */ |
| if (size) { |
| page = ntfs_map_page(mftbmp_mapping, |
| ofs >> PAGE_SHIFT); |
| if (IS_ERR(page)) { |
| ntfs_error(vol->sb, "Failed to read mft " |
| "bitmap, aborting."); |
| return PTR_ERR(page); |
| } |
| buf = (u8*)page_address(page) + page_ofs; |
| bit = data_pos & 7; |
| data_pos &= ~7ull; |
| ntfs_debug("Before inner for loop: size 0x%x, " |
| "data_pos 0x%llx, bit 0x%llx", size, |
| (long long)data_pos, (long long)bit); |
| for (; bit < size && data_pos + bit < pass_end; |
| bit &= ~7ull, bit += 8) { |
| byte = buf + (bit >> 3); |
| if (*byte == 0xff) |
| continue; |
| b = ffz((unsigned long)*byte); |
| if (b < 8 && b >= (bit & 7)) { |
| ll = data_pos + (bit & ~7ull) + b; |
| if (unlikely(ll > (1ll << 32))) { |
| ntfs_unmap_page(page); |
| return -ENOSPC; |
| } |
| *byte |= 1 << b; |
| flush_dcache_page(page); |
| set_page_dirty(page); |
| ntfs_unmap_page(page); |
| ntfs_debug("Done. (Found and " |
| "allocated mft record " |
| "0x%llx.)", |
| (long long)ll); |
| return ll; |
| } |
| } |
| ntfs_debug("After inner for loop: size 0x%x, " |
| "data_pos 0x%llx, bit 0x%llx", size, |
| (long long)data_pos, (long long)bit); |
| data_pos += size; |
| ntfs_unmap_page(page); |
| /* |
| * If the end of the pass has not been reached yet, |
| * continue searching the mft bitmap for a zero bit. |
| */ |
| if (data_pos < pass_end) |
| continue; |
| } |
| /* Do the next pass. */ |
| if (++pass == 2) { |
| /* |
| * Starting the second pass, in which we scan the first |
| * part of the zone which we omitted earlier. |
| */ |
| pass_end = pass_start; |
| data_pos = pass_start = 24; |
| ntfs_debug("pass %i, pass_start 0x%llx, pass_end " |
| "0x%llx.", pass, (long long)pass_start, |
| (long long)pass_end); |
| if (data_pos >= pass_end) |
| break; |
| } |
| } |
| /* No free mft records in currently initialized mft bitmap. */ |
| ntfs_debug("Done. (No free mft records left in currently initialized " |
| "mft bitmap.)"); |
| return -ENOSPC; |
| } |
| |
| /** |
| * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster |
| * @vol: volume on which to extend the mft bitmap attribute |
| * |
| * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster. |
| * |
| * Note: Only changes allocated_size, i.e. does not touch initialized_size or |
| * data_size. |
| * |
| * Return 0 on success and -errno on error. |
| * |
| * Locking: - Caller must hold vol->mftbmp_lock for writing. |
| * - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for |
| * writing and releases it before returning. |
| * - This function takes vol->lcnbmp_lock for writing and releases it |
| * before returning. |
| */ |
| static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol) |
| { |
| LCN lcn; |
| s64 ll; |
| unsigned long flags; |
| struct page *page; |
| ntfs_inode *mft_ni, *mftbmp_ni; |
| runlist_element *rl, *rl2 = NULL; |
| ntfs_attr_search_ctx *ctx = NULL; |
| MFT_RECORD *mrec; |
| ATTR_RECORD *a = NULL; |
| int ret, mp_size; |
| u32 old_alen = 0; |
| u8 *b, tb; |
| struct { |
| u8 added_cluster:1; |
| u8 added_run:1; |
| u8 mp_rebuilt:1; |
| } status = { 0, 0, 0 }; |
| |
| ntfs_debug("Extending mft bitmap allocation."); |
| mft_ni = NTFS_I(vol->mft_ino); |
| mftbmp_ni = NTFS_I(vol->mftbmp_ino); |
| /* |
| * Determine the last lcn of the mft bitmap. The allocated size of the |
| * mft bitmap cannot be zero so we are ok to do this. |
| */ |
| down_write(&mftbmp_ni->runlist.lock); |
| read_lock_irqsave(&mftbmp_ni->size_lock, flags); |
| ll = mftbmp_ni->allocated_size; |
| read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| rl = ntfs_attr_find_vcn_nolock(mftbmp_ni, |
| (ll - 1) >> vol->cluster_size_bits, NULL); |
| if (IS_ERR(rl) || unlikely(!rl->length || rl->lcn < 0)) { |
| up_write(&mftbmp_ni->runlist.lock); |
| ntfs_error(vol->sb, "Failed to determine last allocated " |
| "cluster of mft bitmap attribute."); |
| if (!IS_ERR(rl)) |
| ret = -EIO; |
| else |
| ret = PTR_ERR(rl); |
| return ret; |
| } |
| lcn = rl->lcn + rl->length; |
| ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.", |
| (long long)lcn); |
| /* |
| * Attempt to get the cluster following the last allocated cluster by |
| * hand as it may be in the MFT zone so the allocator would not give it |
| * to us. |
| */ |
| ll = lcn >> 3; |
| page = ntfs_map_page(vol->lcnbmp_ino->i_mapping, |
| ll >> PAGE_SHIFT); |
| if (IS_ERR(page)) { |
| up_write(&mftbmp_ni->runlist.lock); |
| ntfs_error(vol->sb, "Failed to read from lcn bitmap."); |
| return PTR_ERR(page); |
| } |
| b = (u8*)page_address(page) + (ll & ~PAGE_MASK); |
| tb = 1 << (lcn & 7ull); |
| down_write(&vol->lcnbmp_lock); |
| if (*b != 0xff && !(*b & tb)) { |
| /* Next cluster is free, allocate it. */ |
| *b |= tb; |
| flush_dcache_page(page); |
| set_page_dirty(page); |
| up_write(&vol->lcnbmp_lock); |
| ntfs_unmap_page(page); |
| /* Update the mft bitmap runlist. */ |
| rl->length++; |
| rl[1].vcn++; |
| status.added_cluster = 1; |
| ntfs_debug("Appending one cluster to mft bitmap."); |
| } else { |
| up_write(&vol->lcnbmp_lock); |
| ntfs_unmap_page(page); |
| /* Allocate a cluster from the DATA_ZONE. */ |
| rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE, |
| true); |
| if (IS_ERR(rl2)) { |
| up_write(&mftbmp_ni->runlist.lock); |
| ntfs_error(vol->sb, "Failed to allocate a cluster for " |
| "the mft bitmap."); |
| return PTR_ERR(rl2); |
| } |
| rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2); |
| if (IS_ERR(rl)) { |
| up_write(&mftbmp_ni->runlist.lock); |
| ntfs_error(vol->sb, "Failed to merge runlists for mft " |
| "bitmap."); |
| if (ntfs_cluster_free_from_rl(vol, rl2)) { |
| ntfs_error(vol->sb, "Failed to deallocate " |
| "allocated cluster.%s", es); |
| NVolSetErrors(vol); |
| } |
| ntfs_free(rl2); |
| return PTR_ERR(rl); |
| } |
| mftbmp_ni->runlist.rl = rl; |
| status.added_run = 1; |
| ntfs_debug("Adding one run to mft bitmap."); |
| /* Find the last run in the new runlist. */ |
| for (; rl[1].length; rl++) |
| ; |
| } |
| /* |
| * Update the attribute record as well. Note: @rl is the last |
| * (non-terminator) runlist element of mft bitmap. |
| */ |
| mrec = map_mft_record(mft_ni); |
| if (IS_ERR(mrec)) { |
| ntfs_error(vol->sb, "Failed to map mft record."); |
| ret = PTR_ERR(mrec); |
| goto undo_alloc; |
| } |
| ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); |
| if (unlikely(!ctx)) { |
| ntfs_error(vol->sb, "Failed to get search context."); |
| ret = -ENOMEM; |
| goto undo_alloc; |
| } |
| ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, |
| mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, |
| 0, ctx); |
| if (unlikely(ret)) { |
| ntfs_error(vol->sb, "Failed to find last attribute extent of " |
| "mft bitmap attribute."); |
| if (ret == -ENOENT) |
| ret = -EIO; |
| goto undo_alloc; |
| } |
| a = ctx->attr; |
| ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); |
| /* Search back for the previous last allocated cluster of mft bitmap. */ |
| for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) { |
| if (ll >= rl2->vcn) |
| break; |
| } |
| BUG_ON(ll < rl2->vcn); |
| BUG_ON(ll >= rl2->vcn + rl2->length); |
| /* Get the size for the new mapping pairs array for this extent. */ |
| mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); |
| if (unlikely(mp_size <= 0)) { |
| ntfs_error(vol->sb, "Get size for mapping pairs failed for " |
| "mft bitmap attribute extent."); |
| ret = mp_size; |
| if (!ret) |
| ret = -EIO; |
| goto undo_alloc; |
| } |
| /* Expand the attribute record if necessary. */ |
| old_alen = le32_to_cpu(a->length); |
| ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + |
| le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); |
| if (unlikely(ret)) { |
| if (ret != -ENOSPC) { |
| ntfs_error(vol->sb, "Failed to resize attribute " |
| "record for mft bitmap attribute."); |
| goto undo_alloc; |
| } |
