blob: 75d834180f8b7d060b2e89b1914b5417d847c5c7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 Google LLC
*/
#include <crypto/algapi.h>
#include "ufshcd.h"
#include "ufshcd-crypto.h"
static bool ufshcd_cap_idx_valid(struct ufs_hba *hba, unsigned int cap_idx)
{
return cap_idx < hba->crypto_capabilities.num_crypto_cap;
}
static u8 get_data_unit_size_mask(unsigned int data_unit_size)
{
if (data_unit_size < 512 || data_unit_size > 65536 ||
!is_power_of_2(data_unit_size))
return 0;
return data_unit_size / 512;
}
static size_t get_keysize_bytes(enum ufs_crypto_key_size size)
{
switch (size) {
case UFS_CRYPTO_KEY_SIZE_128: return 16;
case UFS_CRYPTO_KEY_SIZE_192: return 24;
case UFS_CRYPTO_KEY_SIZE_256: return 32;
case UFS_CRYPTO_KEY_SIZE_512: return 64;
default: return 0;
}
}
static int ufshcd_crypto_cap_find(void *hba_p,
enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size)
{
struct ufs_hba *hba = hba_p;
enum ufs_crypto_alg ufs_alg;
u8 data_unit_mask;
int cap_idx;
enum ufs_crypto_key_size ufs_key_size;
union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array;
if (!ufshcd_hba_is_crypto_supported(hba))
return -EINVAL;
switch (crypto_mode) {
case BLK_ENCRYPTION_MODE_AES_256_XTS:
ufs_alg = UFS_CRYPTO_ALG_AES_XTS;
ufs_key_size = UFS_CRYPTO_KEY_SIZE_256;
break;
default: return -EINVAL;
}
data_unit_mask = get_data_unit_size_mask(data_unit_size);
for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap;
cap_idx++) {
if (ccap_array[cap_idx].algorithm_id == ufs_alg &&
(ccap_array[cap_idx].sdus_mask & data_unit_mask) &&
ccap_array[cap_idx].key_size == ufs_key_size)
return cap_idx;
}
return -EINVAL;
}
/**
* ufshcd_crypto_cfg_entry_write_key - Write a key into a crypto_cfg_entry
*
* Writes the key with the appropriate format - for AES_XTS,
* the first half of the key is copied as is, the second half is
* copied with an offset halfway into the cfg->crypto_key array.
* For the other supported crypto algs, the key is just copied.
*
* @cfg: The crypto config to write to
* @key: The key to write
* @cap: The crypto capability (which specifies the crypto alg and key size)
*
* Returns 0 on success, or -EINVAL
*/
static int ufshcd_crypto_cfg_entry_write_key(union ufs_crypto_cfg_entry *cfg,
const u8 *key,
union ufs_crypto_cap_entry cap)
{
size_t key_size_bytes = get_keysize_bytes(cap.key_size);
if (key_size_bytes == 0)
return -EINVAL;
switch (cap.algorithm_id) {
case UFS_CRYPTO_ALG_AES_XTS:
key_size_bytes *= 2;
if (key_size_bytes > UFS_CRYPTO_KEY_MAX_SIZE)
return -EINVAL;
memcpy(cfg->crypto_key, key, key_size_bytes/2);
memcpy(cfg->crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2,
key + key_size_bytes/2, key_size_bytes/2);
return 0;
case UFS_CRYPTO_ALG_BITLOCKER_AES_CBC: // fallthrough
case UFS_CRYPTO_ALG_AES_ECB: // fallthrough
case UFS_CRYPTO_ALG_ESSIV_AES_CBC:
memcpy(cfg->crypto_key, key, key_size_bytes);
return 0;
}
return -EINVAL;
}
static void program_key(struct ufs_hba *hba,
const union ufs_crypto_cfg_entry *cfg,
int slot)
{
int i;
u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg);
/* Clear the dword 16 */
ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
/* Ensure that CFGE is cleared before programming the key */
wmb();
for (i = 0; i < 16; i++) {
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]),
slot_offset + i * sizeof(cfg->reg_val[0]));
/* Spec says each dword in key must be written sequentially */
wmb();
}
/* Write dword 17 */
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]),
slot_offset + 17 * sizeof(cfg->reg_val[0]));
/* Dword 16 must be written last */
