|  | /* | 
|  | Madge Horizon ATM Adapter driver. | 
|  | Copyright (C) 1995-1999  Madge Networks Ltd. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  |  | 
|  | The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian | 
|  | system and in the file COPYING in the Linux kernel source. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | IMPORTANT NOTE: Madge Networks no longer makes the adapters | 
|  | supported by this driver and makes no commitment to maintain it. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/atm.h> | 
|  | #include <linux/atmdev.h> | 
|  | #include <linux/sonet.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/wait.h> | 
|  |  | 
|  | #include <asm/system.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/string.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | #include "horizon.h" | 
|  |  | 
|  | #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>" | 
|  | #define description_string "Madge ATM Horizon [Ultra] driver" | 
|  | #define version_string "1.2.1" | 
|  |  | 
|  | static inline void __init show_version (void) { | 
|  | printk ("%s version %s\n", description_string, version_string); | 
|  | } | 
|  |  | 
|  | /* | 
|  |  | 
|  | CREDITS | 
|  |  | 
|  | Driver and documentation by: | 
|  |  | 
|  | Chris Aston        Madge Networks | 
|  | Giuliano Procida   Madge Networks | 
|  | Simon Benham       Madge Networks | 
|  | Simon Johnson      Madge Networks | 
|  | Various Others     Madge Networks | 
|  |  | 
|  | Some inspiration taken from other drivers by: | 
|  |  | 
|  | Alexandru Cucos    UTBv | 
|  | Kari Mettinen      University of Helsinki | 
|  | Werner Almesberger EPFL LRC | 
|  |  | 
|  | Theory of Operation | 
|  |  | 
|  | I Hardware, detection, initialisation and shutdown. | 
|  |  | 
|  | 1. Supported Hardware | 
|  |  | 
|  | This driver should handle all variants of the PCI Madge ATM adapters | 
|  | with the Horizon chipset. These are all PCI cards supporting PIO, BM | 
|  | DMA and a form of MMIO (registers only, not internal RAM). | 
|  |  | 
|  | The driver is only known to work with SONET and UTP Horizon Ultra | 
|  | cards at 155Mb/s. However, code is in place to deal with both the | 
|  | original Horizon and 25Mb/s operation. | 
|  |  | 
|  | There are two revisions of the Horizon ASIC: the original and the | 
|  | Ultra. Details of hardware bugs are in section III. | 
|  |  | 
|  | The ASIC version can be distinguished by chip markings but is NOT | 
|  | indicated by the PCI revision (all adapters seem to have PCI rev 1). | 
|  |  | 
|  | I believe that: | 
|  |  | 
|  | Horizon       => Collage  25 PCI Adapter (UTP and STP) | 
|  | Horizon Ultra => Collage 155 PCI Client (UTP or SONET) | 
|  | Ambassador x  => Collage 155 PCI Server (completely different) | 
|  |  | 
|  | Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to | 
|  | have a Madge B154 plus glue logic serializer. I have also found a | 
|  | really ancient version of this with slightly different glue. It | 
|  | comes with the revision 0 (140-025-01) ASIC. | 
|  |  | 
|  | Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink | 
|  | output (UTP) or an HP HFBR 5205 output (SONET). It has either | 
|  | Madge's SAMBA framer or a SUNI-lite device (early versions). It | 
|  | comes with the revision 1 (140-027-01) ASIC. | 
|  |  | 
|  | 2. Detection | 
|  |  | 
|  | All Horizon-based cards present with the same PCI Vendor and Device | 
|  | IDs. The standard Linux 2.2 PCI API is used to locate any cards and | 
|  | to enable bus-mastering (with appropriate latency). | 
|  |  | 
|  | ATM_LAYER_STATUS in the control register distinguishes between the | 
|  | two possible physical layers (25 and 155). It is not clear whether | 
|  | the 155 cards can also operate at 25Mbps. We rely on the fact that a | 
|  | card operates at 155 if and only if it has the newer Horizon Ultra | 
|  | ASIC. | 
|  |  | 
|  | For 155 cards the two possible framers are probed for and then set | 
|  | up for loop-timing. | 
|  |  | 
|  | 3. Initialisation | 
|  |  | 
|  | The card is reset and then put into a known state. The physical | 
|  | layer is configured for normal operation at the appropriate speed; | 
|  | in the case of the 155 cards, the framer is initialised with | 
|  | line-based timing; the internal RAM is zeroed and the allocation of | 
|  | buffers for RX and TX is made; the Burnt In Address is read and | 
|  | copied to the ATM ESI; various policy settings for RX (VPI bits, | 
|  | unknown VCs, oam cells) are made. Ideally all policy items should be | 
|  | configurable at module load (if not actually on-demand), however, | 
|  | only the vpi vs vci bit allocation can be specified at insmod. | 
|  |  | 
|  | 4. Shutdown | 
|  |  | 
|  | This is in response to module_cleaup. No VCs are in use and the card | 
|  | should be idle; it is reset. | 
|  |  | 
|  | II Driver software (as it should be) | 
|  |  | 
|  | 0. Traffic Parameters | 
|  |  | 
|  | The traffic classes (not an enumeration) are currently: ATM_NONE (no | 
|  | traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS | 
|  | (compatible with everything). Together with (perhaps only some of) | 
|  | the following items they make up the traffic specification. | 
|  |  | 
|  | struct atm_trafprm { | 
|  | unsigned char traffic_class; traffic class (ATM_UBR, ...) | 
|  | int           max_pcr;       maximum PCR in cells per second | 
|  | int           pcr;           desired PCR in cells per second | 
|  | int           min_pcr;       minimum PCR in cells per second | 
|  | int           max_cdv;       maximum CDV in microseconds | 
|  | int           max_sdu;       maximum SDU in bytes | 
|  | }; | 
|  |  | 
|  | Note that these denote bandwidth available not bandwidth used; the | 
|  | possibilities according to ATMF are: | 
|  |  | 
|  | Real Time (cdv and max CDT given) | 
|  |  | 
|  | CBR(pcr)             pcr bandwidth always available | 
|  | rtVBR(pcr,scr,mbs)   scr bandwidth always available, upto pcr at mbs too | 
|  |  | 
|  | Non Real Time | 
|  |  | 
|  | nrtVBR(pcr,scr,mbs)  scr bandwidth always available, upto pcr at mbs too | 
|  | UBR() | 
|  | ABR(mcr,pcr)         mcr bandwidth always available, upto pcr (depending) too | 
|  |  | 
|  | mbs is max burst size (bucket) | 
|  | pcr and scr have associated cdvt values | 
|  | mcr is like scr but has no cdtv | 
|  | cdtv may differ at each hop | 
|  |  | 
|  | Some of the above items are qos items (as opposed to traffic | 
|  | parameters). We have nothing to do with qos. All except ABR can have | 
|  | their traffic parameters converted to GCRA parameters. The GCRA may | 
|  | be implemented as a (real-number) leaky bucket. The GCRA can be used | 
|  | in complicated ways by switches and in simpler ways by end-stations. | 
|  | It can be used both to filter incoming cells and shape out-going | 
|  | cells. | 
|  |  | 
|  | ATM Linux actually supports: | 
|  |  | 
|  | ATM_NONE() (no traffic in this direction) | 
|  | ATM_UBR(max_frame_size) | 
|  | ATM_CBR(max/min_pcr, max_cdv, max_frame_size) | 
|  |  | 
|  | 0 or ATM_MAX_PCR are used to indicate maximum available PCR | 
|  |  | 
|  | A traffic specification consists of the AAL type and separate | 
|  | traffic specifications for either direction. In ATM Linux it is: | 
|  |  | 
|  | struct atm_qos { | 
|  | struct atm_trafprm txtp; | 
|  | struct atm_trafprm rxtp; | 
|  | unsigned char aal; | 
|  | }; | 
|  |  | 
|  | AAL types are: | 
|  |  | 
|  | ATM_NO_AAL    AAL not specified | 
|  | ATM_AAL0      "raw" ATM cells | 
|  | ATM_AAL1      AAL1 (CBR) | 
|  | ATM_AAL2      AAL2 (VBR) | 
|  | ATM_AAL34     AAL3/4 (data) | 
|  | ATM_AAL5      AAL5 (data) | 
|  | ATM_SAAL      signaling AAL | 
|  |  | 
|  | The Horizon has support for AAL frame types: 0, 3/4 and 5. However, | 
|  | it does not implement AAL 3/4 SAR and it has a different notion of | 
|  | "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are | 
|  | supported by this driver. | 
|  |  | 
|  | The Horizon has limited support for ABR (including UBR), VBR and | 
|  | CBR. Each TX channel has a bucket (containing up to 31 cell units) | 
|  | and two timers (PCR and SCR) associated with it that can be used to | 
|  | govern cell emissions and host notification (in the case of ABR this | 
|  | is presumably so that RM cells may be emitted at appropriate times). | 
|  | The timers may either be disabled or may be set to any of 240 values | 
|  | (determined by the clock crystal, a fixed (?) per-device divider, a | 
|  | configurable divider and a configurable timer preload value). | 
|  |  | 
|  | At the moment only UBR and CBR are supported by the driver. VBR will | 
|  | be supported as soon as ATM for Linux supports it. ABR support is | 
|  | very unlikely as RM cell handling is completely up to the driver. | 
|  |  | 
|  | 1. TX (TX channel setup and TX transfer) | 
|  |  | 
|  | The TX half of the driver owns the TX Horizon registers. The TX | 
|  | component in the IRQ handler is the BM completion handler. This can | 
|  | only be entered when tx_busy is true (enforced by hardware). The | 
|  | other TX component can only be entered when tx_busy is false | 
|  | (enforced by driver). So TX is single-threaded. | 
|  |  | 
|  | Apart from a minor optimisation to not re-select the last channel, | 
|  | the TX send component works as follows: | 
|  |  | 
|  | Atomic test and set tx_busy until we succeed; we should implement | 
|  | some sort of timeout so that tx_busy will never be stuck at true. | 
|  |  | 
|  | If no TX channel is set up for this VC we wait for an idle one (if | 
|  | necessary) and set it up. | 
|  |  | 
|  | At this point we have a TX channel ready for use. We wait for enough | 
|  | buffers to become available then start a TX transmit (set the TX | 
|  | descriptor, schedule transfer, exit). | 
|  |  | 
|  | The IRQ component handles TX completion (stats, free buffer, tx_busy | 
|  | unset, exit). We also re-schedule further transfers for the same | 
|  | frame if needed. | 
|  |  | 
|  | TX setup in more detail: | 
|  |  | 
|  | TX open is a nop, the relevant information is held in the hrz_vcc | 
|  | (vcc->dev_data) structure and is "cached" on the card. | 
|  |  | 
|  | TX close gets the TX lock and clears the channel from the "cache". | 
|  |  | 
|  | 2. RX (Data Available and RX transfer) | 
|  |  | 
|  | The RX half of the driver owns the RX registers. There are two RX | 
|  | components in the IRQ handler: the data available handler deals with | 
|  | fresh data that has arrived on the card, the BM completion handler | 
|  | is very similar to the TX completion handler. The data available | 
|  | handler grabs the rx_lock and it is only released once the data has | 
|  | been discarded or completely transferred to the host. The BM | 
|  | completion handler only runs when the lock is held; the data | 
|  | available handler is locked out over the same period. | 
|  |  | 
|  | Data available on the card triggers an interrupt. If the data is not | 
|  | suitable for our existing RX channels or we cannot allocate a buffer | 
|  | it is flushed. Otherwise an RX receive is scheduled. Multiple RX | 
|  | transfers may be scheduled for the same frame. | 
|  |  | 
|  | RX setup in more detail: | 
|  |  | 
|  | RX open... | 
|  | RX close... | 
|  |  | 
|  | III Hardware Bugs | 
|  |  | 
|  | 0. Byte vs Word addressing of adapter RAM. | 
|  |  | 
|  | A design feature; see the .h file (especially the memory map). | 
|  |  | 
|  | 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra) | 
|  |  | 
|  | The host must not start a transmit direction transfer at a | 
|  | non-four-byte boundary in host memory. Instead the host should | 
|  | perform a byte, or a two byte, or one byte followed by two byte | 
|  | transfer in order to start the rest of the transfer on a four byte | 
|  | boundary. RX is OK. | 
|  |  | 
|  | Simultaneous transmit and receive direction bus master transfers are | 
|  | not allowed. | 
|  |  | 
|  | The simplest solution to these two is to always do PIO (never DMA) | 
|  | in the TX direction on the original Horizon. More complicated | 
|  | solutions are likely to hurt my brain. | 
|  |  | 
|  | 2. Loss of buffer on close VC | 
|  |  | 
|  | When a VC is being closed, the buffer associated with it is not | 
|  | returned to the pool. The host must store the reference to this | 