| // TODO: Deal with this by moving this extent to a new mft |
| // record or by starting a new extent in a new mft record or by |
| // moving other attributes out of this mft record. |
| // Note: It will need to be a special mft record and if none of |
| // those are available it gets rather complicated... |
| ntfs_error(vol->sb, "Not enough space in this mft record to " |
| "accommodate extended mft bitmap attribute " |
| "extent. Cannot handle this yet."); |
| ret = -EOPNOTSUPP; |
| goto undo_alloc; |
| } |
| status.mp_rebuilt = 1; |
| /* Generate the mapping pairs array directly into the attr record. */ |
| ret = ntfs_mapping_pairs_build(vol, (u8*)a + |
| le16_to_cpu(a->data.non_resident.mapping_pairs_offset), |
| mp_size, rl2, ll, -1, NULL); |
| if (unlikely(ret)) { |
| ntfs_error(vol->sb, "Failed to build mapping pairs array for " |
| "mft bitmap attribute."); |
| goto undo_alloc; |
| } |
| /* Update the highest_vcn. */ |
| a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); |
| /* |
| * We now have extended the mft bitmap allocated_size by one cluster. |
| * Reflect this in the ntfs_inode structure and the attribute record. |
| */ |
| if (a->data.non_resident.lowest_vcn) { |
| /* |
| * We are not in the first attribute extent, switch to it, but |
| * first ensure the changes will make it to disk later. |
| */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| ntfs_attr_reinit_search_ctx(ctx); |
| ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, |
| mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, |
| 0, ctx); |
| if (unlikely(ret)) { |
| ntfs_error(vol->sb, "Failed to find first attribute " |
| "extent of mft bitmap attribute."); |
| goto restore_undo_alloc; |
| } |
| a = ctx->attr; |
| } |
| write_lock_irqsave(&mftbmp_ni->size_lock, flags); |
| mftbmp_ni->allocated_size += vol->cluster_size; |
| a->data.non_resident.allocated_size = |
| cpu_to_sle64(mftbmp_ni->allocated_size); |
| write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| /* Ensure the changes make it to disk. */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(mft_ni); |
| up_write(&mftbmp_ni->runlist.lock); |
| ntfs_debug("Done."); |
| return 0; |
| restore_undo_alloc: |
| ntfs_attr_reinit_search_ctx(ctx); |
| if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, |
| mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, |
| 0, ctx)) { |
| ntfs_error(vol->sb, "Failed to find last attribute extent of " |
| "mft bitmap attribute.%s", es); |
| write_lock_irqsave(&mftbmp_ni->size_lock, flags); |
| mftbmp_ni->allocated_size += vol->cluster_size; |
| write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(mft_ni); |
| up_write(&mftbmp_ni->runlist.lock); |
| /* |
| * The only thing that is now wrong is ->allocated_size of the |
| * base attribute extent which chkdsk should be able to fix. |
| */ |
| NVolSetErrors(vol); |
| return ret; |
| } |
| a = ctx->attr; |
| a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2); |
| undo_alloc: |
| if (status.added_cluster) { |
| /* Truncate the last run in the runlist by one cluster. */ |
| rl->length--; |
| rl[1].vcn--; |
| } else if (status.added_run) { |
| lcn = rl->lcn; |
| /* Remove the last run from the runlist. */ |
| rl->lcn = rl[1].lcn; |
| rl->length = 0; |
| } |
| /* Deallocate the cluster. */ |
| down_write(&vol->lcnbmp_lock); |
| if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { |
| ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es); |
| NVolSetErrors(vol); |
| } |
| up_write(&vol->lcnbmp_lock); |
| if (status.mp_rebuilt) { |
| if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( |
| a->data.non_resident.mapping_pairs_offset), |
| old_alen - le16_to_cpu( |
| a->data.non_resident.mapping_pairs_offset), |
| rl2, ll, -1, NULL)) { |
| ntfs_error(vol->sb, "Failed to restore mapping pairs " |
| "array.%s", es); |
| NVolSetErrors(vol); |
| } |
| if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { |
| ntfs_error(vol->sb, "Failed to restore attribute " |
| "record.%s", es); |
| NVolSetErrors(vol); |
| } |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| } |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| if (!IS_ERR(mrec)) |
| unmap_mft_record(mft_ni); |
| up_write(&mftbmp_ni->runlist.lock); |
| return ret; |
| } |
| |
| /** |
| * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data |
| * @vol: volume on which to extend the mft bitmap attribute |
| * |
| * Extend the initialized portion of the mft bitmap attribute on the ntfs |
| * volume @vol by 8 bytes. |
| * |
| * Note: Only changes initialized_size and data_size, i.e. requires that |
| * allocated_size is big enough to fit the new initialized_size. |
| * |
| * Return 0 on success and -error on error. |
| * |
| * Locking: Caller must hold vol->mftbmp_lock for writing. |
| */ |
| static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol) |
| { |
| s64 old_data_size, old_initialized_size; |
| unsigned long flags; |
| struct inode *mftbmp_vi; |
| ntfs_inode *mft_ni, *mftbmp_ni; |
| ntfs_attr_search_ctx *ctx; |
| MFT_RECORD *mrec; |
| ATTR_RECORD *a; |
| int ret; |
| |
| ntfs_debug("Extending mft bitmap initiailized (and data) size."); |
| mft_ni = NTFS_I(vol->mft_ino); |
| mftbmp_vi = vol->mftbmp_ino; |
| mftbmp_ni = NTFS_I(mftbmp_vi); |
| /* Get the attribute record. */ |
| mrec = map_mft_record(mft_ni); |
| if (IS_ERR(mrec)) { |
| ntfs_error(vol->sb, "Failed to map mft record."); |
| return PTR_ERR(mrec); |
| } |
| ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); |
| if (unlikely(!ctx)) { |
| ntfs_error(vol->sb, "Failed to get search context."); |
| ret = -ENOMEM; |
| goto unm_err_out; |
| } |
| ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, |
| mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(ret)) { |
| ntfs_error(vol->sb, "Failed to find first attribute extent of " |
| "mft bitmap attribute."); |
| if (ret == -ENOENT) |
| ret = -EIO; |
| goto put_err_out; |
| } |
| a = ctx->attr; |
| write_lock_irqsave(&mftbmp_ni->size_lock, flags); |
| old_data_size = i_size_read(mftbmp_vi); |
| old_initialized_size = mftbmp_ni->initialized_size; |
| /* |
| * We can simply update the initialized_size before filling the space |
| * with zeroes because the caller is holding the mft bitmap lock for |
| * writing which ensures that no one else is trying to access the data. |
| */ |
| mftbmp_ni->initialized_size += 8; |
| a->data.non_resident.initialized_size = |
| cpu_to_sle64(mftbmp_ni->initialized_size); |
| if (mftbmp_ni->initialized_size > old_data_size) { |
| i_size_write(mftbmp_vi, mftbmp_ni->initialized_size); |
| a->data.non_resident.data_size = |
| cpu_to_sle64(mftbmp_ni->initialized_size); |
| } |
| write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| /* Ensure the changes make it to disk. */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(mft_ni); |
| /* Initialize the mft bitmap attribute value with zeroes. */ |
| ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0); |
| if (likely(!ret)) { |
| ntfs_debug("Done. (Wrote eight initialized bytes to mft " |
| "bitmap."); |
| return 0; |
| } |
| ntfs_error(vol->sb, "Failed to write to mft bitmap."); |
| /* Try to recover from the error. */ |
| mrec = map_mft_record(mft_ni); |
| if (IS_ERR(mrec)) { |
| ntfs_error(vol->sb, "Failed to map mft record.%s", es); |
| NVolSetErrors(vol); |
| return ret; |
| } |
| ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); |
| if (unlikely(!ctx)) { |
| ntfs_error(vol->sb, "Failed to get search context.%s", es); |
| NVolSetErrors(vol); |
| goto unm_err_out; |
| } |
| if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, |
| mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) { |
| ntfs_error(vol->sb, "Failed to find first attribute extent of " |
| "mft bitmap attribute.%s", es); |
| NVolSetErrors(vol); |
| put_err_out: |
| ntfs_attr_put_search_ctx(ctx); |
