| /* | 
 |  * SMP initialisation and IPI support | 
 |  * Based on arch/arm/kernel/smp.c | 
 |  * | 
 |  * Copyright (C) 2012 ARM Ltd. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 |  | 
 | #include <linux/acpi.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/init.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/err.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/clockchips.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/of.h> | 
 | #include <linux/irq_work.h> | 
 |  | 
 | #include <asm/alternative.h> | 
 | #include <asm/atomic.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/cpu.h> | 
 | #include <asm/cputype.h> | 
 | #include <asm/cpu_ops.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/numa.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/smp_plat.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/ptrace.h> | 
 | #include <asm/virt.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/ipi.h> | 
 |  | 
 | /* | 
 |  * as from 2.5, kernels no longer have an init_tasks structure | 
 |  * so we need some other way of telling a new secondary core | 
 |  * where to place its SVC stack | 
 |  */ | 
 | struct secondary_data secondary_data; | 
 | /* Number of CPUs which aren't online, but looping in kernel text. */ | 
 | int cpus_stuck_in_kernel; | 
 |  | 
 | enum ipi_msg_type { | 
 | 	IPI_RESCHEDULE, | 
 | 	IPI_CALL_FUNC, | 
 | 	IPI_CPU_STOP, | 
 | 	IPI_TIMER, | 
 | 	IPI_IRQ_WORK, | 
 | 	IPI_WAKEUP | 
 | }; | 
 |  | 
 | #ifdef CONFIG_ARM64_VHE | 
 |  | 
 | /* Whether the boot CPU is running in HYP mode or not*/ | 
 | static bool boot_cpu_hyp_mode; | 
 |  | 
 | static inline void save_boot_cpu_run_el(void) | 
 | { | 
 | 	boot_cpu_hyp_mode = is_kernel_in_hyp_mode(); | 
 | } | 
 |  | 
 | static inline bool is_boot_cpu_in_hyp_mode(void) | 
 | { | 
 | 	return boot_cpu_hyp_mode; | 
 | } | 
 |  | 
 | /* | 
 |  * Verify that a secondary CPU is running the kernel at the same | 
 |  * EL as that of the boot CPU. | 
 |  */ | 
 | void verify_cpu_run_el(void) | 
 | { | 
 | 	bool in_el2 = is_kernel_in_hyp_mode(); | 
 | 	bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode(); | 
 |  | 
 | 	if (in_el2 ^ boot_cpu_el2) { | 
 | 		pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n", | 
 | 					smp_processor_id(), | 
 | 					in_el2 ? 2 : 1, | 
 | 					boot_cpu_el2 ? 2 : 1); | 
 | 		cpu_panic_kernel(); | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 | static inline void save_boot_cpu_run_el(void) {} | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | static int op_cpu_kill(unsigned int cpu); | 
 | #else | 
 | static inline int op_cpu_kill(unsigned int cpu) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 |  * Boot a secondary CPU, and assign it the specified idle task. | 
 |  * This also gives us the initial stack to use for this CPU. | 
 |  */ | 
 | static int boot_secondary(unsigned int cpu, struct task_struct *idle) | 
 | { | 
 | 	if (cpu_ops[cpu]->cpu_boot) | 
 | 		return cpu_ops[cpu]->cpu_boot(cpu); | 
 |  | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static DECLARE_COMPLETION(cpu_running); | 
 |  | 
 | int __cpu_up(unsigned int cpu, struct task_struct *idle) | 
 | { | 
 | 	int ret; | 
 | 	long status; | 
 |  | 
 | 	/* | 
 | 	 * We need to tell the secondary core where to find its stack and the | 
 | 	 * page tables. | 
 | 	 */ | 
 | 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; | 
 | 	update_cpu_boot_status(CPU_MMU_OFF); | 
 | 	__flush_dcache_area(&secondary_data, sizeof(secondary_data)); | 
 |  | 
 | 	/* | 
 | 	 * Now bring the CPU into our world. | 
 | 	 */ | 
 | 	ret = boot_secondary(cpu, idle); | 
 | 	if (ret == 0) { | 
 | 		/* | 
