|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle | 
|  | * Copyright (C) 1995, 1996 Paul M. Antoine | 
|  | * Copyright (C) 1998 Ulf Carlsson | 
|  | * Copyright (C) 1999 Silicon Graphics, Inc. | 
|  | * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com | 
|  | * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki | 
|  | * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved. | 
|  | * Copyright (C) 2014, Imagination Technologies Ltd. | 
|  | */ | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/context_tracking.h> | 
|  | #include <linux/cpu_pm.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/kgdb.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/kdb.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/perf_event.h> | 
|  |  | 
|  | #include <asm/bootinfo.h> | 
|  | #include <asm/branch.h> | 
|  | #include <asm/break.h> | 
|  | #include <asm/cop2.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/cpu-type.h> | 
|  | #include <asm/dsp.h> | 
|  | #include <asm/fpu.h> | 
|  | #include <asm/fpu_emulator.h> | 
|  | #include <asm/idle.h> | 
|  | #include <asm/mips-r2-to-r6-emul.h> | 
|  | #include <asm/mipsregs.h> | 
|  | #include <asm/mipsmtregs.h> | 
|  | #include <asm/module.h> | 
|  | #include <asm/msa.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/tlbdebug.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/watch.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/types.h> | 
|  | #include <asm/stacktrace.h> | 
|  | #include <asm/uasm.h> | 
|  |  | 
|  | extern void check_wait(void); | 
|  | extern asmlinkage void rollback_handle_int(void); | 
|  | extern asmlinkage void handle_int(void); | 
|  | extern u32 handle_tlbl[]; | 
|  | extern u32 handle_tlbs[]; | 
|  | extern u32 handle_tlbm[]; | 
|  | extern asmlinkage void handle_adel(void); | 
|  | extern asmlinkage void handle_ades(void); | 
|  | extern asmlinkage void handle_ibe(void); | 
|  | extern asmlinkage void handle_dbe(void); | 
|  | extern asmlinkage void handle_sys(void); | 
|  | extern asmlinkage void handle_bp(void); | 
|  | extern asmlinkage void handle_ri(void); | 
|  | extern asmlinkage void handle_ri_rdhwr_vivt(void); | 
|  | extern asmlinkage void handle_ri_rdhwr(void); | 
|  | extern asmlinkage void handle_cpu(void); | 
|  | extern asmlinkage void handle_ov(void); | 
|  | extern asmlinkage void handle_tr(void); | 
|  | extern asmlinkage void handle_msa_fpe(void); | 
|  | extern asmlinkage void handle_fpe(void); | 
|  | extern asmlinkage void handle_ftlb(void); | 
|  | extern asmlinkage void handle_msa(void); | 
|  | extern asmlinkage void handle_mdmx(void); | 
|  | extern asmlinkage void handle_watch(void); | 
|  | extern asmlinkage void handle_mt(void); | 
|  | extern asmlinkage void handle_dsp(void); | 
|  | extern asmlinkage void handle_mcheck(void); | 
|  | extern asmlinkage void handle_reserved(void); | 
|  | extern void tlb_do_page_fault_0(void); | 
|  |  | 
|  | void (*board_be_init)(void); | 
|  | int (*board_be_handler)(struct pt_regs *regs, int is_fixup); | 
|  | void (*board_nmi_handler_setup)(void); | 
|  | void (*board_ejtag_handler_setup)(void); | 
|  | void (*board_bind_eic_interrupt)(int irq, int regset); | 
|  | void (*board_ebase_setup)(void); | 
|  | void(*board_cache_error_setup)(void); | 
|  |  | 
|  | static void show_raw_backtrace(unsigned long reg29) | 
|  | { | 
|  | unsigned long *sp = (unsigned long *)(reg29 & ~3); | 
|  | unsigned long addr; | 
|  |  | 
|  | printk("Call Trace:"); | 
|  | #ifdef CONFIG_KALLSYMS | 
|  | printk("\n"); | 
|  | #endif | 
|  | while (!kstack_end(sp)) { | 
|  | unsigned long __user *p = | 
|  | (unsigned long __user *)(unsigned long)sp++; | 
|  | if (__get_user(addr, p)) { | 
|  | printk(" (Bad stack address)"); | 
|  | break; | 
|  | } | 
|  | if (__kernel_text_address(addr)) | 
|  | print_ip_sym(addr); | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KALLSYMS | 
|  | int raw_show_trace; | 
|  | static int __init set_raw_show_trace(char *str) | 
|  | { | 
|  | raw_show_trace = 1; | 
|  | return 1; | 
|  | } | 
|  | __setup("raw_show_trace", set_raw_show_trace); | 
|  | #endif | 
|  |  | 
|  | static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) | 
|  | { | 
|  | unsigned long sp = regs->regs[29]; | 
|  | unsigned long ra = regs->regs[31]; | 
|  | unsigned long pc = regs->cp0_epc; | 
|  |  | 
|  | if (!task) | 
|  | task = current; | 
|  |  | 
|  | if (raw_show_trace || !__kernel_text_address(pc)) { | 
|  | show_raw_backtrace(sp); | 
|  | return; | 
|  | } | 
|  | printk("Call Trace:\n"); | 
|  | do { | 
|  | print_ip_sym(pc); | 
|  | pc = unwind_stack(task, &sp, pc, &ra); | 
|  | } while (pc); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine abuses get_user()/put_user() to reference pointers | 
|  | * with at least a bit of error checking ... | 
|  | */ | 
|  | static void show_stacktrace(struct task_struct *task, | 
|  | const struct pt_regs *regs) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | long stackdata; | 
|  | int i; | 
|  | unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; | 
|  |  | 
|  | printk("Stack :"); | 
|  | i = 0; | 
|  | while ((unsigned long) sp & (PAGE_SIZE - 1)) { | 
|  | if (i && ((i % (64 / field)) == 0)) | 
|  | printk("\n	 "); | 
|  | if (i > 39) { | 
|  | printk(" ..."); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (__get_user(stackdata, sp++)) { | 
|  | printk(" (Bad stack address)"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | printk(" %0*lx", field, stackdata); | 
|  | i++; | 
|  | } | 
|  | printk("\n"); | 
|  | show_backtrace(task, regs); | 
|  | } | 
|  |  | 
|  | void show_stack(struct task_struct *task, unsigned long *sp) | 
|  | { | 
|  | struct pt_regs regs; | 
|  | mm_segment_t old_fs = get_fs(); | 
|  | if (sp) { | 
|  | regs.regs[29] = (unsigned long)sp; | 
|  | regs.regs[31] = 0; | 
|  | regs.cp0_epc = 0; | 
|  | } else { | 
|  | if (task && task != current) { | 
|  | regs.regs[29] = task->thread.reg29; | 
|  | regs.regs[31] = 0; | 
|  | regs.cp0_epc = task->thread.reg31; | 
|  | #ifdef CONFIG_KGDB_KDB | 
|  | } else if (atomic_read(&kgdb_active) != -1 && | 
|  | kdb_current_regs) { | 
|  | memcpy(®s, kdb_current_regs, sizeof(regs)); | 
|  | #endif /* CONFIG_KGDB_KDB */ | 
|  | } else { | 
|  | prepare_frametrace(®s); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * show_stack() deals exclusively with kernel mode, so be sure to access | 
|  | * the stack in the kernel (not user) address space. | 
|  | */ | 
|  | set_fs(KERNEL_DS); | 
|  | show_stacktrace(task, ®s); | 
|  | set_fs(old_fs); | 
|  | } | 
|  |  | 
|  | static void show_code(unsigned int __user *pc) | 
|  | { | 
|  | long i; | 
|  | unsigned short __user *pc16 = NULL; | 
|  |  | 
|  | printk("\nCode:"); | 
|  |  | 
|  | if ((unsigned long)pc & 1) | 
|  | pc16 = (unsigned short __user *)((unsigned long)pc & ~1); | 
|  | for(i = -3 ; i < 6 ; i++) { | 
|  | unsigned int insn; | 
|  | if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { | 
|  | printk(" (Bad address in epc)\n"); | 
|  | break; | 
|  | } | 
|  | printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __show_regs(const struct pt_regs *regs) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | unsigned int cause = regs->cp0_cause; | 
|  | unsigned int exccode; | 
|  | int i; | 
|  |  | 
|  | show_regs_print_info(KERN_DEFAULT); | 
|  |  | 
|  | /* | 
|  | * Saved main processor registers | 
|  | */ | 
|  | for (i = 0; i < 32; ) { | 
|  | if ((i % 4) == 0) | 
|  | printk("$%2d   :", i); | 
|  | if (i == 0) | 
|  | printk(" %0*lx", field, 0UL); | 
|  | else if (i == 26 || i == 27) | 
|  | printk(" %*s", field, ""); | 
|  | else | 
|  | printk(" %0*lx", field, regs->regs[i]); | 
|  |  | 
|  | i++; | 
|  | if ((i % 4) == 0) | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_HAS_SMARTMIPS | 
|  | printk("Acx    : %0*lx\n", field, regs->acx); | 
|  | #endif | 
|  | printk("Hi    : %0*lx\n", field, regs->hi); | 
|  | printk("Lo    : %0*lx\n", field, regs->lo); | 
|  |  | 
|  | /* | 
|  | * Saved cp0 registers | 
|  | */ | 
|  | printk("epc   : %0*lx %pS\n", field, regs->cp0_epc, | 
|  | (void *) regs->cp0_epc); | 
|  | printk("ra    : %0*lx %pS\n", field, regs->regs[31], | 
|  | (void *) regs->regs[31]); | 
|  |  | 
|  | printk("Status: %08x	", (uint32_t) regs->cp0_status); | 
|  |  | 
|  | if (cpu_has_3kex) { | 
|  | if (regs->cp0_status & ST0_KUO) | 
|  | printk("KUo "); | 
|  | if (regs->cp0_status & ST0_IEO) | 
|  | printk("IEo "); | 
|  | if (regs->cp0_status & ST0_KUP) | 
|  | printk("KUp "); | 
|  | if (regs->cp0_status & ST0_IEP) | 
|  | printk("IEp "); | 
|  | if (regs->cp0_status & ST0_KUC) | 
|  | printk("KUc "); | 
|  | if (regs->cp0_status & ST0_IEC) | 
|  | printk("IEc "); | 
|  | } else if (cpu_has_4kex) { | 
|  | if (regs->cp0_status & ST0_KX) | 
|  | printk("KX "); | 
|  | if (regs->cp0_status & ST0_SX) | 
|  | printk("SX "); | 
|  | if (regs->cp0_status & ST0_UX) | 
|  | printk("UX "); | 
|  | switch (regs->cp0_status & ST0_KSU) { | 
|  | case KSU_USER: | 
|  | printk("USER "); | 
|  | break; | 