| unm_err_out: |
| unmap_mft_record(mft_ni); |
| goto err_out; |
| } |
| a = ctx->attr; |
| write_lock_irqsave(&mftbmp_ni->size_lock, flags); |
| mftbmp_ni->initialized_size = old_initialized_size; |
| a->data.non_resident.initialized_size = |
| cpu_to_sle64(old_initialized_size); |
| if (i_size_read(mftbmp_vi) != old_data_size) { |
| i_size_write(mftbmp_vi, old_data_size); |
| a->data.non_resident.data_size = cpu_to_sle64(old_data_size); |
| } |
| write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(mft_ni); |
| #ifdef DEBUG |
| read_lock_irqsave(&mftbmp_ni->size_lock, flags); |
| ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, " |
| "data_size 0x%llx, initialized_size 0x%llx.", |
| (long long)mftbmp_ni->allocated_size, |
| (long long)i_size_read(mftbmp_vi), |
| (long long)mftbmp_ni->initialized_size); |
| read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| #endif /* DEBUG */ |
| err_out: |
| return ret; |
| } |
| |
| /** |
| * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute |
| * @vol: volume on which to extend the mft data attribute |
| * |
| * Extend the mft data attribute on the ntfs volume @vol by 16 mft records |
| * worth of clusters or if not enough space for this by one mft record worth |
| * of clusters. |
| * |
| * Note: Only changes allocated_size, i.e. does not touch initialized_size or |
| * data_size. |
| * |
| * Return 0 on success and -errno on error. |
| * |
| * Locking: - Caller must hold vol->mftbmp_lock for writing. |
| * - This function takes NTFS_I(vol->mft_ino)->runlist.lock for |
| * writing and releases it before returning. |
| * - This function calls functions which take vol->lcnbmp_lock for |
| * writing and release it before returning. |
| */ |
| static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol) |
| { |
| LCN lcn; |
| VCN old_last_vcn; |
| s64 min_nr, nr, ll; |
| unsigned long flags; |
| ntfs_inode *mft_ni; |
| runlist_element *rl, *rl2; |
| ntfs_attr_search_ctx *ctx = NULL; |
| MFT_RECORD *mrec; |
| ATTR_RECORD *a = NULL; |
| int ret, mp_size; |
| u32 old_alen = 0; |
| bool mp_rebuilt = false; |
| |
| ntfs_debug("Extending mft data allocation."); |
| mft_ni = NTFS_I(vol->mft_ino); |
| /* |
| * Determine the preferred allocation location, i.e. the last lcn of |
| * the mft data attribute. The allocated size of the mft data |
| * attribute cannot be zero so we are ok to do this. |
| */ |
| down_write(&mft_ni->runlist.lock); |
| read_lock_irqsave(&mft_ni->size_lock, flags); |
| ll = mft_ni->allocated_size; |
| read_unlock_irqrestore(&mft_ni->size_lock, flags); |
| rl = ntfs_attr_find_vcn_nolock(mft_ni, |
| (ll - 1) >> vol->cluster_size_bits, NULL); |
| if (IS_ERR(rl) || unlikely(!rl->length || rl->lcn < 0)) { |
| up_write(&mft_ni->runlist.lock); |
| ntfs_error(vol->sb, "Failed to determine last allocated " |
| "cluster of mft data attribute."); |
| if (!IS_ERR(rl)) |
| ret = -EIO; |
| else |
| ret = PTR_ERR(rl); |
| return ret; |
| } |
| lcn = rl->lcn + rl->length; |
| ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn); |
| /* Minimum allocation is one mft record worth of clusters. */ |
| min_nr = vol->mft_record_size >> vol->cluster_size_bits; |
| if (!min_nr) |
| min_nr = 1; |
| /* Want to allocate 16 mft records worth of clusters. */ |
| nr = vol->mft_record_size << 4 >> vol->cluster_size_bits; |
| if (!nr) |
| nr = min_nr; |
| /* Ensure we do not go above 2^32-1 mft records. */ |
| read_lock_irqsave(&mft_ni->size_lock, flags); |
| ll = mft_ni->allocated_size; |
| read_unlock_irqrestore(&mft_ni->size_lock, flags); |
| if (unlikely((ll + (nr << vol->cluster_size_bits)) >> |
| vol->mft_record_size_bits >= (1ll << 32))) { |
| nr = min_nr; |
| if (unlikely((ll + (nr << vol->cluster_size_bits)) >> |
| vol->mft_record_size_bits >= (1ll << 32))) { |
| ntfs_warning(vol->sb, "Cannot allocate mft record " |
| "because the maximum number of inodes " |
| "(2^32) has already been reached."); |
| up_write(&mft_ni->runlist.lock); |
| return -ENOSPC; |
| } |
| } |
| ntfs_debug("Trying mft data allocation with %s cluster count %lli.", |
| nr > min_nr ? "default" : "minimal", (long long)nr); |
| old_last_vcn = rl[1].vcn; |
| do { |
| rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE, |
| true); |
| if (!IS_ERR(rl2)) |
| break; |
| if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) { |
| ntfs_error(vol->sb, "Failed to allocate the minimal " |
| "number of clusters (%lli) for the " |
| "mft data attribute.", (long long)nr); |
| up_write(&mft_ni->runlist.lock); |
| return PTR_ERR(rl2); |
| } |
| /* |
| * There is not enough space to do the allocation, but there |
| * might be enough space to do a minimal allocation so try that |
| * before failing. |
| */ |
| nr = min_nr; |
| ntfs_debug("Retrying mft data allocation with minimal cluster " |
| "count %lli.", (long long)nr); |
| } while (1); |
| rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2); |
| if (IS_ERR(rl)) { |
| up_write(&mft_ni->runlist.lock); |
| ntfs_error(vol->sb, "Failed to merge runlists for mft data " |
| "attribute."); |
| if (ntfs_cluster_free_from_rl(vol, rl2)) { |
| ntfs_error(vol->sb, "Failed to deallocate clusters " |
| "from the mft data attribute.%s", es); |
| NVolSetErrors(vol); |
| } |
| ntfs_free(rl2); |
| return PTR_ERR(rl); |
| } |
| mft_ni->runlist.rl = rl; |
| ntfs_debug("Allocated %lli clusters.", (long long)nr); |
| /* Find the last run in the new runlist. */ |
| for (; rl[1].length; rl++) |
| ; |
| /* Update the attribute record as well. */ |
| mrec = map_mft_record(mft_ni); |
| if (IS_ERR(mrec)) { |
| ntfs_error(vol->sb, "Failed to map mft record."); |
| ret = PTR_ERR(mrec); |
| goto undo_alloc; |
| } |
| ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); |
| if (unlikely(!ctx)) { |
| ntfs_error(vol->sb, "Failed to get search context."); |
| ret = -ENOMEM; |
| goto undo_alloc; |
| } |
| ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, |
| CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx); |
| if (unlikely(ret)) { |
| ntfs_error(vol->sb, "Failed to find last attribute extent of " |
| "mft data attribute."); |
| if (ret == -ENOENT) |
| ret = -EIO; |
| goto undo_alloc; |
| } |
| a = ctx->attr; |
| ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); |
| /* Search back for the previous last allocated cluster of mft bitmap. */ |
| for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) { |
| if (ll >= rl2->vcn) |
| break; |
| } |
| BUG_ON(ll < rl2->vcn); |
| BUG_ON(ll >= rl2->vcn + rl2->length); |
| /* Get the size for the new mapping pairs array for this extent. */ |
| mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); |
| if (unlikely(mp_size <= 0)) { |
| ntfs_error(vol->sb, "Get size for mapping pairs failed for " |
| "mft data attribute extent."); |
| ret = mp_size; |
| if (!ret) |
| ret = -EIO; |
| goto undo_alloc; |
| } |
| /* Expand the attribute record if necessary. */ |
| old_alen = le32_to_cpu(a->length); |
| ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + |
| le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); |
| if (unlikely(ret)) { |
| if (ret != -ENOSPC) { |
| ntfs_error(vol->sb, "Failed to resize attribute " |
| "record for mft data attribute."); |
| goto undo_alloc; |
| } |
| // TODO: Deal with this by moving this extent to a new mft |
| // record or by starting a new extent in a new mft record or by |
| // moving other attributes out of this mft record. |
| // Note: Use the special reserved mft records and ensure that |
| // this extent is not required to find the mft record in |
| // question. If no free special records left we would need to |
| // move an existing record away, insert ours in its place, and |
| // then place the moved record into the newly allocated space |
| // and we would then need to update all references to this mft |
| // record appropriately. This is rather complicated... |
