|  | /******************************************************************************* | 
|  | * | 
|  | * Intel Ethernet Controller XL710 Family Linux Driver | 
|  | * Copyright(c) 2013 - 2014 Intel Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along | 
|  | * with this program.  If not, see <http://www.gnu.org/licenses/>. | 
|  | * | 
|  | * The full GNU General Public License is included in this distribution in | 
|  | * the file called "COPYING". | 
|  | * | 
|  | * Contact Information: | 
|  | * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | * | 
|  | ******************************************************************************/ | 
|  |  | 
|  | #include "i40e.h" | 
|  |  | 
|  | static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, | 
|  | u32 td_tag) | 
|  | { | 
|  | return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA | | 
|  | ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) | | 
|  | ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) | | 
|  | ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) | | 
|  | ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT)); | 
|  | } | 
|  |  | 
|  | #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) | 
|  | /** | 
|  | * i40e_program_fdir_filter - Program a Flow Director filter | 
|  | * @fdir_input: Packet data that will be filter parameters | 
|  | * @pf: The pf pointer | 
|  | * @add: True for add/update, False for remove | 
|  | **/ | 
|  | int i40e_program_fdir_filter(struct i40e_fdir_data *fdir_data, | 
|  | struct i40e_pf *pf, bool add) | 
|  | { | 
|  | struct i40e_filter_program_desc *fdir_desc; | 
|  | struct i40e_tx_buffer *tx_buf; | 
|  | struct i40e_tx_desc *tx_desc; | 
|  | struct i40e_ring *tx_ring; | 
|  | unsigned int fpt, dcc; | 
|  | struct i40e_vsi *vsi; | 
|  | struct device *dev; | 
|  | dma_addr_t dma; | 
|  | u32 td_cmd = 0; | 
|  | u16 i; | 
|  |  | 
|  | /* find existing FDIR VSI */ | 
|  | vsi = NULL; | 
|  | for (i = 0; i < pf->hw.func_caps.num_vsis; i++) | 
|  | if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) | 
|  | vsi = pf->vsi[i]; | 
|  | if (!vsi) | 
|  | return -ENOENT; | 
|  |  | 
|  | tx_ring = vsi->tx_rings[0]; | 
|  | dev = tx_ring->dev; | 
|  |  | 
|  | dma = dma_map_single(dev, fdir_data->raw_packet, | 
|  | I40E_FDIR_MAX_RAW_PACKET_LOOKUP, DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(dev, dma)) | 
|  | goto dma_fail; | 
|  |  | 
|  | /* grab the next descriptor */ | 
|  | i = tx_ring->next_to_use; | 
|  | fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); | 
|  |  | 
|  | tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0; | 
|  |  | 
|  | fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & | 
|  | I40E_TXD_FLTR_QW0_QINDEX_MASK; | 
|  |  | 
|  | fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) & | 
|  | I40E_TXD_FLTR_QW0_FLEXOFF_MASK; | 
|  |  | 
|  | fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) & | 
|  | I40E_TXD_FLTR_QW0_PCTYPE_MASK; | 
|  |  | 
|  | /* Use LAN VSI Id if not programmed by user */ | 
|  | if (fdir_data->dest_vsi == 0) | 
|  | fpt |= (pf->vsi[pf->lan_vsi]->id) << | 
|  | I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; | 
|  | else | 
|  | fpt |= ((u32)fdir_data->dest_vsi << | 
|  | I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) & | 
|  | I40E_TXD_FLTR_QW0_DEST_VSI_MASK; | 
|  |  | 
|  | fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt); | 
|  |  | 
|  | dcc = I40E_TX_DESC_DTYPE_FILTER_PROG; | 
|  |  | 
|  | if (add) | 
|  | dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << | 
|  | I40E_TXD_FLTR_QW1_PCMD_SHIFT; | 
|  | else | 
|  | dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << | 
|  | I40E_TXD_FLTR_QW1_PCMD_SHIFT; | 
|  |  | 
|  | dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) & | 
|  | I40E_TXD_FLTR_QW1_DEST_MASK; | 
|  |  | 
|  | dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) & | 
|  | I40E_TXD_FLTR_QW1_FD_STATUS_MASK; | 
|  |  | 
|  | if (fdir_data->cnt_index != 0) { | 
|  | dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; | 
|  | dcc |= ((u32)fdir_data->cnt_index << | 
|  | I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & | 
|  | I40E_TXD_FLTR_QW1_CNTINDEX_MASK; | 
|  | } | 
|  |  | 
|  | fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc); | 
|  | fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id); | 
|  |  | 
|  | /* Now program a dummy descriptor */ | 
|  | i = tx_ring->next_to_use; | 
|  | tx_desc = I40E_TX_DESC(tx_ring, i); | 
|  | tx_buf = &tx_ring->tx_bi[i]; | 
|  |  | 
|  | tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0; | 
|  |  | 
|  | /* record length, and DMA address */ | 
|  | dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_LOOKUP); | 
|  | dma_unmap_addr_set(tx_buf, dma, dma); | 
|  |  | 
|  | tx_desc->buffer_addr = cpu_to_le64(dma); | 
|  | td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; | 
|  |  | 
|  | tx_desc->cmd_type_offset_bsz = | 
|  | build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_LOOKUP, 0); | 
|  |  | 
|  | /* set the timestamp */ | 
|  | tx_buf->time_stamp = jiffies; | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  |  | 
|  | /* Mark the data descriptor to be watched */ | 
|  | tx_buf->next_to_watch = tx_desc; | 
|  |  | 
|  | writel(tx_ring->next_to_use, tx_ring->tail); | 
|  | return 0; | 
|  |  | 
|  | dma_fail: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_fd_handle_status - check the Programming Status for FD | 
|  | * @rx_ring: the Rx ring for this descriptor | 
|  | * @qw: the descriptor data | 
|  | * @prog_id: the id originally used for programming | 
|  | * | 
|  | * This is used to verify if the FD programming or invalidation | 
|  | * requested by SW to the HW is successful or not and take actions accordingly. | 
|  | **/ | 
|  | static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u32 qw, u8 prog_id) | 
|  | { | 
|  | struct pci_dev *pdev = rx_ring->vsi->back->pdev; | 
|  | u32 error; | 
|  |  | 
|  | error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> | 
|  | I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; | 
|  |  | 
|  | /* for now just print the Status */ | 
|  | dev_info(&pdev->dev, "FD programming id %02x, Status %08x\n", | 
|  | prog_id, error); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_unmap_and_free_tx_resource - Release a Tx buffer | 
|  | * @ring:      the ring that owns the buffer | 
|  | * @tx_buffer: the buffer to free | 
|  | **/ | 
|  | static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, | 
|  | struct i40e_tx_buffer *tx_buffer) | 
|  | { | 
|  | if (tx_buffer->skb) { | 
|  | dev_kfree_skb_any(tx_buffer->skb); | 
|  | if (dma_unmap_len(tx_buffer, len)) | 
|  | dma_unmap_single(ring->dev, | 
|  | dma_unmap_addr(tx_buffer, dma), | 
|  | dma_unmap_len(tx_buffer, len), | 
|  | DMA_TO_DEVICE); | 
|  | } else if (dma_unmap_len(tx_buffer, len)) { | 
|  | dma_unmap_page(ring->dev, | 
|  | dma_unmap_addr(tx_buffer, dma), | 
|  | dma_unmap_len(tx_buffer, len), | 
|  | DMA_TO_DEVICE); | 
|  | } | 
|  | tx_buffer->next_to_watch = NULL; | 
|  | tx_buffer->skb = NULL; | 
|  | dma_unmap_len_set(tx_buffer, len, 0); | 
|  | /* tx_buffer must be completely set up in the transmit path */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_clean_tx_ring - Free any empty Tx buffers | 
|  | * @tx_ring: ring to be cleaned | 
|  | **/ | 
|  | void i40e_clean_tx_ring(struct i40e_ring *tx_ring) | 
|  | { | 
|  | unsigned long bi_size; | 
|  | u16 i; | 
|  |  | 
|  | /* ring already cleared, nothing to do */ | 
|  | if (!tx_ring->tx_bi) | 
|  | return; | 
|  |  | 
|  | /* Free all the Tx ring sk_buffs */ | 
|  | for (i = 0; i < tx_ring->count; i++) | 
|  | i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); | 
|  |  | 
|  | bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; | 
|  | memset(tx_ring->tx_bi, 0, bi_size); | 
|  |  | 
|  | /* Zero out the descriptor ring */ | 
|  | memset(tx_ring->desc, 0, tx_ring->size); | 
|  |  | 
|  | tx_ring->next_to_use = 0; | 
|  | tx_ring->next_to_clean = 0; | 
|  |  | 
|  | if (!tx_ring->netdev) | 
|  | return; | 
