| /* |
| * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. |
| * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. |
| * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. |
| * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. |
| * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/sched/signal.h> |
| #include <linux/module.h> |
| #include <crypto/aead.h> |
| |
| #include <net/strparser.h> |
| #include <net/tls.h> |
| |
| #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE |
| |
| static int tls_do_decryption(struct sock *sk, |
| struct scatterlist *sgin, |
| struct scatterlist *sgout, |
| char *iv_recv, |
| size_t data_len, |
| struct sk_buff *skb, |
| gfp_t flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct strp_msg *rxm = strp_msg(skb); |
| struct aead_request *aead_req; |
| |
| int ret; |
| unsigned int req_size = sizeof(struct aead_request) + |
| crypto_aead_reqsize(ctx->aead_recv); |
| |
| aead_req = kzalloc(req_size, flags); |
| if (!aead_req) |
| return -ENOMEM; |
| |
| aead_request_set_tfm(aead_req, ctx->aead_recv); |
| aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); |
| aead_request_set_crypt(aead_req, sgin, sgout, |
| data_len + tls_ctx->rx.tag_size, |
| (u8 *)iv_recv); |
| aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &ctx->async_wait); |
| |
| ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait); |
| |
| if (ret < 0) |
| goto out; |
| |
| rxm->offset += tls_ctx->rx.prepend_size; |
| rxm->full_len -= tls_ctx->rx.overhead_size; |
| tls_advance_record_sn(sk, &tls_ctx->rx); |
| |
| ctx->decrypted = true; |
| |
| ctx->saved_data_ready(sk); |
| |
| out: |
| kfree(aead_req); |
| return ret; |
| } |
| |
| static void trim_sg(struct sock *sk, struct scatterlist *sg, |
| int *sg_num_elem, unsigned int *sg_size, int target_size) |
| { |
| int i = *sg_num_elem - 1; |
| int trim = *sg_size - target_size; |
| |
| if (trim <= 0) { |
| WARN_ON(trim < 0); |
| return; |
| } |
| |
| *sg_size = target_size; |
| while (trim >= sg[i].length) { |
| trim -= sg[i].length; |
| sk_mem_uncharge(sk, sg[i].length); |
| put_page(sg_page(&sg[i])); |
| i--; |
| |
| if (i < 0) |
| goto out; |
| } |
| |
| sg[i].length -= trim; |
| sk_mem_uncharge(sk, trim); |
| |
| out: |
| *sg_num_elem = i + 1; |
| } |
| |
| static void trim_both_sgl(struct sock *sk, int target_size) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| |
| trim_sg(sk, ctx->sg_plaintext_data, |
| &ctx->sg_plaintext_num_elem, |
| &ctx->sg_plaintext_size, |
| target_size); |
| |
| if (target_size > 0) |
| target_size += tls_ctx->tx.overhead_size; |
| |
| trim_sg(sk, ctx->sg_encrypted_data, |
| &ctx->sg_encrypted_num_elem, |
| &ctx->sg_encrypted_size, |
| target_size); |
| } |
| |
| static int alloc_encrypted_sg(struct sock *sk, int len) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| int rc = 0; |
| |
| rc = sk_alloc_sg(sk, len, |
| ctx->sg_encrypted_data, 0, |
| &ctx->sg_encrypted_num_elem, |
| &ctx->sg_encrypted_size, 0); |
| |
| return rc; |
| } |
| |
| static int alloc_plaintext_sg(struct sock *sk, int len) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| int rc = 0; |
| |
| rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0, |
| &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size, |
| tls_ctx->pending_open_record_frags); |
| |
| return rc; |
| } |
| |
| static void free_sg(struct sock *sk, struct scatterlist *sg, |
| int *sg_num_elem, unsigned int *sg_size) |
| { |
| int i, n = *sg_num_elem; |
| |
| for (i = 0; i < n; ++i) { |
| sk_mem_uncharge(sk, sg[i].length); |
| put_page(sg_page(&sg[i])); |
| } |
| *sg_num_elem = 0; |
| *sg_size = 0; |
| } |
| |
| static void tls_free_both_sg(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| |