| ntfs_error(vol->sb, "Not enough space in this mft record to " |
| "accommodate extended mft data attribute " |
| "extent. Cannot handle this yet."); |
| ret = -EOPNOTSUPP; |
| goto undo_alloc; |
| } |
| mp_rebuilt = true; |
| /* Generate the mapping pairs array directly into the attr record. */ |
| ret = ntfs_mapping_pairs_build(vol, (u8*)a + |
| le16_to_cpu(a->data.non_resident.mapping_pairs_offset), |
| mp_size, rl2, ll, -1, NULL); |
| if (unlikely(ret)) { |
| ntfs_error(vol->sb, "Failed to build mapping pairs array of " |
| "mft data attribute."); |
| goto undo_alloc; |
| } |
| /* Update the highest_vcn. */ |
| a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); |
| /* |
| * We now have extended the mft data allocated_size by nr clusters. |
| * Reflect this in the ntfs_inode structure and the attribute record. |
| * @rl is the last (non-terminator) runlist element of mft data |
| * attribute. |
| */ |
| if (a->data.non_resident.lowest_vcn) { |
| /* |
| * We are not in the first attribute extent, switch to it, but |
| * first ensure the changes will make it to disk later. |
| */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| ntfs_attr_reinit_search_ctx(ctx); |
| ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, |
| mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, |
| ctx); |
| if (unlikely(ret)) { |
| ntfs_error(vol->sb, "Failed to find first attribute " |
| "extent of mft data attribute."); |
| goto restore_undo_alloc; |
| } |
| a = ctx->attr; |
| } |
| write_lock_irqsave(&mft_ni->size_lock, flags); |
| mft_ni->allocated_size += nr << vol->cluster_size_bits; |
| a->data.non_resident.allocated_size = |
| cpu_to_sle64(mft_ni->allocated_size); |
| write_unlock_irqrestore(&mft_ni->size_lock, flags); |
| /* Ensure the changes make it to disk. */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(mft_ni); |
| up_write(&mft_ni->runlist.lock); |
| ntfs_debug("Done."); |
| return 0; |
| restore_undo_alloc: |
| ntfs_attr_reinit_search_ctx(ctx); |
| if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, |
| CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) { |
| ntfs_error(vol->sb, "Failed to find last attribute extent of " |
| "mft data attribute.%s", es); |
| write_lock_irqsave(&mft_ni->size_lock, flags); |
| mft_ni->allocated_size += nr << vol->cluster_size_bits; |
| write_unlock_irqrestore(&mft_ni->size_lock, flags); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(mft_ni); |
| up_write(&mft_ni->runlist.lock); |
| /* |
| * The only thing that is now wrong is ->allocated_size of the |
| * base attribute extent which chkdsk should be able to fix. |
| */ |
| NVolSetErrors(vol); |
| return ret; |
| } |
| ctx->attr->data.non_resident.highest_vcn = |
| cpu_to_sle64(old_last_vcn - 1); |
| undo_alloc: |
| if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) { |
| ntfs_error(vol->sb, "Failed to free clusters from mft data " |
| "attribute.%s", es); |
| NVolSetErrors(vol); |
| } |
| a = ctx->attr; |
| if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) { |
| ntfs_error(vol->sb, "Failed to truncate mft data attribute " |
| "runlist.%s", es); |
| NVolSetErrors(vol); |
| } |
| if (mp_rebuilt && !IS_ERR(ctx->mrec)) { |
| if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( |
| a->data.non_resident.mapping_pairs_offset), |
| old_alen - le16_to_cpu( |
| a->data.non_resident.mapping_pairs_offset), |
| rl2, ll, -1, NULL)) { |
| ntfs_error(vol->sb, "Failed to restore mapping pairs " |
| "array.%s", es); |
| NVolSetErrors(vol); |
| } |
| if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { |
| ntfs_error(vol->sb, "Failed to restore attribute " |
| "record.%s", es); |
| NVolSetErrors(vol); |
| } |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| } else if (IS_ERR(ctx->mrec)) { |
| ntfs_error(vol->sb, "Failed to restore attribute search " |
| "context.%s", es); |
| NVolSetErrors(vol); |
| } |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| if (!IS_ERR(mrec)) |
| unmap_mft_record(mft_ni); |
| up_write(&mft_ni->runlist.lock); |
| return ret; |
| } |
| |
| /** |
| * ntfs_mft_record_layout - layout an mft record into a memory buffer |
| * @vol: volume to which the mft record will belong |
| * @mft_no: mft reference specifying the mft record number |
| * @m: destination buffer of size >= @vol->mft_record_size bytes |
| * |
| * Layout an empty, unused mft record with the mft record number @mft_no into |
| * the buffer @m. The volume @vol is needed because the mft record structure |
| * was modified in NTFS 3.1 so we need to know which volume version this mft |
| * record will be used on. |
| * |
| * Return 0 on success and -errno on error. |
| */ |
| static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no, |
| MFT_RECORD *m) |
| { |
| ATTR_RECORD *a; |
| |
| ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); |
| if (mft_no >= (1ll << 32)) { |
| ntfs_error(vol->sb, "Mft record number 0x%llx exceeds " |
| "maximum of 2^32.", (long long)mft_no); |
| return -ERANGE; |
| } |
| /* Start by clearing the whole mft record to gives us a clean slate. */ |
| memset(m, 0, vol->mft_record_size); |
| /* Aligned to 2-byte boundary. */ |
| if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver)) |
| m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1); |
| else { |
| m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1); |
| /* |
| * Set the NTFS 3.1+ specific fields while we know that the |
| * volume version is 3.1+. |
| */ |
| m->reserved = 0; |
| m->mft_record_number = cpu_to_le32((u32)mft_no); |
| } |
| m->magic = magic_FILE; |
| if (vol->mft_record_size >= NTFS_BLOCK_SIZE) |
| m->usa_count = cpu_to_le16(vol->mft_record_size / |
| NTFS_BLOCK_SIZE + 1); |
| else { |
| m->usa_count = cpu_to_le16(1); |
| ntfs_warning(vol->sb, "Sector size is bigger than mft record " |
| "size. Setting usa_count to 1. If chkdsk " |
| "reports this as corruption, please email " |
| "linux-ntfs-dev@lists.sourceforge.net stating " |
| "that you saw this message and that the " |
| "modified filesystem created was corrupt. " |
| "Thank you."); |
| } |
| /* Set the update sequence number to 1. */ |
| *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1); |
| m->lsn = 0; |
| m->sequence_number = cpu_to_le16(1); |
| m->link_count = 0; |
| /* |
| * Place the attributes straight after the update sequence array, |
| * aligned to 8-byte boundary. |
| */ |
| m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) + |
| (le16_to_cpu(m->usa_count) << 1) + 7) & ~7); |
| m->flags = 0; |
| /* |
| * Using attrs_offset plus eight bytes (for the termination attribute). |
| * attrs_offset is already aligned to 8-byte boundary, so no need to |
| * align again. |
| */ |
| m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8); |
| m->bytes_allocated = cpu_to_le32(vol->mft_record_size); |
| m->base_mft_record = 0; |
| m->next_attr_instance = 0; |
| /* Add the termination attribute. */ |
| a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset)); |
| a->type = AT_END; |
| a->length = 0; |
| ntfs_debug("Done."); |
| return 0; |
| } |
| |
| /** |
| * ntfs_mft_record_format - format an mft record on an ntfs volume |
| * @vol: volume on which to format the mft record |
| * @mft_no: mft record number to format |
| * |
| * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused |
| * mft record into the appropriate place of the mft data attribute. This is |
| * used when extending the mft data attribute. |
| * |
| * Return 0 on success and -errno on error. |
| */ |
| static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no) |
| { |
| loff_t i_size; |
| struct inode *mft_vi = vol->mft_ino; |
| struct page *page; |
| MFT_RECORD *m; |
| pgoff_t index, end_index; |
| unsigned int ofs; |
| int err; |
| |
| ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); |
| /* |