wmb();
/* Write dword 16 */
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]),
slot_offset + 16 * sizeof(cfg->reg_val[0]));
wmb();
}
static int ufshcd_crypto_keyslot_program(void *hba_p, const u8 *key,
enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size,
unsigned int slot)
{
struct ufs_hba *hba = hba_p;
int err = 0;
u8 data_unit_mask;
union ufs_crypto_cfg_entry cfg;
union ufs_crypto_cfg_entry *cfg_arr = hba->crypto_cfgs;
int cap_idx;
cap_idx = ufshcd_crypto_cap_find(hba_p, crypto_mode,
data_unit_size);
if (!ufshcd_is_crypto_enabled(hba) ||
!ufshcd_keyslot_valid(hba, slot) ||
!ufshcd_cap_idx_valid(hba, cap_idx))
return -EINVAL;
data_unit_mask = get_data_unit_size_mask(data_unit_size);
if (!(data_unit_mask & hba->crypto_cap_array[cap_idx].sdus_mask))
return -EINVAL;
memset(&cfg, 0, sizeof(cfg));
cfg.data_unit_size = data_unit_mask;
cfg.crypto_cap_idx = cap_idx;
cfg.config_enable |= UFS_CRYPTO_CONFIGURATION_ENABLE;
err = ufshcd_crypto_cfg_entry_write_key(&cfg, key,
hba->crypto_cap_array[cap_idx]);
if (err)
return err;
program_key(hba, &cfg, slot);
memcpy(&cfg_arr[slot], &cfg, sizeof(cfg));
memzero_explicit(&cfg, sizeof(cfg));
return 0;
}
static int ufshcd_crypto_keyslot_find(void *hba_p,
const u8 *key,
enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size)
{
struct ufs_hba *hba = hba_p;
int err = 0;
int slot;
u8 data_unit_mask;
union ufs_crypto_cfg_entry cfg;
union ufs_crypto_cfg_entry *cfg_arr = hba->crypto_cfgs;
int cap_idx;
cap_idx = ufshcd_crypto_cap_find(hba_p, crypto_mode,
data_unit_size);
if (!ufshcd_is_crypto_enabled(hba) ||
!ufshcd_cap_idx_valid(hba, cap_idx))
return -EINVAL;
data_unit_mask = get_data_unit_size_mask(data_unit_size);
if (!(data_unit_mask & hba->crypto_cap_array[cap_idx].sdus_mask))
return -EINVAL;
memset(&cfg, 0, sizeof(cfg));
err = ufshcd_crypto_cfg_entry_write_key(&cfg, key,
hba->crypto_cap_array[cap_idx]);
if (err)
return -EINVAL;
for (slot = 0; slot < NUM_KEYSLOTS(hba); slot++) {
if ((cfg_arr[slot].config_enable &
UFS_CRYPTO_CONFIGURATION_ENABLE) &&
data_unit_mask == cfg_arr[slot].data_unit_size &&
cap_idx == cfg_arr[slot].crypto_cap_idx &&
!crypto_memneq(&cfg.crypto_key, cfg_arr[slot].crypto_key,
UFS_CRYPTO_KEY_MAX_SIZE)) {
memzero_explicit(&cfg, sizeof(cfg));
return slot;
}
}
memzero_explicit(&cfg, sizeof(cfg));
return -ENOKEY;
}
static int ufshcd_crypto_keyslot_evict(void *hba_p, const u8 *key,
enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size,
unsigned int slot)
{
struct ufs_hba *hba = hba_p;
int i = 0;
u32 reg_base;
union ufs_crypto_cfg_entry *cfg_arr = hba->crypto_cfgs;
if (!ufshcd_is_crypto_enabled(hba) ||
!ufshcd_keyslot_valid(hba, slot))
return -EINVAL;
memset(&cfg_arr[slot], 0, sizeof(cfg_arr[slot]));
reg_base = hba->crypto_cfg_register + slot * sizeof(cfg_arr[0]);
/*
* Clear the crypto cfg on the device. Clearing CFGE
* might not be sufficient, so just clear the entire cfg.
*/
for (i = 0; i < sizeof(cfg_arr[0]); i += sizeof(__le32))
ufshcd_writel(hba, 0, reg_base + i);
wmb();
return 0;
}
static bool ufshcd_crypto_mode_supported(void *hba_p,
enum blk_crypto_mode_num crypto_mode,
unsigned int data_unit_size)
{
return ufshcd_crypto_cap_find(hba_p, crypto_mode, data_unit_size) >= 0;
}
/* Functions implementing UFSHCI v2.1 specification behaviour */
void ufshcd_crypto_enable_spec(struct ufs_hba *hba)
{
union ufs_crypto_cfg_entry *cfg_arr = hba->crypto_cfgs;
int slot;
if (!ufshcd_hba_is_crypto_supported(hba))
return;
hba->caps |= UFSHCD_CAP_CRYPTO;
/*
* Reset might clear all keys, so reprogram all the keys.