| free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem, |
| &ctx->sg_encrypted_size); |
| |
| free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, |
| &ctx->sg_plaintext_size); |
| } |
| |
| static int tls_do_encryption(struct tls_context *tls_ctx, |
| struct tls_sw_context_tx *ctx, |
| struct aead_request *aead_req, |
| size_t data_len) |
| { |
| int rc; |
| |
| ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size; |
| ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size; |
| |
| aead_request_set_tfm(aead_req, ctx->aead_send); |
| aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); |
| aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out, |
| data_len, tls_ctx->tx.iv); |
| |
| aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &ctx->async_wait); |
| |
| rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait); |
| |
| ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size; |
| ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size; |
| |
| return rc; |
| } |
| |
| static int tls_push_record(struct sock *sk, int flags, |
| unsigned char record_type) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct aead_request *req; |
| int rc; |
| |
| req = kzalloc(sizeof(struct aead_request) + |
| crypto_aead_reqsize(ctx->aead_send), sk->sk_allocation); |
| if (!req) |
| return -ENOMEM; |
| |
| sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1); |
| sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1); |
| |
| tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size, |
| tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size, |
| record_type); |
| |
| tls_fill_prepend(tls_ctx, |
| page_address(sg_page(&ctx->sg_encrypted_data[0])) + |
| ctx->sg_encrypted_data[0].offset, |
| ctx->sg_plaintext_size, record_type); |
| |
| tls_ctx->pending_open_record_frags = 0; |
| set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags); |
| |
| rc = tls_do_encryption(tls_ctx, ctx, req, ctx->sg_plaintext_size); |
| if (rc < 0) { |
| /* If we are called from write_space and |
| * we fail, we need to set this SOCK_NOSPACE |
| * to trigger another write_space in the future. |
| */ |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| goto out_req; |
| } |
| |
| free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, |
| &ctx->sg_plaintext_size); |
| |
| ctx->sg_encrypted_num_elem = 0; |
| ctx->sg_encrypted_size = 0; |
| |
| /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */ |
| rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags); |
| if (rc < 0 && rc != -EAGAIN) |
| tls_err_abort(sk, EBADMSG); |
| |
| tls_advance_record_sn(sk, &tls_ctx->tx); |
| out_req: |
| kfree(req); |
| return rc; |
| } |
| |
| static int tls_sw_push_pending_record(struct sock *sk, int flags) |
| { |
| return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA); |
| } |
| |
| static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from, |
| int length, int *pages_used, |
| unsigned int *size_used, |
| struct scatterlist *to, int to_max_pages, |
| bool charge) |
| { |
| struct page *pages[MAX_SKB_FRAGS]; |
| |
| size_t offset; |
| ssize_t copied, use; |
| int i = 0; |
| unsigned int size = *size_used; |
| int num_elem = *pages_used; |
| int rc = 0; |
| int maxpages; |
| |
| while (length > 0) { |
| i = 0; |
| maxpages = to_max_pages - num_elem; |
| if (maxpages == 0) { |
| rc = -EFAULT; |
| goto out; |
| } |
| copied = iov_iter_get_pages(from, pages, |
| length, |
| maxpages, &offset); |
| if (copied <= 0) { |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| iov_iter_advance(from, copied); |
| |
| length -= copied; |
| size += copied; |
| while (copied) { |
| use = min_t(int, copied, PAGE_SIZE - offset); |
| |
| sg_set_page(&to[num_elem], |
| pages[i], use, offset); |