|  | case KSU_SUPERVISOR: | 
|  | printk("SUPERVISOR "); | 
|  | break; | 
|  | case KSU_KERNEL: | 
|  | printk("KERNEL "); | 
|  | break; | 
|  | default: | 
|  | printk("BAD_MODE "); | 
|  | break; | 
|  | } | 
|  | if (regs->cp0_status & ST0_ERL) | 
|  | printk("ERL "); | 
|  | if (regs->cp0_status & ST0_EXL) | 
|  | printk("EXL "); | 
|  | if (regs->cp0_status & ST0_IE) | 
|  | printk("IE "); | 
|  | } | 
|  | printk("\n"); | 
|  |  | 
|  | exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; | 
|  | printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); | 
|  |  | 
|  | if (1 <= exccode && exccode <= 5) | 
|  | printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); | 
|  |  | 
|  | printk("PrId  : %08x (%s)\n", read_c0_prid(), | 
|  | cpu_name_string()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FIXME: really the generic show_regs should take a const pointer argument. | 
|  | */ | 
|  | void show_regs(struct pt_regs *regs) | 
|  | { | 
|  | __show_regs((struct pt_regs *)regs); | 
|  | } | 
|  |  | 
|  | void show_registers(struct pt_regs *regs) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | mm_segment_t old_fs = get_fs(); | 
|  |  | 
|  | __show_regs(regs); | 
|  | print_modules(); | 
|  | printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", | 
|  | current->comm, current->pid, current_thread_info(), current, | 
|  | field, current_thread_info()->tp_value); | 
|  | if (cpu_has_userlocal) { | 
|  | unsigned long tls; | 
|  |  | 
|  | tls = read_c0_userlocal(); | 
|  | if (tls != current_thread_info()->tp_value) | 
|  | printk("*HwTLS: %0*lx\n", field, tls); | 
|  | } | 
|  |  | 
|  | if (!user_mode(regs)) | 
|  | /* Necessary for getting the correct stack content */ | 
|  | set_fs(KERNEL_DS); | 
|  | show_stacktrace(current, regs); | 
|  | show_code((unsigned int __user *) regs->cp0_epc); | 
|  | printk("\n"); | 
|  | set_fs(old_fs); | 
|  | } | 
|  |  | 
|  | static DEFINE_RAW_SPINLOCK(die_lock); | 
|  |  | 
|  | void __noreturn die(const char *str, struct pt_regs *regs) | 
|  | { | 
|  | static int die_counter; | 
|  | int sig = SIGSEGV; | 
|  |  | 
|  | oops_enter(); | 
|  |  | 
|  | if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, | 
|  | SIGSEGV) == NOTIFY_STOP) | 
|  | sig = 0; | 
|  |  | 
|  | console_verbose(); | 
|  | raw_spin_lock_irq(&die_lock); | 
|  | bust_spinlocks(1); | 
|  |  | 
|  | printk("%s[#%d]:\n", str, ++die_counter); | 
|  | show_registers(regs); | 
|  | add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); | 
|  | raw_spin_unlock_irq(&die_lock); | 
|  |  | 
|  | oops_exit(); | 
|  |  | 
|  | if (in_interrupt()) | 
|  | panic("Fatal exception in interrupt"); | 
|  |  | 
|  | if (panic_on_oops) { | 
|  | printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); | 
|  | ssleep(5); | 
|  | panic("Fatal exception"); | 
|  | } | 
|  |  | 
|  | if (regs && kexec_should_crash(current)) | 
|  | crash_kexec(regs); | 
|  |  | 
|  | do_exit(sig); | 
|  | } | 
|  |  | 
|  | extern struct exception_table_entry __start___dbe_table[]; | 
|  | extern struct exception_table_entry __stop___dbe_table[]; | 
|  |  | 
|  | __asm__( | 
|  | "	.section	__dbe_table, \"a\"\n" | 
|  | "	.previous			\n"); | 
|  |  | 
|  | /* Given an address, look for it in the exception tables. */ | 
|  | static const struct exception_table_entry *search_dbe_tables(unsigned long addr) | 
|  | { | 
|  | const struct exception_table_entry *e; | 
|  |  | 
|  | e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); | 
|  | if (!e) | 
|  | e = search_module_dbetables(addr); | 
|  | return e; | 
|  | } | 
|  |  | 
|  | asmlinkage void do_be(struct pt_regs *regs) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | const struct exception_table_entry *fixup = NULL; | 
|  | int data = regs->cp0_cause & 4; | 
|  | int action = MIPS_BE_FATAL; | 
|  | enum ctx_state prev_state; | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | /* XXX For now.	 Fixme, this searches the wrong table ...  */ | 
|  | if (data && !user_mode(regs)) | 
|  | fixup = search_dbe_tables(exception_epc(regs)); | 
|  |  | 
|  | if (fixup) | 
|  | action = MIPS_BE_FIXUP; | 
|  |  | 
|  | if (board_be_handler) | 
|  | action = board_be_handler(regs, fixup != NULL); | 
|  |  | 
|  | switch (action) { | 
|  | case MIPS_BE_DISCARD: | 
|  | goto out; | 
|  | case MIPS_BE_FIXUP: | 
|  | if (fixup) { | 
|  | regs->cp0_epc = fixup->nextinsn; | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assume it would be too dangerous to continue ... | 
|  | */ | 
|  | printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", | 
|  | data ? "Data" : "Instruction", | 
|  | field, regs->cp0_epc, field, regs->regs[31]); | 
|  | if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, | 
|  | SIGBUS) == NOTIFY_STOP) | 
|  | goto out; | 
|  |  | 
|  | die_if_kernel("Oops", regs); | 
|  | force_sig(SIGBUS, current); | 
|  |  | 
|  | out: | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ll/sc, rdhwr, sync emulation | 
|  | */ | 
|  |  | 
|  | #define OPCODE 0xfc000000 | 
|  | #define BASE   0x03e00000 | 
|  | #define RT     0x001f0000 | 
|  | #define OFFSET 0x0000ffff | 
|  | #define LL     0xc0000000 | 
|  | #define SC     0xe0000000 | 
|  | #define SPEC0  0x00000000 | 
|  | #define SPEC3  0x7c000000 | 
|  | #define RD     0x0000f800 | 
|  | #define FUNC   0x0000003f | 
|  | #define SYNC   0x0000000f | 
|  | #define RDHWR  0x0000003b | 
|  |  | 
|  | /*  microMIPS definitions   */ | 
|  | #define MM_POOL32A_FUNC 0xfc00ffff | 
|  | #define MM_RDHWR        0x00006b3c | 
|  | #define MM_RS           0x001f0000 | 
|  | #define MM_RT           0x03e00000 | 
|  |  | 
|  | /* | 
|  | * The ll_bit is cleared by r*_switch.S | 
|  | */ | 
|  |  | 
|  | unsigned int ll_bit; | 
|  | struct task_struct *ll_task; | 
|  |  | 
|  | static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) | 
|  | { | 
|  | unsigned long value, __user *vaddr; | 
|  | long offset; | 
|  |  | 
|  | /* | 
|  | * analyse the ll instruction that just caused a ri exception | 
|  | * and put the referenced address to addr. | 
|  | */ | 
|  |  | 
|  | /* sign extend offset */ | 
|  | offset = opcode & OFFSET; | 
|  | offset <<= 16; | 
|  | offset >>= 16; | 
|  |  | 
|  | vaddr = (unsigned long __user *) | 
|  | ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); | 
|  |  | 
|  | if ((unsigned long)vaddr & 3) | 
|  | return SIGBUS; | 
|  | if (get_user(value, vaddr)) | 
|  | return SIGSEGV; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | if (ll_task == NULL || ll_task == current) { | 
|  | ll_bit = 1; | 
|  | } else { | 
|  | ll_bit = 0; | 
|  | } | 
|  | ll_task = current; | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | regs->regs[(opcode & RT) >> 16] = value; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) | 
|  | { | 
|  | unsigned long __user *vaddr; | 
|  | unsigned long reg; | 
|  | long offset; | 
|  |  | 
|  | /* | 
|  | * analyse the sc instruction that just caused a ri exception | 
|  | * and put the referenced address to addr. | 
|  | */ | 
|  |  | 
|  | /* sign extend offset */ | 
|  | offset = opcode & OFFSET; | 
|  | offset <<= 16; | 
|  | offset >>= 16; | 
|  |  | 
|  | vaddr = (unsigned long __user *) | 
|  | ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); | 
|  | reg = (opcode & RT) >> 16; | 
|  |  | 
|  | if ((unsigned long)vaddr & 3) | 
|  | return SIGBUS; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | if (ll_bit == 0 || ll_task != current) { | 
|  | regs->regs[reg] = 0; | 
|  | preempt_enable(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | if (put_user(regs->regs[reg], vaddr)) | 
|  | return SIGSEGV; | 
|  |  | 
|  | regs->regs[reg] = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both | 
|  | * opcodes are supposed to result in coprocessor unusable exceptions if | 
|  | * executed on ll/sc-less processors.  That's the theory.  In practice a | 
|  | * few processors such as NEC's VR4100 throw reserved instruction exceptions | 
|  | * instead, so we're doing the emulation thing in both exception handlers. | 
|  | */ | 
|  | static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) | 
|  | { | 
|  | if ((opcode & OPCODE) == LL) { | 
|  | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | 
|  | 1, regs, 0); | 
|  | return simulate_ll(regs, opcode); | 
|  | } | 
|  | if ((opcode & OPCODE) == SC) { | 
|  | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | 
|  | 1, regs, 0); | 
|  | return simulate_sc(regs, opcode); | 
|  | } | 
|  |  | 
|  | return -1;			/* Must be something else ... */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Simulate trapping 'rdhwr' instructions to provide user accessible | 
|  | * registers not implemented in hardware. | 
|  | */ | 
|  | static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) | 
|  | { | 
|  | struct thread_info *ti = task_thread_info(current); | 
|  |  | 
|  | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | 
|  | 1, regs, 0); | 
|  | switch (rd) { | 
|  | case 0:		/* CPU number */ | 
|  | regs->regs[rt] = smp_processor_id(); | 