|  |  | 
|  | /* cleanup Tx queue statistics */ | 
|  | netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, | 
|  | tx_ring->queue_index)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_free_tx_resources - Free Tx resources per queue | 
|  | * @tx_ring: Tx descriptor ring for a specific queue | 
|  | * | 
|  | * Free all transmit software resources | 
|  | **/ | 
|  | void i40e_free_tx_resources(struct i40e_ring *tx_ring) | 
|  | { | 
|  | i40e_clean_tx_ring(tx_ring); | 
|  | kfree(tx_ring->tx_bi); | 
|  | tx_ring->tx_bi = NULL; | 
|  |  | 
|  | if (tx_ring->desc) { | 
|  | dma_free_coherent(tx_ring->dev, tx_ring->size, | 
|  | tx_ring->desc, tx_ring->dma); | 
|  | tx_ring->desc = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_get_tx_pending - how many tx descriptors not processed | 
|  | * @tx_ring: the ring of descriptors | 
|  | * | 
|  | * Since there is no access to the ring head register | 
|  | * in XL710, we need to use our local copies | 
|  | **/ | 
|  | static u32 i40e_get_tx_pending(struct i40e_ring *ring) | 
|  | { | 
|  | u32 ntu = ((ring->next_to_clean <= ring->next_to_use) | 
|  | ? ring->next_to_use | 
|  | : ring->next_to_use + ring->count); | 
|  | return ntu - ring->next_to_clean; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_check_tx_hang - Is there a hang in the Tx queue | 
|  | * @tx_ring: the ring of descriptors | 
|  | **/ | 
|  | static bool i40e_check_tx_hang(struct i40e_ring *tx_ring) | 
|  | { | 
|  | u32 tx_pending = i40e_get_tx_pending(tx_ring); | 
|  | bool ret = false; | 
|  |  | 
|  | clear_check_for_tx_hang(tx_ring); | 
|  |  | 
|  | /* Check for a hung queue, but be thorough. This verifies | 
|  | * that a transmit has been completed since the previous | 
|  | * check AND there is at least one packet pending. The | 
|  | * ARMED bit is set to indicate a potential hang. The | 
|  | * bit is cleared if a pause frame is received to remove | 
|  | * false hang detection due to PFC or 802.3x frames. By | 
|  | * requiring this to fail twice we avoid races with | 
|  | * PFC clearing the ARMED bit and conditions where we | 
|  | * run the check_tx_hang logic with a transmit completion | 
|  | * pending but without time to complete it yet. | 
|  | */ | 
|  | if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) && | 
|  | tx_pending) { | 
|  | /* make sure it is true for two checks in a row */ | 
|  | ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED, | 
|  | &tx_ring->state); | 
|  | } else { | 
|  | /* update completed stats and disarm the hang check */ | 
|  | tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets; | 
|  | clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_clean_tx_irq - Reclaim resources after transmit completes | 
|  | * @tx_ring:  tx ring to clean | 
|  | * @budget:   how many cleans we're allowed | 
|  | * | 
|  | * Returns true if there's any budget left (e.g. the clean is finished) | 
|  | **/ | 
|  | static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget) | 
|  | { | 
|  | u16 i = tx_ring->next_to_clean; | 
|  | struct i40e_tx_buffer *tx_buf; | 
|  | struct i40e_tx_desc *tx_desc; | 
|  | unsigned int total_packets = 0; | 
|  | unsigned int total_bytes = 0; | 
|  |  | 
|  | tx_buf = &tx_ring->tx_bi[i]; | 
|  | tx_desc = I40E_TX_DESC(tx_ring, i); | 
|  | i -= tx_ring->count; | 
|  |  | 
|  | do { | 
|  | struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; | 
|  |  | 
|  | /* if next_to_watch is not set then there is no work pending */ | 
|  | if (!eop_desc) | 
|  | break; | 
|  |  | 
|  | /* prevent any other reads prior to eop_desc */ | 
|  | read_barrier_depends(); | 
|  |  | 
|  | /* if the descriptor isn't done, no work yet to do */ | 
|  | if (!(eop_desc->cmd_type_offset_bsz & | 
|  | cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) | 
|  | break; | 
|  |  | 
|  | /* clear next_to_watch to prevent false hangs */ | 
|  | tx_buf->next_to_watch = NULL; | 
|  |  | 
|  | /* update the statistics for this packet */ | 
|  | total_bytes += tx_buf->bytecount; | 
|  | total_packets += tx_buf->gso_segs; | 
|  |  | 
|  | /* free the skb */ | 
|  | dev_kfree_skb_any(tx_buf->skb); | 
|  |  | 
|  | /* unmap skb header data */ | 
|  | dma_unmap_single(tx_ring->dev, | 
|  | dma_unmap_addr(tx_buf, dma), | 
|  | dma_unmap_len(tx_buf, len), | 
|  | DMA_TO_DEVICE); | 
|  |  | 
|  | /* clear tx_buffer data */ | 
|  | tx_buf->skb = NULL; | 
|  | dma_unmap_len_set(tx_buf, len, 0); | 
|  |  | 
|  | /* unmap remaining buffers */ | 
|  | while (tx_desc != eop_desc) { | 
|  |  | 
|  | tx_buf++; | 
|  | tx_desc++; | 
|  | i++; | 
|  | if (unlikely(!i)) { | 
|  | i -= tx_ring->count; | 
|  | tx_buf = tx_ring->tx_bi; | 
|  | tx_desc = I40E_TX_DESC(tx_ring, 0); | 
|  | } | 
|  |  | 
|  | /* unmap any remaining paged data */ | 
|  | if (dma_unmap_len(tx_buf, len)) { | 
|  | dma_unmap_page(tx_ring->dev, | 
|  | dma_unmap_addr(tx_buf, dma), | 
|  | dma_unmap_len(tx_buf, len), | 
|  | DMA_TO_DEVICE); | 
|  | dma_unmap_len_set(tx_buf, len, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* move us one more past the eop_desc for start of next pkt */ | 
|  | tx_buf++; | 
|  | tx_desc++; | 
|  | i++; | 
|  | if (unlikely(!i)) { | 
|  | i -= tx_ring->count; | 
|  | tx_buf = tx_ring->tx_bi; | 
|  | tx_desc = I40E_TX_DESC(tx_ring, 0); | 
|  | } | 
|  |  | 
|  | /* update budget accounting */ | 
|  | budget--; | 
|  | } while (likely(budget)); | 
|  |  | 
|  | i += tx_ring->count; | 
|  | tx_ring->next_to_clean = i; | 
|  | u64_stats_update_begin(&tx_ring->syncp); | 
|  | tx_ring->stats.bytes += total_bytes; | 
|  | tx_ring->stats.packets += total_packets; | 
|  | u64_stats_update_end(&tx_ring->syncp); | 
|  | tx_ring->q_vector->tx.total_bytes += total_bytes; | 
|  | tx_ring->q_vector->tx.total_packets += total_packets; | 
|  |  | 
|  | if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) { | 
|  | /* schedule immediate reset if we believe we hung */ | 
|  | dev_info(tx_ring->dev, "Detected Tx Unit Hang\n" | 
|  | "  VSI                  <%d>\n" | 
|  | "  Tx Queue             <%d>\n" | 
|  | "  next_to_use          <%x>\n" | 
|  | "  next_to_clean        <%x>\n", | 
|  | tx_ring->vsi->seid, | 
|  | tx_ring->queue_index, | 
|  | tx_ring->next_to_use, i); | 
|  | dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n" | 
|  | "  time_stamp           <%lx>\n" | 
|  | "  jiffies              <%lx>\n", | 
|  | tx_ring->tx_bi[i].time_stamp, jiffies); | 
|  |  | 
|  | netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); | 
|  |  | 
|  | dev_info(tx_ring->dev, | 
|  | "tx hang detected on queue %d, resetting adapter\n", | 
|  | tx_ring->queue_index); | 
|  |  | 
|  | tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev); | 
|  |  | 
|  | /* the adapter is about to reset, no point in enabling stuff */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev, | 
|  | tx_ring->queue_index), | 
|  | total_packets, total_bytes); | 
|  |  | 
|  | #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) | 
|  | if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && | 
|  | (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { | 
|  | /* Make sure that anybody stopping the queue after this | 
|  | * sees the new next_to_clean. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (__netif_subqueue_stopped(tx_ring->netdev, | 
|  | tx_ring->queue_index) && | 
|  | !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) { | 
|  | netif_wake_subqueue(tx_ring->netdev, | 
|  | tx_ring->queue_index); | 
|  | ++tx_ring->tx_stats.restart_queue; | 
|  | } | 
|  | } | 
|  |  | 
|  | return budget > 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_set_new_dynamic_itr - Find new ITR level | 
|  | * @rc: structure containing ring performance data | 
|  | * | 
|  | * Stores a new ITR value based on packets and byte counts during | 
|  | * the last interrupt.  The advantage of per interrupt computation | 
|  | * is faster updates and more accurate ITR for the current traffic | 
|  | * pattern.  Constants in this function were computed based on | 
|  | * theoretical maximum wire speed and thresholds were set based on | 