| sg_unmark_end(&to[num_elem]); |
| if (charge) |
| sk_mem_charge(sk, use); |
| |
| offset = 0; |
| copied -= use; |
| |
| ++i; |
| ++num_elem; |
| } |
| } |
| |
| out: |
| *size_used = size; |
| *pages_used = num_elem; |
| |
| return rc; |
| } |
| |
| static int memcopy_from_iter(struct sock *sk, struct iov_iter *from, |
| int bytes) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct scatterlist *sg = ctx->sg_plaintext_data; |
| int copy, i, rc = 0; |
| |
| for (i = tls_ctx->pending_open_record_frags; |
| i < ctx->sg_plaintext_num_elem; ++i) { |
| copy = sg[i].length; |
| if (copy_from_iter( |
| page_address(sg_page(&sg[i])) + sg[i].offset, |
| copy, from) != copy) { |
| rc = -EFAULT; |
| goto out; |
| } |
| bytes -= copy; |
| |
| ++tls_ctx->pending_open_record_frags; |
| |
| if (!bytes) |
| break; |
| } |
| |
| out: |
| return rc; |
| } |
| |
| int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| int ret = 0; |
| int required_size; |
| long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); |
| bool eor = !(msg->msg_flags & MSG_MORE); |
| size_t try_to_copy, copied = 0; |
| unsigned char record_type = TLS_RECORD_TYPE_DATA; |
| int record_room; |
| bool full_record; |
| int orig_size; |
| |
| if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) |
| return -ENOTSUPP; |
| |
| lock_sock(sk); |
| |
| if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo)) |
| goto send_end; |
| |
| if (unlikely(msg->msg_controllen)) { |
| ret = tls_proccess_cmsg(sk, msg, &record_type); |
| if (ret) |
| goto send_end; |
| } |
| |
| while (msg_data_left(msg)) { |
| if (sk->sk_err) { |
| ret = -sk->sk_err; |
| goto send_end; |
| } |
| |
| orig_size = ctx->sg_plaintext_size; |
| full_record = false; |
| try_to_copy = msg_data_left(msg); |
| record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; |
| if (try_to_copy >= record_room) { |
| try_to_copy = record_room; |
| full_record = true; |
| } |
| |
| required_size = ctx->sg_plaintext_size + try_to_copy + |
| tls_ctx->tx.overhead_size; |
| |
| if (!sk_stream_memory_free(sk)) |
| goto wait_for_sndbuf; |
| alloc_encrypted: |
| ret = alloc_encrypted_sg(sk, required_size); |
| if (ret) { |
| if (ret != -ENOSPC) |
| goto wait_for_memory; |
| |
| /* Adjust try_to_copy according to the amount that was |
| * actually allocated. The difference is due |
| * to max sg elements limit |
| */ |
| try_to_copy -= required_size - ctx->sg_encrypted_size; |
| full_record = true; |
| } |
| |
| if (full_record || eor) { |
| ret = zerocopy_from_iter(sk, &msg->msg_iter, |
| try_to_copy, &ctx->sg_plaintext_num_elem, |
| &ctx->sg_plaintext_size, |
| ctx->sg_plaintext_data, |
| ARRAY_SIZE(ctx->sg_plaintext_data), |
| true); |
| if (ret) |
| goto fallback_to_reg_send; |
| |
| copied += try_to_copy; |
| ret = tls_push_record(sk, msg->msg_flags, record_type); |
| if (!ret) |
| continue; |
| if (ret < 0) |
| goto send_end; |
| |
| copied -= try_to_copy; |
| fallback_to_reg_send: |
| iov_iter_revert(&msg->msg_iter, |
| ctx->sg_plaintext_size - orig_size); |
| trim_sg(sk, ctx->sg_plaintext_data, |
| &ctx->sg_plaintext_num_elem, |
| &ctx->sg_plaintext_size, |
| orig_size); |
| } |
| |
| required_size = ctx->sg_plaintext_size + try_to_copy; |
| alloc_plaintext: |
| ret = alloc_plaintext_sg(sk, required_size); |
| if (ret) { |
| if (ret != -ENOSPC) |
| goto wait_for_memory; |
| |
| /* Adjust try_to_copy according to the amount that was |
| * actually allocated. The difference is due |
| * to max sg elements limit |
| */ |
| try_to_copy -= required_size - ctx->sg_plaintext_size; |
| full_record = true; |
| |
| trim_sg(sk, ctx->sg_encrypted_data, |
| &ctx->sg_encrypted_num_elem, |
| &ctx->sg_encrypted_size, |
| ctx->sg_plaintext_size + |
| tls_ctx->tx.overhead_size); |