|  | return 0; | 
|  | case 1:		/* SYNCI length */ | 
|  | regs->regs[rt] = min(current_cpu_data.dcache.linesz, | 
|  | current_cpu_data.icache.linesz); | 
|  | return 0; | 
|  | case 2:		/* Read count register */ | 
|  | regs->regs[rt] = read_c0_count(); | 
|  | return 0; | 
|  | case 3:		/* Count register resolution */ | 
|  | switch (current_cpu_type()) { | 
|  | case CPU_20KC: | 
|  | case CPU_25KF: | 
|  | regs->regs[rt] = 1; | 
|  | break; | 
|  | default: | 
|  | regs->regs[rt] = 2; | 
|  | } | 
|  | return 0; | 
|  | case 29: | 
|  | regs->regs[rt] = ti->tp_value; | 
|  | return 0; | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) | 
|  | { | 
|  | if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { | 
|  | int rd = (opcode & RD) >> 11; | 
|  | int rt = (opcode & RT) >> 16; | 
|  |  | 
|  | simulate_rdhwr(regs, rd, rt); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Not ours.  */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode) | 
|  | { | 
|  | if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { | 
|  | int rd = (opcode & MM_RS) >> 16; | 
|  | int rt = (opcode & MM_RT) >> 21; | 
|  | simulate_rdhwr(regs, rd, rt); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Not ours.  */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int simulate_sync(struct pt_regs *regs, unsigned int opcode) | 
|  | { | 
|  | if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { | 
|  | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | 
|  | 1, regs, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -1;			/* Must be something else ... */ | 
|  | } | 
|  |  | 
|  | asmlinkage void do_ov(struct pt_regs *regs) | 
|  | { | 
|  | enum ctx_state prev_state; | 
|  | siginfo_t info; | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | die_if_kernel("Integer overflow", regs); | 
|  |  | 
|  | info.si_code = FPE_INTOVF; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_addr = (void __user *) regs->cp0_epc; | 
|  | force_sig_info(SIGFPE, &info, current); | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) | 
|  | { | 
|  | struct siginfo si = { 0 }; | 
|  |  | 
|  | switch (sig) { | 
|  | case 0: | 
|  | return 0; | 
|  |  | 
|  | case SIGFPE: | 
|  | si.si_addr = fault_addr; | 
|  | si.si_signo = sig; | 
|  | /* | 
|  | * Inexact can happen together with Overflow or Underflow. | 
|  | * Respect the mask to deliver the correct exception. | 
|  | */ | 
|  | fcr31 &= (fcr31 & FPU_CSR_ALL_E) << | 
|  | (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E)); | 
|  | if (fcr31 & FPU_CSR_INV_X) | 
|  | si.si_code = FPE_FLTINV; | 
|  | else if (fcr31 & FPU_CSR_DIV_X) | 
|  | si.si_code = FPE_FLTDIV; | 
|  | else if (fcr31 & FPU_CSR_OVF_X) | 
|  | si.si_code = FPE_FLTOVF; | 
|  | else if (fcr31 & FPU_CSR_UDF_X) | 
|  | si.si_code = FPE_FLTUND; | 
|  | else if (fcr31 & FPU_CSR_INE_X) | 
|  | si.si_code = FPE_FLTRES; | 
|  | else | 
|  | si.si_code = __SI_FAULT; | 
|  | force_sig_info(sig, &si, current); | 
|  | return 1; | 
|  |  | 
|  | case SIGBUS: | 
|  | si.si_addr = fault_addr; | 
|  | si.si_signo = sig; | 
|  | si.si_code = BUS_ADRERR; | 
|  | force_sig_info(sig, &si, current); | 
|  | return 1; | 
|  |  | 
|  | case SIGSEGV: | 
|  | si.si_addr = fault_addr; | 
|  | si.si_signo = sig; | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | if (find_vma(current->mm, (unsigned long)fault_addr)) | 
|  | si.si_code = SEGV_ACCERR; | 
|  | else | 
|  | si.si_code = SEGV_MAPERR; | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | force_sig_info(sig, &si, current); | 
|  | return 1; | 
|  |  | 
|  | default: | 
|  | force_sig(sig, current); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int simulate_fp(struct pt_regs *regs, unsigned int opcode, | 
|  | unsigned long old_epc, unsigned long old_ra) | 
|  | { | 
|  | union mips_instruction inst = { .word = opcode }; | 
|  | void __user *fault_addr; | 
|  | unsigned long fcr31; | 
|  | int sig; | 
|  |  | 
|  | /* If it's obviously not an FP instruction, skip it */ | 
|  | switch (inst.i_format.opcode) { | 
|  | case cop1_op: | 
|  | case cop1x_op: | 
|  | case lwc1_op: | 
|  | case ldc1_op: | 
|  | case swc1_op: | 
|  | case sdc1_op: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_ri skipped over the instruction via compute_return_epc, undo | 
|  | * that for the FPU emulator. | 
|  | */ | 
|  | regs->cp0_epc = old_epc; | 
|  | regs->regs[31] = old_ra; | 
|  |  | 
|  | /* Save the FP context to struct thread_struct */ | 
|  | lose_fpu(1); | 
|  |  | 
|  | /* Run the emulator */ | 
|  | sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, | 
|  | &fault_addr); | 
|  | fcr31 = current->thread.fpu.fcr31; | 
|  |  | 
|  | /* | 
|  | * We can't allow the emulated instruction to leave any of | 
|  | * the cause bits set in $fcr31. | 
|  | */ | 
|  | current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; | 
|  |  | 
|  | /* Restore the hardware register state */ | 
|  | own_fpu(1); | 
|  |  | 
|  | /* Send a signal if required.  */ | 
|  | process_fpemu_return(sig, fault_addr, fcr31); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXX Delayed fp exceptions when doing a lazy ctx switch XXX | 
|  | */ | 
|  | asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) | 
|  | { | 
|  | enum ctx_state prev_state; | 
|  | void __user *fault_addr; | 
|  | int sig; | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, | 
|  | SIGFPE) == NOTIFY_STOP) | 
|  | goto out; | 
|  |  | 
|  | /* Clear FCSR.Cause before enabling interrupts */ | 
|  | write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X); | 
|  | local_irq_enable(); | 
|  |  | 
|  | die_if_kernel("FP exception in kernel code", regs); | 
|  |  | 
|  | if (fcr31 & FPU_CSR_UNI_X) { | 
|  | /* | 
|  | * Unimplemented operation exception.  If we've got the full | 
|  | * software emulator on-board, let's use it... | 
|  | * | 
|  | * Force FPU to dump state into task/thread context.  We're | 
|  | * moving a lot of data here for what is probably a single | 
|  | * instruction, but the alternative is to pre-decode the FP | 
|  | * register operands before invoking the emulator, which seems | 
|  | * a bit extreme for what should be an infrequent event. | 
|  | */ | 
|  | /* Ensure 'resume' not overwrite saved fp context again. */ | 
|  | lose_fpu(1); | 
|  |  | 
|  | /* Run the emulator */ | 
|  | sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, | 
|  | &fault_addr); | 
|  | fcr31 = current->thread.fpu.fcr31; | 
|  |  | 
|  | /* | 
|  | * We can't allow the emulated instruction to leave any of | 
|  | * the cause bits set in $fcr31. | 
|  | */ | 
|  | current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; | 
|  |  | 
|  | /* Restore the hardware register state */ | 
|  | own_fpu(1);	/* Using the FPU again.	 */ | 
|  | } else { | 
|  | sig = SIGFPE; | 
|  | fault_addr = (void __user *) regs->cp0_epc; | 
|  | } | 
|  |  | 
|  | /* Send a signal if required.  */ | 
|  | process_fpemu_return(sig, fault_addr, fcr31); | 
|  |  | 
|  | out: | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | void do_trap_or_bp(struct pt_regs *regs, unsigned int code, | 
|  | const char *str) | 
|  | { | 
|  | siginfo_t info; | 
|  | char b[40]; | 
|  |  | 
|  | #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP | 
|  | if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, | 
|  | SIGTRAP) == NOTIFY_STOP) | 
|  | return; | 
|  | #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ | 
|  |  | 
|  | if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, | 
|  | SIGTRAP) == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * A short test says that IRIX 5.3 sends SIGTRAP for all trap | 
|  | * insns, even for trap and break codes that indicate arithmetic | 
|  | * failures.  Weird ... | 
|  | * But should we continue the brokenness???  --macro | 
|  | */ | 
|  | switch (code) { | 
|  | case BRK_OVERFLOW: | 
|  | case BRK_DIVZERO: | 
|  | scnprintf(b, sizeof(b), "%s instruction in kernel code", str); | 
|  | die_if_kernel(b, regs); | 
|  | if (code == BRK_DIVZERO) | 
|  | info.si_code = FPE_INTDIV; | 
|  | else | 
|  | info.si_code = FPE_INTOVF; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_addr = (void __user *) regs->cp0_epc; | 
|  | force_sig_info(SIGFPE, &info, current); | 
|  | break; | 
|  | case BRK_BUG: | 
|  | die_if_kernel("Kernel bug detected", regs); | 
|  | force_sig(SIGTRAP, current); | 
|  | break; | 
|  | case BRK_MEMU: | 
|  | /* | 
|  | * This breakpoint code is used by the FPU emulator to retake | 
|  | * control of the CPU after executing the instruction from the | 
|  | * delay slot of an emulated branch. | 
|  | * | 
|  | * Terminate if exception was recognized as a delay slot return | 
|  | * otherwise handle as normal. | 
|  | */ | 
|  | if (do_dsemulret(regs)) | 
|  | return; | 
|  |  | 
|  | die_if_kernel("Math emu break/trap", regs); | 
|  | force_sig(SIGTRAP, current); | 
|  | break; | 
|  | default: | 
|  | scnprintf(b, sizeof(b), "%s instruction in kernel code", str); | 
|  | die_if_kernel(b, regs); | 