 | 		 * CPU was successfully started, wait for it to come online or | 
 | 		 * time out. | 
 | 		 */ | 
 | 		wait_for_completion_timeout(&cpu_running, | 
 | 					    msecs_to_jiffies(1000)); | 
 |  | 
 | 		if (!cpu_online(cpu)) { | 
 | 			pr_crit("CPU%u: failed to come online\n", cpu); | 
 | 			ret = -EIO; | 
 | 		} | 
 | 	} else { | 
 | 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret); | 
 | 	} | 
 |  | 
 | 	secondary_data.stack = NULL; | 
 | 	status = READ_ONCE(secondary_data.status); | 
 | 	if (ret && status) { | 
 |  | 
 | 		if (status == CPU_MMU_OFF) | 
 | 			status = READ_ONCE(__early_cpu_boot_status); | 
 |  | 
 | 		switch (status) { | 
 | 		default: | 
 | 			pr_err("CPU%u: failed in unknown state : 0x%lx\n", | 
 | 					cpu, status); | 
 | 			break; | 
 | 		case CPU_KILL_ME: | 
 | 			if (!op_cpu_kill(cpu)) { | 
 | 				pr_crit("CPU%u: died during early boot\n", cpu); | 
 | 				break; | 
 | 			} | 
 | 			/* Fall through */ | 
 | 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu); | 
 | 		case CPU_STUCK_IN_KERNEL: | 
 | 			pr_crit("CPU%u: is stuck in kernel\n", cpu); | 
 | 			cpus_stuck_in_kernel++; | 
 | 			break; | 
 | 		case CPU_PANIC_KERNEL: | 
 | 			panic("CPU%u detected unsupported configuration\n", cpu); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the secondary CPU boot entry.  We're using this CPUs | 
 |  * idle thread stack, but a set of temporary page tables. | 
 |  */ | 
 | asmlinkage void secondary_start_kernel(void) | 
 | { | 
 | 	struct mm_struct *mm = &init_mm; | 
 | 	unsigned int cpu = smp_processor_id(); | 
 |  | 
 | 	/* | 
 | 	 * All kernel threads share the same mm context; grab a | 
 | 	 * reference and switch to it. | 
 | 	 */ | 
 | 	atomic_inc(&mm->mm_count); | 
 | 	current->active_mm = mm; | 
 |  | 
 | 	set_my_cpu_offset(per_cpu_offset(smp_processor_id())); | 
 |  | 
 | 	/* | 
 | 	 * TTBR0 is only used for the identity mapping at this stage. Make it | 
 | 	 * point to zero page to avoid speculatively fetching new entries. | 
 | 	 */ | 
 | 	cpu_uninstall_idmap(); | 
 |  | 
 | 	preempt_disable(); | 
 | 	trace_hardirqs_off(); | 
 |  | 
 | 	/* | 
 | 	 * If the system has established the capabilities, make sure | 
 | 	 * this CPU ticks all of those. If it doesn't, the CPU will | 
 | 	 * fail to come online. | 
 | 	 */ | 
 | 	check_local_cpu_capabilities(); | 
 |  | 
 | 	if (cpu_ops[cpu]->cpu_postboot) | 
 | 		cpu_ops[cpu]->cpu_postboot(); | 
 |  | 
 | 	/* | 
 | 	 * Log the CPU info before it is marked online and might get read. | 
 | 	 */ | 
 | 	cpuinfo_store_cpu(); | 
 |  | 
 | 	/* | 
 | 	 * Enable GIC and timers. | 
 | 	 */ | 
 | 	notify_cpu_starting(cpu); | 
 |  | 
 | 	store_cpu_topology(cpu); | 
 |  | 
 | 	/* | 
 | 	 * OK, now it's safe to let the boot CPU continue.  Wait for | 
 | 	 * the CPU migration code to notice that the CPU is online | 
 | 	 * before we continue. | 
 | 	 */ | 
 | 	pr_info("CPU%u: Booted secondary processor [%08x]\n", | 
 | 					 cpu, read_cpuid_id()); | 
 | 	update_cpu_boot_status(CPU_BOOT_SUCCESS); | 
 | 	set_cpu_online(cpu, true); | 
 | 	complete(&cpu_running); | 
 |  | 
 | 	local_irq_enable(); | 
 | 	local_async_enable(); | 
 |  | 
 | 	/* | 
 | 	 * OK, it's off to the idle thread for us | 
 | 	 */ | 
 | 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | static int op_cpu_disable(unsigned int cpu) | 
 | { | 
 | 	/* | 
 | 	 * If we don't have a cpu_die method, abort before we reach the point | 
 | 	 * of no return. CPU0 may not have an cpu_ops, so test for it. | 
 | 	 */ | 
 | 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* | 
 | 	 * We may need to abort a hot unplug for some other mechanism-specific | 
 | 	 * reason. | 
 | 	 */ | 
 | 	if (cpu_ops[cpu]->cpu_disable) | 