|  | buffer and when opening a new VC then give it to that new VC. | 
|  |  | 
|  | The host intervention currently consists of stacking such a buffer | 
|  | pointer at VC close and checking the stack at VC open. | 
|  |  | 
|  | 3. Failure to close a VC | 
|  |  | 
|  | If a VC is currently receiving a frame then closing the VC may fail | 
|  | and the frame continues to be received. | 
|  |  | 
|  | The solution is to make sure any received frames are flushed when | 
|  | ready. This is currently done just before the solution to 2. | 
|  |  | 
|  | 4. PCI bus (original Horizon only, fixed in Ultra) | 
|  |  | 
|  | Reading from the data port prior to initialisation will hang the PCI | 
|  | bus. Just don't do that then! We don't. | 
|  |  | 
|  | IV To Do List | 
|  |  | 
|  | . Timer code may be broken. | 
|  |  | 
|  | . Allow users to specify buffer allocation split for TX and RX. | 
|  |  | 
|  | . Deal once and for all with buggy VC close. | 
|  |  | 
|  | . Handle interrupted and/or non-blocking operations. | 
|  |  | 
|  | . Change some macros to functions and move from .h to .c. | 
|  |  | 
|  | . Try to limit the number of TX frames each VC may have queued, in | 
|  | order to reduce the chances of TX buffer exhaustion. | 
|  |  | 
|  | . Implement VBR (bucket and timers not understood) and ABR (need to | 
|  | do RM cells manually); also no Linux support for either. | 
|  |  | 
|  | . Implement QoS changes on open VCs (involves extracting parts of VC open | 
|  | and close into separate functions and using them to make changes). | 
|  |  | 
|  | */ | 
|  |  | 
|  | /********** globals **********/ | 
|  |  | 
|  | static void do_housekeeping (unsigned long arg); | 
|  |  | 
|  | static unsigned short debug = 0; | 
|  | static unsigned short vpi_bits = 0; | 
|  | static int max_tx_size = 9000; | 
|  | static int max_rx_size = 9000; | 
|  | static unsigned char pci_lat = 0; | 
|  |  | 
|  | /********** access functions **********/ | 
|  |  | 
|  | /* Read / Write Horizon registers */ | 
|  | static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) { | 
|  | outl (cpu_to_le32 (data), dev->iobase + reg); | 
|  | } | 
|  |  | 
|  | static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) { | 
|  | return le32_to_cpu (inl (dev->iobase + reg)); | 
|  | } | 
|  |  | 
|  | static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) { | 
|  | outw (cpu_to_le16 (data), dev->iobase + reg); | 
|  | } | 
|  |  | 
|  | static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) { | 
|  | return le16_to_cpu (inw (dev->iobase + reg)); | 
|  | } | 
|  |  | 
|  | static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { | 
|  | outsb (dev->iobase + reg, addr, len); | 
|  | } | 
|  |  | 
|  | static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { | 
|  | insb (dev->iobase + reg, addr, len); | 
|  | } | 
|  |  | 
|  | /* Read / Write to a given address in Horizon buffer memory. | 
|  | Interrupts must be disabled between the address register and data | 
|  | port accesses as these must form an atomic operation. */ | 
|  | static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) { | 
|  | // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr); | 
|  | wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); | 
|  | wr_regl (dev, MEMORY_PORT_OFF, data); | 
|  | } | 
|  |  | 
|  | static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) { | 
|  | // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr); | 
|  | wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); | 
|  | return rd_regl (dev, MEMORY_PORT_OFF); | 
|  | } | 
|  |  | 
|  | static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) { | 
|  | wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000); | 
|  | wr_regl (dev, MEMORY_PORT_OFF, data); | 
|  | } | 
|  |  | 
|  | static inline u32 rd_framer (const hrz_dev * dev, u32 addr) { | 
|  | wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000); | 
|  | return rd_regl (dev, MEMORY_PORT_OFF); | 
|  | } | 
|  |  | 
|  | /********** specialised access functions **********/ | 
|  |  | 
|  | /* RX */ | 
|  |  | 
|  | static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) { | 
|  | wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) { | 
|  | while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL) | 
|  | ; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) { | 
|  | wr_regw (dev, RX_CHANNEL_PORT_OFF, channel); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) { | 
|  | while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS) | 
|  | ; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* TX */ | 
|  |  | 
|  | static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) { | 
|  | wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Update or query one configuration parameter of a particular channel. */ | 
|  |  | 
|  | static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) { | 
|  | wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, | 
|  | chan * TX_CHANNEL_CONFIG_MULT | mode); | 
|  | wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) { | 
|  | wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, | 
|  | chan * TX_CHANNEL_CONFIG_MULT | mode); | 
|  | return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF); | 
|  | } | 
|  |  | 
|  | /********** dump functions **********/ | 
|  |  | 
|  | static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { | 
|  | #ifdef DEBUG_HORIZON | 
|  | unsigned int i; | 
|  | unsigned char * data = skb->data; | 
|  | PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); | 
|  | for (i=0; i<skb->len && i < 256;i++) | 
|  | PRINTDM (DBG_DATA, "%02x ", data[i]); | 
|  | PRINTDE (DBG_DATA,""); | 
|  | #else | 
|  | (void) prefix; | 
|  | (void) vc; | 
|  | (void) skb; | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void dump_regs (hrz_dev * dev) { | 
|  | #ifdef DEBUG_HORIZON | 
|  | PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG)); | 
|  | PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF)); | 
|  | PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF)); | 
|  | PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF)); | 
|  | PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF)); | 
|  | PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF)); | 
|  | #else | 
|  | (void) dev; | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void dump_framer (hrz_dev * dev) { | 
|  | #ifdef DEBUG_HORIZON | 
|  | unsigned int i; | 
|  | PRINTDB (DBG_REGS, "framer registers:"); | 
|  | for (i = 0; i < 0x10; ++i) | 
|  | PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i)); | 
|  | PRINTDE (DBG_REGS,""); | 
|  | #else | 
|  | (void) dev; | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | /********** VPI/VCI <-> (RX) channel conversions **********/ | 
|  |  | 
|  | /* RX channels are 10 bit integers, these fns are quite paranoid */ | 
|  |  | 
|  | static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) { | 
|  | unsigned short vci_bits = 10 - vpi_bits; | 
|  | if ((channel & RX_CHANNEL_MASK) == channel) { | 
|  | *vci = channel & ((~0)<<vci_bits); | 
|  | *vpi = channel >> vci_bits; | 
|  | return channel ? 0 : -EINVAL; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) { | 
|  | unsigned short vci_bits = 10 - vpi_bits; | 
|  | if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) { | 
|  | *channel = vpi<<vci_bits | vci; | 
|  | return *channel ? 0 : -EINVAL; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /********** decode RX queue entries **********/ | 
|  |  | 
|  | static inline u16 rx_q_entry_to_length (u32 x) { | 
|  | return x & RX_Q_ENTRY_LENGTH_MASK; | 
|  | } | 
|  |  | 
|  | static inline u16 rx_q_entry_to_rx_channel (u32 x) { | 
|  | return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK; | 
|  | } | 
|  |  | 
|  | /* Cell Transmit Rate Values | 
|  | * | 
|  | * the cell transmit rate (cells per sec) can be set to a variety of | 
|  | * different values by specifying two parameters: a timer preload from | 
|  | * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of | 
|  | * an exponent from 0 to 14; the special value 15 disables the timer). | 
|  | * | 
|  | * cellrate = baserate / (preload * 2^divider) | 
|  | * | 
|  | * The maximum cell rate that can be specified is therefore just the | 
|  | * base rate. Halving the preload is equivalent to adding 1 to the | 
|  | * divider and so values 1 to 8 of the preload are redundant except | 
|  | * in the case of a maximal divider (14). | 
|  | * | 
|  | * Given a desired cell rate, an algorithm to determine the preload | 
|  | * and divider is: | 
|  | * | 
|  | * a) x = baserate / cellrate, want p * 2^d = x (as far as possible) | 
|  | * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done | 
|  | *    if x <= 16 then set p = x, d = 0 (high rates), done | 
|  | * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to | 
|  | *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until | 
|  | *    we find the range (n will be between 1 and 14), set d = n | 
|  | * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n | 
|  | * | 
|  | * The algorithm used below is a minor variant of the above. | 
|  | * | 
|  | * The base rate is derived from the oscillator frequency (Hz) using a | 
|  | * fixed divider: | 
|  | * | 
|  | * baserate = freq / 32 in the case of some Unknown Card | 
|  | * baserate = freq / 8  in the case of the Horizon        25 | 
|  | * baserate = freq / 8  in the case of the Horizon Ultra 155 | 
|  | * | 
|  | * The Horizon cards have oscillators and base rates as follows: | 
|  | * | 
|  | * Card               Oscillator  Base Rate | 
|  | * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq) | 
|  | * Horizon        25  32 MHz      4       MHz | 
|  | * Horizon Ultra 155  40 MHz      5       MHz | 
|  | * | 
|  | * The following defines give the base rates in Hz. These were | 
|  | * previously a factor of 100 larger, no doubt someone was using | 
|  | * cps*100. | 
|  | */ | 
|  |  | 
|  | #define BR_UKN 1031250l | 
|  | #define BR_HRZ 4000000l | 
|  | #define BR_ULT 5000000l | 
|  |  | 
|  | // d is an exponent | 
|  | #define CR_MIND 0 | 
|  | #define CR_MAXD 14 | 
|  |  | 
|  | // p ranges from 1 to a power of 2 | 
|  | #define CR_MAXPEXP 4 | 
|  |  | 
|  | static int make_rate (const hrz_dev * dev, u32 c, rounding r, | 
|  | u16 * bits, unsigned int * actual) | 
|  | { | 
|  | // note: rounding the rate down means rounding 'p' up | 
|  | const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ; | 
|  |  | 
|  | u32 div = CR_MIND; | 
|  | u32 pre; | 
|  |  | 
|  | // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in | 
|  | // the tests below. We could think harder about exact possibilities | 
|  | // of failure... | 
|  |  | 
|  | unsigned long br_man = br; | 
|  | unsigned int br_exp = 0; | 
|  |  | 
|  | PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c, | 
|  | r == round_up ? "up" : r == round_down ? "down" : "nearest"); | 
|  |  | 
|  | // avoid div by zero | 
|  | if (!c) { | 
|  | PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) { | 
|  | br_man = br_man >> 1; | 
|  | ++br_exp; | 
|  | } | 
|  | // (br >>br_exp) <<br_exp == br and | 
|  | // br_exp <= CR_MAXPEXP+CR_MIND | 
|  |  | 
|  | if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) { | 
|  | // Equivalent to: B <= (c << (MAXPEXP+MIND)) | 
|  | // take care of rounding | 
|  | switch (r) { | 
|  | case round_down: | 
|  | pre = DIV_ROUND_UP(br, c<<div); | 
|  | // but p must be non-zero | 
|  | if (!pre) | 
|  | pre = 1; | 
|  | break; | 
|  | case round_nearest: | 
|  | pre = (br+(c<<div)/2)/(c<<div); | 
|  | // but p must be non-zero | 
|  | if (!pre) | 
|  | pre = 1; | 
|  | break; | 
|  | default:	/* round_up */ | 
|  | pre = br/(c<<div); | 
|  | // but p must be non-zero | 
|  | if (!pre) | 
|  | return -EINVAL; | 
|  | } | 
|  | PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div); | 
|  | goto got_it; | 
|  | } | 
|  |  | 
|  | // at this point we have | 
|  | // d == MIND and (c << (MAXPEXP+MIND)) < B | 
|  | while (div < CR_MAXD) { | 
|  | div++; | 
|  | if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) { | 
|  | // Equivalent to: B <= (c << (MAXPEXP+d)) | 
|  | // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d) | 
|  | // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP | 