|  | * testing data as well as attempting to minimize response time | 
|  | * while increasing bulk throughput. | 
|  | **/ | 
|  | static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc) | 
|  | { | 
|  | enum i40e_latency_range new_latency_range = rc->latency_range; | 
|  | u32 new_itr = rc->itr; | 
|  | int bytes_per_int; | 
|  |  | 
|  | if (rc->total_packets == 0 || !rc->itr) | 
|  | return; | 
|  |  | 
|  | /* simple throttlerate management | 
|  | *   0-10MB/s   lowest (100000 ints/s) | 
|  | *  10-20MB/s   low    (20000 ints/s) | 
|  | *  20-1249MB/s bulk   (8000 ints/s) | 
|  | */ | 
|  | bytes_per_int = rc->total_bytes / rc->itr; | 
|  | switch (rc->itr) { | 
|  | case I40E_LOWEST_LATENCY: | 
|  | if (bytes_per_int > 10) | 
|  | new_latency_range = I40E_LOW_LATENCY; | 
|  | break; | 
|  | case I40E_LOW_LATENCY: | 
|  | if (bytes_per_int > 20) | 
|  | new_latency_range = I40E_BULK_LATENCY; | 
|  | else if (bytes_per_int <= 10) | 
|  | new_latency_range = I40E_LOWEST_LATENCY; | 
|  | break; | 
|  | case I40E_BULK_LATENCY: | 
|  | if (bytes_per_int <= 20) | 
|  | rc->latency_range = I40E_LOW_LATENCY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (new_latency_range) { | 
|  | case I40E_LOWEST_LATENCY: | 
|  | new_itr = I40E_ITR_100K; | 
|  | break; | 
|  | case I40E_LOW_LATENCY: | 
|  | new_itr = I40E_ITR_20K; | 
|  | break; | 
|  | case I40E_BULK_LATENCY: | 
|  | new_itr = I40E_ITR_8K; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (new_itr != rc->itr) { | 
|  | /* do an exponential smoothing */ | 
|  | new_itr = (10 * new_itr * rc->itr) / | 
|  | ((9 * new_itr) + rc->itr); | 
|  | rc->itr = new_itr & I40E_MAX_ITR; | 
|  | } | 
|  |  | 
|  | rc->total_bytes = 0; | 
|  | rc->total_packets = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_update_dynamic_itr - Adjust ITR based on bytes per int | 
|  | * @q_vector: the vector to adjust | 
|  | **/ | 
|  | static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector) | 
|  | { | 
|  | u16 vector = q_vector->vsi->base_vector + q_vector->v_idx; | 
|  | struct i40e_hw *hw = &q_vector->vsi->back->hw; | 
|  | u32 reg_addr; | 
|  | u16 old_itr; | 
|  |  | 
|  | reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1); | 
|  | old_itr = q_vector->rx.itr; | 
|  | i40e_set_new_dynamic_itr(&q_vector->rx); | 
|  | if (old_itr != q_vector->rx.itr) | 
|  | wr32(hw, reg_addr, q_vector->rx.itr); | 
|  |  | 
|  | reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1); | 
|  | old_itr = q_vector->tx.itr; | 
|  | i40e_set_new_dynamic_itr(&q_vector->tx); | 
|  | if (old_itr != q_vector->tx.itr) | 
|  | wr32(hw, reg_addr, q_vector->tx.itr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_clean_programming_status - clean the programming status descriptor | 
|  | * @rx_ring: the rx ring that has this descriptor | 
|  | * @rx_desc: the rx descriptor written back by HW | 
|  | * | 
|  | * Flow director should handle FD_FILTER_STATUS to check its filter programming | 
|  | * status being successful or not and take actions accordingly. FCoE should | 
|  | * handle its context/filter programming/invalidation status and take actions. | 
|  | * | 
|  | **/ | 
|  | static void i40e_clean_programming_status(struct i40e_ring *rx_ring, | 
|  | union i40e_rx_desc *rx_desc) | 
|  | { | 
|  | u64 qw; | 
|  | u8 id; | 
|  |  | 
|  | qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len); | 
|  | id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> | 
|  | I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; | 
|  |  | 
|  | if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) | 
|  | i40e_fd_handle_status(rx_ring, qw, id); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_setup_tx_descriptors - Allocate the Tx descriptors | 
|  | * @tx_ring: the tx ring to set up | 
|  | * | 
|  | * Return 0 on success, negative on error | 
|  | **/ | 
|  | int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) | 
|  | { | 
|  | struct device *dev = tx_ring->dev; | 
|  | int bi_size; | 
|  |  | 
|  | if (!dev) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; | 
|  | tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); | 
|  | if (!tx_ring->tx_bi) | 
|  | goto err; | 
|  |  | 
|  | /* round up to nearest 4K */ | 
|  | tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); | 
|  | tx_ring->size = ALIGN(tx_ring->size, 4096); | 
|  | tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, | 
|  | &tx_ring->dma, GFP_KERNEL); | 
|  | if (!tx_ring->desc) { | 
|  | dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", | 
|  | tx_ring->size); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | tx_ring->next_to_use = 0; | 
|  | tx_ring->next_to_clean = 0; | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | kfree(tx_ring->tx_bi); | 
|  | tx_ring->tx_bi = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_clean_rx_ring - Free Rx buffers | 
|  | * @rx_ring: ring to be cleaned | 
|  | **/ | 
|  | void i40e_clean_rx_ring(struct i40e_ring *rx_ring) | 
|  | { | 
|  | struct device *dev = rx_ring->dev; | 
|  | struct i40e_rx_buffer *rx_bi; | 
|  | unsigned long bi_size; | 
|  | u16 i; | 
|  |  | 
|  | /* ring already cleared, nothing to do */ | 
|  | if (!rx_ring->rx_bi) | 
|  | return; | 
|  |  | 
|  | /* Free all the Rx ring sk_buffs */ | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | rx_bi = &rx_ring->rx_bi[i]; | 
|  | if (rx_bi->dma) { | 
|  | dma_unmap_single(dev, | 
|  | rx_bi->dma, | 
|  | rx_ring->rx_buf_len, | 
|  | DMA_FROM_DEVICE); | 
|  | rx_bi->dma = 0; | 
|  | } | 
|  | if (rx_bi->skb) { | 
|  | dev_kfree_skb(rx_bi->skb); | 
|  | rx_bi->skb = NULL; | 
|  | } | 
|  | if (rx_bi->page) { | 
|  | if (rx_bi->page_dma) { | 
|  | dma_unmap_page(dev, | 
|  | rx_bi->page_dma, | 
|  | PAGE_SIZE / 2, | 
|  | DMA_FROM_DEVICE); | 
|  | rx_bi->page_dma = 0; | 
|  | } | 
|  | __free_page(rx_bi->page); | 
|  | rx_bi->page = NULL; | 
|  | rx_bi->page_offset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; | 
|  | memset(rx_ring->rx_bi, 0, bi_size); | 
|  |  | 
|  | /* Zero out the descriptor ring */ | 
|  | memset(rx_ring->desc, 0, rx_ring->size); | 
|  |  | 
|  | rx_ring->next_to_clean = 0; | 
|  | rx_ring->next_to_use = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_free_rx_resources - Free Rx resources | 
|  | * @rx_ring: ring to clean the resources from | 
|  | * | 
|  | * Free all receive software resources | 
|  | **/ | 
|  | void i40e_free_rx_resources(struct i40e_ring *rx_ring) | 
|  | { | 
|  | i40e_clean_rx_ring(rx_ring); | 
|  | kfree(rx_ring->rx_bi); | 
|  | rx_ring->rx_bi = NULL; | 
|  |  | 
|  | if (rx_ring->desc) { | 
|  | dma_free_coherent(rx_ring->dev, rx_ring->size, | 
|  | rx_ring->desc, rx_ring->dma); | 
|  | rx_ring->desc = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_setup_rx_descriptors - Allocate Rx descriptors | 
|  | * @rx_ring: Rx descriptor ring (for a specific queue) to setup | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) | 
|  | { | 
|  | struct device *dev = rx_ring->dev; | 
|  | int bi_size; | 
|  |  | 
|  | bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count; | 
|  | rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); | 
|  | if (!rx_ring->rx_bi) | 
|  | goto err; | 
|  |  | 
|  | /* Round up to nearest 4K */ | 
|  | rx_ring->size = ring_is_16byte_desc_enabled(rx_ring) | 
|  | ? rx_ring->count * sizeof(union i40e_16byte_rx_desc) | 
|  | : rx_ring->count * sizeof(union i40e_32byte_rx_desc); | 
|  | rx_ring->size = ALIGN(rx_ring->size, 4096); | 
|  | rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, | 
|  | &rx_ring->dma, GFP_KERNEL); | 
|  |  | 
|  | if (!rx_ring->desc) { | 
|  | dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", | 
|  | rx_ring->size); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | rx_ring->next_to_clean = 0; | 
|  | rx_ring->next_to_use = 0; | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | kfree(rx_ring->rx_bi); | 
|  | rx_ring->rx_bi = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_release_rx_desc - Store the new tail and head values | 
|  | * @rx_ring: ring to bump | 