| * The index into the page cache and the offset within the page cache |
| * page of the wanted mft record. |
| */ |
| index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT; |
| ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; |
| /* The maximum valid index into the page cache for $MFT's data. */ |
| i_size = i_size_read(mft_vi); |
| end_index = i_size >> PAGE_SHIFT; |
| if (unlikely(index >= end_index)) { |
| if (unlikely(index > end_index || ofs + vol->mft_record_size >= |
| (i_size & ~PAGE_MASK))) { |
| ntfs_error(vol->sb, "Tried to format non-existing mft " |
| "record 0x%llx.", (long long)mft_no); |
| return -ENOENT; |
| } |
| } |
| /* Read, map, and pin the page containing the mft record. */ |
| page = ntfs_map_page(mft_vi->i_mapping, index); |
| if (IS_ERR(page)) { |
| ntfs_error(vol->sb, "Failed to map page containing mft record " |
| "to format 0x%llx.", (long long)mft_no); |
| return PTR_ERR(page); |
| } |
| lock_page(page); |
| BUG_ON(!PageUptodate(page)); |
| ClearPageUptodate(page); |
| m = (MFT_RECORD*)((u8*)page_address(page) + ofs); |
| err = ntfs_mft_record_layout(vol, mft_no, m); |
| if (unlikely(err)) { |
| ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.", |
| (long long)mft_no); |
| SetPageUptodate(page); |
| unlock_page(page); |
| ntfs_unmap_page(page); |
| return err; |
| } |
| flush_dcache_page(page); |
| SetPageUptodate(page); |
| unlock_page(page); |
| /* |
| * Make sure the mft record is written out to disk. We could use |
| * ilookup5() to check if an inode is in icache and so on but this is |
| * unnecessary as ntfs_writepage() will write the dirty record anyway. |
| */ |
| mark_ntfs_record_dirty(page, ofs); |
| ntfs_unmap_page(page); |
| ntfs_debug("Done."); |
| return 0; |
| } |
| |
| /** |
| * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume |
| * @vol: [IN] volume on which to allocate the mft record |
| * @mode: [IN] mode if want a file or directory, i.e. base inode or 0 |
| * @base_ni: [IN] open base inode if allocating an extent mft record or NULL |
| * @mrec: [OUT] on successful return this is the mapped mft record |
| * |
| * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol. |
| * |
| * If @base_ni is NULL make the mft record a base mft record, i.e. a file or |
| * direvctory inode, and allocate it at the default allocator position. In |
| * this case @mode is the file mode as given to us by the caller. We in |
| * particular use @mode to distinguish whether a file or a directory is being |
| * created (S_IFDIR(mode) and S_IFREG(mode), respectively). |
| * |
| * If @base_ni is not NULL make the allocated mft record an extent record, |
| * allocate it starting at the mft record after the base mft record and attach |
| * the allocated and opened ntfs inode to the base inode @base_ni. In this |
| * case @mode must be 0 as it is meaningless for extent inodes. |
| * |
| * You need to check the return value with IS_ERR(). If false, the function |
| * was successful and the return value is the now opened ntfs inode of the |
| * allocated mft record. *@mrec is then set to the allocated, mapped, pinned, |
| * and locked mft record. If IS_ERR() is true, the function failed and the |
| * error code is obtained from PTR_ERR(return value). *@mrec is undefined in |
| * this case. |
| * |
| * Allocation strategy: |
| * |
| * To find a free mft record, we scan the mft bitmap for a zero bit. To |
| * optimize this we start scanning at the place specified by @base_ni or if |
| * @base_ni is NULL we start where we last stopped and we perform wrap around |
| * when we reach the end. Note, we do not try to allocate mft records below |
| * number 24 because numbers 0 to 15 are the defined system files anyway and 16 |
| * to 24 are special in that they are used for storing extension mft records |
| * for the $DATA attribute of $MFT. This is required to avoid the possibility |
| * of creating a runlist with a circular dependency which once written to disk |
| * can never be read in again. Windows will only use records 16 to 24 for |
| * normal files if the volume is completely out of space. We never use them |
| * which means that when the volume is really out of space we cannot create any |
| * more files while Windows can still create up to 8 small files. We can start |
| * doing this at some later time, it does not matter much for now. |
| * |
| * When scanning the mft bitmap, we only search up to the last allocated mft |
| * record. If there are no free records left in the range 24 to number of |
| * allocated mft records, then we extend the $MFT/$DATA attribute in order to |
| * create free mft records. We extend the allocated size of $MFT/$DATA by 16 |
| * records at a time or one cluster, if cluster size is above 16kiB. If there |
| * is not sufficient space to do this, we try to extend by a single mft record |
| * or one cluster, if cluster size is above the mft record size. |
| * |
| * No matter how many mft records we allocate, we initialize only the first |
| * allocated mft record, incrementing mft data size and initialized size |
| * accordingly, open an ntfs_inode for it and return it to the caller, unless |
| * there are less than 24 mft records, in which case we allocate and initialize |
| * mft records until we reach record 24 which we consider as the first free mft |
| * record for use by normal files. |
| * |
| * If during any stage we overflow the initialized data in the mft bitmap, we |
| * extend the initialized size (and data size) by 8 bytes, allocating another |
| * cluster if required. The bitmap data size has to be at least equal to the |
| * number of mft records in the mft, but it can be bigger, in which case the |
| * superflous bits are padded with zeroes. |
| * |
| * Thus, when we return successfully (IS_ERR() is false), we will have: |
| * - initialized / extended the mft bitmap if necessary, |
| * - initialized / extended the mft data if necessary, |
| * - set the bit corresponding to the mft record being allocated in the |
| * mft bitmap, |
| * - opened an ntfs_inode for the allocated mft record, and we will have |
| * - returned the ntfs_inode as well as the allocated mapped, pinned, and |
| * locked mft record. |
| * |
| * On error, the volume will be left in a consistent state and no record will |
| * be allocated. If rolling back a partial operation fails, we may leave some |
| * inconsistent metadata in which case we set NVolErrors() so the volume is |
| * left dirty when unmounted. |
| * |
| * Note, this function cannot make use of most of the normal functions, like |
| * for example for attribute resizing, etc, because when the run list overflows |
| * the base mft record and an attribute list is used, it is very important that |
| * the extension mft records used to store the $DATA attribute of $MFT can be |
| * reached without having to read the information contained inside them, as |
| * this would make it impossible to find them in the first place after the |
| * volume is unmounted. $MFT/$BITMAP probably does not need to follow this |
| * rule because the bitmap is not essential for finding the mft records, but on |
| * the other hand, handling the bitmap in this special way would make life |
| * easier because otherwise there might be circular invocations of functions |
| * when reading the bitmap. |
| */ |
| ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode, |
| ntfs_inode *base_ni, MFT_RECORD **mrec) |
| { |
| s64 ll, bit, old_data_initialized, old_data_size; |
| unsigned long flags; |
| struct inode *vi; |
| struct page *page; |
| ntfs_inode *mft_ni, *mftbmp_ni, *ni; |
| ntfs_attr_search_ctx *ctx; |
| MFT_RECORD *m; |
| ATTR_RECORD *a; |
| pgoff_t index; |
| unsigned int ofs; |
| int err; |
| le16 seq_no, usn; |
| bool record_formatted = false; |
| |
| if (base_ni) { |
| ntfs_debug("Entering (allocating an extent mft record for " |