|  | force_sig(SIGTRAP, current); | 
|  | } | 
|  | } | 
|  |  | 
|  | asmlinkage void do_bp(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long epc = msk_isa16_mode(exception_epc(regs)); | 
|  | unsigned int opcode, bcode; | 
|  | enum ctx_state prev_state; | 
|  | mm_segment_t seg; | 
|  |  | 
|  | seg = get_fs(); | 
|  | if (!user_mode(regs)) | 
|  | set_fs(KERNEL_DS); | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; | 
|  | if (get_isa16_mode(regs->cp0_epc)) { | 
|  | u16 instr[2]; | 
|  |  | 
|  | if (__get_user(instr[0], (u16 __user *)epc)) | 
|  | goto out_sigsegv; | 
|  |  | 
|  | if (!cpu_has_mmips) { | 
|  | /* MIPS16e mode */ | 
|  | bcode = (instr[0] >> 5) & 0x3f; | 
|  | } else if (mm_insn_16bit(instr[0])) { | 
|  | /* 16-bit microMIPS BREAK */ | 
|  | bcode = instr[0] & 0xf; | 
|  | } else { | 
|  | /* 32-bit microMIPS BREAK */ | 
|  | if (__get_user(instr[1], (u16 __user *)(epc + 2))) | 
|  | goto out_sigsegv; | 
|  | opcode = (instr[0] << 16) | instr[1]; | 
|  | bcode = (opcode >> 6) & ((1 << 20) - 1); | 
|  | } | 
|  | } else { | 
|  | if (__get_user(opcode, (unsigned int __user *)epc)) | 
|  | goto out_sigsegv; | 
|  | bcode = (opcode >> 6) & ((1 << 20) - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is the ancient bug in the MIPS assemblers that the break | 
|  | * code starts left to bit 16 instead to bit 6 in the opcode. | 
|  | * Gas is bug-compatible, but not always, grrr... | 
|  | * We handle both cases with a simple heuristics.  --macro | 
|  | */ | 
|  | if (bcode >= (1 << 10)) | 
|  | bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); | 
|  |  | 
|  | /* | 
|  | * notify the kprobe handlers, if instruction is likely to | 
|  | * pertain to them. | 
|  | */ | 
|  | switch (bcode) { | 
|  | case BRK_UPROBE: | 
|  | if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, | 
|  | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) | 
|  | goto out; | 
|  | else | 
|  | break; | 
|  | case BRK_UPROBE_XOL: | 
|  | if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, | 
|  | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) | 
|  | goto out; | 
|  | else | 
|  | break; | 
|  | case BRK_KPROBE_BP: | 
|  | if (notify_die(DIE_BREAK, "debug", regs, bcode, | 
|  | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) | 
|  | goto out; | 
|  | else | 
|  | break; | 
|  | case BRK_KPROBE_SSTEPBP: | 
|  | if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, | 
|  | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) | 
|  | goto out; | 
|  | else | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | do_trap_or_bp(regs, bcode, "Break"); | 
|  |  | 
|  | out: | 
|  | set_fs(seg); | 
|  | exception_exit(prev_state); | 
|  | return; | 
|  |  | 
|  | out_sigsegv: | 
|  | force_sig(SIGSEGV, current); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | asmlinkage void do_tr(struct pt_regs *regs) | 
|  | { | 
|  | u32 opcode, tcode = 0; | 
|  | enum ctx_state prev_state; | 
|  | u16 instr[2]; | 
|  | mm_segment_t seg; | 
|  | unsigned long epc = msk_isa16_mode(exception_epc(regs)); | 
|  |  | 
|  | seg = get_fs(); | 
|  | if (!user_mode(regs)) | 
|  | set_fs(get_ds()); | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; | 
|  | if (get_isa16_mode(regs->cp0_epc)) { | 
|  | if (__get_user(instr[0], (u16 __user *)(epc + 0)) || | 
|  | __get_user(instr[1], (u16 __user *)(epc + 2))) | 
|  | goto out_sigsegv; | 
|  | opcode = (instr[0] << 16) | instr[1]; | 
|  | /* Immediate versions don't provide a code.  */ | 
|  | if (!(opcode & OPCODE)) | 
|  | tcode = (opcode >> 12) & ((1 << 4) - 1); | 
|  | } else { | 
|  | if (__get_user(opcode, (u32 __user *)epc)) | 
|  | goto out_sigsegv; | 
|  | /* Immediate versions don't provide a code.  */ | 
|  | if (!(opcode & OPCODE)) | 
|  | tcode = (opcode >> 6) & ((1 << 10) - 1); | 
|  | } | 
|  |  | 
|  | do_trap_or_bp(regs, tcode, "Trap"); | 
|  |  | 
|  | out: | 
|  | set_fs(seg); | 
|  | exception_exit(prev_state); | 
|  | return; | 
|  |  | 
|  | out_sigsegv: | 
|  | force_sig(SIGSEGV, current); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | asmlinkage void do_ri(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); | 
|  | unsigned long old_epc = regs->cp0_epc; | 
|  | unsigned long old31 = regs->regs[31]; | 
|  | enum ctx_state prev_state; | 
|  | unsigned int opcode = 0; | 
|  | int status = -1; | 
|  |  | 
|  | /* | 
|  | * Avoid any kernel code. Just emulate the R2 instruction | 
|  | * as quickly as possible. | 
|  | */ | 
|  | if (mipsr2_emulation && cpu_has_mips_r6 && | 
|  | likely(user_mode(regs)) && | 
|  | likely(get_user(opcode, epc) >= 0)) { | 
|  | unsigned long fcr31 = 0; | 
|  |  | 
|  | status = mipsr2_decoder(regs, opcode, &fcr31); | 
|  | switch (status) { | 
|  | case 0: | 
|  | case SIGEMT: | 
|  | task_thread_info(current)->r2_emul_return = 1; | 
|  | return; | 
|  | case SIGILL: | 
|  | goto no_r2_instr; | 
|  | default: | 
|  | process_fpemu_return(status, | 
|  | ¤t->thread.cp0_baduaddr, | 
|  | fcr31); | 
|  | task_thread_info(current)->r2_emul_return = 1; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | no_r2_instr: | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; | 
|  |  | 
|  | if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, | 
|  | SIGILL) == NOTIFY_STOP) | 
|  | goto out; | 
|  |  | 
|  | die_if_kernel("Reserved instruction in kernel code", regs); | 
|  |  | 
|  | if (unlikely(compute_return_epc(regs) < 0)) | 
|  | goto out; | 
|  |  | 
|  | if (get_isa16_mode(regs->cp0_epc)) { | 
|  | unsigned short mmop[2] = { 0 }; | 
|  |  | 
|  | if (unlikely(get_user(mmop[0], epc) < 0)) | 
|  | status = SIGSEGV; | 
|  | if (unlikely(get_user(mmop[1], epc) < 0)) | 
|  | status = SIGSEGV; | 
|  | opcode = (mmop[0] << 16) | mmop[1]; | 
|  |  | 
|  | if (status < 0) | 
|  | status = simulate_rdhwr_mm(regs, opcode); | 
|  | } else { | 
|  | if (unlikely(get_user(opcode, epc) < 0)) | 
|  | status = SIGSEGV; | 
|  |  | 
|  | if (!cpu_has_llsc && status < 0) | 
|  | status = simulate_llsc(regs, opcode); | 
|  |  | 
|  | if (status < 0) | 
|  | status = simulate_rdhwr_normal(regs, opcode); | 
|  |  | 
|  | if (status < 0) | 
|  | status = simulate_sync(regs, opcode); | 
|  |  | 
|  | if (status < 0) | 
|  | status = simulate_fp(regs, opcode, old_epc, old31); | 
|  | } | 
|  |  | 
|  | if (status < 0) | 
|  | status = SIGILL; | 
|  |  | 
|  | if (unlikely(status > 0)) { | 
|  | regs->cp0_epc = old_epc;		/* Undo skip-over.  */ | 
|  | regs->regs[31] = old31; | 
|  | force_sig(status, current); | 
|  | } | 
|  |  | 
|  | out: | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've | 
|  | * emulated more than some threshold number of instructions, force migration to | 
|  | * a "CPU" that has FP support. | 
|  | */ | 
|  | static void mt_ase_fp_affinity(void) | 
|  | { | 
|  | #ifdef CONFIG_MIPS_MT_FPAFF | 
|  | if (mt_fpemul_threshold > 0 && | 
|  | ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { | 
|  | /* | 
|  | * If there's no FPU present, or if the application has already | 
|  | * restricted the allowed set to exclude any CPUs with FPUs, | 
|  | * we'll skip the procedure. | 
|  | */ | 
|  | if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { | 
|  | cpumask_t tmask; | 
|  |  | 
|  | current->thread.user_cpus_allowed | 
|  | = current->cpus_allowed; | 
|  | cpumask_and(&tmask, ¤t->cpus_allowed, | 
|  | &mt_fpu_cpumask); | 
|  | set_cpus_allowed_ptr(current, &tmask); | 
|  | set_thread_flag(TIF_FPUBOUND); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_MIPS_MT_FPAFF */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No lock; only written during early bootup by CPU 0. | 
|  | */ | 
|  | static RAW_NOTIFIER_HEAD(cu2_chain); | 
|  |  | 
|  | int __ref register_cu2_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return raw_notifier_chain_register(&cu2_chain, nb); | 
|  | } | 
|  |  | 
|  | int cu2_notifier_call_chain(unsigned long val, void *v) | 
|  | { | 
|  | return raw_notifier_call_chain(&cu2_chain, val, v); | 
|  | } | 
|  |  | 
|  | static int default_cu2_call(struct notifier_block *nfb, unsigned long action, | 
|  | void *data) | 
|  | { | 
|  | struct pt_regs *regs = data; | 
|  |  | 
|  | die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " | 
|  | "instruction", regs); | 
|  | force_sig(SIGILL, current); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static int wait_on_fp_mode_switch(atomic_t *p) | 
|  | { | 
|  | /* | 
|  | * The FP mode for this task is currently being switched. That may | 
|  | * involve modifications to the format of this tasks FP context which | 
|  | * make it unsafe to proceed with execution for the moment. Instead, | 
|  | * schedule some other task. | 
|  | */ | 
|  | schedule(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int enable_restore_fp_context(int msa) | 
|  | { | 
|  | int err, was_fpu_owner, prior_msa; | 
|  |  | 
|  | /* | 
|  | * If an FP mode switch is currently underway, wait for it to | 
|  | * complete before proceeding. | 
|  | */ | 
|  | wait_on_atomic_t(¤t->mm->context.fp_mode_switching, | 