|  | * @val: new head index | 
|  | **/ | 
|  | static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) | 
|  | { | 
|  | rx_ring->next_to_use = val; | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  | writel(val, rx_ring->tail); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_alloc_rx_buffers - Replace used receive buffers; packet split | 
|  | * @rx_ring: ring to place buffers on | 
|  | * @cleaned_count: number of buffers to replace | 
|  | **/ | 
|  | void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) | 
|  | { | 
|  | u16 i = rx_ring->next_to_use; | 
|  | union i40e_rx_desc *rx_desc; | 
|  | struct i40e_rx_buffer *bi; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* do nothing if no valid netdev defined */ | 
|  | if (!rx_ring->netdev || !cleaned_count) | 
|  | return; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | rx_desc = I40E_RX_DESC(rx_ring, i); | 
|  | bi = &rx_ring->rx_bi[i]; | 
|  | skb = bi->skb; | 
|  |  | 
|  | if (!skb) { | 
|  | skb = netdev_alloc_skb_ip_align(rx_ring->netdev, | 
|  | rx_ring->rx_buf_len); | 
|  | if (!skb) { | 
|  | rx_ring->rx_stats.alloc_buff_failed++; | 
|  | goto no_buffers; | 
|  | } | 
|  | /* initialize queue mapping */ | 
|  | skb_record_rx_queue(skb, rx_ring->queue_index); | 
|  | bi->skb = skb; | 
|  | } | 
|  |  | 
|  | if (!bi->dma) { | 
|  | bi->dma = dma_map_single(rx_ring->dev, | 
|  | skb->data, | 
|  | rx_ring->rx_buf_len, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(rx_ring->dev, bi->dma)) { | 
|  | rx_ring->rx_stats.alloc_buff_failed++; | 
|  | bi->dma = 0; | 
|  | goto no_buffers; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ring_is_ps_enabled(rx_ring)) { | 
|  | if (!bi->page) { | 
|  | bi->page = alloc_page(GFP_ATOMIC); | 
|  | if (!bi->page) { | 
|  | rx_ring->rx_stats.alloc_page_failed++; | 
|  | goto no_buffers; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!bi->page_dma) { | 
|  | /* use a half page if we're re-using */ | 
|  | bi->page_offset ^= PAGE_SIZE / 2; | 
|  | bi->page_dma = dma_map_page(rx_ring->dev, | 
|  | bi->page, | 
|  | bi->page_offset, | 
|  | PAGE_SIZE / 2, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(rx_ring->dev, | 
|  | bi->page_dma)) { | 
|  | rx_ring->rx_stats.alloc_page_failed++; | 
|  | bi->page_dma = 0; | 
|  | goto no_buffers; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Refresh the desc even if buffer_addrs didn't change | 
|  | * because each write-back erases this info. | 
|  | */ | 
|  | rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma); | 
|  | rx_desc->read.hdr_addr = cpu_to_le64(bi->dma); | 
|  | } else { | 
|  | rx_desc->read.pkt_addr = cpu_to_le64(bi->dma); | 
|  | rx_desc->read.hdr_addr = 0; | 
|  | } | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | no_buffers: | 
|  | if (rx_ring->next_to_use != i) | 
|  | i40e_release_rx_desc(rx_ring, i); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_receive_skb - Send a completed packet up the stack | 
|  | * @rx_ring:  rx ring in play | 
|  | * @skb: packet to send up | 
|  | * @vlan_tag: vlan tag for packet | 
|  | **/ | 
|  | static void i40e_receive_skb(struct i40e_ring *rx_ring, | 
|  | struct sk_buff *skb, u16 vlan_tag) | 
|  | { | 
|  | struct i40e_q_vector *q_vector = rx_ring->q_vector; | 
|  | struct i40e_vsi *vsi = rx_ring->vsi; | 
|  | u64 flags = vsi->back->flags; | 
|  |  | 
|  | if (vlan_tag & VLAN_VID_MASK) | 
|  | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); | 
|  |  | 
|  | if (flags & I40E_FLAG_IN_NETPOLL) | 
|  | netif_rx(skb); | 
|  | else | 
|  | napi_gro_receive(&q_vector->napi, skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum | 
|  | * @vsi: the VSI we care about | 
|  | * @skb: skb currently being received and modified | 
|  | * @rx_status: status value of last descriptor in packet | 
|  | * @rx_error: error value of last descriptor in packet | 
|  | * @rx_ptype: ptype value of last descriptor in packet | 
|  | **/ | 
|  | static inline void i40e_rx_checksum(struct i40e_vsi *vsi, | 
|  | struct sk_buff *skb, | 
|  | u32 rx_status, | 
|  | u32 rx_error, | 
|  | u16 rx_ptype) | 
|  | { | 
|  | bool ipv4_tunnel, ipv6_tunnel; | 
|  | __wsum rx_udp_csum; | 
|  | __sum16 csum; | 
|  | struct iphdr *iph; | 
|  |  | 
|  | ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) && | 
|  | (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4); | 
|  | ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) && | 
|  | (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4); | 
|  |  | 
|  | skb->encapsulation = ipv4_tunnel || ipv6_tunnel; | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  |  | 
|  | /* Rx csum enabled and ip headers found? */ | 
|  | if (!(vsi->netdev->features & NETIF_F_RXCSUM && | 
|  | rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT))) | 
|  | return; | 
|  |  | 
|  | /* likely incorrect csum if alternate IP extention headers found */ | 
|  | if (rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) | 
|  | return; | 
|  |  | 
|  | /* IP or L4 or outmost IP checksum error */ | 
|  | if (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) | | 
|  | (1 << I40E_RX_DESC_ERROR_L4E_SHIFT) | | 
|  | (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))) { | 
|  | vsi->back->hw_csum_rx_error++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ipv4_tunnel && | 
|  | !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) { | 
|  | /* If VXLAN traffic has an outer UDPv4 checksum we need to check | 
|  | * it in the driver, hardware does not do it for us. | 
|  | * Since L3L4P bit was set we assume a valid IHL value (>=5) | 
|  | * so the total length of IPv4 header is IHL*4 bytes | 
|  | */ | 
|  | skb->transport_header = skb->mac_header + | 
|  | sizeof(struct ethhdr) + | 
|  | (ip_hdr(skb)->ihl * 4); | 
|  |  | 
|  | /* Add 4 bytes for VLAN tagged packets */ | 
|  | skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) || | 
|  | skb->protocol == htons(ETH_P_8021AD)) | 
|  | ? VLAN_HLEN : 0; | 
|  |  | 
|  | rx_udp_csum = udp_csum(skb); | 
|  | iph = ip_hdr(skb); | 
|  | csum = csum_tcpudp_magic( | 
|  | iph->saddr, iph->daddr, | 
|  | (skb->len - skb_transport_offset(skb)), | 
|  | IPPROTO_UDP, rx_udp_csum); | 
|  |  | 
|  | if (udp_hdr(skb)->check != csum) { | 
|  | vsi->back->hw_csum_rx_error++; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_rx_hash - returns the hash value from the Rx descriptor | 
|  | * @ring: descriptor ring | 
|  | * @rx_desc: specific descriptor | 
|  | **/ | 
|  | static inline u32 i40e_rx_hash(struct i40e_ring *ring, | 
|  | union i40e_rx_desc *rx_desc) | 
|  | { | 
|  | const __le64 rss_mask = | 
|  | cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << | 
|  | I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); | 
|  |  | 
|  | if ((ring->netdev->features & NETIF_F_RXHASH) && | 
|  | (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) | 
|  | return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_clean_rx_irq - Reclaim resources after receive completes | 
|  | * @rx_ring:  rx ring to clean | 
|  | * @budget:   how many cleans we're allowed | 
|  | * | 
|  | * Returns true if there's any budget left (e.g. the clean is finished) | 
|  | **/ | 
|  | static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget) | 
|  | { | 
|  | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  | u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo; | 
|  | u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); | 
|  | const int current_node = numa_node_id(); | 
|  | struct i40e_vsi *vsi = rx_ring->vsi; | 
|  | u16 i = rx_ring->next_to_clean; | 
|  | union i40e_rx_desc *rx_desc; | 
|  | u32 rx_error, rx_status; | 
|  | u64 qword; | 
|  | u16 rx_ptype; | 
|  |  | 
|  | rx_desc = I40E_RX_DESC(rx_ring, i); | 
|  | qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); | 
|  | rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> | 
|  | I40E_RXD_QW1_STATUS_SHIFT; | 
|  |  | 
|  | while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) { | 
|  | union i40e_rx_desc *next_rxd; | 
|  | struct i40e_rx_buffer *rx_bi; | 