 | 		return cpu_ops[cpu]->cpu_disable(cpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * __cpu_disable runs on the processor to be shutdown. | 
 |  */ | 
 | int __cpu_disable(void) | 
 | { | 
 | 	unsigned int cpu = smp_processor_id(); | 
 | 	int ret; | 
 |  | 
 | 	ret = op_cpu_disable(cpu); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Take this CPU offline.  Once we clear this, we can't return, | 
 | 	 * and we must not schedule until we're ready to give up the cpu. | 
 | 	 */ | 
 | 	set_cpu_online(cpu, false); | 
 |  | 
 | 	/* | 
 | 	 * OK - migrate IRQs away from this CPU | 
 | 	 */ | 
 | 	irq_migrate_all_off_this_cpu(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int op_cpu_kill(unsigned int cpu) | 
 | { | 
 | 	/* | 
 | 	 * If we have no means of synchronising with the dying CPU, then assume | 
 | 	 * that it is really dead. We can only wait for an arbitrary length of | 
 | 	 * time and hope that it's dead, so let's skip the wait and just hope. | 
 | 	 */ | 
 | 	if (!cpu_ops[cpu]->cpu_kill) | 
 | 		return 0; | 
 |  | 
 | 	return cpu_ops[cpu]->cpu_kill(cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * called on the thread which is asking for a CPU to be shutdown - | 
 |  * waits until shutdown has completed, or it is timed out. | 
 |  */ | 
 | void __cpu_die(unsigned int cpu) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!cpu_wait_death(cpu, 5)) { | 
 | 		pr_crit("CPU%u: cpu didn't die\n", cpu); | 
 | 		return; | 
 | 	} | 
 | 	pr_notice("CPU%u: shutdown\n", cpu); | 
 |  | 
 | 	/* | 
 | 	 * Now that the dying CPU is beyond the point of no return w.r.t. | 
 | 	 * in-kernel synchronisation, try to get the firwmare to help us to | 
 | 	 * verify that it has really left the kernel before we consider | 
 | 	 * clobbering anything it might still be using. | 
 | 	 */ | 
 | 	err = op_cpu_kill(cpu); | 
 | 	if (err) | 
 | 		pr_warn("CPU%d may not have shut down cleanly: %d\n", | 
 | 			cpu, err); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from the idle thread for the CPU which has been shutdown. | 
 |  * | 
 |  * Note that we disable IRQs here, but do not re-enable them | 
 |  * before returning to the caller. This is also the behaviour | 
 |  * of the other hotplug-cpu capable cores, so presumably coming | 
 |  * out of idle fixes this. | 
 |  */ | 
 | void cpu_die(void) | 
 | { | 
 | 	unsigned int cpu = smp_processor_id(); | 
 |  | 
 | 	idle_task_exit(); | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	/* Tell __cpu_die() that this CPU is now safe to dispose of */ | 
 | 	(void)cpu_report_death(); | 
 |  | 
 | 	/* | 
 | 	 * Actually shutdown the CPU. This must never fail. The specific hotplug | 
 | 	 * mechanism must perform all required cache maintenance to ensure that | 
 | 	 * no dirty lines are lost in the process of shutting down the CPU. | 
 | 	 */ | 
 | 	cpu_ops[cpu]->cpu_die(cpu); | 
 |  | 
 | 	BUG(); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Kill the calling secondary CPU, early in bringup before it is turned | 
 |  * online. | 
 |  */ | 
 | void cpu_die_early(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	pr_crit("CPU%d: will not boot\n", cpu); | 
 |  | 
 | 	/* Mark this CPU absent */ | 
 | 	set_cpu_present(cpu, 0); | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	update_cpu_boot_status(CPU_KILL_ME); | 
 | 	/* Check if we can park ourselves */ | 
 | 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) | 
 | 		cpu_ops[cpu]->cpu_die(cpu); | 
 | #endif | 
 | 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL); | 
 |  | 
 | 	cpu_park_loop(); | 
 | } | 
 |  | 
 | static void __init hyp_mode_check(void) | 
 | { | 
 | 	if (is_hyp_mode_available()) | 