|  | wait_on_fp_mode_switch, TASK_KILLABLE); | 
|  |  | 
|  | if (!used_math()) { | 
|  | /* First time FP context user. */ | 
|  | preempt_disable(); | 
|  | err = init_fpu(); | 
|  | if (msa && !err) { | 
|  | enable_msa(); | 
|  | _init_msa_upper(); | 
|  | set_thread_flag(TIF_USEDMSA); | 
|  | set_thread_flag(TIF_MSA_CTX_LIVE); | 
|  | } | 
|  | preempt_enable(); | 
|  | if (!err) | 
|  | set_used_math(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This task has formerly used the FP context. | 
|  | * | 
|  | * If this thread has no live MSA vector context then we can simply | 
|  | * restore the scalar FP context. If it has live MSA vector context | 
|  | * (that is, it has or may have used MSA since last performing a | 
|  | * function call) then we'll need to restore the vector context. This | 
|  | * applies even if we're currently only executing a scalar FP | 
|  | * instruction. This is because if we were to later execute an MSA | 
|  | * instruction then we'd either have to: | 
|  | * | 
|  | *  - Restore the vector context & clobber any registers modified by | 
|  | *    scalar FP instructions between now & then. | 
|  | * | 
|  | * or | 
|  | * | 
|  | *  - Not restore the vector context & lose the most significant bits | 
|  | *    of all vector registers. | 
|  | * | 
|  | * Neither of those options is acceptable. We cannot restore the least | 
|  | * significant bits of the registers now & only restore the most | 
|  | * significant bits later because the most significant bits of any | 
|  | * vector registers whose aliased FP register is modified now will have | 
|  | * been zeroed. We'd have no way to know that when restoring the vector | 
|  | * context & thus may load an outdated value for the most significant | 
|  | * bits of a vector register. | 
|  | */ | 
|  | if (!msa && !thread_msa_context_live()) | 
|  | return own_fpu(1); | 
|  |  | 
|  | /* | 
|  | * This task is using or has previously used MSA. Thus we require | 
|  | * that Status.FR == 1. | 
|  | */ | 
|  | preempt_disable(); | 
|  | was_fpu_owner = is_fpu_owner(); | 
|  | err = own_fpu_inatomic(0); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | enable_msa(); | 
|  | write_msa_csr(current->thread.fpu.msacsr); | 
|  | set_thread_flag(TIF_USEDMSA); | 
|  |  | 
|  | /* | 
|  | * If this is the first time that the task is using MSA and it has | 
|  | * previously used scalar FP in this time slice then we already nave | 
|  | * FP context which we shouldn't clobber. We do however need to clear | 
|  | * the upper 64b of each vector register so that this task has no | 
|  | * opportunity to see data left behind by another. | 
|  | */ | 
|  | prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); | 
|  | if (!prior_msa && was_fpu_owner) { | 
|  | _init_msa_upper(); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!prior_msa) { | 
|  | /* | 
|  | * Restore the least significant 64b of each vector register | 
|  | * from the existing scalar FP context. | 
|  | */ | 
|  | _restore_fp(current); | 
|  |  | 
|  | /* | 
|  | * The task has not formerly used MSA, so clear the upper 64b | 
|  | * of each vector register such that it cannot see data left | 
|  | * behind by another task. | 
|  | */ | 
|  | _init_msa_upper(); | 
|  | } else { | 
|  | /* We need to restore the vector context. */ | 
|  | restore_msa(current); | 
|  |  | 
|  | /* Restore the scalar FP control & status register */ | 
|  | if (!was_fpu_owner) | 
|  | write_32bit_cp1_register(CP1_STATUS, | 
|  | current->thread.fpu.fcr31); | 
|  | } | 
|  |  | 
|  | out: | 
|  | preempt_enable(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | asmlinkage void do_cpu(struct pt_regs *regs) | 
|  | { | 
|  | enum ctx_state prev_state; | 
|  | unsigned int __user *epc; | 
|  | unsigned long old_epc, old31; | 
|  | void __user *fault_addr; | 
|  | unsigned int opcode; | 
|  | unsigned long fcr31; | 
|  | unsigned int cpid; | 
|  | int status, err; | 
|  | unsigned long __maybe_unused flags; | 
|  | int sig; | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; | 
|  |  | 
|  | if (cpid != 2) | 
|  | die_if_kernel("do_cpu invoked from kernel context!", regs); | 
|  |  | 
|  | switch (cpid) { | 
|  | case 0: | 
|  | epc = (unsigned int __user *)exception_epc(regs); | 
|  | old_epc = regs->cp0_epc; | 
|  | old31 = regs->regs[31]; | 
|  | opcode = 0; | 
|  | status = -1; | 
|  |  | 
|  | if (unlikely(compute_return_epc(regs) < 0)) | 
|  | break; | 
|  |  | 
|  | if (get_isa16_mode(regs->cp0_epc)) { | 
|  | unsigned short mmop[2] = { 0 }; | 
|  |  | 
|  | if (unlikely(get_user(mmop[0], epc) < 0)) | 
|  | status = SIGSEGV; | 
|  | if (unlikely(get_user(mmop[1], epc) < 0)) | 
|  | status = SIGSEGV; | 
|  | opcode = (mmop[0] << 16) | mmop[1]; | 
|  |  | 
|  | if (status < 0) | 
|  | status = simulate_rdhwr_mm(regs, opcode); | 
|  | } else { | 
|  | if (unlikely(get_user(opcode, epc) < 0)) | 
|  | status = SIGSEGV; | 
|  |  | 
|  | if (!cpu_has_llsc && status < 0) | 
|  | status = simulate_llsc(regs, opcode); | 
|  |  | 
|  | if (status < 0) | 
|  | status = simulate_rdhwr_normal(regs, opcode); | 
|  | } | 
|  |  | 
|  | if (status < 0) | 
|  | status = SIGILL; | 
|  |  | 
|  | if (unlikely(status > 0)) { | 
|  | regs->cp0_epc = old_epc;	/* Undo skip-over.  */ | 
|  | regs->regs[31] = old31; | 
|  | force_sig(status, current); | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case 3: | 
|  | /* | 
|  | * The COP3 opcode space and consequently the CP0.Status.CU3 | 
|  | * bit and the CP0.Cause.CE=3 encoding have been removed as | 
|  | * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs | 
|  | * up the space has been reused for COP1X instructions, that | 
|  | * are enabled by the CP0.Status.CU1 bit and consequently | 
|  | * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable | 
|  | * exceptions.  Some FPU-less processors that implement one | 
|  | * of these ISAs however use this code erroneously for COP1X | 
|  | * instructions.  Therefore we redirect this trap to the FP | 
|  | * emulator too. | 
|  | */ | 
|  | if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { | 
|  | force_sig(SIGILL, current); | 
|  | break; | 
|  | } | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case 1: | 
|  | err = enable_restore_fp_context(0); | 
|  |  | 
|  | if (raw_cpu_has_fpu && !err) | 
|  | break; | 
|  |  | 
|  | sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, | 
|  | &fault_addr); | 
|  | fcr31 = current->thread.fpu.fcr31; | 
|  |  | 
|  | /* | 
|  | * We can't allow the emulated instruction to leave | 
|  | * any of the cause bits set in $fcr31. | 
|  | */ | 
|  | current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X; | 
|  |  | 
|  | /* Send a signal if required.  */ | 
|  | if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) | 
|  | mt_ase_fp_affinity(); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); | 
|  | break; | 
|  | } | 
|  |  | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) | 
|  | { | 
|  | enum ctx_state prev_state; | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; | 
|  | if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, | 
|  | current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) | 
|  | goto out; | 
|  |  | 
|  | /* Clear MSACSR.Cause before enabling interrupts */ | 
|  | write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); | 
|  | local_irq_enable(); | 
|  |  | 
|  | die_if_kernel("do_msa_fpe invoked from kernel context!", regs); | 
|  | force_sig(SIGFPE, current); | 
|  | out: | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_msa(struct pt_regs *regs) | 
|  | { | 
|  | enum ctx_state prev_state; | 
|  | int err; | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  |  | 
|  | if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { | 
|  | force_sig(SIGILL, current); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | die_if_kernel("do_msa invoked from kernel context!", regs); | 
|  |  | 
|  | err = enable_restore_fp_context(1); | 
|  | if (err) | 
|  | force_sig(SIGILL, current); | 
|  | out: | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_mdmx(struct pt_regs *regs) | 
|  | { | 
|  | enum ctx_state prev_state; | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | force_sig(SIGILL, current); | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with interrupts disabled. | 
|  | */ | 
|  | asmlinkage void do_watch(struct pt_regs *regs) | 
|  | { | 
|  | enum ctx_state prev_state; | 
|  | u32 cause; | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | /* | 
|  | * Clear WP (bit 22) bit of cause register so we don't loop | 
|  | * forever. | 
|  | */ | 
|  | cause = read_c0_cause(); | 
|  | cause &= ~(1 << 22); | 
|  | write_c0_cause(cause); | 
|  |  | 
|  | /* | 
|  | * If the current thread has the watch registers loaded, save | 
|  | * their values and send SIGTRAP.  Otherwise another thread | 
|  | * left the registers set, clear them and continue. | 
|  | */ | 
|  | if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { | 