| } |
| |
| ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy); |
| if (ret) |
| goto trim_sgl; |
| |
| copied += try_to_copy; |
| if (full_record || eor) { |
| push_record: |
| ret = tls_push_record(sk, msg->msg_flags, record_type); |
| if (ret) { |
| if (ret == -ENOMEM) |
| goto wait_for_memory; |
| |
| goto send_end; |
| } |
| } |
| |
| continue; |
| |
| wait_for_sndbuf: |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| wait_for_memory: |
| ret = sk_stream_wait_memory(sk, &timeo); |
| if (ret) { |
| trim_sgl: |
| trim_both_sgl(sk, orig_size); |
| goto send_end; |
| } |
| |
| if (tls_is_pending_closed_record(tls_ctx)) |
| goto push_record; |
| |
| if (ctx->sg_encrypted_size < required_size) |
| goto alloc_encrypted; |
| |
| goto alloc_plaintext; |
| } |
| |
| send_end: |
| ret = sk_stream_error(sk, msg->msg_flags, ret); |
| |
| release_sock(sk); |
| return copied ? copied : ret; |
| } |
| |
| int tls_sw_sendpage(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| int ret = 0; |
| long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); |
| bool eor; |
| size_t orig_size = size; |
| unsigned char record_type = TLS_RECORD_TYPE_DATA; |
| struct scatterlist *sg; |
| bool full_record; |
| int record_room; |
| |
| if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | |
| MSG_SENDPAGE_NOTLAST)) |
| return -ENOTSUPP; |
| |
| /* No MSG_EOR from splice, only look at MSG_MORE */ |
| eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); |
| |
| lock_sock(sk); |
| |
| sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); |
| |
| if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo)) |
| goto sendpage_end; |
| |
| /* Call the sk_stream functions to manage the sndbuf mem. */ |
| while (size > 0) { |
| size_t copy, required_size; |
| |
| if (sk->sk_err) { |
| ret = -sk->sk_err; |
| goto sendpage_end; |
| } |
| |
| full_record = false; |
| record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; |
| copy = size; |
| if (copy >= record_room) { |
| copy = record_room; |
| full_record = true; |
| } |
| required_size = ctx->sg_plaintext_size + copy + |
| tls_ctx->tx.overhead_size; |
| |
| if (!sk_stream_memory_free(sk)) |
| goto wait_for_sndbuf; |
| alloc_payload: |
| ret = alloc_encrypted_sg(sk, required_size); |
| if (ret) { |
| if (ret != -ENOSPC) |
| goto wait_for_memory; |
| |
| /* Adjust copy according to the amount that was |
| * actually allocated. The difference is due |
| * to max sg elements limit |
| */ |
| copy -= required_size - ctx->sg_plaintext_size; |
| full_record = true; |
| } |
| |
| get_page(page); |
| sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem; |
| sg_set_page(sg, page, copy, offset); |
| sg_unmark_end(sg); |
| |
| ctx->sg_plaintext_num_elem++; |
| |
| sk_mem_charge(sk, copy); |
| offset += copy; |
| size -= copy; |
| ctx->sg_plaintext_size += copy; |
| tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem; |
| |
| if (full_record || eor || |
| ctx->sg_plaintext_num_elem == |
| ARRAY_SIZE(ctx->sg_plaintext_data)) { |
| push_record: |
| ret = tls_push_record(sk, flags, record_type); |
| if (ret) { |
| if (ret == -ENOMEM) |
| goto wait_for_memory; |
| |
| goto sendpage_end; |
| } |
| } |
| continue; |
| wait_for_sndbuf: |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| wait_for_memory: |
| ret = sk_stream_wait_memory(sk, &timeo); |
| if (ret) { |
| trim_both_sgl(sk, ctx->sg_plaintext_size); |
| goto sendpage_end; |
| } |
| |
| if (tls_is_pending_closed_record(tls_ctx)) |
| goto push_record; |
| |
| goto alloc_payload; |
| } |
| |
| sendpage_end: |
| if (orig_size > size) |
| ret = orig_size - size; |
| else |
| ret = sk_stream_error(sk, flags, ret); |
| |
| release_sock(sk); |
| return ret; |
| } |
| |