 | 		pr_info("CPU: All CPU(s) started at EL2\n"); | 
 | 	else if (is_hyp_mode_mismatched()) | 
 | 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, | 
 | 			   "CPU: CPUs started in inconsistent modes"); | 
 | 	else | 
 | 		pr_info("CPU: All CPU(s) started at EL1\n"); | 
 | } | 
 |  | 
 | void __init smp_cpus_done(unsigned int max_cpus) | 
 | { | 
 | 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); | 
 | 	setup_cpu_features(); | 
 | 	hyp_mode_check(); | 
 | 	apply_alternatives_all(); | 
 | } | 
 |  | 
 | void __init smp_prepare_boot_cpu(void) | 
 | { | 
 | 	set_my_cpu_offset(per_cpu_offset(smp_processor_id())); | 
 | 	/* | 
 | 	 * Initialise the static keys early as they may be enabled by the | 
 | 	 * cpufeature code. | 
 | 	 */ | 
 | 	jump_label_init(); | 
 | 	cpuinfo_store_boot_cpu(); | 
 | 	save_boot_cpu_run_el(); | 
 | 	/* | 
 | 	 * Run the errata work around checks on the boot CPU, once we have | 
 | 	 * initialised the cpu feature infrastructure from | 
 | 	 * cpuinfo_store_boot_cpu() above. | 
 | 	 */ | 
 | 	update_cpu_errata_workarounds(); | 
 | } | 
 |  | 
 | static u64 __init of_get_cpu_mpidr(struct device_node *dn) | 
 | { | 
 | 	const __be32 *cell; | 
 | 	u64 hwid; | 
 |  | 
 | 	/* | 
 | 	 * A cpu node with missing "reg" property is | 
 | 	 * considered invalid to build a cpu_logical_map | 
 | 	 * entry. | 
 | 	 */ | 
 | 	cell = of_get_property(dn, "reg", NULL); | 
 | 	if (!cell) { | 
 | 		pr_err("%s: missing reg property\n", dn->full_name); | 
 | 		return INVALID_HWID; | 
 | 	} | 
 |  | 
 | 	hwid = of_read_number(cell, of_n_addr_cells(dn)); | 
 | 	/* | 
 | 	 * Non affinity bits must be set to 0 in the DT | 
 | 	 */ | 
 | 	if (hwid & ~MPIDR_HWID_BITMASK) { | 
 | 		pr_err("%s: invalid reg property\n", dn->full_name); | 
 | 		return INVALID_HWID; | 
 | 	} | 
 | 	return hwid; | 
 | } | 
 |  | 
 | /* | 
 |  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized | 
 |  * entries and check for duplicates. If any is found just ignore the | 
 |  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid | 
 |  * matching valid MPIDR values. | 
 |  */ | 
 | static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++) | 
 | 		if (cpu_logical_map(i) == hwid) | 
 | 			return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize cpu operations for a logical cpu and | 
 |  * set it in the possible mask on success | 
 |  */ | 
 | static int __init smp_cpu_setup(int cpu) | 
 | { | 
 | 	if (cpu_read_ops(cpu)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (cpu_ops[cpu]->cpu_init(cpu)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	set_cpu_possible(cpu, true); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool bootcpu_valid __initdata; | 
 | static unsigned int cpu_count = 1; | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | /* | 
 |  * acpi_map_gic_cpu_interface - parse processor MADT entry | 
 |  * | 
 |  * Carry out sanity checks on MADT processor entry and initialize | 
 |  * cpu_logical_map on success | 
 |  */ | 
 | static void __init | 
 | acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) | 
 | { | 
 | 	u64 hwid = processor->arm_mpidr; | 
 |  | 
 | 	if (!(processor->flags & ACPI_MADT_ENABLED)) { | 
 | 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { | 
 | 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (is_mpidr_duplicate(cpu_count, hwid)) { | 
 | 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Check if GICC structure of boot CPU is available in the MADT */ | 
 | 	if (cpu_logical_map(0) == hwid) { | 
 | 		if (bootcpu_valid) { | 
 | 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", | 
 | 			       hwid); | 
 | 			return; | 
 | 		} | 