| "base mft record 0x%llx).", |
| (long long)base_ni->mft_no); |
| /* @mode and @base_ni are mutually exclusive. */ |
| BUG_ON(mode); |
| } else |
| ntfs_debug("Entering (allocating a base mft record)."); |
| if (mode) { |
| /* @mode and @base_ni are mutually exclusive. */ |
| BUG_ON(base_ni); |
| /* We only support creation of normal files and directories. */ |
| if (!S_ISREG(mode) && !S_ISDIR(mode)) |
| return ERR_PTR(-EOPNOTSUPP); |
| } |
| BUG_ON(!mrec); |
| mft_ni = NTFS_I(vol->mft_ino); |
| mftbmp_ni = NTFS_I(vol->mftbmp_ino); |
| down_write(&vol->mftbmp_lock); |
| bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni); |
| if (bit >= 0) { |
| ntfs_debug("Found and allocated free record (#1), bit 0x%llx.", |
| (long long)bit); |
| goto have_alloc_rec; |
| } |
| if (bit != -ENOSPC) { |
| up_write(&vol->mftbmp_lock); |
| return ERR_PTR(bit); |
| } |
| /* |
| * No free mft records left. If the mft bitmap already covers more |
| * than the currently used mft records, the next records are all free, |
| * so we can simply allocate the first unused mft record. |
| * Note: We also have to make sure that the mft bitmap at least covers |
| * the first 24 mft records as they are special and whilst they may not |
| * be in use, we do not allocate from them. |
| */ |
| read_lock_irqsave(&mft_ni->size_lock, flags); |
| ll = mft_ni->initialized_size >> vol->mft_record_size_bits; |
| read_unlock_irqrestore(&mft_ni->size_lock, flags); |
| read_lock_irqsave(&mftbmp_ni->size_lock, flags); |
| old_data_initialized = mftbmp_ni->initialized_size; |
| read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| if (old_data_initialized << 3 > ll && old_data_initialized > 3) { |
| bit = ll; |
| if (bit < 24) |
| bit = 24; |
| if (unlikely(bit >= (1ll << 32))) |
| goto max_err_out; |
| ntfs_debug("Found free record (#2), bit 0x%llx.", |
| (long long)bit); |
| goto found_free_rec; |
| } |
| /* |
| * The mft bitmap needs to be expanded until it covers the first unused |
| * mft record that we can allocate. |
| * Note: The smallest mft record we allocate is mft record 24. |
| */ |
| bit = old_data_initialized << 3; |
| if (unlikely(bit >= (1ll << 32))) |
| goto max_err_out; |
| read_lock_irqsave(&mftbmp_ni->size_lock, flags); |
| old_data_size = mftbmp_ni->allocated_size; |
| ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, " |
| "data_size 0x%llx, initialized_size 0x%llx.", |
| (long long)old_data_size, |
| (long long)i_size_read(vol->mftbmp_ino), |
| (long long)old_data_initialized); |
| read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| if (old_data_initialized + 8 > old_data_size) { |
| /* Need to extend bitmap by one more cluster. */ |
| ntfs_debug("mftbmp: initialized_size + 8 > allocated_size."); |
| err = ntfs_mft_bitmap_extend_allocation_nolock(vol); |
| if (unlikely(err)) { |
| up_write(&vol->mftbmp_lock); |
| goto err_out; |
| } |
| #ifdef DEBUG |
| read_lock_irqsave(&mftbmp_ni->size_lock, flags); |
| ntfs_debug("Status of mftbmp after allocation extension: " |
| "allocated_size 0x%llx, data_size 0x%llx, " |
| "initialized_size 0x%llx.", |
| (long long)mftbmp_ni->allocated_size, |
| (long long)i_size_read(vol->mftbmp_ino), |
| (long long)mftbmp_ni->initialized_size); |
| read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| #endif /* DEBUG */ |
| } |
| /* |
| * We now have sufficient allocated space, extend the initialized_size |
| * as well as the data_size if necessary and fill the new space with |
| * zeroes. |
| */ |
| err = ntfs_mft_bitmap_extend_initialized_nolock(vol); |
| if (unlikely(err)) { |
| up_write(&vol->mftbmp_lock); |
| goto err_out; |
| } |
| #ifdef DEBUG |
| read_lock_irqsave(&mftbmp_ni->size_lock, flags); |
| ntfs_debug("Status of mftbmp after initialized extension: " |
| "allocated_size 0x%llx, data_size 0x%llx, " |
| "initialized_size 0x%llx.", |
| (long long)mftbmp_ni->allocated_size, |
| (long long)i_size_read(vol->mftbmp_ino), |
| (long long)mftbmp_ni->initialized_size); |
| read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
| #endif /* DEBUG */ |
| ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit); |
| found_free_rec: |
| /* @bit is the found free mft record, allocate it in the mft bitmap. */ |
| ntfs_debug("At found_free_rec."); |
| err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit); |
| if (unlikely(err)) { |
| ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap."); |
| up_write(&vol->mftbmp_lock); |
| goto err_out; |
| } |
| ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit); |
| have_alloc_rec: |
| /* |
| * The mft bitmap is now uptodate. Deal with mft data attribute now. |
| * Note, we keep hold of the mft bitmap lock for writing until all |
| * modifications to the mft data attribute are complete, too, as they |
| * will impact decisions for mft bitmap and mft record allocation done |
| * by a parallel allocation and if the lock is not maintained a |
| * parallel allocation could allocate the same mft record as this one. |
| */ |
| ll = (bit + 1) << vol->mft_record_size_bits; |
| read_lock_irqsave(&mft_ni->size_lock, flags); |
| old_data_initialized = mft_ni->initialized_size; |
| read_unlock_irqrestore(&mft_ni->size_lock, flags); |
| if (ll <= old_data_initialized) { |
| ntfs_debug("Allocated mft record already initialized."); |
| goto mft_rec_already_initialized; |
| } |
| ntfs_debug("Initializing allocated mft record."); |
| /* |
| * The mft record is outside the initialized data. Extend the mft data |
| * attribute until it covers the allocated record. The loop is only |
| * actually traversed more than once when a freshly formatted volume is |
| * first written to so it optimizes away nicely in the common case. |
| */ |
| read_lock_irqsave(&mft_ni->size_lock, flags); |
| ntfs_debug("Status of mft data before extension: " |
| "allocated_size 0x%llx, data_size 0x%llx, " |
| "initialized_size 0x%llx.", |
| (long long)mft_ni->allocated_size, |
| (long long)i_size_read(vol->mft_ino), |
| (long long)mft_ni->initialized_size); |
| while (ll > mft_ni->allocated_size) { |
| read_unlock_irqrestore(&mft_ni->size_lock, flags); |
| err = ntfs_mft_data_extend_allocation_nolock(vol); |
| if (unlikely(err)) { |
| ntfs_error(vol->sb, "Failed to extend mft data " |
| "allocation."); |
| goto undo_mftbmp_alloc_nolock; |
| } |
| read_lock_irqsave(&mft_ni->size_lock, flags); |
| ntfs_debug("Status of mft data after allocation extension: " |
| "allocated_size 0x%llx, data_size 0x%llx, " |
| "initialized_size 0x%llx.", |
| (long long)mft_ni->allocated_size, |
| (long long)i_size_read(vol->mft_ino), |
| (long long)mft_ni->initialized_size); |
| } |
| read_unlock_irqrestore(&mft_ni->size_lock, flags); |
| /* |
| * Extend mft data initialized size (and data size of course) to reach |
| * the allocated mft record, formatting the mft records allong the way. |
| * Note: We only modify the ntfs_inode structure as that is all that is |
| * needed by ntfs_mft_record_format(). We will update the attribute |
| * record itself in one fell swoop later on. |
| */ |
| write_lock_irqsave(&mft_ni->size_lock, flags); |
| old_data_initialized = mft_ni->initialized_size; |
| old_data_size = vol->mft_ino->i_size; |
| while (ll > mft_ni->initialized_size) { |
| s64 new_initialized_size, mft_no; |
| |
| new_initialized_size = mft_ni->initialized_size + |
| vol->mft_record_size; |
| mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits; |
| if (new_initialized_size > i_size_read(vol->mft_ino)) |
| i_size_write(vol->mft_ino, new_initialized_size); |
| write_unlock_irqrestore(&mft_ni->size_lock, flags); |
| ntfs_debug("Initializing mft record 0x%llx.", |
| (long long)mft_no); |
| err = ntfs_mft_record_format(vol, mft_no); |
| if (unlikely(err)) { |
| ntfs_error(vol->sb, "Failed to format mft record."); |
| goto undo_data_init; |
| } |
| write_lock_irqsave(&mft_ni->size_lock, flags); |