| static struct sk_buff *tls_wait_data(struct sock *sk, int flags, |
| long timeo, int *err) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct sk_buff *skb; |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| |
| while (!(skb = ctx->recv_pkt)) { |
| if (sk->sk_err) { |
| *err = sock_error(sk); |
| return NULL; |
| } |
| |
| if (sk->sk_shutdown & RCV_SHUTDOWN) |
| return NULL; |
| |
| if (sock_flag(sk, SOCK_DONE)) |
| return NULL; |
| |
| if ((flags & MSG_DONTWAIT) || !timeo) { |
| *err = -EAGAIN; |
| return NULL; |
| } |
| |
| add_wait_queue(sk_sleep(sk), &wait); |
| sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
| sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait); |
| sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
| remove_wait_queue(sk_sleep(sk), &wait); |
| |
| /* Handle signals */ |
| if (signal_pending(current)) { |
| *err = sock_intr_errno(timeo); |
| return NULL; |
| } |
| } |
| |
| return skb; |
| } |
| |
| static int decrypt_skb(struct sock *sk, struct sk_buff *skb, |
| struct scatterlist *sgout) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| char iv[TLS_CIPHER_AES_GCM_128_SALT_SIZE + MAX_IV_SIZE]; |
| struct scatterlist sgin_arr[MAX_SKB_FRAGS + 2]; |
| struct scatterlist *sgin = &sgin_arr[0]; |
| struct strp_msg *rxm = strp_msg(skb); |
| int ret, nsg = ARRAY_SIZE(sgin_arr); |
| struct sk_buff *unused; |
| |
| ret = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, |
| iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, |
| tls_ctx->rx.iv_size); |
| if (ret < 0) |
| return ret; |
| |
| memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); |
| if (!sgout) { |
| nsg = skb_cow_data(skb, 0, &unused) + 1; |
| sgin = kmalloc_array(nsg, sizeof(*sgin), sk->sk_allocation); |
| sgout = sgin; |
| } |
| |
| sg_init_table(sgin, nsg); |
| sg_set_buf(&sgin[0], ctx->rx_aad_ciphertext, TLS_AAD_SPACE_SIZE); |
| |
| nsg = skb_to_sgvec(skb, &sgin[1], |
| rxm->offset + tls_ctx->rx.prepend_size, |
| rxm->full_len - tls_ctx->rx.prepend_size); |
| if (nsg < 0) { |
| ret = nsg; |
| goto out; |
| } |
| |
| tls_make_aad(ctx->rx_aad_ciphertext, |
| rxm->full_len - tls_ctx->rx.overhead_size, |
| tls_ctx->rx.rec_seq, |
| tls_ctx->rx.rec_seq_size, |
| ctx->control); |
| |
| ret = tls_do_decryption(sk, sgin, sgout, iv, |
| rxm->full_len - tls_ctx->rx.overhead_size, |
| skb, sk->sk_allocation); |
| |
| out: |
| if (sgin != &sgin_arr[0]) |
| kfree(sgin); |
| |
| return ret; |
| } |
| |
| static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, |
| unsigned int len) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct strp_msg *rxm = strp_msg(skb); |
| |
| if (len < rxm->full_len) { |
| rxm->offset += len; |
| rxm->full_len -= len; |
| |
| return false; |
| } |
| |
| /* Finished with message */ |
| ctx->recv_pkt = NULL; |
| kfree_skb(skb); |
| __strp_unpause(&ctx->strp); |
| |
| return true; |
| } |
| |
| int tls_sw_recvmsg(struct sock *sk, |
| struct msghdr *msg, |
| size_t len, |
| int nonblock, |
| int flags, |
| int *addr_len) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| unsigned char control; |
| struct strp_msg *rxm; |
| struct sk_buff *skb; |
| ssize_t copied = 0; |
| bool cmsg = false; |
| int target, err = 0; |
| long timeo; |
| |
| flags |= nonblock; |
| |
| if (unlikely(flags & MSG_ERRQUEUE)) |
| return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); |
| |
| lock_sock(sk); |
| |
| target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); |
| timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); |
| do { |
| bool zc = false; |
| int chunk = 0; |
| |
| skb = tls_wait_data(sk, flags, timeo, &err); |
| if (!skb) |
| goto recv_end; |
| |
| rxm = strp_msg(skb); |
| if (!cmsg) { |
| int cerr; |
| |
| cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, |