 | 		bootcpu_valid = true; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (cpu_count >= NR_CPUS) | 
 | 		return; | 
 |  | 
 | 	/* map the logical cpu id to cpu MPIDR */ | 
 | 	cpu_logical_map(cpu_count) = hwid; | 
 |  | 
 | 	/* | 
 | 	 * Set-up the ACPI parking protocol cpu entries | 
 | 	 * while initializing the cpu_logical_map to | 
 | 	 * avoid parsing MADT entries multiple times for | 
 | 	 * nothing (ie a valid cpu_logical_map entry should | 
 | 	 * contain a valid parking protocol data set to | 
 | 	 * initialize the cpu if the parking protocol is | 
 | 	 * the only available enable method). | 
 | 	 */ | 
 | 	acpi_set_mailbox_entry(cpu_count, processor); | 
 |  | 
 | 	early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid)); | 
 |  | 
 | 	cpu_count++; | 
 | } | 
 |  | 
 | static int __init | 
 | acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, | 
 | 			     const unsigned long end) | 
 | { | 
 | 	struct acpi_madt_generic_interrupt *processor; | 
 |  | 
 | 	processor = (struct acpi_madt_generic_interrupt *)header; | 
 | 	if (BAD_MADT_GICC_ENTRY(processor, end)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	acpi_table_print_madt_entry(header); | 
 |  | 
 | 	acpi_map_gic_cpu_interface(processor); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | #define acpi_table_parse_madt(...)	do { } while (0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Enumerate the possible CPU set from the device tree and build the | 
 |  * cpu logical map array containing MPIDR values related to logical | 
 |  * cpus. Assumes that cpu_logical_map(0) has already been initialized. | 
 |  */ | 
 | static void __init of_parse_and_init_cpus(void) | 
 | { | 
 | 	struct device_node *dn = NULL; | 
 |  | 
 | 	while ((dn = of_find_node_by_type(dn, "cpu"))) { | 
 | 		u64 hwid = of_get_cpu_mpidr(dn); | 
 |  | 
 | 		if (hwid == INVALID_HWID) | 
 | 			goto next; | 
 |  | 
 | 		if (is_mpidr_duplicate(cpu_count, hwid)) { | 
 | 			pr_err("%s: duplicate cpu reg properties in the DT\n", | 
 | 				dn->full_name); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The numbering scheme requires that the boot CPU | 
 | 		 * must be assigned logical id 0. Record it so that | 
 | 		 * the logical map built from DT is validated and can | 
 | 		 * be used. | 
 | 		 */ | 
 | 		if (hwid == cpu_logical_map(0)) { | 
 | 			if (bootcpu_valid) { | 
 | 				pr_err("%s: duplicate boot cpu reg property in DT\n", | 
 | 					dn->full_name); | 
 | 				goto next; | 
 | 			} | 
 |  | 
 | 			bootcpu_valid = true; | 
 | 			early_map_cpu_to_node(0, of_node_to_nid(dn)); | 
 |  | 
 | 			/* | 
 | 			 * cpu_logical_map has already been | 
 | 			 * initialized and the boot cpu doesn't need | 
 | 			 * the enable-method so continue without | 
 | 			 * incrementing cpu. | 
 | 			 */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (cpu_count >= NR_CPUS) | 
 | 			goto next; | 
 |  | 
 | 		pr_debug("cpu logical map 0x%llx\n", hwid); | 
 | 		cpu_logical_map(cpu_count) = hwid; | 
 |  | 
 | 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); | 
 | next: | 
 | 		cpu_count++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Enumerate the possible CPU set from the device tree or ACPI and build the | 
 |  * cpu logical map array containing MPIDR values related to logical | 
 |  * cpus. Assumes that cpu_logical_map(0) has already been initialized. | 
 |  */ | 
 | void __init smp_init_cpus(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (acpi_disabled) | 
 | 		of_parse_and_init_cpus(); | 
 | 	else | 
 | 		/* | 
 | 		 * do a walk of MADT to determine how many CPUs | 
 | 		 * we have including disabled CPUs, and get information | 
 | 		 * we need for SMP init | 
 | 		 */ | 