|  | // MAXP/2 < B/c2^d <= MAXP | 
|  | // take care of rounding | 
|  | switch (r) { | 
|  | case round_down: | 
|  | pre = DIV_ROUND_UP(br, c<<div); | 
|  | break; | 
|  | case round_nearest: | 
|  | pre = (br+(c<<div)/2)/(c<<div); | 
|  | break; | 
|  | default: /* round_up */ | 
|  | pre = br/(c<<div); | 
|  | } | 
|  | PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div); | 
|  | goto got_it; | 
|  | } | 
|  | } | 
|  | // at this point we have | 
|  | // d == MAXD and (c << (MAXPEXP+MAXD)) < B | 
|  | // but we cannot go any higher | 
|  | // take care of rounding | 
|  | if (r == round_down) | 
|  | return -EINVAL; | 
|  | pre = 1 << CR_MAXPEXP; | 
|  | PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div); | 
|  | got_it: | 
|  | // paranoia | 
|  | if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) { | 
|  | PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u", | 
|  | div, pre); | 
|  | return -EINVAL; | 
|  | } else { | 
|  | if (bits) | 
|  | *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1); | 
|  | if (actual) { | 
|  | *actual = DIV_ROUND_UP(br, pre<<div); | 
|  | PRINTD (DBG_QOS, "actual rate: %u", *actual); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol, | 
|  | u16 * bit_pattern, unsigned int * actual) { | 
|  | unsigned int my_actual; | 
|  |  | 
|  | PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u", | 
|  | c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol); | 
|  |  | 
|  | if (!actual) | 
|  | // actual rate is not returned | 
|  | actual = &my_actual; | 
|  |  | 
|  | if (make_rate (dev, c, round_nearest, bit_pattern, actual)) | 
|  | // should never happen as round_nearest always succeeds | 
|  | return -1; | 
|  |  | 
|  | if (c - tol <= *actual && *actual <= c + tol) | 
|  | // within tolerance | 
|  | return 0; | 
|  | else | 
|  | // intolerant, try rounding instead | 
|  | return make_rate (dev, c, r, bit_pattern, actual); | 
|  | } | 
|  |  | 
|  | /********** Listen on a VC **********/ | 
|  |  | 
|  | static int hrz_open_rx (hrz_dev * dev, u16 channel) { | 
|  | // is there any guarantee that we don't get two simulataneous | 
|  | // identical calls of this function from different processes? yes | 
|  | // rate_lock | 
|  | unsigned long flags; | 
|  | u32 channel_type; // u16? | 
|  |  | 
|  | u16 buf_ptr = RX_CHANNEL_IDLE; | 
|  |  | 
|  | rx_ch_desc * rx_desc = &memmap->rx_descs[channel]; | 
|  |  | 
|  | PRINTD (DBG_FLOW, "hrz_open_rx %x", channel); | 
|  |  | 
|  | spin_lock_irqsave (&dev->mem_lock, flags); | 
|  | channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; | 
|  | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  |  | 
|  | // very serious error, should never occur | 
|  | if (channel_type != RX_CHANNEL_DISABLED) { | 
|  | PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open"); | 
|  | return -EBUSY; // clean up? | 
|  | } | 
|  |  | 
|  | // Give back spare buffer | 
|  | if (dev->noof_spare_buffers) { | 
|  | buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers]; | 
|  | PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr); | 
|  | // should never occur | 
|  | if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) { | 
|  | // but easy to recover from | 
|  | PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE"); | 
|  | buf_ptr = RX_CHANNEL_IDLE; | 
|  | } | 
|  | } else { | 
|  | PRINTD (DBG_VCC, "using IDLE buffer pointer"); | 
|  | } | 
|  |  | 
|  | // Channel is currently disabled so change its status to idle | 
|  |  | 
|  | // do we really need to save the flags again? | 
|  | spin_lock_irqsave (&dev->mem_lock, flags); | 
|  |  | 
|  | wr_mem (dev, &rx_desc->wr_buf_type, | 
|  | buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME); | 
|  | if (buf_ptr != RX_CHANNEL_IDLE) | 
|  | wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr); | 
|  |  | 
|  | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  |  | 
|  | // rxer->rate = make_rate (qos->peak_cells); | 
|  |  | 
|  | PRINTD (DBG_FLOW, "hrz_open_rx ok"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /********** change vc rate for a given vc **********/ | 
|  |  | 
|  | static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) { | 
|  | rxer->rate = make_rate (qos->peak_cells); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /********** free an skb (as per ATM device driver documentation) **********/ | 
|  |  | 
|  | static void hrz_kfree_skb (struct sk_buff * skb) { | 
|  | if (ATM_SKB(skb)->vcc->pop) { | 
|  | ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); | 
|  | } else { | 
|  | dev_kfree_skb_any (skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /********** cancel listen on a VC **********/ | 
|  |  | 
|  | static void hrz_close_rx (hrz_dev * dev, u16 vc) { | 
|  | unsigned long flags; | 
|  |  | 
|  | u32 value; | 
|  |  | 
|  | u32 r1, r2; | 
|  |  | 
|  | rx_ch_desc * rx_desc = &memmap->rx_descs[vc]; | 
|  |  | 
|  | int was_idle = 0; | 
|  |  | 
|  | spin_lock_irqsave (&dev->mem_lock, flags); | 
|  | value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; | 
|  | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  |  | 
|  | if (value == RX_CHANNEL_DISABLED) { | 
|  | // I suppose this could happen once we deal with _NONE traffic properly | 
|  | PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc); | 
|  | return; | 
|  | } | 
|  | if (value == RX_CHANNEL_IDLE) | 
|  | was_idle = 1; | 
|  |  | 
|  | spin_lock_irqsave (&dev->mem_lock, flags); | 
|  |  | 
|  | for (;;) { | 
|  | wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED); | 
|  |  | 
|  | if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED) | 
|  | break; | 
|  |  | 
|  | was_idle = 0; | 
|  | } | 
|  |  | 
|  | if (was_idle) { | 
|  | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | WAIT_FLUSH_RX_COMPLETE(dev); | 
|  |  | 
|  | // XXX Is this all really necessary? We can rely on the rx_data_av | 
|  | // handler to discard frames that remain queued for delivery. If the | 
|  | // worry is that immediately reopening the channel (perhaps by a | 
|  | // different process) may cause some data to be mis-delivered then | 
|  | // there may still be a simpler solution (such as busy-waiting on | 
|  | // rx_busy once the channel is disabled or before a new one is | 
|  | // opened - does this leave any holes?). Arguably setting up and | 
|  | // tearing down the TX and RX halves of each virtual circuit could | 
|  | // most safely be done within ?x_busy protected regions. | 
|  |  | 
|  | // OK, current changes are that Simon's marker is disabled and we DO | 
|  | // look for NULL rxer elsewhere. The code here seems flush frames | 
|  | // and then remember the last dead cell belonging to the channel | 
|  | // just disabled - the cell gets relinked at the next vc_open. | 
|  | // However, when all VCs are closed or only a few opened there are a | 
|  | // handful of buffers that are unusable. | 
|  |  | 
|  | // Does anyone feel like documenting spare_buffers properly? | 
|  | // Does anyone feel like fixing this in a nicer way? | 
|  |  | 
|  | // Flush any data which is left in the channel | 
|  | for (;;) { | 
|  | // Change the rx channel port to something different to the RX | 
|  | // channel we are trying to close to force Horizon to flush the rx | 
|  | // channel read and write pointers. | 
|  |  | 
|  | u16 other = vc^(RX_CHANS/2); | 
|  |  | 
|  | SELECT_RX_CHANNEL (dev, other); | 
|  | WAIT_UPDATE_COMPLETE (dev); | 
|  |  | 
|  | r1 = rd_mem (dev, &rx_desc->rd_buf_type); | 
|  |  | 
|  | // Select this RX channel. Flush doesn't seem to work unless we | 
|  | // select an RX channel before hand | 
|  |  | 
|  | SELECT_RX_CHANNEL (dev, vc); | 
|  | WAIT_UPDATE_COMPLETE (dev); | 
|  |  | 
|  | // Attempt to flush a frame on this RX channel | 
|  |  | 
|  | FLUSH_RX_CHANNEL (dev, vc); | 
|  | WAIT_FLUSH_RX_COMPLETE (dev); | 
|  |  | 
|  | // Force Horizon to flush rx channel read and write pointers as before | 
|  |  | 
|  | SELECT_RX_CHANNEL (dev, other); | 
|  | WAIT_UPDATE_COMPLETE (dev); | 
|  |  | 
|  | r2 = rd_mem (dev, &rx_desc->rd_buf_type); | 
|  |  | 
|  | PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2); | 
|  |  | 
|  | if (r1 == r2) { | 
|  | dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | { | 
|  | rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)]; | 
|  | rx_q_entry * rd_ptr = dev->rx_q_entry; | 
|  |  | 
|  | PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr); | 
|  |  | 
|  | while (rd_ptr != wr_ptr) { | 
|  | u32 x = rd_mem (dev, (HDW *) rd_ptr); | 
|  |  | 
|  | if (vc == rx_q_entry_to_rx_channel (x)) { | 
|  | x |= SIMONS_DODGEY_MARKER; | 
|  |  | 
|  | PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey"); | 
|  |  | 
|  | wr_mem (dev, (HDW *) rd_ptr, x); | 
|  | } | 
|  |  | 
|  | if (rd_ptr == dev->rx_q_wrap) | 
|  | rd_ptr = dev->rx_q_reset; | 
|  | else | 
|  | rd_ptr++; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /********** schedule RX transfers **********/ | 
|  |  | 
|  | // Note on tail recursion: a GCC developer said that it is not likely | 
|  | // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you | 
|  | // are sure it does as you may otherwise overflow the kernel stack. | 
|  |  | 
|  | // giving this fn a return value would help GCC, alledgedly | 
|  |  | 
|  | static void rx_schedule (hrz_dev * dev, int irq) { | 
|  | unsigned int rx_bytes; | 
|  |  | 
|  | int pio_instead = 0; | 
|  | #ifndef TAILRECURSIONWORKS | 
|  | pio_instead = 1; | 
|  | while (pio_instead) { | 
|  | #endif | 
|  | // bytes waiting for RX transfer | 
|  | rx_bytes = dev->rx_bytes; | 
|  |  | 
|  | #if 0 | 
|  | spin_count = 0; | 
|  | while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) { | 
|  | PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!"); | 
|  | if (++spin_count > 10) { | 
|  | PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion"); | 
|  | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
|  | clear_bit (rx_busy, &dev->flags); | 
|  | hrz_kfree_skb (dev->rx_skb); | 
|  | return; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // this code follows the TX code but (at the moment) there is only | 
|  | // one region - the skb itself. I don't know if this will change, | 
|  | // but it doesn't hurt to have the code here, disabled. | 
|  |  | 
|  | if (rx_bytes) { | 
|  | // start next transfer within same region | 
|  | if (rx_bytes <= MAX_PIO_COUNT) { | 
|  | PRINTD (DBG_RX|DBG_BUS, "(pio)"); | 
|  | pio_instead = 1; | 
|  | } | 
|  | if (rx_bytes <= MAX_TRANSFER_COUNT) { | 
|  | PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)"); | 
|  | dev->rx_bytes = 0; | 
|  | } else { | 
|  | PRINTD (DBG_RX|DBG_BUS, "(continuing multi)"); | 
|  | dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; | 
|  | rx_bytes = MAX_TRANSFER_COUNT; | 
|  | } | 
|  | } else { | 
|  | // rx_bytes == 0 -- we're between regions | 
|  | // regions remaining to transfer | 
|  | #if 0 | 
|  | unsigned int rx_regions = dev->rx_regions; | 
|  | #else | 
|  | unsigned int rx_regions = 0; | 
|  | #endif | 
|  |  | 
|  | if (rx_regions) { | 
|  | #if 0 | 
|  | // start a new region | 
|  | dev->rx_addr = dev->rx_iovec->iov_base; | 
|  | rx_bytes = dev->rx_iovec->iov_len; | 
|  | ++dev->rx_iovec; | 
|  | dev->rx_regions = rx_regions - 1; | 
|  |  | 
|  | if (rx_bytes <= MAX_PIO_COUNT) { | 
|  | PRINTD (DBG_RX|DBG_BUS, "(pio)"); | 
|  | pio_instead = 1; | 
|  | } | 
|  | if (rx_bytes <= MAX_TRANSFER_COUNT) { | 
|  | PRINTD (DBG_RX|DBG_BUS, "(full region)"); | 
|  | dev->rx_bytes = 0; | 
|  | } else { | 
|  | PRINTD (DBG_RX|DBG_BUS, "(start multi region)"); | 
|  | dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; | 
|  | rx_bytes = MAX_TRANSFER_COUNT; | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | // rx_regions == 0 | 
|  | // that's all folks - end of frame | 
|  | struct sk_buff * skb = dev->rx_skb; | 
|  | // dev->rx_iovec = 0; | 
|  |  | 
|  | FLUSH_RX_CHANNEL (dev, dev->rx_channel); | 
|  |  | 
|  | dump_skb ("<<<", dev->rx_channel, skb); | 
|  |  | 
|  | PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len); | 
|  |  | 
|  | { | 
|  | struct atm_vcc * vcc = ATM_SKB(skb)->vcc; | 
|  | // VC layer stats | 
|  | atomic_inc(&vcc->stats->rx); | 
|  | __net_timestamp(skb); | 
|  | // end of our responsability | 