| sizeof(ctx->control), &ctx->control); |
| cmsg = true; |
| control = ctx->control; |
| if (ctx->control != TLS_RECORD_TYPE_DATA) { |
| if (cerr || msg->msg_flags & MSG_CTRUNC) { |
| err = -EIO; |
| goto recv_end; |
| } |
| } |
| } else if (control != ctx->control) { |
| goto recv_end; |
| } |
| |
| if (!ctx->decrypted) { |
| int page_count; |
| int to_copy; |
| |
| page_count = iov_iter_npages(&msg->msg_iter, |
| MAX_SKB_FRAGS); |
| to_copy = rxm->full_len - tls_ctx->rx.overhead_size; |
| if (to_copy <= len && page_count < MAX_SKB_FRAGS && |
| likely(!(flags & MSG_PEEK))) { |
| struct scatterlist sgin[MAX_SKB_FRAGS + 1]; |
| int pages = 0; |
| |
| zc = true; |
| sg_init_table(sgin, MAX_SKB_FRAGS + 1); |
| sg_set_buf(&sgin[0], ctx->rx_aad_plaintext, |
| TLS_AAD_SPACE_SIZE); |
| |
| err = zerocopy_from_iter(sk, &msg->msg_iter, |
| to_copy, &pages, |
| &chunk, &sgin[1], |
| MAX_SKB_FRAGS, false); |
| if (err < 0) |
| goto fallback_to_reg_recv; |
| |
| err = decrypt_skb(sk, skb, sgin); |
| for (; pages > 0; pages--) |
| put_page(sg_page(&sgin[pages])); |
| if (err < 0) { |
| tls_err_abort(sk, EBADMSG); |
| goto recv_end; |
| } |
| } else { |
| fallback_to_reg_recv: |
| err = decrypt_skb(sk, skb, NULL); |
| if (err < 0) { |
| tls_err_abort(sk, EBADMSG); |
| goto recv_end; |
| } |
| } |
| ctx->decrypted = true; |
| } |
| |
| if (!zc) { |
| chunk = min_t(unsigned int, rxm->full_len, len); |
| err = skb_copy_datagram_msg(skb, rxm->offset, msg, |
| chunk); |
| if (err < 0) |
| goto recv_end; |
| } |
| |
| copied += chunk; |
| len -= chunk; |
| if (likely(!(flags & MSG_PEEK))) { |
| u8 control = ctx->control; |
| |
| if (tls_sw_advance_skb(sk, skb, chunk)) { |
| /* Return full control message to |
| * userspace before trying to parse |
| * another message type |
| */ |
| msg->msg_flags |= MSG_EOR; |
| if (control != TLS_RECORD_TYPE_DATA) |
| goto recv_end; |
| } |
| } |
| /* If we have a new message from strparser, continue now. */ |
| if (copied >= target && !ctx->recv_pkt) |
| break; |
| } while (len); |
| |
| recv_end: |
| release_sock(sk); |
| return copied ? : err; |
| } |
| |
| ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, |
| struct pipe_inode_info *pipe, |
| size_t len, unsigned int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sock->sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct strp_msg *rxm = NULL; |
| struct sock *sk = sock->sk; |
| struct sk_buff *skb; |
| ssize_t copied = 0; |
| int err = 0; |
| long timeo; |
| int chunk; |
| |
| lock_sock(sk); |
| |
| timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); |
| |
| skb = tls_wait_data(sk, flags, timeo, &err); |
| if (!skb) |
| goto splice_read_end; |
| |
| /* splice does not support reading control messages */ |
| if (ctx->control != TLS_RECORD_TYPE_DATA) { |
| err = -ENOTSUPP; |
| goto splice_read_end; |
| } |
| |
| if (!ctx->decrypted) { |
| err = decrypt_skb(sk, skb, NULL); |
| |
| if (err < 0) { |
| tls_err_abort(sk, EBADMSG); |
| goto splice_read_end; |
| } |
| ctx->decrypted = true; |
| } |
| rxm = strp_msg(skb); |
| |
| chunk = min_t(unsigned int, rxm->full_len, len); |
| copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); |
| if (copied < 0) |
| goto splice_read_end; |
| |
| if (likely(!(flags & MSG_PEEK))) |
| tls_sw_advance_skb(sk, skb, copied); |
| |
| splice_read_end: |
| release_sock(sk); |
| return copied ? : err; |
| } |
| |
| unsigned int tls_sw_poll(struct file *file, struct socket *sock, |
| struct poll_table_struct *wait) |
| { |
| unsigned int ret; |
| struct sock *sk = sock->sk; |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| /* Grab POLLOUT and POLLHUP from the underlying socket */ |
| ret = ctx->sk_poll(file, sock, wait); |
| |