|  | mips_read_watch_registers(); | 
|  | local_irq_enable(); | 
|  | force_sig(SIGTRAP, current); | 
|  | } else { | 
|  | mips_clear_watch_registers(); | 
|  | local_irq_enable(); | 
|  | } | 
|  | exception_exit(prev_state); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_mcheck(struct pt_regs *regs) | 
|  | { | 
|  | int multi_match = regs->cp0_status & ST0_TS; | 
|  | enum ctx_state prev_state; | 
|  | mm_segment_t old_fs = get_fs(); | 
|  |  | 
|  | prev_state = exception_enter(); | 
|  | show_regs(regs); | 
|  |  | 
|  | if (multi_match) { | 
|  | dump_tlb_regs(); | 
|  | pr_info("\n"); | 
|  | dump_tlb_all(); | 
|  | } | 
|  |  | 
|  | if (!user_mode(regs)) | 
|  | set_fs(KERNEL_DS); | 
|  |  | 
|  | show_code((unsigned int __user *) regs->cp0_epc); | 
|  |  | 
|  | set_fs(old_fs); | 
|  |  | 
|  | /* | 
|  | * Some chips may have other causes of machine check (e.g. SB1 | 
|  | * graduation timer) | 
|  | */ | 
|  | panic("Caught Machine Check exception - %scaused by multiple " | 
|  | "matching entries in the TLB.", | 
|  | (multi_match) ? "" : "not "); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_mt(struct pt_regs *regs) | 
|  | { | 
|  | int subcode; | 
|  |  | 
|  | subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) | 
|  | >> VPECONTROL_EXCPT_SHIFT; | 
|  | switch (subcode) { | 
|  | case 0: | 
|  | printk(KERN_DEBUG "Thread Underflow\n"); | 
|  | break; | 
|  | case 1: | 
|  | printk(KERN_DEBUG "Thread Overflow\n"); | 
|  | break; | 
|  | case 2: | 
|  | printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); | 
|  | break; | 
|  | case 3: | 
|  | printk(KERN_DEBUG "Gating Storage Exception\n"); | 
|  | break; | 
|  | case 4: | 
|  | printk(KERN_DEBUG "YIELD Scheduler Exception\n"); | 
|  | break; | 
|  | case 5: | 
|  | printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); | 
|  | break; | 
|  | default: | 
|  | printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", | 
|  | subcode); | 
|  | break; | 
|  | } | 
|  | die_if_kernel("MIPS MT Thread exception in kernel", regs); | 
|  |  | 
|  | force_sig(SIGILL, current); | 
|  | } | 
|  |  | 
|  |  | 
|  | asmlinkage void do_dsp(struct pt_regs *regs) | 
|  | { | 
|  | if (cpu_has_dsp) | 
|  | panic("Unexpected DSP exception"); | 
|  |  | 
|  | force_sig(SIGILL, current); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_reserved(struct pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * Game over - no way to handle this if it ever occurs.	 Most probably | 
|  | * caused by a new unknown cpu type or after another deadly | 
|  | * hard/software error. | 
|  | */ | 
|  | show_regs(regs); | 
|  | panic("Caught reserved exception %ld - should not happen.", | 
|  | (regs->cp0_cause & 0x7f) >> 2); | 
|  | } | 
|  |  | 
|  | static int __initdata l1parity = 1; | 
|  | static int __init nol1parity(char *s) | 
|  | { | 
|  | l1parity = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("nol1par", nol1parity); | 
|  | static int __initdata l2parity = 1; | 
|  | static int __init nol2parity(char *s) | 
|  | { | 
|  | l2parity = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("nol2par", nol2parity); | 
|  |  | 
|  | /* | 
|  | * Some MIPS CPUs can enable/disable for cache parity detection, but do | 
|  | * it different ways. | 
|  | */ | 
|  | static inline void parity_protection_init(void) | 
|  | { | 
|  | switch (current_cpu_type()) { | 
|  | case CPU_24K: | 
|  | case CPU_34K: | 
|  | case CPU_74K: | 
|  | case CPU_1004K: | 
|  | case CPU_1074K: | 
|  | case CPU_INTERAPTIV: | 
|  | case CPU_PROAPTIV: | 
|  | case CPU_P5600: | 
|  | case CPU_QEMU_GENERIC: | 
|  | case CPU_I6400: | 
|  | { | 
|  | #define ERRCTL_PE	0x80000000 | 
|  | #define ERRCTL_L2P	0x00800000 | 
|  | unsigned long errctl; | 
|  | unsigned int l1parity_present, l2parity_present; | 
|  |  | 
|  | errctl = read_c0_ecc(); | 
|  | errctl &= ~(ERRCTL_PE|ERRCTL_L2P); | 
|  |  | 
|  | /* probe L1 parity support */ | 
|  | write_c0_ecc(errctl | ERRCTL_PE); | 
|  | back_to_back_c0_hazard(); | 
|  | l1parity_present = (read_c0_ecc() & ERRCTL_PE); | 
|  |  | 
|  | /* probe L2 parity support */ | 
|  | write_c0_ecc(errctl|ERRCTL_L2P); | 
|  | back_to_back_c0_hazard(); | 
|  | l2parity_present = (read_c0_ecc() & ERRCTL_L2P); | 
|  |  | 
|  | if (l1parity_present && l2parity_present) { | 
|  | if (l1parity) | 
|  | errctl |= ERRCTL_PE; | 
|  | if (l1parity ^ l2parity) | 
|  | errctl |= ERRCTL_L2P; | 
|  | } else if (l1parity_present) { | 
|  | if (l1parity) | 
|  | errctl |= ERRCTL_PE; | 
|  | } else if (l2parity_present) { | 
|  | if (l2parity) | 
|  | errctl |= ERRCTL_L2P; | 
|  | } else { | 
|  | /* No parity available */ | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); | 
|  |  | 
|  | write_c0_ecc(errctl); | 
|  | back_to_back_c0_hazard(); | 
|  | errctl = read_c0_ecc(); | 
|  | printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); | 
|  |  | 
|  | if (l1parity_present) | 
|  | printk(KERN_INFO "Cache parity protection %sabled\n", | 
|  | (errctl & ERRCTL_PE) ? "en" : "dis"); | 
|  |  | 
|  | if (l2parity_present) { | 
|  | if (l1parity_present && l1parity) | 
|  | errctl ^= ERRCTL_L2P; | 
|  | printk(KERN_INFO "L2 cache parity protection %sabled\n", | 
|  | (errctl & ERRCTL_L2P) ? "en" : "dis"); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CPU_5KC: | 
|  | case CPU_5KE: | 
|  | case CPU_LOONGSON1: | 
|  | write_c0_ecc(0x80000000); | 
|  | back_to_back_c0_hazard(); | 
|  | /* Set the PE bit (bit 31) in the c0_errctl register. */ | 
|  | printk(KERN_INFO "Cache parity protection %sabled\n", | 
|  | (read_c0_ecc() & 0x80000000) ? "en" : "dis"); | 
|  | break; | 
|  | case CPU_20KC: | 
|  | case CPU_25KF: | 
|  | /* Clear the DE bit (bit 16) in the c0_status register. */ | 
|  | printk(KERN_INFO "Enable cache parity protection for " | 
|  | "MIPS 20KC/25KF CPUs.\n"); | 
|  | clear_c0_status(ST0_DE); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | asmlinkage void cache_parity_error(void) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | unsigned int reg_val; | 
|  |  | 
|  | /* For the moment, report the problem and hang. */ | 
|  | printk("Cache error exception:\n"); | 
|  | printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); | 
|  | reg_val = read_c0_cacheerr(); | 
|  | printk("c0_cacheerr == %08x\n", reg_val); | 
|  |  | 
|  | printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", | 
|  | reg_val & (1<<30) ? "secondary" : "primary", | 
|  | reg_val & (1<<31) ? "data" : "insn"); | 
|  | if ((cpu_has_mips_r2_r6) && | 
|  | ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { | 
|  | pr_err("Error bits: %s%s%s%s%s%s%s%s\n", | 
|  | reg_val & (1<<29) ? "ED " : "", | 
|  | reg_val & (1<<28) ? "ET " : "", | 
|  | reg_val & (1<<27) ? "ES " : "", | 
|  | reg_val & (1<<26) ? "EE " : "", | 
|  | reg_val & (1<<25) ? "EB " : "", | 
|  | reg_val & (1<<24) ? "EI " : "", | 
|  | reg_val & (1<<23) ? "E1 " : "", | 
|  | reg_val & (1<<22) ? "E0 " : ""); | 
|  | } else { | 
|  | pr_err("Error bits: %s%s%s%s%s%s%s\n", | 
|  | reg_val & (1<<29) ? "ED " : "", | 
|  | reg_val & (1<<28) ? "ET " : "", | 
|  | reg_val & (1<<26) ? "EE " : "", | 
|  | reg_val & (1<<25) ? "EB " : "", | 
|  | reg_val & (1<<24) ? "EI " : "", | 
|  | reg_val & (1<<23) ? "E1 " : "", | 
|  | reg_val & (1<<22) ? "E0 " : ""); | 
|  | } | 
|  | printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); | 
|  |  | 
|  | #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) | 
|  | if (reg_val & (1<<22)) | 
|  | printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); | 
|  |  | 
|  | if (reg_val & (1<<23)) | 
|  | printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); | 
|  | #endif | 
|  |  | 
|  | panic("Can't handle the cache error!"); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_ftlb(void) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | unsigned int reg_val; | 
|  |  | 
|  | /* For the moment, report the problem and hang. */ | 
|  | if ((cpu_has_mips_r2_r6) && | 
|  | ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { | 
|  | pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", | 
|  | read_c0_ecc()); | 
|  | pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); | 
|  | reg_val = read_c0_cacheerr(); | 
|  | pr_err("c0_cacheerr == %08x\n", reg_val); | 
|  |  | 
|  | if ((reg_val & 0xc0000000) == 0xc0000000) { | 
|  | pr_err("Decoded c0_cacheerr: FTLB parity error\n"); | 
|  | } else { | 
|  | pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", | 
|  | reg_val & (1<<30) ? "secondary" : "primary", | 
|  | reg_val & (1<<31) ? "data" : "insn"); | 
|  | } | 
|  | } else { | 
|  | pr_err("FTLB error exception\n"); | 
|  | } | 
|  | /* Just print the cacheerr bits for now */ | 
|  | cache_parity_error(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SDBBP EJTAG debug exception handler. | 
|  | * We skip the instruction and return to the next instruction. | 
|  | */ | 
|  | void ejtag_exception_handler(struct pt_regs *regs) | 
|  | { | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  | unsigned long depc, old_epc, old_ra; | 