* Also serves to clear keys on driver init.
*/
for (slot = 0; slot < NUM_KEYSLOTS(hba); slot++)
program_key(hba, &cfg_arr[slot], slot);
}
EXPORT_SYMBOL(ufshcd_crypto_enable_spec);
void ufshcd_crypto_disable_spec(struct ufs_hba *hba)
{
hba->caps &= ~UFSHCD_CAP_CRYPTO;
}
EXPORT_SYMBOL(ufshcd_crypto_disable_spec);
static const struct keyslot_mgmt_ll_ops ufshcd_ksm_ops = {
.keyslot_program = ufshcd_crypto_keyslot_program,
.keyslot_evict = ufshcd_crypto_keyslot_evict,
.keyslot_find = ufshcd_crypto_keyslot_find,
.crypto_mode_supported = ufshcd_crypto_mode_supported,
};
/**
* ufshcd_hba_init_crypto - Read crypto capabilities, init crypto fields in hba
* @hba: Per adapter instance
*
* Return: 0 if crypto was initialized or is not supported, else a -errno value.
*/
int ufshcd_hba_init_crypto_spec(struct ufs_hba *hba,
const struct keyslot_mgmt_ll_ops *ksm_ops)
{
int cap_idx = 0;
int err = 0;
/* Default to disabling crypto */
hba->caps &= ~UFSHCD_CAP_CRYPTO;
/* Return 0 if crypto support isn't present */
if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) ||
(hba->quirks & UFSHCD_QUIRK_BROKEN_CRYPTO))
goto out;
/*
* Crypto Capabilities should never be 0, because the
* config_array_ptr > 04h. So we use a 0 value to indicate that
* crypto init failed, and can't be enabled.
*/
hba->crypto_capabilities.reg_val =
cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
hba->crypto_cfg_register =
(u32)hba->crypto_capabilities.config_array_ptr * 0x100;
hba->crypto_cap_array =
devm_kcalloc(hba->dev,
hba->crypto_capabilities.num_crypto_cap,
sizeof(hba->crypto_cap_array[0]),
GFP_KERNEL);
if (!hba->crypto_cap_array) {
err = -ENOMEM;
goto out;
}
hba->crypto_cfgs =
devm_kcalloc(hba->dev,
NUM_KEYSLOTS(hba),
sizeof(hba->crypto_cfgs[0]),
GFP_KERNEL);
if (!hba->crypto_cfgs) {
err = -ENOMEM;
goto out_free_cfg_mem;
}
/*
* Store all the capabilities now so that we don't need to repeatedly
* access the device each time we want to know its capabilities
*/
for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap;
cap_idx++) {
hba->crypto_cap_array[cap_idx].reg_val =
cpu_to_le32(ufshcd_readl(hba,
REG_UFS_CRYPTOCAP +
cap_idx * sizeof(__le32)));
}
hba->ksm = keyslot_manager_create(NUM_KEYSLOTS(hba), ksm_ops, hba);
if (!hba->ksm) {
err = -ENOMEM;
goto out_free_crypto_cfgs;
}
return 0;
out_free_crypto_cfgs:
devm_kfree(hba->dev, hba->crypto_cfgs);
out_free_cfg_mem:
devm_kfree(hba->dev, hba->crypto_cap_array);
out:
/* Indicate that init failed by setting crypto_capabilities to 0 */
hba->crypto_capabilities.reg_val = 0;
return err;
}
EXPORT_SYMBOL(ufshcd_hba_init_crypto_spec);
void ufshcd_crypto_setup_rq_keyslot_manager_spec(struct ufs_hba *hba,
struct request_queue *q)
{
if (!ufshcd_hba_is_crypto_supported(hba) || !q)
return;
q->ksm = hba->ksm;
}
EXPORT_SYMBOL(ufshcd_crypto_setup_rq_keyslot_manager_spec);
void ufshcd_crypto_destroy_rq_keyslot_manager_spec(struct ufs_hba *hba,
struct request_queue *q)
{
keyslot_manager_destroy(hba->ksm);
}
EXPORT_SYMBOL(ufshcd_crypto_destroy_rq_keyslot_manager_spec);
int ufshcd_prepare_lrbp_crypto_spec(struct ufs_hba *hba,
struct scsi_cmnd *cmd,
struct ufshcd_lrb *lrbp)
{
int key_slot;
if (!cmd->request->bio ||
!bio_crypt_should_process(cmd->request->bio, cmd->request->q)) {
lrbp->crypto_enable = false;
return 0;
}
if (WARN_ON(!ufshcd_is_crypto_enabled(hba))) {
/*
* Upper layer asked us to do inline encryption
* but that isn't enabled, so we fail this request.