|  | struct sk_buff *skb; | 
|  | u16 vlan_tag; | 
|  | if (i40e_rx_is_programming_status(qword)) { | 
|  | i40e_clean_programming_status(rx_ring, rx_desc); | 
|  | I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd); | 
|  | goto next_desc; | 
|  | } | 
|  | rx_bi = &rx_ring->rx_bi[i]; | 
|  | skb = rx_bi->skb; | 
|  | prefetch(skb->data); | 
|  |  | 
|  | rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> | 
|  | I40E_RXD_QW1_LENGTH_PBUF_SHIFT; | 
|  | rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >> | 
|  | I40E_RXD_QW1_LENGTH_HBUF_SHIFT; | 
|  | rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >> | 
|  | I40E_RXD_QW1_LENGTH_SPH_SHIFT; | 
|  |  | 
|  | rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> | 
|  | I40E_RXD_QW1_ERROR_SHIFT; | 
|  | rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT); | 
|  | rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT); | 
|  |  | 
|  | rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> | 
|  | I40E_RXD_QW1_PTYPE_SHIFT; | 
|  | rx_bi->skb = NULL; | 
|  |  | 
|  | /* This memory barrier is needed to keep us from reading | 
|  | * any other fields out of the rx_desc until we know the | 
|  | * STATUS_DD bit is set | 
|  | */ | 
|  | rmb(); | 
|  |  | 
|  | /* Get the header and possibly the whole packet | 
|  | * If this is an skb from previous receive dma will be 0 | 
|  | */ | 
|  | if (rx_bi->dma) { | 
|  | u16 len; | 
|  |  | 
|  | if (rx_hbo) | 
|  | len = I40E_RX_HDR_SIZE; | 
|  | else if (rx_sph) | 
|  | len = rx_header_len; | 
|  | else if (rx_packet_len) | 
|  | len = rx_packet_len;   /* 1buf/no split found */ | 
|  | else | 
|  | len = rx_header_len;   /* split always mode */ | 
|  |  | 
|  | skb_put(skb, len); | 
|  | dma_unmap_single(rx_ring->dev, | 
|  | rx_bi->dma, | 
|  | rx_ring->rx_buf_len, | 
|  | DMA_FROM_DEVICE); | 
|  | rx_bi->dma = 0; | 
|  | } | 
|  |  | 
|  | /* Get the rest of the data if this was a header split */ | 
|  | if (ring_is_ps_enabled(rx_ring) && rx_packet_len) { | 
|  |  | 
|  | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, | 
|  | rx_bi->page, | 
|  | rx_bi->page_offset, | 
|  | rx_packet_len); | 
|  |  | 
|  | skb->len += rx_packet_len; | 
|  | skb->data_len += rx_packet_len; | 
|  | skb->truesize += rx_packet_len; | 
|  |  | 
|  | if ((page_count(rx_bi->page) == 1) && | 
|  | (page_to_nid(rx_bi->page) == current_node)) | 
|  | get_page(rx_bi->page); | 
|  | else | 
|  | rx_bi->page = NULL; | 
|  |  | 
|  | dma_unmap_page(rx_ring->dev, | 
|  | rx_bi->page_dma, | 
|  | PAGE_SIZE / 2, | 
|  | DMA_FROM_DEVICE); | 
|  | rx_bi->page_dma = 0; | 
|  | } | 
|  | I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd); | 
|  |  | 
|  | if (unlikely( | 
|  | !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) { | 
|  | struct i40e_rx_buffer *next_buffer; | 
|  |  | 
|  | next_buffer = &rx_ring->rx_bi[i]; | 
|  |  | 
|  | if (ring_is_ps_enabled(rx_ring)) { | 
|  | rx_bi->skb = next_buffer->skb; | 
|  | rx_bi->dma = next_buffer->dma; | 
|  | next_buffer->skb = skb; | 
|  | next_buffer->dma = 0; | 
|  | } | 
|  | rx_ring->rx_stats.non_eop_descs++; | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | /* ERR_MASK will only have valid bits if EOP set */ | 
|  | if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) { | 
|  | dev_kfree_skb_any(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | skb->rxhash = i40e_rx_hash(rx_ring, rx_desc); | 
|  | if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) { | 
|  | i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status & | 
|  | I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> | 
|  | I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT); | 
|  | rx_ring->last_rx_timestamp = jiffies; | 
|  | } | 
|  |  | 
|  | /* probably a little skewed due to removing CRC */ | 
|  | total_rx_bytes += skb->len; | 
|  | total_rx_packets++; | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, rx_ring->netdev); | 
|  |  | 
|  | i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype); | 
|  |  | 
|  | vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) | 
|  | ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) | 
|  | : 0; | 
|  | i40e_receive_skb(rx_ring, skb, vlan_tag); | 
|  |  | 
|  | rx_ring->netdev->last_rx = jiffies; | 
|  | budget--; | 
|  | next_desc: | 
|  | rx_desc->wb.qword1.status_error_len = 0; | 
|  | if (!budget) | 
|  | break; | 
|  |  | 
|  | cleaned_count++; | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (cleaned_count >= I40E_RX_BUFFER_WRITE) { | 
|  | i40e_alloc_rx_buffers(rx_ring, cleaned_count); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); | 
|  | rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> | 
|  | I40E_RXD_QW1_STATUS_SHIFT; | 
|  | } | 
|  |  | 
|  | rx_ring->next_to_clean = i; | 
|  | u64_stats_update_begin(&rx_ring->syncp); | 
|  | rx_ring->stats.packets += total_rx_packets; | 
|  | rx_ring->stats.bytes += total_rx_bytes; | 
|  | u64_stats_update_end(&rx_ring->syncp); | 
|  | rx_ring->q_vector->rx.total_packets += total_rx_packets; | 
|  | rx_ring->q_vector->rx.total_bytes += total_rx_bytes; | 
|  |  | 
|  | if (cleaned_count) | 
|  | i40e_alloc_rx_buffers(rx_ring, cleaned_count); | 
|  |  | 
|  | return budget > 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine | 
|  | * @napi: napi struct with our devices info in it | 
|  | * @budget: amount of work driver is allowed to do this pass, in packets | 
|  | * | 
|  | * This function will clean all queues associated with a q_vector. | 
|  | * | 
|  | * Returns the amount of work done | 
|  | **/ | 
|  | int i40e_napi_poll(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct i40e_q_vector *q_vector = | 
|  | container_of(napi, struct i40e_q_vector, napi); | 
|  | struct i40e_vsi *vsi = q_vector->vsi; | 
|  | struct i40e_ring *ring; | 
|  | bool clean_complete = true; | 
|  | int budget_per_ring; | 
|  |  | 
|  | if (test_bit(__I40E_DOWN, &vsi->state)) { | 
|  | napi_complete(napi); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Since the actual Tx work is minimal, we can give the Tx a larger | 
|  | * budget and be more aggressive about cleaning up the Tx descriptors. | 
|  | */ | 
|  | i40e_for_each_ring(ring, q_vector->tx) | 
|  | clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit); | 
|  |  | 
|  | /* We attempt to distribute budget to each Rx queue fairly, but don't | 
|  | * allow the budget to go below 1 because that would exit polling early. | 
|  | */ | 
|  | budget_per_ring = max(budget/q_vector->num_ringpairs, 1); | 
|  |  | 
|  | i40e_for_each_ring(ring, q_vector->rx) | 
|  | clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring); | 
|  |  | 
|  | /* If work not completed, return budget and polling will return */ | 
|  | if (!clean_complete) | 
|  | return budget; | 
|  |  | 
|  | /* Work is done so exit the polling mode and re-enable the interrupt */ | 
|  | napi_complete(napi); | 
|  | if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) || | 
|  | ITR_IS_DYNAMIC(vsi->tx_itr_setting)) | 
|  | i40e_update_dynamic_itr(q_vector); | 
|  |  | 
|  | if (!test_bit(__I40E_DOWN, &vsi->state)) { | 
|  | if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { | 
|  | i40e_irq_dynamic_enable(vsi, | 
|  | q_vector->v_idx + vsi->base_vector); | 
|  | } else { | 
|  | struct i40e_hw *hw = &vsi->back->hw; | 
|  | /* We re-enable the queue 0 cause, but | 
|  | * don't worry about dynamic_enable | 
|  | * because we left it on for the other | 
|  | * possible interrupts during napi | 
|  | */ | 
|  | u32 qval = rd32(hw, I40E_QINT_RQCTL(0)); | 
|  | qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK; | 
|  | wr32(hw, I40E_QINT_RQCTL(0), qval); | 
|  |  | 
|  | qval = rd32(hw, I40E_QINT_TQCTL(0)); | 
|  | qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK; | 
|  | wr32(hw, I40E_QINT_TQCTL(0), qval); | 
|  |  | 
|  | i40e_irq_dynamic_enable_icr0(vsi->back); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_atr - Add a Flow Director ATR filter | 
|  | * @tx_ring:  ring to add programming descriptor to | 
|  | * @skb:      send buffer | 
|  | * @flags:    send flags | 