|  | unsigned int debug; | 
|  |  | 
|  | printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); | 
|  | depc = read_c0_depc(); | 
|  | debug = read_c0_debug(); | 
|  | printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); | 
|  | if (debug & 0x80000000) { | 
|  | /* | 
|  | * In branch delay slot. | 
|  | * We cheat a little bit here and use EPC to calculate the | 
|  | * debug return address (DEPC). EPC is restored after the | 
|  | * calculation. | 
|  | */ | 
|  | old_epc = regs->cp0_epc; | 
|  | old_ra = regs->regs[31]; | 
|  | regs->cp0_epc = depc; | 
|  | compute_return_epc(regs); | 
|  | depc = regs->cp0_epc; | 
|  | regs->cp0_epc = old_epc; | 
|  | regs->regs[31] = old_ra; | 
|  | } else | 
|  | depc += 4; | 
|  | write_c0_depc(depc); | 
|  |  | 
|  | #if 0 | 
|  | printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); | 
|  | write_c0_debug(debug | 0x100); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NMI exception handler. | 
|  | * No lock; only written during early bootup by CPU 0. | 
|  | */ | 
|  | static RAW_NOTIFIER_HEAD(nmi_chain); | 
|  |  | 
|  | int register_nmi_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return raw_notifier_chain_register(&nmi_chain, nb); | 
|  | } | 
|  |  | 
|  | void __noreturn nmi_exception_handler(struct pt_regs *regs) | 
|  | { | 
|  | char str[100]; | 
|  |  | 
|  | raw_notifier_call_chain(&nmi_chain, 0, regs); | 
|  | bust_spinlocks(1); | 
|  | snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", | 
|  | smp_processor_id(), regs->cp0_epc); | 
|  | regs->cp0_epc = read_c0_errorepc(); | 
|  | die(str, regs); | 
|  | } | 
|  |  | 
|  | #define VECTORSPACING 0x100	/* for EI/VI mode */ | 
|  |  | 
|  | unsigned long ebase; | 
|  | unsigned long exception_handlers[32]; | 
|  | unsigned long vi_handlers[64]; | 
|  |  | 
|  | void __init *set_except_vector(int n, void *addr) | 
|  | { | 
|  | unsigned long handler = (unsigned long) addr; | 
|  | unsigned long old_handler; | 
|  |  | 
|  | #ifdef CONFIG_CPU_MICROMIPS | 
|  | /* | 
|  | * Only the TLB handlers are cache aligned with an even | 
|  | * address. All other handlers are on an odd address and | 
|  | * require no modification. Otherwise, MIPS32 mode will | 
|  | * be entered when handling any TLB exceptions. That | 
|  | * would be bad...since we must stay in microMIPS mode. | 
|  | */ | 
|  | if (!(handler & 0x1)) | 
|  | handler |= 1; | 
|  | #endif | 
|  | old_handler = xchg(&exception_handlers[n], handler); | 
|  |  | 
|  | if (n == 0 && cpu_has_divec) { | 
|  | #ifdef CONFIG_CPU_MICROMIPS | 
|  | unsigned long jump_mask = ~((1 << 27) - 1); | 
|  | #else | 
|  | unsigned long jump_mask = ~((1 << 28) - 1); | 
|  | #endif | 
|  | u32 *buf = (u32 *)(ebase + 0x200); | 
|  | unsigned int k0 = 26; | 
|  | if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { | 
|  | uasm_i_j(&buf, handler & ~jump_mask); | 
|  | uasm_i_nop(&buf); | 
|  | } else { | 
|  | UASM_i_LA(&buf, k0, handler); | 
|  | uasm_i_jr(&buf, k0); | 
|  | uasm_i_nop(&buf); | 
|  | } | 
|  | local_flush_icache_range(ebase + 0x200, (unsigned long)buf); | 
|  | } | 
|  | return (void *)old_handler; | 
|  | } | 
|  |  | 
|  | static void do_default_vi(void) | 
|  | { | 
|  | show_regs(get_irq_regs()); | 
|  | panic("Caught unexpected vectored interrupt."); | 
|  | } | 
|  |  | 
|  | static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) | 
|  | { | 
|  | unsigned long handler; | 
|  | unsigned long old_handler = vi_handlers[n]; | 
|  | int srssets = current_cpu_data.srsets; | 
|  | u16 *h; | 
|  | unsigned char *b; | 
|  |  | 
|  | BUG_ON(!cpu_has_veic && !cpu_has_vint); | 
|  |  | 
|  | if (addr == NULL) { | 
|  | handler = (unsigned long) do_default_vi; | 
|  | srs = 0; | 
|  | } else | 
|  | handler = (unsigned long) addr; | 
|  | vi_handlers[n] = handler; | 
|  |  | 
|  | b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); | 
|  |  | 
|  | if (srs >= srssets) | 
|  | panic("Shadow register set %d not supported", srs); | 
|  |  | 
|  | if (cpu_has_veic) { | 
|  | if (board_bind_eic_interrupt) | 
|  | board_bind_eic_interrupt(n, srs); | 
|  | } else if (cpu_has_vint) { | 
|  | /* SRSMap is only defined if shadow sets are implemented */ | 
|  | if (srssets > 1) | 
|  | change_c0_srsmap(0xf << n*4, srs << n*4); | 
|  | } | 
|  |  | 
|  | if (srs == 0) { | 
|  | /* | 
|  | * If no shadow set is selected then use the default handler | 
|  | * that does normal register saving and standard interrupt exit | 
|  | */ | 
|  | extern char except_vec_vi, except_vec_vi_lui; | 
|  | extern char except_vec_vi_ori, except_vec_vi_end; | 
|  | extern char rollback_except_vec_vi; | 
|  | char *vec_start = using_rollback_handler() ? | 
|  | &rollback_except_vec_vi : &except_vec_vi; | 
|  | #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) | 
|  | const int lui_offset = &except_vec_vi_lui - vec_start + 2; | 
|  | const int ori_offset = &except_vec_vi_ori - vec_start + 2; | 
|  | #else | 
|  | const int lui_offset = &except_vec_vi_lui - vec_start; | 
|  | const int ori_offset = &except_vec_vi_ori - vec_start; | 
|  | #endif | 
|  | const int handler_len = &except_vec_vi_end - vec_start; | 
|  |  | 
|  | if (handler_len > VECTORSPACING) { | 
|  | /* | 
|  | * Sigh... panicing won't help as the console | 
|  | * is probably not configured :( | 
|  | */ | 
|  | panic("VECTORSPACING too small"); | 
|  | } | 
|  |  | 
|  | set_handler(((unsigned long)b - ebase), vec_start, | 
|  | #ifdef CONFIG_CPU_MICROMIPS | 
|  | (handler_len - 1)); | 
|  | #else | 
|  | handler_len); | 
|  | #endif | 
|  | h = (u16 *)(b + lui_offset); | 
|  | *h = (handler >> 16) & 0xffff; | 
|  | h = (u16 *)(b + ori_offset); | 
|  | *h = (handler & 0xffff); | 
|  | local_flush_icache_range((unsigned long)b, | 
|  | (unsigned long)(b+handler_len)); | 
|  | } | 
|  | else { | 
|  | /* | 
|  | * In other cases jump directly to the interrupt handler. It | 
|  | * is the handler's responsibility to save registers if required | 
|  | * (eg hi/lo) and return from the exception using "eret". | 
|  | */ | 
|  | u32 insn; | 
|  |  | 
|  | h = (u16 *)b; | 
|  | /* j handler */ | 
|  | #ifdef CONFIG_CPU_MICROMIPS | 
|  | insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); | 
|  | #else | 
|  | insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); | 
|  | #endif | 
|  | h[0] = (insn >> 16) & 0xffff; | 
|  | h[1] = insn & 0xffff; | 
|  | h[2] = 0; | 
|  | h[3] = 0; | 
|  | local_flush_icache_range((unsigned long)b, | 
|  | (unsigned long)(b+8)); | 
|  | } | 
|  |  | 
|  | return (void *)old_handler; | 
|  | } | 
|  |  | 
|  | void *set_vi_handler(int n, vi_handler_t addr) | 
|  | { | 
|  | return set_vi_srs_handler(n, addr, 0); | 
|  | } | 
|  |  | 
|  | extern void tlb_init(void); | 
|  |  | 
|  | /* | 
|  | * Timer interrupt | 
|  | */ | 
|  | int cp0_compare_irq; | 
|  | EXPORT_SYMBOL_GPL(cp0_compare_irq); | 
|  | int cp0_compare_irq_shift; | 
|  |  | 
|  | /* | 
|  | * Performance counter IRQ or -1 if shared with timer | 
|  | */ | 
|  | int cp0_perfcount_irq; | 
|  | EXPORT_SYMBOL_GPL(cp0_perfcount_irq); | 
|  |  | 
|  | /* | 
|  | * Fast debug channel IRQ or -1 if not present | 
|  | */ | 
|  | int cp0_fdc_irq; | 
|  | EXPORT_SYMBOL_GPL(cp0_fdc_irq); | 
|  |  | 
|  | static int noulri; | 
|  |  | 
|  | static int __init ulri_disable(char *s) | 
|  | { | 
|  | pr_info("Disabling ulri\n"); | 
|  | noulri = 1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("noulri", ulri_disable); | 
|  |  | 
|  | /* configure STATUS register */ | 
|  | static void configure_status(void) | 
|  | { | 
|  | /* | 
|  | * Disable coprocessors and select 32-bit or 64-bit addressing | 
|  | * and the 16/32 or 32/32 FPR register model.  Reset the BEV | 
|  | * flag that some firmware may have left set and the TS bit (for | 
|  | * IP27).  Set XX for ISA IV code to work. | 
|  | */ | 
|  | unsigned int status_set = ST0_CU0; | 
|  | #ifdef CONFIG_64BIT | 
|  | status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; | 
|  | #endif | 
|  | if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) | 
|  | status_set |= ST0_XX; | 
|  | if (cpu_has_dsp) | 
|  | status_set |= ST0_MX; | 
|  |  | 
|  | change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, | 
|  | status_set); | 
|  | } | 
|  |  | 
|  | /* configure HWRENA register */ | 
|  | static void configure_hwrena(void) | 
|  | { | 
|  | unsigned int hwrena = cpu_hwrena_impl_bits; | 
|  |  | 
|  | if (cpu_has_mips_r2_r6) | 
|  | hwrena |= 0x0000000f; | 
|  |  | 
|  | if (!noulri && cpu_has_userlocal) | 
|  | hwrena |= (1 << 29); | 
|  |  | 
|  | if (hwrena) | 
|  | write_c0_hwrena(hwrena); | 
|  | } | 
|  |  | 
|  | static void configure_exception_vector(void) | 
|  | { | 
|  | if (cpu_has_veic || cpu_has_vint) { | 
|  | unsigned long sr = set_c0_status(ST0_BEV); | 
|  | write_c0_ebase(ebase); | 
|  | write_c0_status(sr); | 
|  | /* Setting vector spacing enables EI/VI mode  */ | 
|  | change_c0_intctl(0x3e0, VECTORSPACING); | 
|  | } | 
|  | if (cpu_has_divec) { | 