|  | vcc->push (vcc, skb); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // note: writing RX_COUNT clears any interrupt condition | 
|  | if (rx_bytes) { | 
|  | if (pio_instead) { | 
|  | if (irq) | 
|  | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
|  | rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes); | 
|  | } else { | 
|  | wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr)); | 
|  | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes); | 
|  | } | 
|  | dev->rx_addr += rx_bytes; | 
|  | } else { | 
|  | if (irq) | 
|  | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
|  | // allow another RX thread to start | 
|  | YELLOW_LED_ON(dev); | 
|  | clear_bit (rx_busy, &dev->flags); | 
|  | PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev); | 
|  | } | 
|  |  | 
|  | #ifdef TAILRECURSIONWORKS | 
|  | // and we all bless optimised tail calls | 
|  | if (pio_instead) | 
|  | return rx_schedule (dev, 0); | 
|  | return; | 
|  | #else | 
|  | // grrrrrrr! | 
|  | irq = 0; | 
|  | } | 
|  | return; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /********** handle RX bus master complete events **********/ | 
|  |  | 
|  | static void rx_bus_master_complete_handler (hrz_dev * dev) { | 
|  | if (test_bit (rx_busy, &dev->flags)) { | 
|  | rx_schedule (dev, 1); | 
|  | } else { | 
|  | PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion"); | 
|  | // clear interrupt condition on adapter | 
|  | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /********** (queue to) become the next TX thread **********/ | 
|  |  | 
|  | static int tx_hold (hrz_dev * dev) { | 
|  | PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags); | 
|  | wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags))); | 
|  | PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags); | 
|  | if (signal_pending (current)) | 
|  | return -1; | 
|  | PRINTD (DBG_TX, "set tx_busy for dev %p", dev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /********** allow another TX thread to start **********/ | 
|  |  | 
|  | static inline void tx_release (hrz_dev * dev) { | 
|  | clear_bit (tx_busy, &dev->flags); | 
|  | PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev); | 
|  | wake_up_interruptible (&dev->tx_queue); | 
|  | } | 
|  |  | 
|  | /********** schedule TX transfers **********/ | 
|  |  | 
|  | static void tx_schedule (hrz_dev * const dev, int irq) { | 
|  | unsigned int tx_bytes; | 
|  |  | 
|  | int append_desc = 0; | 
|  |  | 
|  | int pio_instead = 0; | 
|  | #ifndef TAILRECURSIONWORKS | 
|  | pio_instead = 1; | 
|  | while (pio_instead) { | 
|  | #endif | 
|  | // bytes in current region waiting for TX transfer | 
|  | tx_bytes = dev->tx_bytes; | 
|  |  | 
|  | #if 0 | 
|  | spin_count = 0; | 
|  | while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) { | 
|  | PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!"); | 
|  | if (++spin_count > 10) { | 
|  | PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion"); | 
|  | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
|  | tx_release (dev); | 
|  | hrz_kfree_skb (dev->tx_skb); | 
|  | return; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (tx_bytes) { | 
|  | // start next transfer within same region | 
|  | if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { | 
|  | PRINTD (DBG_TX|DBG_BUS, "(pio)"); | 
|  | pio_instead = 1; | 
|  | } | 
|  | if (tx_bytes <= MAX_TRANSFER_COUNT) { | 
|  | PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)"); | 
|  | if (!dev->tx_iovec) { | 
|  | // end of last region | 
|  | append_desc = 1; | 
|  | } | 
|  | dev->tx_bytes = 0; | 
|  | } else { | 
|  | PRINTD (DBG_TX|DBG_BUS, "(continuing multi)"); | 
|  | dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; | 
|  | tx_bytes = MAX_TRANSFER_COUNT; | 
|  | } | 
|  | } else { | 
|  | // tx_bytes == 0 -- we're between regions | 
|  | // regions remaining to transfer | 
|  | unsigned int tx_regions = dev->tx_regions; | 
|  |  | 
|  | if (tx_regions) { | 
|  | // start a new region | 
|  | dev->tx_addr = dev->tx_iovec->iov_base; | 
|  | tx_bytes = dev->tx_iovec->iov_len; | 
|  | ++dev->tx_iovec; | 
|  | dev->tx_regions = tx_regions - 1; | 
|  |  | 
|  | if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { | 
|  | PRINTD (DBG_TX|DBG_BUS, "(pio)"); | 
|  | pio_instead = 1; | 
|  | } | 
|  | if (tx_bytes <= MAX_TRANSFER_COUNT) { | 
|  | PRINTD (DBG_TX|DBG_BUS, "(full region)"); | 
|  | dev->tx_bytes = 0; | 
|  | } else { | 
|  | PRINTD (DBG_TX|DBG_BUS, "(start multi region)"); | 
|  | dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; | 
|  | tx_bytes = MAX_TRANSFER_COUNT; | 
|  | } | 
|  | } else { | 
|  | // tx_regions == 0 | 
|  | // that's all folks - end of frame | 
|  | struct sk_buff * skb = dev->tx_skb; | 
|  | dev->tx_iovec = NULL; | 
|  |  | 
|  | // VC layer stats | 
|  | atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); | 
|  |  | 
|  | // free the skb | 
|  | hrz_kfree_skb (skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | // note: writing TX_COUNT clears any interrupt condition | 
|  | if (tx_bytes) { | 
|  | if (pio_instead) { | 
|  | if (irq) | 
|  | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
|  | wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes); | 
|  | if (append_desc) | 
|  | wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len)); | 
|  | } else { | 
|  | wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr)); | 
|  | if (append_desc) | 
|  | wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len)); | 
|  | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, | 
|  | append_desc | 
|  | ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC | 
|  | : tx_bytes); | 
|  | } | 
|  | dev->tx_addr += tx_bytes; | 
|  | } else { | 
|  | if (irq) | 
|  | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
|  | YELLOW_LED_ON(dev); | 
|  | tx_release (dev); | 
|  | } | 
|  |  | 
|  | #ifdef TAILRECURSIONWORKS | 
|  | // and we all bless optimised tail calls | 
|  | if (pio_instead) | 
|  | return tx_schedule (dev, 0); | 
|  | return; | 
|  | #else | 
|  | // grrrrrrr! | 
|  | irq = 0; | 
|  | } | 
|  | return; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /********** handle TX bus master complete events **********/ | 
|  |  | 
|  | static void tx_bus_master_complete_handler (hrz_dev * dev) { | 
|  | if (test_bit (tx_busy, &dev->flags)) { | 
|  | tx_schedule (dev, 1); | 
|  | } else { | 
|  | PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion"); | 
|  | // clear interrupt condition on adapter | 
|  | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /********** move RX Q pointer to next item in circular buffer **********/ | 
|  |  | 
|  | // called only from IRQ sub-handler | 
|  | static u32 rx_queue_entry_next (hrz_dev * dev) { | 
|  | u32 rx_queue_entry; | 
|  | spin_lock (&dev->mem_lock); | 
|  | rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry); | 
|  | if (dev->rx_q_entry == dev->rx_q_wrap) | 
|  | dev->rx_q_entry = dev->rx_q_reset; | 
|  | else | 
|  | dev->rx_q_entry++; | 
|  | wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset); | 
|  | spin_unlock (&dev->mem_lock); | 
|  | return rx_queue_entry; | 
|  | } | 
|  |  | 
|  | /********** handle RX disabled by device **********/ | 
|  |  | 
|  | static inline void rx_disabled_handler (hrz_dev * dev) { | 
|  | wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); | 
|  | // count me please | 
|  | PRINTK (KERN_WARNING, "RX was disabled!"); | 
|  | } | 
|  |  | 
|  | /********** handle RX data received by device **********/ | 
|  |  | 
|  | // called from IRQ handler | 
|  | static void rx_data_av_handler (hrz_dev * dev) { | 
|  | u32 rx_queue_entry; | 
|  | u32 rx_queue_entry_flags; | 
|  | u16 rx_len; | 
|  | u16 rx_channel; | 
|  |  | 
|  | PRINTD (DBG_FLOW, "hrz_data_av_handler"); | 
|  |  | 
|  | // try to grab rx lock (not possible during RX bus mastering) | 
|  | if (test_and_set_bit (rx_busy, &dev->flags)) { | 
|  | PRINTD (DBG_RX, "locked out of rx lock"); | 
|  | return; | 
|  | } | 
|  | PRINTD (DBG_RX, "set rx_busy for dev %p", dev); | 
|  | // lock is cleared if we fail now, o/w after bus master completion | 
|  |  | 
|  | YELLOW_LED_OFF(dev); | 
|  |  | 
|  | rx_queue_entry = rx_queue_entry_next (dev); | 
|  |  | 
|  | rx_len = rx_q_entry_to_length (rx_queue_entry); | 
|  | rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry); | 
|  |  | 
|  | WAIT_FLUSH_RX_COMPLETE (dev); | 
|  |  | 
|  | SELECT_RX_CHANNEL (dev, rx_channel); | 
|  |  | 
|  | PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry); | 
|  | rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER); | 
|  |  | 
|  | if (!rx_len) { | 
|  | // (at least) bus-mastering breaks if we try to handle a | 
|  | // zero-length frame, besides AAL5 does not support them | 
|  | PRINTK (KERN_ERR, "zero-length frame!"); | 
|  | rx_queue_entry_flags &= ~RX_COMPLETE_FRAME; | 
|  | } | 
|  |  | 
|  | if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) { | 
|  | PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!"); | 
|  | } | 
|  | if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) { | 
|  | struct atm_vcc * atm_vcc; | 
|  |  | 
|  | PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len); | 
|  |  | 
|  | atm_vcc = dev->rxer[rx_channel]; | 
|  | // if no vcc is assigned to this channel, we should drop the frame | 
|  | // (is this what SIMONS etc. was trying to achieve?) | 
|  |  | 
|  | if (atm_vcc) { | 
|  |  | 
|  | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { | 
|  |  | 
|  | if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { | 
|  |  | 
|  | struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC); | 
|  | if (skb) { | 
|  | // remember this so we can push it later | 
|  | dev->rx_skb = skb; | 
|  | // remember this so we can flush it later | 
|  | dev->rx_channel = rx_channel; | 
|  |  | 
|  | // prepare socket buffer | 
|  | skb_put (skb, rx_len); | 
|  | ATM_SKB(skb)->vcc = atm_vcc; | 
|  |  | 
|  | // simple transfer | 
|  | // dev->rx_regions = 0; | 
|  | // dev->rx_iovec = 0; | 
|  | dev->rx_bytes = rx_len; | 
|  | dev->rx_addr = skb->data; | 
|  | PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)", | 
|  | skb->data, rx_len); | 
|  |  | 
|  | // do the business | 
|  | rx_schedule (dev, 0); | 
|  | return; | 
|  |  | 
|  | } else { | 
|  | PRINTD (DBG_SKB|DBG_WARN, "failed to get skb"); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel); | 
|  | // do we count this? | 
|  | } | 
|  |  | 
|  | } else { | 
|  | PRINTK (KERN_WARNING, "dropped over-size frame"); | 
|  | // do we count this? | 
|  | } | 
|  |  | 
|  | } else { | 
|  | PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)"); | 
|  | // do we count this? | 
|  | } | 
|  |  | 
|  | } else { | 
|  | // Wait update complete ? SPONG | 
|  | } | 
|  |  | 
|  | // RX was aborted | 
|  | YELLOW_LED_ON(dev); | 
|  |  | 
|  | FLUSH_RX_CHANNEL (dev,rx_channel); | 
|  | clear_bit (rx_busy, &dev->flags); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /********** interrupt handler **********/ | 
|  |  | 
|  | static irqreturn_t interrupt_handler(int irq, void *dev_id) | 
|  | { | 
|  | hrz_dev *dev = dev_id; | 
|  | u32 int_source; | 
|  | unsigned int irq_ok; | 
|  |  | 
|  | PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id); | 
|  |  | 
|  | // definitely for us | 
|  | irq_ok = 0; | 
|  | while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF) | 
|  | & INTERESTING_INTERRUPTS)) { | 
|  | // In the interests of fairness, the handlers below are | 
|  | // called in sequence and without immediate return to the head of | 
|  | // the while loop. This is only of issue for slow hosts (or when | 
|  | // debugging messages are on). Really slow hosts may find a fast | 
|  | // sender keeps them permanently in the IRQ handler. :( | 
|  |  | 
|  | // (only an issue for slow hosts) RX completion goes before | 
|  | // rx_data_av as the former implies rx_busy and so the latter | 
|  | // would just abort. If it reschedules another transfer | 
|  | // (continuing the same frame) then it will not clear rx_busy. | 
|  |  | 
|  | // (only an issue for slow hosts) TX completion goes before RX | 
|  | // data available as it is a much shorter routine - there is the | 
|  | // chance that any further transfers it schedules will be complete | 
|  | // by the time of the return to the head of the while loop | 