|  | * @protocol: wire protocol | 
|  | **/ | 
|  | static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, | 
|  | u32 flags, __be16 protocol) | 
|  | { | 
|  | struct i40e_filter_program_desc *fdir_desc; | 
|  | struct i40e_pf *pf = tx_ring->vsi->back; | 
|  | union { | 
|  | unsigned char *network; | 
|  | struct iphdr *ipv4; | 
|  | struct ipv6hdr *ipv6; | 
|  | } hdr; | 
|  | struct tcphdr *th; | 
|  | unsigned int hlen; | 
|  | u32 flex_ptype, dtype_cmd; | 
|  | u16 i; | 
|  |  | 
|  | /* make sure ATR is enabled */ | 
|  | if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) | 
|  | return; | 
|  |  | 
|  | /* if sampling is disabled do nothing */ | 
|  | if (!tx_ring->atr_sample_rate) | 
|  | return; | 
|  |  | 
|  | tx_ring->atr_count++; | 
|  |  | 
|  | /* snag network header to get L4 type and address */ | 
|  | hdr.network = skb_network_header(skb); | 
|  |  | 
|  | /* Currently only IPv4/IPv6 with TCP is supported */ | 
|  | if (protocol == htons(ETH_P_IP)) { | 
|  | if (hdr.ipv4->protocol != IPPROTO_TCP) | 
|  | return; | 
|  |  | 
|  | /* access ihl as a u8 to avoid unaligned access on ia64 */ | 
|  | hlen = (hdr.network[0] & 0x0F) << 2; | 
|  | } else if (protocol == htons(ETH_P_IPV6)) { | 
|  | if (hdr.ipv6->nexthdr != IPPROTO_TCP) | 
|  | return; | 
|  |  | 
|  | hlen = sizeof(struct ipv6hdr); | 
|  | } else { | 
|  | return; | 
|  | } | 
|  |  | 
|  | th = (struct tcphdr *)(hdr.network + hlen); | 
|  |  | 
|  | /* sample on all syn/fin packets or once every atr sample rate */ | 
|  | if (!th->fin && !th->syn && (tx_ring->atr_count < tx_ring->atr_sample_rate)) | 
|  | return; | 
|  |  | 
|  | tx_ring->atr_count = 0; | 
|  |  | 
|  | /* grab the next descriptor */ | 
|  | i = tx_ring->next_to_use; | 
|  | fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); | 
|  |  | 
|  | i++; | 
|  | tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; | 
|  |  | 
|  | flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & | 
|  | I40E_TXD_FLTR_QW0_QINDEX_MASK; | 
|  | flex_ptype |= (protocol == htons(ETH_P_IP)) ? | 
|  | (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << | 
|  | I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : | 
|  | (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << | 
|  | I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); | 
|  |  | 
|  | flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; | 
|  |  | 
|  | dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; | 
|  |  | 
|  | dtype_cmd |= th->fin ? | 
|  | (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << | 
|  | I40E_TXD_FLTR_QW1_PCMD_SHIFT) : | 
|  | (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << | 
|  | I40E_TXD_FLTR_QW1_PCMD_SHIFT); | 
|  |  | 
|  | dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << | 
|  | I40E_TXD_FLTR_QW1_DEST_SHIFT; | 
|  |  | 
|  | dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << | 
|  | I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; | 
|  |  | 
|  | fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); | 
|  | fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW | 
|  | * @skb:     send buffer | 
|  | * @tx_ring: ring to send buffer on | 
|  | * @flags:   the tx flags to be set | 
|  | * | 
|  | * Checks the skb and set up correspondingly several generic transmit flags | 
|  | * related to VLAN tagging for the HW, such as VLAN, DCB, etc. | 
|  | * | 
|  | * Returns error code indicate the frame should be dropped upon error and the | 
|  | * otherwise  returns 0 to indicate the flags has been set properly. | 
|  | **/ | 
|  | static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, | 
|  | struct i40e_ring *tx_ring, | 
|  | u32 *flags) | 
|  | { | 
|  | __be16 protocol = skb->protocol; | 
|  | u32  tx_flags = 0; | 
|  |  | 
|  | /* if we have a HW VLAN tag being added, default to the HW one */ | 
|  | if (vlan_tx_tag_present(skb)) { | 
|  | tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; | 
|  | tx_flags |= I40E_TX_FLAGS_HW_VLAN; | 
|  | /* else if it is a SW VLAN, check the next protocol and store the tag */ | 
|  | } else if (protocol == htons(ETH_P_8021Q)) { | 
|  | struct vlan_hdr *vhdr, _vhdr; | 
|  | vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); | 
|  | if (!vhdr) | 
|  | return -EINVAL; | 
|  |  | 
|  | protocol = vhdr->h_vlan_encapsulated_proto; | 
|  | tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; | 
|  | tx_flags |= I40E_TX_FLAGS_SW_VLAN; | 
|  | } | 
|  |  | 
|  | /* Insert 802.1p priority into VLAN header */ | 
|  | if ((tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED) && | 
|  | ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || | 
|  | (skb->priority != TC_PRIO_CONTROL))) { | 
|  | tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; | 
|  | tx_flags |= (skb->priority & 0x7) << | 
|  | I40E_TX_FLAGS_VLAN_PRIO_SHIFT; | 
|  | if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { | 
|  | struct vlan_ethhdr *vhdr; | 
|  | if (skb_header_cloned(skb) && | 
|  | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | 
|  | return -ENOMEM; | 
|  | vhdr = (struct vlan_ethhdr *)skb->data; | 
|  | vhdr->h_vlan_TCI = htons(tx_flags >> | 
|  | I40E_TX_FLAGS_VLAN_SHIFT); | 
|  | } else { | 
|  | tx_flags |= I40E_TX_FLAGS_HW_VLAN; | 
|  | } | 
|  | } | 
|  | *flags = tx_flags; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_tso - set up the tso context descriptor | 
|  | * @tx_ring:  ptr to the ring to send | 
|  | * @skb:      ptr to the skb we're sending | 
|  | * @tx_flags: the collected send information | 
|  | * @protocol: the send protocol | 
|  | * @hdr_len:  ptr to the size of the packet header | 
|  | * @cd_tunneling: ptr to context descriptor bits | 
|  | * | 
|  | * Returns 0 if no TSO can happen, 1 if tso is going, or error | 
|  | **/ | 
|  | static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb, | 
|  | u32 tx_flags, __be16 protocol, u8 *hdr_len, | 
|  | u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling) | 
|  | { | 
|  | u32 cd_cmd, cd_tso_len, cd_mss; | 
|  | struct tcphdr *tcph; | 
|  | struct iphdr *iph; | 
|  | u32 l4len; | 
|  | int err; | 
|  | struct ipv6hdr *ipv6h; | 
|  |  | 
|  | if (!skb_is_gso(skb)) | 
|  | return 0; | 
|  |  | 
|  | if (skb_header_cloned(skb)) { | 
|  | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (protocol == htons(ETH_P_IP)) { | 
|  | iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); | 
|  | tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb); | 
|  | iph->tot_len = 0; | 
|  | iph->check = 0; | 
|  | tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, | 
|  | 0, IPPROTO_TCP, 0); | 
|  | } else if (skb_is_gso_v6(skb)) { | 
|  |  | 
|  | ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) | 
|  | : ipv6_hdr(skb); | 
|  | tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb); | 
|  | ipv6h->payload_len = 0; | 
|  | tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, | 
|  | 0, IPPROTO_TCP, 0); | 
|  | } | 
|  |  | 
|  | l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); | 
|  | *hdr_len = (skb->encapsulation | 
|  | ? (skb_inner_transport_header(skb) - skb->data) | 
|  | : skb_transport_offset(skb)) + l4len; | 
|  |  | 
|  | /* find the field values */ | 
|  | cd_cmd = I40E_TX_CTX_DESC_TSO; | 
|  | cd_tso_len = skb->len - *hdr_len; | 
|  | cd_mss = skb_shinfo(skb)->gso_size; | 
|  | *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | | 
|  | ((u64)cd_tso_len << | 
|  | I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | | 
|  | ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_tsyn - set up the tsyn context descriptor | 
|  | * @tx_ring:  ptr to the ring to send | 
|  | * @skb:      ptr to the skb we're sending | 
|  | * @tx_flags: the collected send information | 
|  | * | 
|  | * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen | 
|  | **/ | 
|  | static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, | 
|  | u32 tx_flags, u64 *cd_type_cmd_tso_mss) | 
|  | { | 
|  | struct i40e_pf *pf; | 
|  |  | 
|  | if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) | 
|  | return 0; | 
|  |  | 