| mft_ni->initialized_size = new_initialized_size; |
| } |
| write_unlock_irqrestore(&mft_ni->size_lock, flags); |
| record_formatted = true; |
| /* Update the mft data attribute record to reflect the new sizes. */ |
| m = map_mft_record(mft_ni); |
| if (IS_ERR(m)) { |
| ntfs_error(vol->sb, "Failed to map mft record."); |
| err = PTR_ERR(m); |
| goto undo_data_init; |
| } |
| ctx = ntfs_attr_get_search_ctx(mft_ni, m); |
| if (unlikely(!ctx)) { |
| ntfs_error(vol->sb, "Failed to get search context."); |
| err = -ENOMEM; |
| unmap_mft_record(mft_ni); |
| goto undo_data_init; |
| } |
| err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, |
| CASE_SENSITIVE, 0, NULL, 0, ctx); |
| if (unlikely(err)) { |
| ntfs_error(vol->sb, "Failed to find first attribute extent of " |
| "mft data attribute."); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(mft_ni); |
| goto undo_data_init; |
| } |
| a = ctx->attr; |
| read_lock_irqsave(&mft_ni->size_lock, flags); |
| a->data.non_resident.initialized_size = |
| cpu_to_sle64(mft_ni->initialized_size); |
| a->data.non_resident.data_size = |
| cpu_to_sle64(i_size_read(vol->mft_ino)); |
| read_unlock_irqrestore(&mft_ni->size_lock, flags); |
| /* Ensure the changes make it to disk. */ |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(mft_ni); |
| read_lock_irqsave(&mft_ni->size_lock, flags); |
| ntfs_debug("Status of mft data after mft record initialization: " |
| "allocated_size 0x%llx, data_size 0x%llx, " |
| "initialized_size 0x%llx.", |
| (long long)mft_ni->allocated_size, |
| (long long)i_size_read(vol->mft_ino), |
| (long long)mft_ni->initialized_size); |
| BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size); |
| BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino)); |
| read_unlock_irqrestore(&mft_ni->size_lock, flags); |
| mft_rec_already_initialized: |
| /* |
| * We can finally drop the mft bitmap lock as the mft data attribute |
| * has been fully updated. The only disparity left is that the |
| * allocated mft record still needs to be marked as in use to match the |
| * set bit in the mft bitmap but this is actually not a problem since |
| * this mft record is not referenced from anywhere yet and the fact |
| * that it is allocated in the mft bitmap means that no-one will try to |
| * allocate it either. |
| */ |
| up_write(&vol->mftbmp_lock); |
| /* |
| * We now have allocated and initialized the mft record. Calculate the |
| * index of and the offset within the page cache page the record is in. |
| */ |
| index = bit << vol->mft_record_size_bits >> PAGE_SHIFT; |
| ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK; |
| /* Read, map, and pin the page containing the mft record. */ |
| page = ntfs_map_page(vol->mft_ino->i_mapping, index); |
| if (IS_ERR(page)) { |
| ntfs_error(vol->sb, "Failed to map page containing allocated " |
| "mft record 0x%llx.", (long long)bit); |
| err = PTR_ERR(page); |
| goto undo_mftbmp_alloc; |
| } |
| lock_page(page); |
| BUG_ON(!PageUptodate(page)); |
| ClearPageUptodate(page); |
| m = (MFT_RECORD*)((u8*)page_address(page) + ofs); |
| /* If we just formatted the mft record no need to do it again. */ |
| if (!record_formatted) { |
| /* Sanity check that the mft record is really not in use. */ |
| if (ntfs_is_file_record(m->magic) && |
| (m->flags & MFT_RECORD_IN_USE)) { |
| ntfs_error(vol->sb, "Mft record 0x%llx was marked " |
| "free in mft bitmap but is marked " |
| "used itself. Corrupt filesystem. " |
| "Unmount and run chkdsk.", |
| (long long)bit); |
| err = -EIO; |
| SetPageUptodate(page); |
| unlock_page(page); |
| ntfs_unmap_page(page); |
| NVolSetErrors(vol); |
| goto undo_mftbmp_alloc; |
| } |
| /* |
| * We need to (re-)format the mft record, preserving the |
| * sequence number if it is not zero as well as the update |
| * sequence number if it is not zero or -1 (0xffff). This |
| * means we do not need to care whether or not something went |
| * wrong with the previous mft record. |
| */ |
| seq_no = m->sequence_number; |
| usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)); |
| err = ntfs_mft_record_layout(vol, bit, m); |
| if (unlikely(err)) { |
| ntfs_error(vol->sb, "Failed to layout allocated mft " |
| "record 0x%llx.", (long long)bit); |
| SetPageUptodate(page); |
| unlock_page(page); |
| ntfs_unmap_page(page); |
| goto undo_mftbmp_alloc; |
| } |
| if (seq_no) |
| m->sequence_number = seq_no; |
| if (usn && le16_to_cpu(usn) != 0xffff) |
| *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn; |
| } |
| /* Set the mft record itself in use. */ |
| m->flags |= MFT_RECORD_IN_USE; |
| if (S_ISDIR(mode)) |
| m->flags |= MFT_RECORD_IS_DIRECTORY; |
| flush_dcache_page(page); |
| SetPageUptodate(page); |
| if (base_ni) { |
| MFT_RECORD *m_tmp; |
| |
| /* |
| * Setup the base mft record in the extent mft record. This |
| * completes initialization of the allocated extent mft record |
| * and we can simply use it with map_extent_mft_record(). |
| */ |
| m->base_mft_record = MK_LE_MREF(base_ni->mft_no, |
| base_ni->seq_no); |
| /* |
| * Allocate an extent inode structure for the new mft record, |
| * attach it to the base inode @base_ni and map, pin, and lock |
| * its, i.e. the allocated, mft record. |
| */ |
| m_tmp = map_extent_mft_record(base_ni, bit, &ni); |
| if (IS_ERR(m_tmp)) { |
| ntfs_error(vol->sb, "Failed to map allocated extent " |
| "mft record 0x%llx.", (long long)bit); |
| err = PTR_ERR(m_tmp); |
| /* Set the mft record itself not in use. */ |
| m->flags &= cpu_to_le16( |
| ~le16_to_cpu(MFT_RECORD_IN_USE)); |
| flush_dcache_page(page); |
| /* Make sure the mft record is written out to disk. */ |
| mark_ntfs_record_dirty(page, ofs); |
| unlock_page(page); |
| ntfs_unmap_page(page); |
| goto undo_mftbmp_alloc; |
| } |
| BUG_ON(m != m_tmp); |
| /* |
| * Make sure the allocated mft record is written out to disk. |
| * No need to set the inode dirty because the caller is going |
| * to do that anyway after finishing with the new extent mft |
| * record (e.g. at a minimum a new attribute will be added to |
| * the mft record. |
| */ |
| mark_ntfs_record_dirty(page, ofs); |
| unlock_page(page); |
| /* |
| * Need to unmap the page since map_extent_mft_record() mapped |
| * it as well so we have it mapped twice at the moment. |
| */ |
| ntfs_unmap_page(page); |
| } else { |
| /* |
| * Allocate a new VFS inode and set it up. NOTE: @vi->i_nlink |
| * is set to 1 but the mft record->link_count is 0. The caller |
| * needs to bear this in mind. |
| */ |
| vi = new_inode(vol->sb); |
| if (unlikely(!vi)) { |
| err = -ENOMEM; |
| /* Set the mft record itself not in use. */ |
| m->flags &= cpu_to_le16( |
| ~le16_to_cpu(MFT_RECORD_IN_USE)); |
| flush_dcache_page(page); |
| /* Make sure the mft record is written out to disk. */ |
| mark_ntfs_record_dirty(page, ofs); |
| unlock_page(page); |
| ntfs_unmap_page(page); |
| goto undo_mftbmp_alloc; |
| } |
| vi->i_ino = bit; |
| |
| /* The owner and group come from the ntfs volume. */ |
| vi->i_uid = vol->uid; |
| vi->i_gid = vol->gid; |
| |
| /* Initialize the ntfs specific part of @vi. */ |
| ntfs_init_big_inode(vi); |
| ni = NTFS_I(vi); |
| /* |
| * Set the appropriate mode, attribute type, and name. For |
| * directories, also setup the index values to the defaults. |
| */ |
| if (S_ISDIR(mode)) { |
| vi->i_mode = S_IFDIR | S_IRWXUGO; |
| vi->i_mode &= ~vol->dmask; |
| |
| NInoSetMstProtected(ni); |
| ni->type = AT_INDEX_ALLOCATION; |
| ni->name = I30; |
| ni->name_len = 4; |
| |
| ni->itype.index.block_size = 4096; |
| ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1; |
| ni->itype.index.collation_rule = COLLATION_FILE_NAME; |
| if (vol->cluster_size <= ni->itype.index.block_size) { |
| ni->itype.index.vcn_size = vol->cluster_size; |
| ni->itype.index.vcn_size_bits = |
| vol->cluster_size_bits; |
| } else { |