|  |  | 
|  | if (int_source & RX_BUS_MASTER_COMPLETE) { | 
|  | ++irq_ok; | 
|  | PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted"); | 
|  | rx_bus_master_complete_handler (dev); | 
|  | } | 
|  | if (int_source & TX_BUS_MASTER_COMPLETE) { | 
|  | ++irq_ok; | 
|  | PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted"); | 
|  | tx_bus_master_complete_handler (dev); | 
|  | } | 
|  | if (int_source & RX_DATA_AV) { | 
|  | ++irq_ok; | 
|  | PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted"); | 
|  | rx_data_av_handler (dev); | 
|  | } | 
|  | } | 
|  | if (irq_ok) { | 
|  | PRINTD (DBG_IRQ, "work done: %u", irq_ok); | 
|  | } else { | 
|  | PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source); | 
|  | } | 
|  |  | 
|  | PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); | 
|  | if (irq_ok) | 
|  | return IRQ_HANDLED; | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | /********** housekeeping **********/ | 
|  |  | 
|  | static void do_housekeeping (unsigned long arg) { | 
|  | // just stats at the moment | 
|  | hrz_dev * dev = (hrz_dev *) arg; | 
|  |  | 
|  | // collect device-specific (not driver/atm-linux) stats here | 
|  | dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF); | 
|  | dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF); | 
|  | dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF); | 
|  | dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF); | 
|  |  | 
|  | mod_timer (&dev->housekeeping, jiffies + HZ/10); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /********** find an idle channel for TX and set it up **********/ | 
|  |  | 
|  | // called with tx_busy set | 
|  | static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) { | 
|  | unsigned short idle_channels; | 
|  | short tx_channel = -1; | 
|  | unsigned int spin_count; | 
|  | PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev); | 
|  |  | 
|  | // better would be to fail immediately, the caller can then decide whether | 
|  | // to wait or drop (depending on whether this is UBR etc.) | 
|  | spin_count = 0; | 
|  | while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) { | 
|  | PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel"); | 
|  | // delay a bit here | 
|  | if (++spin_count > 100) { | 
|  | PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel"); | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | // got an idle channel | 
|  | { | 
|  | // tx_idle ensures we look for idle channels in RR order | 
|  | int chan = dev->tx_idle; | 
|  |  | 
|  | int keep_going = 1; | 
|  | while (keep_going) { | 
|  | if (idle_channels & (1<<chan)) { | 
|  | tx_channel = chan; | 
|  | keep_going = 0; | 
|  | } | 
|  | ++chan; | 
|  | if (chan == TX_CHANS) | 
|  | chan = 0; | 
|  | } | 
|  |  | 
|  | dev->tx_idle = chan; | 
|  | } | 
|  |  | 
|  | // set up the channel we found | 
|  | { | 
|  | // Initialise the cell header in the transmit channel descriptor | 
|  | // a.k.a. prepare the channel and remember that we have done so. | 
|  |  | 
|  | tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel]; | 
|  | u32 rd_ptr; | 
|  | u32 wr_ptr; | 
|  | u16 channel = vcc->channel; | 
|  |  | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave (&dev->mem_lock, flags); | 
|  |  | 
|  | // Update the transmit channel record. | 
|  | dev->tx_channel_record[tx_channel] = channel; | 
|  |  | 
|  | // xBR channel | 
|  | update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS, | 
|  | vcc->tx_xbr_bits); | 
|  |  | 
|  | // Update the PCR counter preload value etc. | 
|  | update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS, | 
|  | vcc->tx_pcr_bits); | 
|  |  | 
|  | #if 0 | 
|  | if (vcc->tx_xbr_bits == VBR_RATE_TYPE) { | 
|  | // SCR timer | 
|  | update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS, | 
|  | vcc->tx_scr_bits); | 
|  |  | 
|  | // Bucket size... | 
|  | update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS, | 
|  | vcc->tx_bucket_bits); | 
|  |  | 
|  | // ... and fullness | 
|  | update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS, | 
|  | vcc->tx_bucket_bits); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Initialise the read and write buffer pointers | 
|  | rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK; | 
|  | wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK; | 
|  |  | 
|  | // idle TX channels should have identical pointers | 
|  | if (rd_ptr != wr_ptr) { | 
|  | PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!"); | 
|  | // spin_unlock... return -E... | 
|  | // I wonder if gcc would get rid of one of the pointer aliases | 
|  | } | 
|  | PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.", | 
|  | rd_ptr, wr_ptr); | 
|  |  | 
|  | switch (vcc->aal) { | 
|  | case aal0: | 
|  | PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0"); | 
|  | rd_ptr |= CHANNEL_TYPE_RAW_CELLS; | 
|  | wr_ptr |= CHANNEL_TYPE_RAW_CELLS; | 
|  | break; | 
|  | case aal34: | 
|  | PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34"); | 
|  | rd_ptr |= CHANNEL_TYPE_AAL3_4; | 
|  | wr_ptr |= CHANNEL_TYPE_AAL3_4; | 
|  | break; | 
|  | case aal5: | 
|  | rd_ptr |= CHANNEL_TYPE_AAL5; | 
|  | wr_ptr |= CHANNEL_TYPE_AAL5; | 
|  | // Initialise the CRC | 
|  | wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC); | 
|  | break; | 
|  | } | 
|  |  | 
|  | wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr); | 
|  | wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr); | 
|  |  | 
|  | // Write the Cell Header | 
|  | // Payload Type, CLP and GFC would go here if non-zero | 
|  | wr_mem (dev, &tx_desc->cell_header, channel); | 
|  |  | 
|  | spin_unlock_irqrestore (&dev->mem_lock, flags); | 
|  | } | 
|  |  | 
|  | return tx_channel; | 
|  | } | 
|  |  | 
|  | /********** send a frame **********/ | 
|  |  | 
|  | static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { | 
|  | unsigned int spin_count; | 
|  | int free_buffers; | 
|  | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
|  | hrz_vcc * vcc = HRZ_VCC(atm_vcc); | 
|  | u16 channel = vcc->channel; | 
|  |  | 
|  | u32 buffers_required; | 
|  |  | 
|  | /* signed for error return */ | 
|  | short tx_channel; | 
|  |  | 
|  | PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u", | 
|  | channel, skb->data, skb->len); | 
|  |  | 
|  | dump_skb (">>>", channel, skb); | 
|  |  | 
|  | if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) { | 
|  | PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel); | 
|  | hrz_kfree_skb (skb); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | // don't understand this | 
|  | ATM_SKB(skb)->vcc = atm_vcc; | 
|  |  | 
|  | if (skb->len > atm_vcc->qos.txtp.max_sdu) { | 
|  | PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); | 
|  | hrz_kfree_skb (skb); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (!channel) { | 
|  | PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel"); | 
|  | hrz_kfree_skb (skb); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | { | 
|  | // where would be a better place for this? housekeeping? | 
|  | u16 status; | 
|  | pci_read_config_word (dev->pci_dev, PCI_STATUS, &status); | 
|  | if (status & PCI_STATUS_REC_MASTER_ABORT) { | 
|  | PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)"); | 
|  | status &= ~PCI_STATUS_REC_MASTER_ABORT; | 
|  | pci_write_config_word (dev->pci_dev, PCI_STATUS, status); | 
|  | if (test_bit (tx_busy, &dev->flags)) { | 
|  | hrz_kfree_skb (dev->tx_skb); | 
|  | tx_release (dev); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_HORIZON | 
|  | /* wey-hey! */ | 
|  | if (channel == 1023) { | 
|  | unsigned int i; | 
|  | unsigned short d = 0; | 
|  | char * s = skb->data; | 
|  | if (*s++ == 'D') { | 
|  | for (i = 0; i < 4; ++i) { | 
|  | d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10)); | 
|  | ++s; | 
|  | } | 
|  | PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // wait until TX is free and grab lock | 
|  | if (tx_hold (dev)) { | 
|  | hrz_kfree_skb (skb); | 
|  | return -ERESTARTSYS; | 
|  | } | 
|  |  | 
|  | // Wait for enough space to be available in transmit buffer memory. | 
|  |  | 
|  | // should be number of cells needed + 2 (according to hardware docs) | 
|  | // = ((framelen+8)+47) / 48 + 2 | 
|  | // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX | 
|  | buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3; | 
|  |  | 
|  | // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry) | 
|  | spin_count = 0; | 
|  | while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) { | 
|  | PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d", | 
|  | free_buffers, buffers_required); | 
|  | // what is the appropriate delay? implement a timeout? (depending on line speed?) | 
|  | // mdelay (1); | 
|  | // what happens if we kill (current_pid, SIGKILL) ? | 
|  | schedule(); | 
|  | if (++spin_count > 1000) { | 
|  | PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d", | 
|  | free_buffers, buffers_required); | 
|  | tx_release (dev); | 
|  | hrz_kfree_skb (skb); | 
|  | return -ERESTARTSYS; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Select a channel to transmit the frame on. | 
|  | if (channel == dev->last_vc) { | 
|  | PRINTD (DBG_TX, "last vc hack: hit"); | 
|  | tx_channel = dev->tx_last; | 
|  | } else { | 
|  | PRINTD (DBG_TX, "last vc hack: miss"); | 
|  | // Are we currently transmitting this VC on one of the channels? | 
|  | for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel) | 
|  | if (dev->tx_channel_record[tx_channel] == channel) { | 
|  | PRINTD (DBG_TX, "vc already on channel: hit"); | 
|  | break; | 
|  | } | 
|  | if (tx_channel == TX_CHANS) { | 
|  | PRINTD (DBG_TX, "vc already on channel: miss"); | 
|  | // Find and set up an idle channel. | 
|  | tx_channel = setup_idle_tx_channel (dev, vcc); | 
|  | if (tx_channel < 0) { | 
|  | PRINTD (DBG_TX|DBG_ERR, "failed to get channel"); | 
|  | tx_release (dev); | 
|  | return tx_channel; | 
|  | } | 
|  | } | 
|  |  | 
|  | PRINTD (DBG_TX, "got channel"); | 
|  | SELECT_TX_CHANNEL(dev, tx_channel); | 
|  |  | 
|  | dev->last_vc = channel; | 
|  | dev->tx_last = tx_channel; | 
|  | } | 
|  |  | 
|  | PRINTD (DBG_TX, "using channel %u", tx_channel); | 
|  |  | 
|  | YELLOW_LED_OFF(dev); | 
|  |  | 
|  | // TX start transfer | 
|  |  | 
|  | { | 
|  | unsigned int tx_len = skb->len; | 
|  | unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags; | 
|  | // remember this so we can free it later | 
|  | dev->tx_skb = skb; | 
|  |  | 
|  | if (tx_iovcnt) { | 
|  | // scatter gather transfer | 
|  | dev->tx_regions = tx_iovcnt; | 
|  | dev->tx_iovec = NULL;		/* @@@ needs rewritten */ | 
|  | dev->tx_bytes = 0; | 
|  | PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)", | 
|  | skb->data, tx_len); | 
|  | tx_release (dev); | 
|  | hrz_kfree_skb (skb); | 
|  | return -EIO; | 
|  | } else { | 
|  | // simple transfer | 
|  | dev->tx_regions = 0; | 
|  | dev->tx_iovec = NULL; | 
|  | dev->tx_bytes = tx_len; | 
|  | dev->tx_addr = skb->data; | 
|  | PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)", | 
|  | skb->data, tx_len); | 
|  | } | 
|  |  | 
|  | // and do the business | 
|  | tx_schedule (dev, 0); | 
|  |  | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /********** reset a card **********/ | 
|  |  | 
|  | static void hrz_reset (const hrz_dev * dev) { | 
|  | u32 control_0_reg = rd_regl (dev, CONTROL_0_REG); | 
|  |  | 
|  | // why not set RESET_HORIZON to one and wait for the card to | 
|  | // reassert that bit as zero? Like so: | 
|  | control_0_reg = control_0_reg & RESET_HORIZON; | 
|  | wr_regl (dev, CONTROL_0_REG, control_0_reg); | 
|  | while (control_0_reg & RESET_HORIZON) | 
|  | control_0_reg = rd_regl (dev, CONTROL_0_REG); | 
|  |  | 
|  | // old reset code retained: | 
|  | wr_regl (dev, CONTROL_0_REG, control_0_reg | | 
|  | RESET_ATM | RESET_RX | RESET_TX | RESET_HOST); | 
|  | // just guessing here | 
|  | udelay (1000); | 
|  |  | 
|  | wr_regl (dev, CONTROL_0_REG, control_0_reg); | 
|  | } | 
|  |  | 
|  | /********** read the burnt in address **********/ | 
|  |  | 
|  | static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl) | 
|  | { | 
|  | wr_regl (dev, CONTROL_0_REG, ctrl); | 
|  | udelay (5); | 
|  | } | 
|  |  | 
|  | static void CLOCK_IT (const hrz_dev *dev, u32 ctrl) | 