 | 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, | 
 | 				      acpi_parse_gic_cpu_interface, 0); | 
 |  | 
 | 	if (cpu_count > nr_cpu_ids) | 
 | 		pr_warn("Number of cores (%d) exceeds configured maximum of %d - clipping\n", | 
 | 			cpu_count, nr_cpu_ids); | 
 |  | 
 | 	if (!bootcpu_valid) { | 
 | 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to set the cpu_logical_map entries before enabling | 
 | 	 * the cpus so that cpu processor description entries (DT cpu nodes | 
 | 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid | 
 | 	 * with entries in cpu_logical_map while initializing the cpus. | 
 | 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry. | 
 | 	 */ | 
 | 	for (i = 1; i < nr_cpu_ids; i++) { | 
 | 		if (cpu_logical_map(i) != INVALID_HWID) { | 
 | 			if (smp_cpu_setup(i)) | 
 | 				cpu_logical_map(i) = INVALID_HWID; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void __init smp_prepare_cpus(unsigned int max_cpus) | 
 | { | 
 | 	int err; | 
 | 	unsigned int cpu; | 
 | 	unsigned int this_cpu; | 
 |  | 
 | 	init_cpu_topology(); | 
 |  | 
 | 	this_cpu = smp_processor_id(); | 
 | 	store_cpu_topology(this_cpu); | 
 | 	numa_store_cpu_info(this_cpu); | 
 |  | 
 | 	/* | 
 | 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set | 
 | 	 * secondary CPUs present. | 
 | 	 */ | 
 | 	if (max_cpus == 0) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Initialise the present map (which describes the set of CPUs | 
 | 	 * actually populated at the present time) and release the | 
 | 	 * secondaries from the bootloader. | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 |  | 
 | 		if (cpu == smp_processor_id()) | 
 | 			continue; | 
 |  | 
 | 		if (!cpu_ops[cpu]) | 
 | 			continue; | 
 |  | 
 | 		err = cpu_ops[cpu]->cpu_prepare(cpu); | 
 | 		if (err) | 
 | 			continue; | 
 |  | 
 | 		set_cpu_present(cpu, true); | 
 | 		numa_store_cpu_info(cpu); | 
 | 	} | 
 | } | 
 |  | 
 | void (*__smp_cross_call)(const struct cpumask *, unsigned int); | 
 |  | 
 | void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) | 
 | { | 
 | 	__smp_cross_call = fn; | 
 | } | 
 |  | 
 | static const char *ipi_types[NR_IPI] __tracepoint_string = { | 
 | #define S(x,s)	[x] = s | 
 | 	S(IPI_RESCHEDULE, "Rescheduling interrupts"), | 
 | 	S(IPI_CALL_FUNC, "Function call interrupts"), | 
 | 	S(IPI_CPU_STOP, "CPU stop interrupts"), | 
 | 	S(IPI_TIMER, "Timer broadcast interrupts"), | 
 | 	S(IPI_IRQ_WORK, "IRQ work interrupts"), | 
 | 	S(IPI_WAKEUP, "CPU wake-up interrupts"), | 
 | }; | 
 |  | 
 | static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) | 
 | { | 
 | 	trace_ipi_raise(target, ipi_types[ipinr]); | 
 | 	__smp_cross_call(target, ipinr); | 
 | } | 
 |  | 
 | void show_ipi_list(struct seq_file *p, int prec) | 
 | { | 
 | 	unsigned int cpu, i; | 
 |  | 
 | 	for (i = 0; i < NR_IPI; i++) { | 
 | 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, | 
 | 			   prec >= 4 ? " " : ""); | 
 | 		for_each_online_cpu(cpu) | 
 | 			seq_printf(p, "%10u ", | 
 | 				   __get_irq_stat(cpu, ipi_irqs[i])); | 
 | 		seq_printf(p, "      %s\n", ipi_types[i]); | 
 | 	} | 
 | } | 
 |  | 
 | u64 smp_irq_stat_cpu(unsigned int cpu) | 
 | { | 
 | 	u64 sum = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NR_IPI; i++) | 
 | 		sum += __get_irq_stat(cpu, ipi_irqs[i]); | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | void arch_send_call_function_ipi_mask(const struct cpumask *mask) | 
 | { | 
 | 	smp_cross_call(mask, IPI_CALL_FUNC); | 
 | } | 
 |  | 
 | void arch_send_call_function_single_ipi(int cpu) | 
 | { | 
 | 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL | 
 | void arch_send_wakeup_ipi_mask(const struct cpumask *mask) | 
 | { | 