|  | /* Tx timestamps cannot be sampled when doing TSO */ | 
|  | if (tx_flags & I40E_TX_FLAGS_TSO) | 
|  | return 0; | 
|  |  | 
|  | /* only timestamp the outbound packet if the user has requested it and | 
|  | * we are not already transmitting a packet to be timestamped | 
|  | */ | 
|  | pf = i40e_netdev_to_pf(tx_ring->netdev); | 
|  | if (pf->ptp_tx && !pf->ptp_tx_skb) { | 
|  | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; | 
|  | pf->ptp_tx_skb = skb_get(skb); | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << | 
|  | I40E_TXD_CTX_QW1_CMD_SHIFT; | 
|  |  | 
|  | pf->ptp_tx_start = jiffies; | 
|  | schedule_work(&pf->ptp_tx_work); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_tx_enable_csum - Enable Tx checksum offloads | 
|  | * @skb: send buffer | 
|  | * @tx_flags: Tx flags currently set | 
|  | * @td_cmd: Tx descriptor command bits to set | 
|  | * @td_offset: Tx descriptor header offsets to set | 
|  | * @cd_tunneling: ptr to context desc bits | 
|  | **/ | 
|  | static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags, | 
|  | u32 *td_cmd, u32 *td_offset, | 
|  | struct i40e_ring *tx_ring, | 
|  | u32 *cd_tunneling) | 
|  | { | 
|  | struct ipv6hdr *this_ipv6_hdr; | 
|  | unsigned int this_tcp_hdrlen; | 
|  | struct iphdr *this_ip_hdr; | 
|  | u32 network_hdr_len; | 
|  | u8 l4_hdr = 0; | 
|  |  | 
|  | if (skb->encapsulation) { | 
|  | network_hdr_len = skb_inner_network_header_len(skb); | 
|  | this_ip_hdr = inner_ip_hdr(skb); | 
|  | this_ipv6_hdr = inner_ipv6_hdr(skb); | 
|  | this_tcp_hdrlen = inner_tcp_hdrlen(skb); | 
|  |  | 
|  | if (tx_flags & I40E_TX_FLAGS_IPV4) { | 
|  |  | 
|  | if (tx_flags & I40E_TX_FLAGS_TSO) { | 
|  | *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4; | 
|  | ip_hdr(skb)->check = 0; | 
|  | } else { | 
|  | *cd_tunneling |= | 
|  | I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; | 
|  | } | 
|  | } else if (tx_flags & I40E_TX_FLAGS_IPV6) { | 
|  | if (tx_flags & I40E_TX_FLAGS_TSO) { | 
|  | *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6; | 
|  | ip_hdr(skb)->check = 0; | 
|  | } else { | 
|  | *cd_tunneling |= | 
|  | I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now set the ctx descriptor fields */ | 
|  | *cd_tunneling |= (skb_network_header_len(skb) >> 2) << | 
|  | I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT | | 
|  | I40E_TXD_CTX_UDP_TUNNELING            | | 
|  | ((skb_inner_network_offset(skb) - | 
|  | skb_transport_offset(skb)) >> 1) << | 
|  | I40E_TXD_CTX_QW0_NATLEN_SHIFT; | 
|  |  | 
|  | } else { | 
|  | network_hdr_len = skb_network_header_len(skb); | 
|  | this_ip_hdr = ip_hdr(skb); | 
|  | this_ipv6_hdr = ipv6_hdr(skb); | 
|  | this_tcp_hdrlen = tcp_hdrlen(skb); | 
|  | } | 
|  |  | 
|  | /* Enable IP checksum offloads */ | 
|  | if (tx_flags & I40E_TX_FLAGS_IPV4) { | 
|  | l4_hdr = this_ip_hdr->protocol; | 
|  | /* the stack computes the IP header already, the only time we | 
|  | * need the hardware to recompute it is in the case of TSO. | 
|  | */ | 
|  | if (tx_flags & I40E_TX_FLAGS_TSO) { | 
|  | *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM; | 
|  | this_ip_hdr->check = 0; | 
|  | } else { | 
|  | *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4; | 
|  | } | 
|  | /* Now set the td_offset for IP header length */ | 
|  | *td_offset = (network_hdr_len >> 2) << | 
|  | I40E_TX_DESC_LENGTH_IPLEN_SHIFT; | 
|  | } else if (tx_flags & I40E_TX_FLAGS_IPV6) { | 
|  | l4_hdr = this_ipv6_hdr->nexthdr; | 
|  | *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; | 
|  | /* Now set the td_offset for IP header length */ | 
|  | *td_offset = (network_hdr_len >> 2) << | 
|  | I40E_TX_DESC_LENGTH_IPLEN_SHIFT; | 
|  | } | 
|  | /* words in MACLEN + dwords in IPLEN + dwords in L4Len */ | 
|  | *td_offset |= (skb_network_offset(skb) >> 1) << | 
|  | I40E_TX_DESC_LENGTH_MACLEN_SHIFT; | 
|  |  | 
|  | /* Enable L4 checksum offloads */ | 
|  | switch (l4_hdr) { | 
|  | case IPPROTO_TCP: | 
|  | /* enable checksum offloads */ | 
|  | *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; | 
|  | *td_offset |= (this_tcp_hdrlen >> 2) << | 
|  | I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; | 
|  | break; | 
|  | case IPPROTO_SCTP: | 
|  | /* enable SCTP checksum offload */ | 
|  | *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; | 
|  | *td_offset |= (sizeof(struct sctphdr) >> 2) << | 
|  | I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; | 
|  | break; | 
|  | case IPPROTO_UDP: | 
|  | /* enable UDP checksum offload */ | 
|  | *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; | 
|  | *td_offset |= (sizeof(struct udphdr) >> 2) << | 
|  | I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_create_tx_ctx Build the Tx context descriptor | 
|  | * @tx_ring:  ring to create the descriptor on | 
|  | * @cd_type_cmd_tso_mss: Quad Word 1 | 
|  | * @cd_tunneling: Quad Word 0 - bits 0-31 | 
|  | * @cd_l2tag2: Quad Word 0 - bits 32-63 | 
|  | **/ | 
|  | static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, | 
|  | const u64 cd_type_cmd_tso_mss, | 
|  | const u32 cd_tunneling, const u32 cd_l2tag2) | 
|  | { | 
|  | struct i40e_tx_context_desc *context_desc; | 
|  | int i = tx_ring->next_to_use; | 
|  |  | 
|  | if (!cd_type_cmd_tso_mss && !cd_tunneling && !cd_l2tag2) | 
|  | return; | 
|  |  | 
|  | /* grab the next descriptor */ | 
|  | context_desc = I40E_TX_CTXTDESC(tx_ring, i); | 
|  |  | 
|  | i++; | 
|  | tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; | 
|  |  | 
|  | /* cpu_to_le32 and assign to struct fields */ | 
|  | context_desc->tunneling_params = cpu_to_le32(cd_tunneling); | 
|  | context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); | 
|  | context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_tx_map - Build the Tx descriptor | 
|  | * @tx_ring:  ring to send buffer on | 
|  | * @skb:      send buffer | 
|  | * @first:    first buffer info buffer to use | 
|  | * @tx_flags: collected send information | 
|  | * @hdr_len:  size of the packet header | 
|  | * @td_cmd:   the command field in the descriptor | 
|  | * @td_offset: offset for checksum or crc | 
|  | **/ | 
|  | static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, | 
|  | struct i40e_tx_buffer *first, u32 tx_flags, | 
|  | const u8 hdr_len, u32 td_cmd, u32 td_offset) | 
|  | { | 
|  | unsigned int data_len = skb->data_len; | 
|  | unsigned int size = skb_headlen(skb); | 
|  | struct skb_frag_struct *frag; | 
|  | struct i40e_tx_buffer *tx_bi; | 
|  | struct i40e_tx_desc *tx_desc; | 
|  | u16 i = tx_ring->next_to_use; | 
|  | u32 td_tag = 0; | 
|  | dma_addr_t dma; | 
|  | u16 gso_segs; | 
|  |  | 
|  | if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { | 
|  | td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; | 
|  | td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> | 
|  | I40E_TX_FLAGS_VLAN_SHIFT; | 
|  | } | 
|  |  | 
|  | if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) | 
|  | gso_segs = skb_shinfo(skb)->gso_segs; | 
|  | else | 
|  | gso_segs = 1; | 
|  |  | 
|  | /* multiply data chunks by size of headers */ | 
|  | first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len); | 
|  | first->gso_segs = gso_segs; | 
|  | first->skb = skb; | 
|  | first->tx_flags = tx_flags; | 
|  |  | 
|  | dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); | 
|  |  | 
|  | tx_desc = I40E_TX_DESC(tx_ring, i); | 
|  | tx_bi = first; | 
|  |  | 
|  | for (frag = &skb_shinfo(skb)->frags[0];; frag++) { | 
|  | if (dma_mapping_error(tx_ring->dev, dma)) | 
|  | goto dma_error; | 
|  |  | 
|  | /* record length, and DMA address */ | 
|  | dma_unmap_len_set(tx_bi, len, size); | 
|  | dma_unmap_addr_set(tx_bi, dma, dma); | 
|  |  | 
|  | tx_desc->buffer_addr = cpu_to_le64(dma); | 
|  |  | 
|  | while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { | 
|  | tx_desc->cmd_type_offset_bsz = | 
|  | build_ctob(td_cmd, td_offset, | 
|  | I40E_MAX_DATA_PER_TXD, td_tag); | 
|  |  | 
|  | tx_desc++; | 
|  | i++; | 
|  | if (i == tx_ring->count) { | 