| /* Clear POLLIN bits, and set based on recv_pkt */ |
| ret &= ~(POLLIN | POLLRDNORM); |
| if (ctx->recv_pkt) |
| ret |= POLLIN | POLLRDNORM; |
| |
| return ret; |
| } |
| |
| static int tls_read_size(struct strparser *strp, struct sk_buff *skb) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(strp->sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| char header[tls_ctx->rx.prepend_size]; |
| struct strp_msg *rxm = strp_msg(skb); |
| size_t cipher_overhead; |
| size_t data_len = 0; |
| int ret; |
| |
| /* Verify that we have a full TLS header, or wait for more data */ |
| if (rxm->offset + tls_ctx->rx.prepend_size > skb->len) |
| return 0; |
| |
| /* Linearize header to local buffer */ |
| ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size); |
| |
| if (ret < 0) |
| goto read_failure; |
| |
| ctx->control = header[0]; |
| |
| data_len = ((header[4] & 0xFF) | (header[3] << 8)); |
| |
| cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size; |
| |
| if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) { |
| ret = -EMSGSIZE; |
| goto read_failure; |
| } |
| if (data_len < cipher_overhead) { |
| ret = -EBADMSG; |
| goto read_failure; |
| } |
| |
| if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) || |
| header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) { |
| ret = -EINVAL; |
| goto read_failure; |
| } |
| |
| return data_len + TLS_HEADER_SIZE; |
| |
| read_failure: |
| tls_err_abort(strp->sk, ret); |
| |
| return ret; |
| } |
| |
| static void tls_queue(struct strparser *strp, struct sk_buff *skb) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(strp->sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct strp_msg *rxm; |
| |
| rxm = strp_msg(skb); |
| |
| ctx->decrypted = false; |
| |
| ctx->recv_pkt = skb; |
| strp_pause(strp); |
| |
| strp->sk->sk_state_change(strp->sk); |
| } |
| |
| static void tls_data_ready(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| strp_data_ready(&ctx->strp); |
| } |
| |
| void tls_sw_free_resources_tx(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| |
| if (ctx->aead_send) |
| crypto_free_aead(ctx->aead_send); |
| tls_free_both_sg(sk); |
| |
| kfree(ctx); |
| } |
| |
| void tls_sw_free_resources_rx(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| if (ctx->aead_recv) { |
| if (ctx->recv_pkt) { |
| kfree_skb(ctx->recv_pkt); |
| ctx->recv_pkt = NULL; |
| } |
| crypto_free_aead(ctx->aead_recv); |
| strp_stop(&ctx->strp); |
| write_lock_bh(&sk->sk_callback_lock); |
| sk->sk_data_ready = ctx->saved_data_ready; |
| write_unlock_bh(&sk->sk_callback_lock); |
| release_sock(sk); |
| strp_done(&ctx->strp); |
| lock_sock(sk); |
| } |
| |
| kfree(ctx); |
| } |
| |
| int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) |
| { |
| char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE]; |
| struct tls_crypto_info *crypto_info; |
| struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; |
| struct tls_sw_context_tx *sw_ctx_tx = NULL; |
| struct tls_sw_context_rx *sw_ctx_rx = NULL; |
| struct cipher_context *cctx; |
| struct crypto_aead **aead; |
| struct strp_callbacks cb; |
| u16 nonce_size, tag_size, iv_size, rec_seq_size; |
| char *iv, *rec_seq; |
| int rc = 0; |
| |
| if (!ctx) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (tx) { |
| sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); |
| if (!sw_ctx_tx) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| crypto_init_wait(&sw_ctx_tx->async_wait); |
| ctx->priv_ctx_tx = sw_ctx_tx; |
| } else { |
| sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); |
| if (!sw_ctx_rx) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| crypto_init_wait(&sw_ctx_rx->async_wait); |
| ctx->priv_ctx_rx = sw_ctx_rx; |
| } |
| |
| if (tx) { |
| crypto_info = &ctx->crypto_send; |