 | 	smp_cross_call(mask, IPI_WAKEUP); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_IRQ_WORK | 
 | void arch_irq_work_raise(void) | 
 | { | 
 | 	if (__smp_cross_call) | 
 | 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * ipi_cpu_stop - handle IPI from smp_send_stop() | 
 |  */ | 
 | static void ipi_cpu_stop(unsigned int cpu) | 
 | { | 
 | 	set_cpu_online(cpu, false); | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	while (1) | 
 | 		cpu_relax(); | 
 | } | 
 |  | 
 | /* | 
 |  * Main handler for inter-processor interrupts | 
 |  */ | 
 | void handle_IPI(int ipinr, struct pt_regs *regs) | 
 | { | 
 | 	unsigned int cpu = smp_processor_id(); | 
 | 	struct pt_regs *old_regs = set_irq_regs(regs); | 
 |  | 
 | 	if ((unsigned)ipinr < NR_IPI) { | 
 | 		trace_ipi_entry_rcuidle(ipi_types[ipinr]); | 
 | 		__inc_irq_stat(cpu, ipi_irqs[ipinr]); | 
 | 	} | 
 |  | 
 | 	switch (ipinr) { | 
 | 	case IPI_RESCHEDULE: | 
 | 		scheduler_ipi(); | 
 | 		break; | 
 |  | 
 | 	case IPI_CALL_FUNC: | 
 | 		irq_enter(); | 
 | 		generic_smp_call_function_interrupt(); | 
 | 		irq_exit(); | 
 | 		break; | 
 |  | 
 | 	case IPI_CPU_STOP: | 
 | 		irq_enter(); | 
 | 		ipi_cpu_stop(cpu); | 
 | 		irq_exit(); | 
 | 		break; | 
 |  | 
 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST | 
 | 	case IPI_TIMER: | 
 | 		irq_enter(); | 
 | 		tick_receive_broadcast(); | 
 | 		irq_exit(); | 
 | 		break; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_IRQ_WORK | 
 | 	case IPI_IRQ_WORK: | 
 | 		irq_enter(); | 
 | 		irq_work_run(); | 
 | 		irq_exit(); | 
 | 		break; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL | 
 | 	case IPI_WAKEUP: | 
 | 		WARN_ONCE(!acpi_parking_protocol_valid(cpu), | 
 | 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", | 
 | 			  cpu); | 
 | 		break; | 
 | #endif | 
 |  | 
 | 	default: | 
 | 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if ((unsigned)ipinr < NR_IPI) | 
 | 		trace_ipi_exit_rcuidle(ipi_types[ipinr]); | 
 | 	set_irq_regs(old_regs); | 
 | } | 
 |  | 
 | void smp_send_reschedule(int cpu) | 
 | { | 
 | 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); | 
 | } | 
 |  | 
 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST | 
 | void tick_broadcast(const struct cpumask *mask) | 
 | { | 
 | 	smp_cross_call(mask, IPI_TIMER); | 
 | } | 
 | #endif | 
 |  | 
 | void smp_send_stop(void) | 
 | { | 
 | 	unsigned long timeout; | 
 |  | 
 | 	if (num_online_cpus() > 1) { | 
 | 		cpumask_t mask; | 
 |  | 
 | 		cpumask_copy(&mask, cpu_online_mask); | 
 | 		cpumask_clear_cpu(smp_processor_id(), &mask); | 
 |  | 
 | 		if (system_state == SYSTEM_BOOTING || | 
 | 		    system_state == SYSTEM_RUNNING) | 
 | 			pr_crit("SMP: stopping secondary CPUs\n"); | 
 | 		smp_cross_call(&mask, IPI_CPU_STOP); | 
 | 	} | 
 |  | 
 | 	/* Wait up to one second for other CPUs to stop */ | 
 | 	timeout = USEC_PER_SEC; | 
 | 	while (num_online_cpus() > 1 && timeout--) | 
 | 		udelay(1); | 
 |  | 
 | 	if (num_online_cpus() > 1) | 
 | 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", | 
 | 			   cpumask_pr_args(cpu_online_mask)); | 
 | } | 
 |  | 
 | /* | 
 |  * not supported here | 
 |  */ | 
 | int setup_profiling_timer(unsigned int multiplier) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static bool have_cpu_die(void) | 
 | { | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	int any_cpu = raw_smp_processor_id(); | 
 |  | 
 | 	if (cpu_ops[any_cpu]->cpu_die) | 
 | 		return true; | 
 | #endif | 
 | 	return false; | 
 | } | 
 |  | 
 | bool cpus_are_stuck_in_kernel(void) | 
 | { | 
 | 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); | 
 |  | 
 | 	return !!cpus_stuck_in_kernel || smp_spin_tables; | 
 | } |