|  | if (cpu_has_mipsmt) { | 
|  | unsigned int vpflags = dvpe(); | 
|  | set_c0_cause(CAUSEF_IV); | 
|  | evpe(vpflags); | 
|  | } else | 
|  | set_c0_cause(CAUSEF_IV); | 
|  | } | 
|  | } | 
|  |  | 
|  | void per_cpu_trap_init(bool is_boot_cpu) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | configure_status(); | 
|  | configure_hwrena(); | 
|  |  | 
|  | configure_exception_vector(); | 
|  |  | 
|  | /* | 
|  | * Before R2 both interrupt numbers were fixed to 7, so on R2 only: | 
|  | * | 
|  | *  o read IntCtl.IPTI to determine the timer interrupt | 
|  | *  o read IntCtl.IPPCI to determine the performance counter interrupt | 
|  | *  o read IntCtl.IPFDC to determine the fast debug channel interrupt | 
|  | */ | 
|  | if (cpu_has_mips_r2_r6) { | 
|  | cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; | 
|  | cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; | 
|  | cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; | 
|  | cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; | 
|  | if (!cp0_fdc_irq) | 
|  | cp0_fdc_irq = -1; | 
|  |  | 
|  | } else { | 
|  | cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; | 
|  | cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; | 
|  | cp0_perfcount_irq = -1; | 
|  | cp0_fdc_irq = -1; | 
|  | } | 
|  |  | 
|  | if (!cpu_data[cpu].asid_cache) | 
|  | cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; | 
|  |  | 
|  | atomic_inc(&init_mm.mm_count); | 
|  | current->active_mm = &init_mm; | 
|  | BUG_ON(current->mm); | 
|  | enter_lazy_tlb(&init_mm, current); | 
|  |  | 
|  | /* Boot CPU's cache setup in setup_arch(). */ | 
|  | if (!is_boot_cpu) | 
|  | cpu_cache_init(); | 
|  | tlb_init(); | 
|  | TLBMISS_HANDLER_SETUP(); | 
|  | } | 
|  |  | 
|  | /* Install CPU exception handler */ | 
|  | void set_handler(unsigned long offset, void *addr, unsigned long size) | 
|  | { | 
|  | #ifdef CONFIG_CPU_MICROMIPS | 
|  | memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); | 
|  | #else | 
|  | memcpy((void *)(ebase + offset), addr, size); | 
|  | #endif | 
|  | local_flush_icache_range(ebase + offset, ebase + offset + size); | 
|  | } | 
|  |  | 
|  | static char panic_null_cerr[] = | 
|  | "Trying to set NULL cache error exception handler"; | 
|  |  | 
|  | /* | 
|  | * Install uncached CPU exception handler. | 
|  | * This is suitable only for the cache error exception which is the only | 
|  | * exception handler that is being run uncached. | 
|  | */ | 
|  | void set_uncached_handler(unsigned long offset, void *addr, | 
|  | unsigned long size) | 
|  | { | 
|  | unsigned long uncached_ebase = CKSEG1ADDR(ebase); | 
|  |  | 
|  | if (!addr) | 
|  | panic(panic_null_cerr); | 
|  |  | 
|  | memcpy((void *)(uncached_ebase + offset), addr, size); | 
|  | } | 
|  |  | 
|  | static int __initdata rdhwr_noopt; | 
|  | static int __init set_rdhwr_noopt(char *str) | 
|  | { | 
|  | rdhwr_noopt = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("rdhwr_noopt", set_rdhwr_noopt); | 
|  |  | 
|  | void __init trap_init(void) | 
|  | { | 
|  | extern char except_vec3_generic; | 
|  | extern char except_vec4; | 
|  | extern char except_vec3_r4000; | 
|  | unsigned long i; | 
|  |  | 
|  | check_wait(); | 
|  |  | 
|  | if (cpu_has_veic || cpu_has_vint) { | 
|  | unsigned long size = 0x200 + VECTORSPACING*64; | 
|  | ebase = (unsigned long) | 
|  | __alloc_bootmem(size, 1 << fls(size), 0); | 
|  | } else { | 
|  | #ifdef CONFIG_KVM_GUEST | 
|  | #define KVM_GUEST_KSEG0     0x40000000 | 
|  | ebase = KVM_GUEST_KSEG0; | 
|  | #else | 
|  | ebase = CKSEG0; | 
|  | #endif | 
|  | if (cpu_has_mips_r2_r6) | 
|  | ebase += (read_c0_ebase() & 0x3ffff000); | 
|  | } | 
|  |  | 
|  | if (cpu_has_mmips) { | 
|  | unsigned int config3 = read_c0_config3(); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) | 
|  | write_c0_config3(config3 | MIPS_CONF3_ISA_OE); | 
|  | else | 
|  | write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); | 
|  | } | 
|  |  | 
|  | if (board_ebase_setup) | 
|  | board_ebase_setup(); | 
|  | per_cpu_trap_init(true); | 
|  |  | 
|  | /* | 
|  | * Copy the generic exception handlers to their final destination. | 
|  | * This will be overriden later as suitable for a particular | 
|  | * configuration. | 
|  | */ | 
|  | set_handler(0x180, &except_vec3_generic, 0x80); | 
|  |  | 
|  | /* | 
|  | * Setup default vectors | 
|  | */ | 
|  | for (i = 0; i <= 31; i++) | 
|  | set_except_vector(i, handle_reserved); | 
|  |  | 
|  | /* | 
|  | * Copy the EJTAG debug exception vector handler code to it's final | 
|  | * destination. | 
|  | */ | 
|  | if (cpu_has_ejtag && board_ejtag_handler_setup) | 
|  | board_ejtag_handler_setup(); | 
|  |  | 
|  | /* | 
|  | * Only some CPUs have the watch exceptions. | 
|  | */ | 
|  | if (cpu_has_watch) | 
|  | set_except_vector(23, handle_watch); | 
|  |  | 
|  | /* | 
|  | * Initialise interrupt handlers | 
|  | */ | 
|  | if (cpu_has_veic || cpu_has_vint) { | 
|  | int nvec = cpu_has_veic ? 64 : 8; | 
|  | for (i = 0; i < nvec; i++) | 
|  | set_vi_handler(i, NULL); | 
|  | } | 
|  | else if (cpu_has_divec) | 
|  | set_handler(0x200, &except_vec4, 0x8); | 
|  |  | 
|  | /* | 
|  | * Some CPUs can enable/disable for cache parity detection, but does | 
|  | * it different ways. | 
|  | */ | 
|  | parity_protection_init(); | 
|  |  | 
|  | /* | 
|  | * The Data Bus Errors / Instruction Bus Errors are signaled | 
|  | * by external hardware.  Therefore these two exceptions | 
|  | * may have board specific handlers. | 
|  | */ | 
|  | if (board_be_init) | 
|  | board_be_init(); | 
|  |  | 
|  | set_except_vector(0, using_rollback_handler() ? rollback_handle_int | 
|  | : handle_int); | 
|  | set_except_vector(1, handle_tlbm); | 
|  | set_except_vector(2, handle_tlbl); | 
|  | set_except_vector(3, handle_tlbs); | 
|  |  | 
|  | set_except_vector(4, handle_adel); | 
|  | set_except_vector(5, handle_ades); | 
|  |  | 
|  | set_except_vector(6, handle_ibe); | 
|  | set_except_vector(7, handle_dbe); | 
|  |  | 
|  | set_except_vector(8, handle_sys); | 
|  | set_except_vector(9, handle_bp); | 
|  | set_except_vector(10, rdhwr_noopt ? handle_ri : | 
|  | (cpu_has_vtag_icache ? | 
|  | handle_ri_rdhwr_vivt : handle_ri_rdhwr)); | 
|  | set_except_vector(11, handle_cpu); | 
|  | set_except_vector(12, handle_ov); | 
|  | set_except_vector(13, handle_tr); | 
|  | set_except_vector(14, handle_msa_fpe); | 
|  |  | 
|  | if (current_cpu_type() == CPU_R6000 || | 
|  | current_cpu_type() == CPU_R6000A) { | 
|  | /* | 
|  | * The R6000 is the only R-series CPU that features a machine | 
|  | * check exception (similar to the R4000 cache error) and | 
|  | * unaligned ldc1/sdc1 exception.  The handlers have not been | 
|  | * written yet.	 Well, anyway there is no R6000 machine on the | 
|  | * current list of targets for Linux/MIPS. | 
|  | * (Duh, crap, there is someone with a triple R6k machine) | 
|  | */ | 
|  | //set_except_vector(14, handle_mc); | 
|  | //set_except_vector(15, handle_ndc); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (board_nmi_handler_setup) | 
|  | board_nmi_handler_setup(); | 
|  |  | 
|  | if (cpu_has_fpu && !cpu_has_nofpuex) | 
|  | set_except_vector(15, handle_fpe); | 
|  |  | 
|  | set_except_vector(16, handle_ftlb); | 
|  |  | 
|  | if (cpu_has_rixiex) { | 
|  | set_except_vector(19, tlb_do_page_fault_0); | 
|  | set_except_vector(20, tlb_do_page_fault_0); | 
|  | } | 
|  |  | 
|  | set_except_vector(21, handle_msa); | 
|  | set_except_vector(22, handle_mdmx); | 
|  |  | 
|  | if (cpu_has_mcheck) | 
|  | set_except_vector(24, handle_mcheck); | 
|  |  | 
|  | if (cpu_has_mipsmt) | 
|  | set_except_vector(25, handle_mt); | 
|  |  | 
|  | set_except_vector(26, handle_dsp); | 
|  |  | 
|  | if (board_cache_error_setup) | 
|  | board_cache_error_setup(); | 
|  |  | 
|  | if (cpu_has_vce) | 
|  | /* Special exception: R4[04]00 uses also the divec space. */ | 
|  | set_handler(0x180, &except_vec3_r4000, 0x100); | 
|  | else if (cpu_has_4kex) | 
|  | set_handler(0x180, &except_vec3_generic, 0x80); | 
|  | else | 
|  | set_handler(0x080, &except_vec3_generic, 0x80); | 
|  |  | 
|  | local_flush_icache_range(ebase, ebase + 0x400); | 
|  |  | 
|  | sort_extable(__start___dbe_table, __stop___dbe_table); | 
|  |  | 
|  | cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */ | 
|  | } | 
|  |  | 
|  | static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, | 
|  | void *v) | 
|  | { | 
|  | switch (cmd) { | 
|  | case CPU_PM_ENTER_FAILED: | 
|  | case CPU_PM_EXIT: | 
|  | configure_status(); | 
|  | configure_hwrena(); | 
|  | configure_exception_vector(); | 
|  |  | 
|  | /* Restore register with CPU number for TLB handlers */ | 
|  | TLBMISS_HANDLER_RESTORE(); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block trap_pm_notifier_block = { | 
|  | .notifier_call = trap_pm_notifier, | 
|  | }; | 
|  |  | 
|  | static int __init trap_pm_init(void) | 
|  | { | 
|  | return cpu_pm_register_notifier(&trap_pm_notifier_block); | 
|  | } | 
|  | arch_initcall(trap_pm_init); |