| cctx = &ctx->tx; |
| aead = &sw_ctx_tx->aead_send; |
| } else { |
| crypto_info = &ctx->crypto_recv; |
| cctx = &ctx->rx; |
| aead = &sw_ctx_rx->aead_recv; |
| } |
| |
| switch (crypto_info->cipher_type) { |
| case TLS_CIPHER_AES_GCM_128: { |
| nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; |
| tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; |
| iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; |
| iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; |
| rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; |
| rec_seq = |
| ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; |
| gcm_128_info = |
| (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; |
| break; |
| } |
| default: |
| rc = -EINVAL; |
| goto free_priv; |
| } |
| |
| /* Sanity-check the IV size for stack allocations. */ |
| if (iv_size > MAX_IV_SIZE) { |
| rc = -EINVAL; |
| goto free_priv; |
| } |
| |
| cctx->prepend_size = TLS_HEADER_SIZE + nonce_size; |
| cctx->tag_size = tag_size; |
| cctx->overhead_size = cctx->prepend_size + cctx->tag_size; |
| cctx->iv_size = iv_size; |
| cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, |
| GFP_KERNEL); |
| if (!cctx->iv) { |
| rc = -ENOMEM; |
| goto free_priv; |
| } |
| memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); |
| memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); |
| cctx->rec_seq_size = rec_seq_size; |
| cctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL); |
| if (!cctx->rec_seq) { |
| rc = -ENOMEM; |
| goto free_iv; |
| } |
| memcpy(cctx->rec_seq, rec_seq, rec_seq_size); |
| |
| if (sw_ctx_tx) { |
| sg_init_table(sw_ctx_tx->sg_encrypted_data, |
| ARRAY_SIZE(sw_ctx_tx->sg_encrypted_data)); |
| sg_init_table(sw_ctx_tx->sg_plaintext_data, |
| ARRAY_SIZE(sw_ctx_tx->sg_plaintext_data)); |
| |
| sg_init_table(sw_ctx_tx->sg_aead_in, 2); |
| sg_set_buf(&sw_ctx_tx->sg_aead_in[0], sw_ctx_tx->aad_space, |
| sizeof(sw_ctx_tx->aad_space)); |
| sg_unmark_end(&sw_ctx_tx->sg_aead_in[1]); |
| sg_chain(sw_ctx_tx->sg_aead_in, 2, |
| sw_ctx_tx->sg_plaintext_data); |
| sg_init_table(sw_ctx_tx->sg_aead_out, 2); |
| sg_set_buf(&sw_ctx_tx->sg_aead_out[0], sw_ctx_tx->aad_space, |
| sizeof(sw_ctx_tx->aad_space)); |
| sg_unmark_end(&sw_ctx_tx->sg_aead_out[1]); |
| sg_chain(sw_ctx_tx->sg_aead_out, 2, |
| sw_ctx_tx->sg_encrypted_data); |
| } |
| |
| if (!*aead) { |
| *aead = crypto_alloc_aead("gcm(aes)", 0, 0); |
| if (IS_ERR(*aead)) { |
| rc = PTR_ERR(*aead); |
| *aead = NULL; |
| goto free_rec_seq; |
| } |
| } |
| |
| ctx->push_pending_record = tls_sw_push_pending_record; |
| |
| memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE); |
| |
| rc = crypto_aead_setkey(*aead, keyval, |
| TLS_CIPHER_AES_GCM_128_KEY_SIZE); |
| if (rc) |
| goto free_aead; |
| |
| rc = crypto_aead_setauthsize(*aead, cctx->tag_size); |
| if (rc) |
| goto free_aead; |
| |
| if (sw_ctx_rx) { |
| /* Set up strparser */ |
| memset(&cb, 0, sizeof(cb)); |
| cb.rcv_msg = tls_queue; |
| cb.parse_msg = tls_read_size; |
| |
| strp_init(&sw_ctx_rx->strp, sk, &cb); |
| |
| write_lock_bh(&sk->sk_callback_lock); |
| sw_ctx_rx->saved_data_ready = sk->sk_data_ready; |
| sk->sk_data_ready = tls_data_ready; |
| write_unlock_bh(&sk->sk_callback_lock); |
| |
| sw_ctx_rx->sk_poll = sk->sk_socket->ops->poll; |
| |
| strp_check_rcv(&sw_ctx_rx->strp); |
| } |
| |
| goto out; |
| |
| free_aead: |
| crypto_free_aead(*aead); |
| *aead = NULL; |
| free_rec_seq: |
| kfree(cctx->rec_seq); |
| cctx->rec_seq = NULL; |
| free_iv: |
| kfree(cctx->iv); |
| cctx->iv = NULL; |
| free_priv: |
| if (tx) { |
| kfree(ctx->priv_ctx_tx); |
| ctx->priv_ctx_tx = NULL; |
| } else { |
| kfree(ctx->priv_ctx_rx); |
| ctx->priv_ctx_rx = NULL; |
| } |
| out: |
| return rc; |
| } |