|  | { | 
|  | // DI must be valid around rising SK edge | 
|  | WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK); | 
|  | WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK); | 
|  | } | 
|  |  | 
|  | static u16 __devinit read_bia (const hrz_dev * dev, u16 addr) | 
|  | { | 
|  | u32 ctrl = rd_regl (dev, CONTROL_0_REG); | 
|  |  | 
|  | const unsigned int addr_bits = 6; | 
|  | const unsigned int data_bits = 16; | 
|  |  | 
|  | unsigned int i; | 
|  |  | 
|  | u16 res; | 
|  |  | 
|  | ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI); | 
|  | WRITE_IT_WAIT(dev, ctrl); | 
|  |  | 
|  | // wake Serial EEPROM and send 110 (READ) command | 
|  | ctrl |=  (SEEPROM_CS | SEEPROM_DI); | 
|  | CLOCK_IT(dev, ctrl); | 
|  |  | 
|  | ctrl |= SEEPROM_DI; | 
|  | CLOCK_IT(dev, ctrl); | 
|  |  | 
|  | ctrl &= ~SEEPROM_DI; | 
|  | CLOCK_IT(dev, ctrl); | 
|  |  | 
|  | for (i=0; i<addr_bits; i++) { | 
|  | if (addr & (1 << (addr_bits-1))) | 
|  | ctrl |= SEEPROM_DI; | 
|  | else | 
|  | ctrl &= ~SEEPROM_DI; | 
|  |  | 
|  | CLOCK_IT(dev, ctrl); | 
|  |  | 
|  | addr = addr << 1; | 
|  | } | 
|  |  | 
|  | // we could check that we have DO = 0 here | 
|  | ctrl &= ~SEEPROM_DI; | 
|  |  | 
|  | res = 0; | 
|  | for (i=0;i<data_bits;i++) { | 
|  | res = res >> 1; | 
|  |  | 
|  | CLOCK_IT(dev, ctrl); | 
|  |  | 
|  | if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO) | 
|  | res |= (1 << (data_bits-1)); | 
|  | } | 
|  |  | 
|  | ctrl &= ~(SEEPROM_SK | SEEPROM_CS); | 
|  | WRITE_IT_WAIT(dev, ctrl); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /********** initialise a card **********/ | 
|  |  | 
|  | static int __devinit hrz_init (hrz_dev * dev) { | 
|  | int onefivefive; | 
|  |  | 
|  | u16 chan; | 
|  |  | 
|  | int buff_count; | 
|  |  | 
|  | HDW * mem; | 
|  |  | 
|  | cell_buf * tx_desc; | 
|  | cell_buf * rx_desc; | 
|  |  | 
|  | u32 ctrl; | 
|  |  | 
|  | ctrl = rd_regl (dev, CONTROL_0_REG); | 
|  | PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl); | 
|  | onefivefive = ctrl & ATM_LAYER_STATUS; | 
|  |  | 
|  | if (onefivefive) | 
|  | printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)"); | 
|  | else | 
|  | printk (DEV_LABEL ": Horizon (at 25 MBps)"); | 
|  |  | 
|  | printk (":"); | 
|  | // Reset the card to get everything in a known state | 
|  |  | 
|  | printk (" reset"); | 
|  | hrz_reset (dev); | 
|  |  | 
|  | // Clear all the buffer memory | 
|  |  | 
|  | printk (" clearing memory"); | 
|  |  | 
|  | for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem) | 
|  | wr_mem (dev, mem, 0); | 
|  |  | 
|  | printk (" tx channels"); | 
|  |  | 
|  | // All transmit eight channels are set up as AAL5 ABR channels with | 
|  | // a 16us cell spacing. Why? | 
|  |  | 
|  | // Channel 0 gets the free buffer at 100h, channel 1 gets the free | 
|  | // buffer at 110h etc. | 
|  |  | 
|  | for (chan = 0; chan < TX_CHANS; ++chan) { | 
|  | tx_ch_desc * tx_desc = &memmap->tx_descs[chan]; | 
|  | cell_buf * buf = &memmap->inittxbufs[chan]; | 
|  |  | 
|  | // initialise the read and write buffer pointers | 
|  | wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf)); | 
|  | wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf)); | 
|  |  | 
|  | // set the status of the initial buffers to empty | 
|  | wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY); | 
|  | } | 
|  |  | 
|  | // Use space bufn3 at the moment for tx buffers | 
|  |  | 
|  | printk (" tx buffers"); | 
|  |  | 
|  | tx_desc = memmap->bufn3; | 
|  |  | 
|  | wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY); | 
|  |  | 
|  | for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) { | 
|  | wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY); | 
|  | tx_desc++; | 
|  | } | 
|  |  | 
|  | wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY); | 
|  |  | 
|  | // Initialise the transmit free buffer count | 
|  | wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE); | 
|  |  | 
|  | printk (" rx channels"); | 
|  |  | 
|  | // Initialise all of the receive channels to be AAL5 disabled with | 
|  | // an interrupt threshold of 0 | 
|  |  | 
|  | for (chan = 0; chan < RX_CHANS; ++chan) { | 
|  | rx_ch_desc * rx_desc = &memmap->rx_descs[chan]; | 
|  |  | 
|  | wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED); | 
|  | } | 
|  |  | 
|  | printk (" rx buffers"); | 
|  |  | 
|  | // Use space bufn4 at the moment for rx buffers | 
|  |  | 
|  | rx_desc = memmap->bufn4; | 
|  |  | 
|  | wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY); | 
|  |  | 
|  | for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) { | 
|  | wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY); | 
|  |  | 
|  | rx_desc++; | 
|  | } | 
|  |  | 
|  | wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY); | 
|  |  | 
|  | // Initialise the receive free buffer count | 
|  | wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE); | 
|  |  | 
|  | // Initialize Horizons registers | 
|  |  | 
|  | // TX config | 
|  | wr_regw (dev, TX_CONFIG_OFF, | 
|  | ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE); | 
|  |  | 
|  | // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0. | 
|  | wr_regw (dev, RX_CONFIG_OFF, | 
|  | DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits); | 
|  |  | 
|  | // RX line config | 
|  | wr_regw (dev, RX_LINE_CONFIG_OFF, | 
|  | LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4); | 
|  |  | 
|  | // Set the max AAL5 cell count to be just enough to contain the | 
|  | // largest AAL5 frame that the user wants to receive | 
|  | wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF, | 
|  | DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD)); | 
|  |  | 
|  | // Enable receive | 
|  | wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); | 
|  |  | 
|  | printk (" control"); | 
|  |  | 
|  | // Drive the OE of the LEDs then turn the green LED on | 
|  | ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED; | 
|  | wr_regl (dev, CONTROL_0_REG, ctrl); | 
|  |  | 
|  | // Test for a 155-capable card | 
|  |  | 
|  | if (onefivefive) { | 
|  | // Select 155 mode... make this a choice (or: how do we detect | 
|  | // external line speed and switch?) | 
|  | ctrl |= ATM_LAYER_SELECT; | 
|  | wr_regl (dev, CONTROL_0_REG, ctrl); | 
|  |  | 
|  | // test SUNI-lite vs SAMBA | 
|  |  | 
|  | // Register 0x00 in the SUNI will have some of bits 3-7 set, and | 
|  | // they will always be zero for the SAMBA.  Ha!  Bloody hardware | 
|  | // engineers.  It'll never work. | 
|  |  | 
|  | if (rd_framer (dev, 0) & 0x00f0) { | 
|  | // SUNI | 
|  | printk (" SUNI"); | 
|  |  | 
|  | // Reset, just in case | 
|  | wr_framer (dev, 0x00, 0x0080); | 
|  | wr_framer (dev, 0x00, 0x0000); | 
|  |  | 
|  | // Configure transmit FIFO | 
|  | wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002); | 
|  |  | 
|  | // Set line timed mode | 
|  | wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001); | 
|  | } else { | 
|  | // SAMBA | 
|  | printk (" SAMBA"); | 
|  |  | 
|  | // Reset, just in case | 
|  | wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001); | 
|  | wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001); | 
|  |  | 
|  | // Turn off diagnostic loopback and enable line-timed mode | 
|  | wr_framer (dev, 0, 0x0002); | 
|  |  | 
|  | // Turn on transmit outputs | 
|  | wr_framer (dev, 2, 0x0B80); | 
|  | } | 
|  | } else { | 
|  | // Select 25 mode | 
|  | ctrl &= ~ATM_LAYER_SELECT; | 
|  |  | 
|  | // Madge B154 setup | 
|  | // none required? | 
|  | } | 
|  |  | 
|  | printk (" LEDs"); | 
|  |  | 
|  | GREEN_LED_ON(dev); | 
|  | YELLOW_LED_ON(dev); | 
|  |  | 
|  | printk (" ESI="); | 
|  |  | 
|  | { | 
|  | u16 b = 0; | 
|  | int i; | 
|  | u8 * esi = dev->atm_dev->esi; | 
|  |  | 
|  | // in the card I have, EEPROM | 
|  | // addresses 0, 1, 2 contain 0 | 
|  | // addresess 5, 6 etc. contain ffff | 
|  | // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order) | 
|  | // the read_bia routine gets the BIA in Ethernet bit order | 
|  |  | 
|  | for (i=0; i < ESI_LEN; ++i) { | 
|  | if (i % 2 == 0) | 
|  | b = read_bia (dev, i/2 + 2); | 
|  | else | 
|  | b = b >> 8; | 
|  | esi[i] = b & 0xFF; | 
|  | printk ("%02x", esi[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Enable RX_Q and ?X_COMPLETE interrupts only | 
|  | wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS); | 
|  | printk (" IRQ on"); | 
|  |  | 
|  | printk (".\n"); | 
|  |  | 
|  | return onefivefive; | 
|  | } | 
|  |  | 
|  | /********** check max_sdu **********/ | 
|  |  | 
|  | static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) { | 
|  | PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu"); | 
|  |  | 
|  | switch (aal) { | 
|  | case aal0: | 
|  | if (!(tp->max_sdu)) { | 
|  | PRINTD (DBG_QOS, "defaulting max_sdu"); | 
|  | tp->max_sdu = ATM_AAL0_SDU; | 
|  | } else if (tp->max_sdu != ATM_AAL0_SDU) { | 
|  | PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu"); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case aal34: | 
|  | if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) { | 
|  | PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); | 
|  | tp->max_sdu = ATM_MAX_AAL34_PDU; | 
|  | } | 
|  | break; | 
|  | case aal5: | 
|  | if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) { | 
|  | PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); | 
|  | tp->max_sdu = max_frame_size; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /********** check pcr **********/ | 
|  |  | 
|  | // something like this should be part of ATM Linux | 
|  | static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) { | 
|  | // we are assuming non-UBR, and non-special values of pcr | 
|  | if (tp->min_pcr == ATM_MAX_PCR) | 
|  | PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR"); | 
|  | else if (tp->min_pcr < 0) | 
|  | PRINTD (DBG_QOS, "luser gave negative min_pcr"); | 
|  | else if (tp->min_pcr && tp->min_pcr > pcr) | 
|  | PRINTD (DBG_QOS, "pcr less than min_pcr"); | 
|  | else | 
|  | // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1) | 
|  | // easier to #define ATM_MAX_PCR 0 and have all rates unsigned? | 
|  | // [this would get rid of next two conditionals] | 
|  | if ((0) && tp->max_pcr == ATM_MAX_PCR) | 
|  | PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR"); | 
|  | else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0) | 
|  | PRINTD (DBG_QOS, "luser gave negative max_pcr"); | 
|  | else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr) | 
|  | PRINTD (DBG_QOS, "pcr greater than max_pcr"); | 
|  | else { | 
|  | // each limit unspecified or not violated | 
|  | PRINTD (DBG_QOS, "xBR(pcr) OK"); | 
|  | return 0; | 
|  | } | 
|  | PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d", | 
|  | pcr, tp->min_pcr, tp->pcr, tp->max_pcr); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /********** open VC **********/ | 
|  |  | 
|  | static int hrz_open (struct atm_vcc *atm_vcc) | 
|  | { | 
|  | int error; | 
|  | u16 channel; | 
|  |  | 
|  | struct atm_qos * qos; | 
|  | struct atm_trafprm * txtp; | 
|  | struct atm_trafprm * rxtp; | 
|  |  | 
|  | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
|  | hrz_vcc vcc; | 
|  | hrz_vcc * vccp; // allocated late | 
|  | short vpi = atm_vcc->vpi; | 
|  | int vci = atm_vcc->vci; | 
|  | PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci); | 
|  |  | 
|  | #ifdef ATM_VPI_UNSPEC | 
|  | // UNSPEC is deprecated, remove this code eventually | 
|  | if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { | 
|  | PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | error = vpivci_to_channel (&channel, vpi, vci); | 
|  | if (error) { | 
|  | PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | vcc.channel = channel; | 
|  | // max speed for the moment | 
|  | vcc.tx_rate = 0x0; | 
|  |  | 
|  | qos = &atm_vcc->qos; | 
|  |  | 
|  | // check AAL and remember it | 
|  | switch (qos->aal) { | 
|  | case ATM_AAL0: | 
|  | // we would if it were 48 bytes and not 52! | 
|  | PRINTD (DBG_QOS|DBG_VCC, "AAL0"); | 
|  | vcc.aal = aal0; | 
|  | break; | 
|  | case ATM_AAL34: | 
|  | // we would if I knew how do the SAR! | 
|  | PRINTD (DBG_QOS|DBG_VCC, "AAL3/4"); | 
|  | vcc.aal = aal34; | 
|  | break; | 
|  | case ATM_AAL5: | 
|  | PRINTD (DBG_QOS|DBG_VCC, "AAL5"); | 