|  | tx_desc = I40E_TX_DESC(tx_ring, 0); | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | dma += I40E_MAX_DATA_PER_TXD; | 
|  | size -= I40E_MAX_DATA_PER_TXD; | 
|  |  | 
|  | tx_desc->buffer_addr = cpu_to_le64(dma); | 
|  | } | 
|  |  | 
|  | if (likely(!data_len)) | 
|  | break; | 
|  |  | 
|  | tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, | 
|  | size, td_tag); | 
|  |  | 
|  | tx_desc++; | 
|  | i++; | 
|  | if (i == tx_ring->count) { | 
|  | tx_desc = I40E_TX_DESC(tx_ring, 0); | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | size = skb_frag_size(frag); | 
|  | data_len -= size; | 
|  |  | 
|  | dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, | 
|  | DMA_TO_DEVICE); | 
|  |  | 
|  | tx_bi = &tx_ring->tx_bi[i]; | 
|  | } | 
|  |  | 
|  | tx_desc->cmd_type_offset_bsz = | 
|  | build_ctob(td_cmd, td_offset, size, td_tag) | | 
|  | cpu_to_le64((u64)I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT); | 
|  |  | 
|  | netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev, | 
|  | tx_ring->queue_index), | 
|  | first->bytecount); | 
|  |  | 
|  | /* set the timestamp */ | 
|  | first->time_stamp = jiffies; | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  |  | 
|  | /* set next_to_watch value indicating a packet is present */ | 
|  | first->next_to_watch = tx_desc; | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  |  | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | /* notify HW of packet */ | 
|  | writel(i, tx_ring->tail); | 
|  |  | 
|  | return; | 
|  |  | 
|  | dma_error: | 
|  | dev_info(tx_ring->dev, "TX DMA map failed\n"); | 
|  |  | 
|  | /* clear dma mappings for failed tx_bi map */ | 
|  | for (;;) { | 
|  | tx_bi = &tx_ring->tx_bi[i]; | 
|  | i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); | 
|  | if (tx_bi == first) | 
|  | break; | 
|  | if (i == 0) | 
|  | i = tx_ring->count; | 
|  | i--; | 
|  | } | 
|  |  | 
|  | tx_ring->next_to_use = i; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions | 
|  | * @tx_ring: the ring to be checked | 
|  | * @size:    the size buffer we want to assure is available | 
|  | * | 
|  | * Returns -EBUSY if a stop is needed, else 0 | 
|  | **/ | 
|  | static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) | 
|  | { | 
|  | netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); | 
|  | /* Memory barrier before checking head and tail */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* Check again in a case another CPU has just made room available. */ | 
|  | if (likely(I40E_DESC_UNUSED(tx_ring) < size)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* A reprieve! - use start_queue because it doesn't call schedule */ | 
|  | netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); | 
|  | ++tx_ring->tx_stats.restart_queue; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_maybe_stop_tx - 1st level check for tx stop conditions | 
|  | * @tx_ring: the ring to be checked | 
|  | * @size:    the size buffer we want to assure is available | 
|  | * | 
|  | * Returns 0 if stop is not needed | 
|  | **/ | 
|  | static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) | 
|  | { | 
|  | if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) | 
|  | return 0; | 
|  | return __i40e_maybe_stop_tx(tx_ring, size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_xmit_descriptor_count - calculate number of tx descriptors needed | 
|  | * @skb:     send buffer | 
|  | * @tx_ring: ring to send buffer on | 
|  | * | 
|  | * Returns number of data descriptors needed for this skb. Returns 0 to indicate | 
|  | * there is not enough descriptors available in this ring since we need at least | 
|  | * one descriptor. | 
|  | **/ | 
|  | static int i40e_xmit_descriptor_count(struct sk_buff *skb, | 
|  | struct i40e_ring *tx_ring) | 
|  | { | 
|  | #if PAGE_SIZE > I40E_MAX_DATA_PER_TXD | 
|  | unsigned int f; | 
|  | #endif | 
|  | int count = 0; | 
|  |  | 
|  | /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, | 
|  | *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, | 
|  | *       + 2 desc gap to keep tail from touching head, | 
|  | *       + 1 desc for context descriptor, | 
|  | * otherwise try next time | 
|  | */ | 
|  | #if PAGE_SIZE > I40E_MAX_DATA_PER_TXD | 
|  | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) | 
|  | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); | 
|  | #else | 
|  | count += skb_shinfo(skb)->nr_frags; | 
|  | #endif | 
|  | count += TXD_USE_COUNT(skb_headlen(skb)); | 
|  | if (i40e_maybe_stop_tx(tx_ring, count + 3)) { | 
|  | tx_ring->tx_stats.tx_busy++; | 
|  | return 0; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_xmit_frame_ring - Sends buffer on Tx ring | 
|  | * @skb:     send buffer | 
|  | * @tx_ring: ring to send buffer on | 
|  | * | 
|  | * Returns NETDEV_TX_OK if sent, else an error code | 
|  | **/ | 
|  | static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, | 
|  | struct i40e_ring *tx_ring) | 
|  | { | 
|  | u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; | 
|  | u32 cd_tunneling = 0, cd_l2tag2 = 0; | 
|  | struct i40e_tx_buffer *first; | 
|  | u32 td_offset = 0; | 
|  | u32 tx_flags = 0; | 
|  | __be16 protocol; | 
|  | u32 td_cmd = 0; | 
|  | u8 hdr_len = 0; | 
|  | int tsyn; | 
|  | int tso; | 
|  | if (0 == i40e_xmit_descriptor_count(skb, tx_ring)) | 
|  | return NETDEV_TX_BUSY; | 
|  |  | 
|  | /* prepare the xmit flags */ | 
|  | if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) | 
|  | goto out_drop; | 
|  |  | 
|  | /* obtain protocol of skb */ | 
|  | protocol = skb->protocol; | 
|  |  | 
|  | /* record the location of the first descriptor for this packet */ | 
|  | first = &tx_ring->tx_bi[tx_ring->next_to_use]; | 
|  |  | 
|  | /* setup IPv4/IPv6 offloads */ | 
|  | if (protocol == htons(ETH_P_IP)) | 
|  | tx_flags |= I40E_TX_FLAGS_IPV4; | 
|  | else if (protocol == htons(ETH_P_IPV6)) | 
|  | tx_flags |= I40E_TX_FLAGS_IPV6; | 
|  |  | 
|  | tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len, | 
|  | &cd_type_cmd_tso_mss, &cd_tunneling); | 
|  |  | 
|  | if (tso < 0) | 
|  | goto out_drop; | 
|  | else if (tso) | 
|  | tx_flags |= I40E_TX_FLAGS_TSO; | 
|  |  | 
|  | skb_tx_timestamp(skb); | 
|  |  | 
|  | tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); | 
|  |  | 
|  | if (tsyn) | 
|  | tx_flags |= I40E_TX_FLAGS_TSYN; | 
|  |  | 
|  | /* always enable CRC insertion offload */ | 
|  | td_cmd |= I40E_TX_DESC_CMD_ICRC; | 
|  |  | 
|  | /* Always offload the checksum, since it's in the data descriptor */ | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | tx_flags |= I40E_TX_FLAGS_CSUM; | 
|  |  | 
|  | i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset, | 
|  | tx_ring, &cd_tunneling); | 
|  | } | 
|  |  | 
|  | i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, | 
|  | cd_tunneling, cd_l2tag2); | 
|  |  | 
|  | /* Add Flow Director ATR if it's enabled. | 
|  | * | 
|  | * NOTE: this must always be directly before the data descriptor. | 
|  | */ | 
|  | i40e_atr(tx_ring, skb, tx_flags, protocol); | 
|  |  | 
|  | i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, | 
|  | td_cmd, td_offset); | 
|  |  | 
|  | i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  |  | 
|  | out_drop: | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer | 
|  | * @skb:    send buffer | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns NETDEV_TX_OK if sent, else an error code | 
|  | **/ | 
|  | netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | 
|  | { | 
|  | struct i40e_netdev_priv *np = netdev_priv(netdev); | 
|  | struct i40e_vsi *vsi = np->vsi; | 
|  | struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; | 
|  |  | 
|  | /* hardware can't handle really short frames, hardware padding works | 
|  | * beyond this point | 
|  | */ | 
|  | if (unlikely(skb->len < I40E_MIN_TX_LEN)) { | 
|  | if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len)) | 
|  | return NETDEV_TX_OK; | 
|  | skb->len = I40E_MIN_TX_LEN; | 
|  | skb_set_tail_pointer(skb, I40E_MIN_TX_LEN); | 
|  | } | 
|  |  | 
|  | return i40e_xmit_frame_ring(skb, tx_ring); | 
|  | } |