| ni->itype.index.vcn_size = vol->sector_size; |
| ni->itype.index.vcn_size_bits = |
| vol->sector_size_bits; |
| } |
| } else { |
| vi->i_mode = S_IFREG | S_IRWXUGO; |
| vi->i_mode &= ~vol->fmask; |
| |
| ni->type = AT_DATA; |
| ni->name = NULL; |
| ni->name_len = 0; |
| } |
| if (IS_RDONLY(vi)) |
| vi->i_mode &= ~S_IWUGO; |
| |
| /* Set the inode times to the current time. */ |
| vi->i_atime = vi->i_mtime = vi->i_ctime = |
| current_time(vi); |
| /* |
| * Set the file size to 0, the ntfs inode sizes are set to 0 by |
| * the call to ntfs_init_big_inode() below. |
| */ |
| vi->i_size = 0; |
| vi->i_blocks = 0; |
| |
| /* Set the sequence number. */ |
| vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); |
| /* |
| * Manually map, pin, and lock the mft record as we already |
| * have its page mapped and it is very easy to do. |
| */ |
| atomic_inc(&ni->count); |
| mutex_lock(&ni->mrec_lock); |
| ni->page = page; |
| ni->page_ofs = ofs; |
| /* |
| * Make sure the allocated mft record is written out to disk. |
| * NOTE: We do not set the ntfs inode dirty because this would |
| * fail in ntfs_write_inode() because the inode does not have a |
| * standard information attribute yet. Also, there is no need |
| * to set the inode dirty because the caller is going to do |
| * that anyway after finishing with the new mft record (e.g. at |
| * a minimum some new attributes will be added to the mft |
| * record. |
| */ |
| mark_ntfs_record_dirty(page, ofs); |
| unlock_page(page); |
| |
| /* Add the inode to the inode hash for the superblock. */ |
| insert_inode_hash(vi); |
| |
| /* Update the default mft allocation position. */ |
| vol->mft_data_pos = bit + 1; |
| } |
| /* |
| * Return the opened, allocated inode of the allocated mft record as |
| * well as the mapped, pinned, and locked mft record. |
| */ |
| ntfs_debug("Returning opened, allocated %sinode 0x%llx.", |
| base_ni ? "extent " : "", (long long)bit); |
| *mrec = m; |
| return ni; |
| undo_data_init: |
| write_lock_irqsave(&mft_ni->size_lock, flags); |
| mft_ni->initialized_size = old_data_initialized; |
| i_size_write(vol->mft_ino, old_data_size); |
| write_unlock_irqrestore(&mft_ni->size_lock, flags); |
| goto undo_mftbmp_alloc_nolock; |
| undo_mftbmp_alloc: |
| down_write(&vol->mftbmp_lock); |
| undo_mftbmp_alloc_nolock: |
| if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) { |
| ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); |
| NVolSetErrors(vol); |
| } |
| up_write(&vol->mftbmp_lock); |
| err_out: |
| return ERR_PTR(err); |
| max_err_out: |
| ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum " |
| "number of inodes (2^32) has already been reached."); |
| up_write(&vol->mftbmp_lock); |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| /** |
| * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume |
| * @ni: ntfs inode of the mapped extent mft record to free |
| * @m: mapped extent mft record of the ntfs inode @ni |
| * |
| * Free the mapped extent mft record @m of the extent ntfs inode @ni. |
| * |
| * Note that this function unmaps the mft record and closes and destroys @ni |
| * internally and hence you cannot use either @ni nor @m any more after this |
| * function returns success. |
| * |
| * On success return 0 and on error return -errno. @ni and @m are still valid |
| * in this case and have not been freed. |
| * |
| * For some errors an error message is displayed and the success code 0 is |
| * returned and the volume is then left dirty on umount. This makes sense in |
| * case we could not rollback the changes that were already done since the |
| * caller no longer wants to reference this mft record so it does not matter to |
| * the caller if something is wrong with it as long as it is properly detached |
| * from the base inode. |
| */ |
| int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m) |
| { |
| unsigned long mft_no = ni->mft_no; |
| ntfs_volume *vol = ni->vol; |
| ntfs_inode *base_ni; |
| ntfs_inode **extent_nis; |
| int i, err; |
| le16 old_seq_no; |
| u16 seq_no; |
| |
| BUG_ON(NInoAttr(ni)); |
| BUG_ON(ni->nr_extents != -1); |
| |
| mutex_lock(&ni->extent_lock); |
| base_ni = ni->ext.base_ntfs_ino; |
| mutex_unlock(&ni->extent_lock); |
| |
| BUG_ON(base_ni->nr_extents <= 0); |
| |
| ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n", |
| mft_no, base_ni->mft_no); |
| |
| mutex_lock(&base_ni->extent_lock); |
| |
| /* Make sure we are holding the only reference to the extent inode. */ |
| if (atomic_read(&ni->count) > 2) { |
| ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, " |
| "not freeing.", base_ni->mft_no); |
| mutex_unlock(&base_ni->extent_lock); |
| return -EBUSY; |
| } |
| |
| /* Dissociate the ntfs inode from the base inode. */ |
| extent_nis = base_ni->ext.extent_ntfs_inos; |
| err = -ENOENT; |
| for (i = 0; i < base_ni->nr_extents; i++) { |
| if (ni != extent_nis[i]) |
| continue; |
| extent_nis += i; |
| base_ni->nr_extents--; |
| memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) * |
| sizeof(ntfs_inode*)); |
| err = 0; |
| break; |
| } |
| |
| mutex_unlock(&base_ni->extent_lock); |
| |
| if (unlikely(err)) { |
| ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to " |
| "its base inode 0x%lx.", mft_no, |
| base_ni->mft_no); |
| BUG(); |
| } |
| |
| /* |
| * The extent inode is no longer attached to the base inode so no one |
| * can get a reference to it any more. |
| */ |
| |
| /* Mark the mft record as not in use. */ |
| m->flags &= ~MFT_RECORD_IN_USE; |
| |
| /* Increment the sequence number, skipping zero, if it is not zero. */ |
| old_seq_no = m->sequence_number; |
| seq_no = le16_to_cpu(old_seq_no); |
| if (seq_no == 0xffff) |
| seq_no = 1; |
| else if (seq_no) |
| seq_no++; |
| m->sequence_number = cpu_to_le16(seq_no); |
| |
| /* |
| * Set the ntfs inode dirty and write it out. We do not need to worry |
| * about the base inode here since whatever caused the extent mft |
| * record to be freed is guaranteed to do it already. |
| */ |
| NInoSetDirty(ni); |
| err = write_mft_record(ni, m, 0); |
| if (unlikely(err)) { |
| ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not " |
| "freeing.", mft_no); |
| goto rollback; |
| } |
| rollback_error: |
| /* Unmap and throw away the now freed extent inode. */ |
| unmap_extent_mft_record(ni); |
| ntfs_clear_extent_inode(ni); |
| |
| /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */ |
| down_write(&vol->mftbmp_lock); |
| err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no); |
| up_write(&vol->mftbmp_lock); |
| if (unlikely(err)) { |
| /* |
| * The extent inode is gone but we failed to deallocate it in |
| * the mft bitmap. Just emit a warning and leave the volume |
| * dirty on umount. |
| */ |
| ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); |
| NVolSetErrors(vol); |
| } |
| return 0; |
| rollback: |
| /* Rollback what we did... */ |
| mutex_lock(&base_ni->extent_lock); |
| extent_nis = base_ni->ext.extent_ntfs_inos; |
| if (!(base_ni->nr_extents & 3)) { |
| int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*); |
| |
| extent_nis = kmalloc(new_size, GFP_NOFS); |
| if (unlikely(!extent_nis)) { |
| ntfs_error(vol->sb, "Failed to allocate internal " |
| "buffer during rollback.%s", es); |
| mutex_unlock(&base_ni->extent_lock); |
| NVolSetErrors(vol); |
| goto rollback_error; |
| } |
| if (base_ni->nr_extents) { |
| BUG_ON(!base_ni->ext.extent_ntfs_inos); |
| memcpy(extent_nis, base_ni->ext.extent_ntfs_inos, |
| new_size - 4 * sizeof(ntfs_inode*)); |
| kfree(base_ni->ext.extent_ntfs_inos); |
| } |
| base_ni->ext.extent_ntfs_inos = extent_nis; |
| } |
| m->flags |= MFT_RECORD_IN_USE; |
| m->sequence_number = old_seq_no; |
| extent_nis[base_ni->nr_extents++] = ni; |
| mutex_unlock(&base_ni->extent_lock); |
| mark_mft_record_dirty(ni); |
| return err; |
| } |
| #endif /* NTFS_RW */ |