|  | vcc.aal = aal5; | 
|  | break; | 
|  | default: | 
|  | PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!"); | 
|  | return -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TX traffic parameters | 
|  |  | 
|  | // there are two, interrelated problems here: 1. the reservation of | 
|  | // PCR is not a binary choice, we are given bounds and/or a | 
|  | // desirable value; 2. the device is only capable of certain values, | 
|  | // most of which are not integers. It is almost certainly acceptable | 
|  | // to be off by a maximum of 1 to 10 cps. | 
|  |  | 
|  | // Pragmatic choice: always store an integral PCR as that which has | 
|  | // been allocated, even if we allocate a little (or a lot) less, | 
|  | // after rounding. The actual allocation depends on what we can | 
|  | // manage with our rate selection algorithm. The rate selection | 
|  | // algorithm is given an integral PCR and a tolerance and told | 
|  | // whether it should round the value up or down if the tolerance is | 
|  | // exceeded; it returns: a) the actual rate selected (rounded up to | 
|  | // the nearest integer), b) a bit pattern to feed to the timer | 
|  | // register, and c) a failure value if no applicable rate exists. | 
|  |  | 
|  | // Part of the job is done by atm_pcr_goal which gives us a PCR | 
|  | // specification which says: EITHER grab the maximum available PCR | 
|  | // (and perhaps a lower bound which we musn't pass), OR grab this | 
|  | // amount, rounding down if you have to (and perhaps a lower bound | 
|  | // which we musn't pass) OR grab this amount, rounding up if you | 
|  | // have to (and perhaps an upper bound which we musn't pass). If any | 
|  | // bounds ARE passed we fail. Note that rounding is only rounding to | 
|  | // match device limitations, we do not round down to satisfy | 
|  | // bandwidth availability even if this would not violate any given | 
|  | // lower bound. | 
|  |  | 
|  | // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s | 
|  | // (say) so this is not even a binary fixpoint cell rate (but this | 
|  | // device can do it). To avoid this sort of hassle we use a | 
|  | // tolerance parameter (currently fixed at 10 cps). | 
|  |  | 
|  | PRINTD (DBG_QOS, "TX:"); | 
|  |  | 
|  | txtp = &qos->txtp; | 
|  |  | 
|  | // set up defaults for no traffic | 
|  | vcc.tx_rate = 0; | 
|  | // who knows what would actually happen if you try and send on this? | 
|  | vcc.tx_xbr_bits = IDLE_RATE_TYPE; | 
|  | vcc.tx_pcr_bits = CLOCK_DISABLE; | 
|  | #if 0 | 
|  | vcc.tx_scr_bits = CLOCK_DISABLE; | 
|  | vcc.tx_bucket_bits = 0; | 
|  | #endif | 
|  |  | 
|  | if (txtp->traffic_class != ATM_NONE) { | 
|  | error = check_max_sdu (vcc.aal, txtp, max_tx_size); | 
|  | if (error) { | 
|  | PRINTD (DBG_QOS, "TX max_sdu check failed"); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | switch (txtp->traffic_class) { | 
|  | case ATM_UBR: { | 
|  | // we take "the PCR" as a rate-cap | 
|  | // not reserved | 
|  | vcc.tx_rate = 0; | 
|  | make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL); | 
|  | vcc.tx_xbr_bits = ABR_RATE_TYPE; | 
|  | break; | 
|  | } | 
|  | #if 0 | 
|  | case ATM_ABR: { | 
|  | // reserve min, allow up to max | 
|  | vcc.tx_rate = 0; // ? | 
|  | make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0); | 
|  | vcc.tx_xbr_bits = ABR_RATE_TYPE; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | case ATM_CBR: { | 
|  | int pcr = atm_pcr_goal (txtp); | 
|  | rounding r; | 
|  | if (!pcr) { | 
|  | // down vs. up, remaining bandwidth vs. unlimited bandwidth!! | 
|  | // should really have: once someone gets unlimited bandwidth | 
|  | // that no more non-UBR channels can be opened until the | 
|  | // unlimited one closes?? For the moment, round_down means | 
|  | // greedy people actually get something and not nothing | 
|  | r = round_down; | 
|  | // slight race (no locking) here so we may get -EAGAIN | 
|  | // later; the greedy bastards would deserve it :) | 
|  | PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); | 
|  | pcr = dev->tx_avail; | 
|  | } else if (pcr < 0) { | 
|  | r = round_down; | 
|  | pcr = -pcr; | 
|  | } else { | 
|  | r = round_up; | 
|  | } | 
|  | error = make_rate_with_tolerance (dev, pcr, r, 10, | 
|  | &vcc.tx_pcr_bits, &vcc.tx_rate); | 
|  | if (error) { | 
|  | PRINTD (DBG_QOS, "could not make rate from TX PCR"); | 
|  | return error; | 
|  | } | 
|  | // not really clear what further checking is needed | 
|  | error = atm_pcr_check (txtp, vcc.tx_rate); | 
|  | if (error) { | 
|  | PRINTD (DBG_QOS, "TX PCR failed consistency check"); | 
|  | return error; | 
|  | } | 
|  | vcc.tx_xbr_bits = CBR_RATE_TYPE; | 
|  | break; | 
|  | } | 
|  | #if 0 | 
|  | case ATM_VBR: { | 
|  | int pcr = atm_pcr_goal (txtp); | 
|  | // int scr = atm_scr_goal (txtp); | 
|  | int scr = pcr/2; // just for fun | 
|  | unsigned int mbs = 60; // just for fun | 
|  | rounding pr; | 
|  | rounding sr; | 
|  | unsigned int bucket; | 
|  | if (!pcr) { | 
|  | pr = round_nearest; | 
|  | pcr = 1<<30; | 
|  | } else if (pcr < 0) { | 
|  | pr = round_down; | 
|  | pcr = -pcr; | 
|  | } else { | 
|  | pr = round_up; | 
|  | } | 
|  | error = make_rate_with_tolerance (dev, pcr, pr, 10, | 
|  | &vcc.tx_pcr_bits, 0); | 
|  | if (!scr) { | 
|  | // see comments for PCR with CBR above | 
|  | sr = round_down; | 
|  | // slight race (no locking) here so we may get -EAGAIN | 
|  | // later; the greedy bastards would deserve it :) | 
|  | PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); | 
|  | scr = dev->tx_avail; | 
|  | } else if (scr < 0) { | 
|  | sr = round_down; | 
|  | scr = -scr; | 
|  | } else { | 
|  | sr = round_up; | 
|  | } | 
|  | error = make_rate_with_tolerance (dev, scr, sr, 10, | 
|  | &vcc.tx_scr_bits, &vcc.tx_rate); | 
|  | if (error) { | 
|  | PRINTD (DBG_QOS, "could not make rate from TX SCR"); | 
|  | return error; | 
|  | } | 
|  | // not really clear what further checking is needed | 
|  | // error = atm_scr_check (txtp, vcc.tx_rate); | 
|  | if (error) { | 
|  | PRINTD (DBG_QOS, "TX SCR failed consistency check"); | 
|  | return error; | 
|  | } | 
|  | // bucket calculations (from a piece of paper...) cell bucket | 
|  | // capacity must be largest integer smaller than m(p-s)/p + 1 | 
|  | // where m = max burst size, p = pcr, s = scr | 
|  | bucket = mbs*(pcr-scr)/pcr; | 
|  | if (bucket*pcr != mbs*(pcr-scr)) | 
|  | bucket += 1; | 
|  | if (bucket > BUCKET_MAX_SIZE) { | 
|  | PRINTD (DBG_QOS, "shrinking bucket from %u to %u", | 
|  | bucket, BUCKET_MAX_SIZE); | 
|  | bucket = BUCKET_MAX_SIZE; | 
|  | } | 
|  | vcc.tx_xbr_bits = VBR_RATE_TYPE; | 
|  | vcc.tx_bucket_bits = bucket; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | default: { | 
|  | PRINTD (DBG_QOS, "unsupported TX traffic class"); | 
|  | return -EINVAL; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // RX traffic parameters | 
|  |  | 
|  | PRINTD (DBG_QOS, "RX:"); | 
|  |  | 
|  | rxtp = &qos->rxtp; | 
|  |  | 
|  | // set up defaults for no traffic | 
|  | vcc.rx_rate = 0; | 
|  |  | 
|  | if (rxtp->traffic_class != ATM_NONE) { | 
|  | error = check_max_sdu (vcc.aal, rxtp, max_rx_size); | 
|  | if (error) { | 
|  | PRINTD (DBG_QOS, "RX max_sdu check failed"); | 
|  | return error; | 
|  | } | 
|  | switch (rxtp->traffic_class) { | 
|  | case ATM_UBR: { | 
|  | // not reserved | 
|  | break; | 
|  | } | 
|  | #if 0 | 
|  | case ATM_ABR: { | 
|  | // reserve min | 
|  | vcc.rx_rate = 0; // ? | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | case ATM_CBR: { | 
|  | int pcr = atm_pcr_goal (rxtp); | 
|  | if (!pcr) { | 
|  | // slight race (no locking) here so we may get -EAGAIN | 
|  | // later; the greedy bastards would deserve it :) | 
|  | PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); | 
|  | pcr = dev->rx_avail; | 
|  | } else if (pcr < 0) { | 
|  | pcr = -pcr; | 
|  | } | 
|  | vcc.rx_rate = pcr; | 
|  | // not really clear what further checking is needed | 
|  | error = atm_pcr_check (rxtp, vcc.rx_rate); | 
|  | if (error) { | 
|  | PRINTD (DBG_QOS, "RX PCR failed consistency check"); | 
|  | return error; | 
|  | } | 
|  | break; | 
|  | } | 
|  | #if 0 | 
|  | case ATM_VBR: { | 
|  | // int scr = atm_scr_goal (rxtp); | 
|  | int scr = 1<<16; // just for fun | 
|  | if (!scr) { | 
|  | // slight race (no locking) here so we may get -EAGAIN | 
|  | // later; the greedy bastards would deserve it :) | 
|  | PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); | 
|  | scr = dev->rx_avail; | 
|  | } else if (scr < 0) { | 
|  | scr = -scr; | 
|  | } | 
|  | vcc.rx_rate = scr; | 
|  | // not really clear what further checking is needed | 
|  | // error = atm_scr_check (rxtp, vcc.rx_rate); | 
|  | if (error) { | 
|  | PRINTD (DBG_QOS, "RX SCR failed consistency check"); | 
|  | return error; | 
|  | } | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | default: { | 
|  | PRINTD (DBG_QOS, "unsupported RX traffic class"); | 
|  | return -EINVAL; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // late abort useful for diagnostics | 
|  | if (vcc.aal != aal5) { | 
|  | PRINTD (DBG_QOS, "AAL not supported"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | // get space for our vcc stuff and copy parameters into it | 
|  | vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL); | 
|  | if (!vccp) { | 
|  | PRINTK (KERN_ERR, "out of memory!"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | *vccp = vcc; | 
|  |  | 
|  | // clear error and grab cell rate resource lock | 
|  | error = 0; | 
|  | spin_lock (&dev->rate_lock); | 
|  |  | 
|  | if (vcc.tx_rate > dev->tx_avail) { | 
|  | PRINTD (DBG_QOS, "not enough TX PCR left"); | 
|  | error = -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (vcc.rx_rate > dev->rx_avail) { | 
|  | PRINTD (DBG_QOS, "not enough RX PCR left"); | 
|  | error = -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (!error) { | 
|  | // really consume cell rates | 
|  | dev->tx_avail -= vcc.tx_rate; | 
|  | dev->rx_avail -= vcc.rx_rate; | 
|  | PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR", | 
|  | vcc.tx_rate, vcc.rx_rate); | 
|  | } | 
|  |  | 
|  | // release lock and exit on error | 
|  | spin_unlock (&dev->rate_lock); | 
|  | if (error) { | 
|  | PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources"); | 
|  | kfree (vccp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | // this is "immediately before allocating the connection identifier | 
|  | // in hardware" - so long as the next call does not fail :) | 
|  | set_bit(ATM_VF_ADDR,&atm_vcc->flags); | 
|  |  | 
|  | // any errors here are very serious and should never occur | 
|  |  | 
|  | if (rxtp->traffic_class != ATM_NONE) { | 
|  | if (dev->rxer[channel]) { | 
|  | PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX"); | 
|  | error = -EBUSY; | 
|  | } | 
|  | if (!error) | 
|  | error = hrz_open_rx (dev, channel); | 
|  | if (error) { | 
|  | kfree (vccp); | 
|  | return error; | 
|  | } | 
|  | // this link allows RX frames through | 
|  | dev->rxer[channel] = atm_vcc; | 
|  | } | 
|  |  | 
|  | // success, set elements of atm_vcc | 
|  | atm_vcc->dev_data = (void *) vccp; | 
|  |  | 
|  | // indicate readiness | 
|  | set_bit(ATM_VF_READY,&atm_vcc->flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /********** close VC **********/ | 
|  |  | 
|  | static void hrz_close (struct atm_vcc * atm_vcc) { | 
|  | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
|  | hrz_vcc * vcc = HRZ_VCC(atm_vcc); | 
|  | u16 channel = vcc->channel; | 
|  | PRINTD (DBG_VCC|DBG_FLOW, "hrz_close"); | 
|  |  | 
|  | // indicate unreadiness | 
|  | clear_bit(ATM_VF_READY,&atm_vcc->flags); | 
|  |  | 
|  | if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { | 
|  | unsigned int i; | 
|  |  | 
|  | // let any TX on this channel that has started complete | 
|  | // no restart, just keep trying | 
|  | while (tx_hold (dev)) | 
|  | ; | 
|  | // remove record of any tx_channel having been setup for this channel | 
|  | for (i = 0; i < TX_CHANS; ++i) | 
|  | if (dev->tx_channel_record[i] == channel) { | 
|  | dev->tx_channel_record[i] = -1; | 
|  | break; | 
|  | } | 
|  | if (dev->last_vc == channel) | 
|  | dev->tx_last = -1; | 
|  | tx_release (dev); | 
|  | } | 
|  |  | 
|  | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { | 