*/
return -EINVAL;
}
key_slot = bio_crypt_get_keyslot(cmd->request->bio);
if (!ufshcd_keyslot_valid(hba, key_slot))
return -EINVAL;
lrbp->crypto_enable = true;
lrbp->crypto_key_slot = key_slot;
lrbp->data_unit_num = bio_crypt_data_unit_num(cmd->request->bio);
return 0;
}
EXPORT_SYMBOL(ufshcd_prepare_lrbp_crypto_spec);
/* Crypto Variant Ops Support */
void ufshcd_crypto_enable(struct ufs_hba *hba)
{
if (hba->crypto_vops && hba->crypto_vops->enable)
return hba->crypto_vops->enable(hba);
return ufshcd_crypto_enable_spec(hba);
}
void ufshcd_crypto_disable(struct ufs_hba *hba)
{
if (hba->crypto_vops && hba->crypto_vops->disable)
return hba->crypto_vops->disable(hba);
return ufshcd_crypto_disable_spec(hba);
}
int ufshcd_hba_init_crypto(struct ufs_hba *hba)
{
if (hba->crypto_vops && hba->crypto_vops->hba_init_crypto)
return hba->crypto_vops->hba_init_crypto(hba,
&ufshcd_ksm_ops);
return ufshcd_hba_init_crypto_spec(hba, &ufshcd_ksm_ops);
}
void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba,
struct request_queue *q)
{
if (hba->crypto_vops && hba->crypto_vops->setup_rq_keyslot_manager)
return hba->crypto_vops->setup_rq_keyslot_manager(hba, q);
return ufshcd_crypto_setup_rq_keyslot_manager_spec(hba, q);
}
void ufshcd_crypto_destroy_rq_keyslot_manager(struct ufs_hba *hba,
struct request_queue *q)
{
if (hba->crypto_vops && hba->crypto_vops->destroy_rq_keyslot_manager)
return hba->crypto_vops->destroy_rq_keyslot_manager(hba, q);
return ufshcd_crypto_destroy_rq_keyslot_manager_spec(hba, q);
}
int ufshcd_prepare_lrbp_crypto(struct ufs_hba *hba,
struct scsi_cmnd *cmd,
struct ufshcd_lrb *lrbp)
{
if (hba->crypto_vops && hba->crypto_vops->prepare_lrbp_crypto)
return hba->crypto_vops->prepare_lrbp_crypto(hba, cmd, lrbp);
return ufshcd_prepare_lrbp_crypto_spec(hba, cmd, lrbp);
}
int ufshcd_complete_lrbp_crypto(struct ufs_hba *hba,
struct scsi_cmnd *cmd,
struct ufshcd_lrb *lrbp)
{
if (hba->crypto_vops && hba->crypto_vops->complete_lrbp_crypto)
return hba->crypto_vops->complete_lrbp_crypto(hba, cmd, lrbp);
return 0;
}
void ufshcd_crypto_debug(struct ufs_hba *hba)
{
if (hba->crypto_vops && hba->crypto_vops->debug)
hba->crypto_vops->debug(hba);
}
int ufshcd_crypto_suspend(struct ufs_hba *hba,
enum ufs_pm_op pm_op)
{
if (hba->crypto_vops && hba->crypto_vops->suspend)
return hba->crypto_vops->suspend(hba, pm_op);
return 0;
}
int ufshcd_crypto_resume(struct ufs_hba *hba,
enum ufs_pm_op pm_op)
{
if (hba->crypto_vops && hba->crypto_vops->resume)
return hba->crypto_vops->resume(hba, pm_op);
return 0;
}
void ufshcd_crypto_set_vops(struct ufs_hba *hba,
struct ufs_hba_crypto_variant_ops *crypto_vops)
{
hba->crypto_vops = crypto_vops;
}