|  | // disable RXing - it tries quite hard | 
|  | hrz_close_rx (dev, channel); | 
|  | // forget the vcc - no more skbs will be pushed | 
|  | if (atm_vcc != dev->rxer[channel]) | 
|  | PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p", | 
|  | "arghhh! we're going to die!", | 
|  | atm_vcc, dev->rxer[channel]); | 
|  | dev->rxer[channel] = NULL; | 
|  | } | 
|  |  | 
|  | // atomically release our rate reservation | 
|  | spin_lock (&dev->rate_lock); | 
|  | PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR", | 
|  | vcc->tx_rate, vcc->rx_rate); | 
|  | dev->tx_avail += vcc->tx_rate; | 
|  | dev->rx_avail += vcc->rx_rate; | 
|  | spin_unlock (&dev->rate_lock); | 
|  |  | 
|  | // free our structure | 
|  | kfree (vcc); | 
|  | // say the VPI/VCI is free again | 
|  | clear_bit(ATM_VF_ADDR,&atm_vcc->flags); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, | 
|  | void *optval, int optlen) { | 
|  | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
|  | PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt"); | 
|  | switch (level) { | 
|  | case SOL_SOCKET: | 
|  | switch (optname) { | 
|  | //	case SO_BCTXOPT: | 
|  | //	  break; | 
|  | //	case SO_BCRXOPT: | 
|  | //	  break; | 
|  | default: | 
|  | return -ENOPROTOOPT; | 
|  | break; | 
|  | }; | 
|  | break; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, | 
|  | void *optval, int optlen) { | 
|  | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
|  | PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt"); | 
|  | switch (level) { | 
|  | case SOL_SOCKET: | 
|  | switch (optname) { | 
|  | //	case SO_BCTXOPT: | 
|  | //	  break; | 
|  | //	case SO_BCRXOPT: | 
|  | //	  break; | 
|  | default: | 
|  | return -ENOPROTOOPT; | 
|  | break; | 
|  | }; | 
|  | break; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if 0 | 
|  | static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) { | 
|  | hrz_dev * dev = HRZ_DEV(atm_dev); | 
|  | PRINTD (DBG_FLOW, "hrz_ioctl"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) { | 
|  | hrz_dev * dev = HRZ_DEV(atm_dev); | 
|  | PRINTD (DBG_FLOW, "hrz_phy_get"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value, | 
|  | unsigned long addr) { | 
|  | hrz_dev * dev = HRZ_DEV(atm_dev); | 
|  | PRINTD (DBG_FLOW, "hrz_phy_put"); | 
|  | } | 
|  |  | 
|  | static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) { | 
|  | hrz_dev * dev = HRZ_DEV(vcc->dev); | 
|  | PRINTD (DBG_FLOW, "hrz_change_qos"); | 
|  | return -1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /********** proc file contents **********/ | 
|  |  | 
|  | static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { | 
|  | hrz_dev * dev = HRZ_DEV(atm_dev); | 
|  | int left = *pos; | 
|  | PRINTD (DBG_FLOW, "hrz_proc_read"); | 
|  |  | 
|  | /* more diagnostics here? */ | 
|  |  | 
|  | #if 0 | 
|  | if (!left--) { | 
|  | unsigned int count = sprintf (page, "vbr buckets:"); | 
|  | unsigned int i; | 
|  | for (i = 0; i < TX_CHANS; ++i) | 
|  | count += sprintf (page, " %u/%u", | 
|  | query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS), | 
|  | query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS)); | 
|  | count += sprintf (page+count, ".\n"); | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!left--) | 
|  | return sprintf (page, | 
|  | "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n", | 
|  | dev->tx_cell_count, dev->rx_cell_count, | 
|  | dev->hec_error_count, dev->unassigned_cell_count); | 
|  |  | 
|  | if (!left--) | 
|  | return sprintf (page, | 
|  | "free cell buffers: TX %hu, RX %hu+%hu.\n", | 
|  | rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF), | 
|  | rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF), | 
|  | dev->noof_spare_buffers); | 
|  |  | 
|  | if (!left--) | 
|  | return sprintf (page, | 
|  | "cps remaining: TX %u, RX %u\n", | 
|  | dev->tx_avail, dev->rx_avail); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct atmdev_ops hrz_ops = { | 
|  | .open	= hrz_open, | 
|  | .close	= hrz_close, | 
|  | .send	= hrz_send, | 
|  | .proc_read	= hrz_proc_read, | 
|  | .owner	= THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) | 
|  | { | 
|  | hrz_dev * dev; | 
|  | int err = 0; | 
|  |  | 
|  | // adapter slot free, read resources from PCI configuration space | 
|  | u32 iobase = pci_resource_start (pci_dev, 0); | 
|  | u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1)); | 
|  | unsigned int irq; | 
|  | unsigned char lat; | 
|  |  | 
|  | PRINTD (DBG_FLOW, "hrz_probe"); | 
|  |  | 
|  | if (pci_enable_device(pci_dev)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* XXX DEV_LABEL is a guess */ | 
|  | if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) { | 
|  | err = -EINVAL; | 
|  | goto out_disable; | 
|  | } | 
|  |  | 
|  | dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL); | 
|  | if (!dev) { | 
|  | // perhaps we should be nice: deregister all adapters and abort? | 
|  | PRINTD(DBG_ERR, "out of memory"); | 
|  | err = -ENOMEM; | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | pci_set_drvdata(pci_dev, dev); | 
|  |  | 
|  | // grab IRQ and install handler - move this someplace more sensible | 
|  | irq = pci_dev->irq; | 
|  | if (request_irq(irq, | 
|  | interrupt_handler, | 
|  | IRQF_SHARED, /* irqflags guess */ | 
|  | DEV_LABEL, /* name guess */ | 
|  | dev)) { | 
|  | PRINTD(DBG_WARN, "request IRQ failed!"); | 
|  | err = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p", | 
|  | iobase, irq, membase); | 
|  |  | 
|  | dev->atm_dev = atm_dev_register(DEV_LABEL, &hrz_ops, -1, NULL); | 
|  | if (!(dev->atm_dev)) { | 
|  | PRINTD(DBG_ERR, "failed to register Madge ATM adapter"); | 
|  | err = -EINVAL; | 
|  | goto out_free_irq; | 
|  | } | 
|  |  | 
|  | PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", | 
|  | dev->atm_dev->number, dev, dev->atm_dev); | 
|  | dev->atm_dev->dev_data = (void *) dev; | 
|  | dev->pci_dev = pci_dev; | 
|  |  | 
|  | // enable bus master accesses | 
|  | pci_set_master(pci_dev); | 
|  |  | 
|  | // frobnicate latency (upwards, usually) | 
|  | pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat); | 
|  | if (pci_lat) { | 
|  | PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu", | 
|  | "changing", lat, pci_lat); | 
|  | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); | 
|  | } else if (lat < MIN_PCI_LATENCY) { | 
|  | PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu", | 
|  | "increasing", lat, MIN_PCI_LATENCY); | 
|  | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY); | 
|  | } | 
|  |  | 
|  | dev->iobase = iobase; | 
|  | dev->irq = irq; | 
|  | dev->membase = membase; | 
|  |  | 
|  | dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0]; | 
|  | dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1]; | 
|  |  | 
|  | // these next three are performance hacks | 
|  | dev->last_vc = -1; | 
|  | dev->tx_last = -1; | 
|  | dev->tx_idle = 0; | 
|  |  | 
|  | dev->tx_regions = 0; | 
|  | dev->tx_bytes = 0; | 
|  | dev->tx_skb = NULL; | 
|  | dev->tx_iovec = NULL; | 
|  |  | 
|  | dev->tx_cell_count = 0; | 
|  | dev->rx_cell_count = 0; | 
|  | dev->hec_error_count = 0; | 
|  | dev->unassigned_cell_count = 0; | 
|  |  | 
|  | dev->noof_spare_buffers = 0; | 
|  |  | 
|  | { | 
|  | unsigned int i; | 
|  | for (i = 0; i < TX_CHANS; ++i) | 
|  | dev->tx_channel_record[i] = -1; | 
|  | } | 
|  |  | 
|  | dev->flags = 0; | 
|  |  | 
|  | // Allocate cell rates and remember ASIC version | 
|  | // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 | 
|  | // Copper: (WRONG) we want 6 into the above, close to 25Mb/s | 
|  | // Copper: (plagarise!) 25600000/8/270*260/53 - n/53 | 
|  |  | 
|  | if (hrz_init(dev)) { | 
|  | // to be really pedantic, this should be ATM_OC3c_PCR | 
|  | dev->tx_avail = ATM_OC3_PCR; | 
|  | dev->rx_avail = ATM_OC3_PCR; | 
|  | set_bit(ultra, &dev->flags); // NOT "|= ultra" ! | 
|  | } else { | 
|  | dev->tx_avail = ((25600000/8)*26)/(27*53); | 
|  | dev->rx_avail = ((25600000/8)*26)/(27*53); | 
|  | PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering."); | 
|  | } | 
|  |  | 
|  | // rate changes spinlock | 
|  | spin_lock_init(&dev->rate_lock); | 
|  |  | 
|  | // on-board memory access spinlock; we want atomic reads and | 
|  | // writes to adapter memory (handles IRQ and SMP) | 
|  | spin_lock_init(&dev->mem_lock); | 
|  |  | 
|  | init_waitqueue_head(&dev->tx_queue); | 
|  |  | 
|  | // vpi in 0..4, vci in 6..10 | 
|  | dev->atm_dev->ci_range.vpi_bits = vpi_bits; | 
|  | dev->atm_dev->ci_range.vci_bits = 10-vpi_bits; | 
|  |  | 
|  | init_timer(&dev->housekeeping); | 
|  | dev->housekeeping.function = do_housekeeping; | 
|  | dev->housekeeping.data = (unsigned long) dev; | 
|  | mod_timer(&dev->housekeeping, jiffies); | 
|  |  | 
|  | out: | 
|  | return err; | 
|  |  | 
|  | out_free_irq: | 
|  | free_irq(dev->irq, dev); | 
|  | out_free: | 
|  | kfree(dev); | 
|  | out_release: | 
|  | release_region(iobase, HRZ_IO_EXTENT); | 
|  | out_disable: | 
|  | pci_disable_device(pci_dev); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static void __devexit hrz_remove_one(struct pci_dev *pci_dev) | 
|  | { | 
|  | hrz_dev *dev; | 
|  |  | 
|  | dev = pci_get_drvdata(pci_dev); | 
|  |  | 
|  | PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev); | 
|  | del_timer_sync(&dev->housekeeping); | 
|  | hrz_reset(dev); | 
|  | atm_dev_deregister(dev->atm_dev); | 
|  | free_irq(dev->irq, dev); | 
|  | release_region(dev->iobase, HRZ_IO_EXTENT); | 
|  | kfree(dev); | 
|  |  | 
|  | pci_disable_device(pci_dev); | 
|  | } | 
|  |  | 
|  | static void __init hrz_check_args (void) { | 
|  | #ifdef DEBUG_HORIZON | 
|  | PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); | 
|  | #else | 
|  | if (debug) | 
|  | PRINTK (KERN_NOTICE, "no debug support in this image"); | 
|  | #endif | 
|  |  | 
|  | if (vpi_bits > HRZ_MAX_VPI) | 
|  | PRINTK (KERN_ERR, "vpi_bits has been limited to %hu", | 
|  | vpi_bits = HRZ_MAX_VPI); | 
|  |  | 
|  | if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT) | 
|  | PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu", | 
|  | max_tx_size = TX_AAL5_LIMIT); | 
|  |  | 
|  | if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT) | 
|  | PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu", | 
|  | max_rx_size = RX_AAL5_LIMIT); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | MODULE_AUTHOR(maintainer_string); | 
|  | MODULE_DESCRIPTION(description_string); | 
|  | MODULE_LICENSE("GPL"); | 
|  | module_param(debug, ushort, 0644); | 
|  | module_param(vpi_bits, ushort, 0); | 
|  | module_param(max_tx_size, int, 0); | 
|  | module_param(max_rx_size, int, 0); | 
|  | module_param(pci_lat, byte, 0); | 
|  | MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); | 
|  | MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs"); | 
|  | MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames"); | 
|  | MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames"); | 
|  | MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); | 
|  |  | 
|  | static struct pci_device_id hrz_pci_tbl[] = { | 
|  | { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID, | 
|  | 0, 0, 0 }, | 
|  | { 0, } | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, hrz_pci_tbl); | 
|  |  | 
|  | static struct pci_driver hrz_driver = { | 
|  | .name =		"horizon", | 
|  | .probe =	hrz_probe, | 
|  | .remove =	__devexit_p(hrz_remove_one), | 
|  | .id_table =	hrz_pci_tbl, | 
|  | }; | 
|  |  | 
|  | /********** module entry **********/ | 
|  |  | 
|  | static int __init hrz_module_init (void) { | 
|  | // sanity check - cast is needed since printk does not support %Zu | 
|  | if (sizeof(struct MEMMAP) != 128*1024/4) { | 
|  | PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).", | 
|  | (unsigned long) sizeof(struct MEMMAP)); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | show_version(); | 
|  |  | 
|  | // check arguments | 
|  | hrz_check_args(); | 
|  |  | 
|  | // get the juice | 
|  | return pci_register_driver(&hrz_driver); | 
|  | } | 
|  |  | 
|  | /********** module exit **********/ | 
|  |  | 
|  | static void __exit hrz_module_exit (void) { | 
|  | PRINTD (DBG_FLOW, "cleanup_module"); | 
|  |  | 
|  | pci_unregister_driver(&hrz_driver); | 
|  | } | 
|  |  | 
|  | module_init(hrz_module_init); | 
|  | module_exit(hrz_module_exit); |