| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2017 ATMEL |
| * Copyright 2017 Free Electrons |
| * |
| * Author: Boris Brezillon <boris.brezillon@free-electrons.com> |
| * |
| * Derived from the atmel_nand.c driver which contained the following |
| * copyrights: |
| * |
| * Copyright 2003 Rick Bronson |
| * |
| * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) |
| * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) |
| * |
| * Derived from drivers/mtd/spia.c (removed in v3.8) |
| * Copyright 2000 Steven J. Hill (sjhill@cotw.com) |
| * |
| * |
| * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 |
| * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 |
| * |
| * Derived from Das U-Boot source code |
| * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) |
| * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas |
| * |
| * Add Programmable Multibit ECC support for various AT91 SoC |
| * Copyright 2012 ATMEL, Hong Xu |
| * |
| * Add Nand Flash Controller support for SAMA5 SoC |
| * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) |
| * |
| * A few words about the naming convention in this file. This convention |
| * applies to structure and function names. |
| * |
| * Prefixes: |
| * |
| * - atmel_nand_: all generic structures/functions |
| * - atmel_smc_nand_: all structures/functions specific to the SMC interface |
| * (at91sam9 and avr32 SoCs) |
| * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface |
| * (sama5 SoCs and later) |
| * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block |
| * that is available in the HSMC block |
| * - <soc>_nand_: all SoC specific structures/functions |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/genalloc.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/interrupt.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/mfd/syscon/atmel-matrix.h> |
| #include <linux/mfd/syscon/atmel-smc.h> |
| #include <linux/module.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/iopoll.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| #include <soc/at91/atmel-sfr.h> |
| |
| #include "pmecc.h" |
| |
| #define ATMEL_HSMC_NFC_CFG 0x0 |
| #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) |
| #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) |
| #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) |
| #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) |
| #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) |
| #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) |
| #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) |
| #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) |
| #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) |
| #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) |
| |
| #define ATMEL_HSMC_NFC_CTRL 0x4 |
| #define ATMEL_HSMC_NFC_CTRL_EN BIT(0) |
| #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) |
| |
| #define ATMEL_HSMC_NFC_SR 0x8 |
| #define ATMEL_HSMC_NFC_IER 0xc |
| #define ATMEL_HSMC_NFC_IDR 0x10 |
| #define ATMEL_HSMC_NFC_IMR 0x14 |
| #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) |
| #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) |
| #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) |
| #define ATMEL_HSMC_NFC_SR_BUSY BIT(8) |
| #define ATMEL_HSMC_NFC_SR_WR BIT(11) |
| #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) |
| #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) |
| #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) |
| #define ATMEL_HSMC_NFC_SR_DTOE BIT(20) |
| #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) |
| #define ATMEL_HSMC_NFC_SR_AWB BIT(22) |
| #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) |
| #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ |
| ATMEL_HSMC_NFC_SR_UNDEF | \ |
| ATMEL_HSMC_NFC_SR_AWB | \ |
| ATMEL_HSMC_NFC_SR_NFCASE) |
| #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) |
| |
| #define ATMEL_HSMC_NFC_ADDR 0x18 |
| #define ATMEL_HSMC_NFC_BANK 0x1c |
| |
| #define ATMEL_NFC_MAX_RB_ID 7 |
| |
| #define ATMEL_NFC_SRAM_SIZE 0x2400 |
| |
| #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) |
| #define ATMEL_NFC_VCMD2 BIT(18) |
| #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) |
| #define ATMEL_NFC_CSID(cs) ((cs) << 22) |
| #define ATMEL_NFC_DATAEN BIT(25) |
| #define ATMEL_NFC_NFCWR BIT(26) |
| |
| #define ATMEL_NFC_MAX_ADDR_CYCLES 5 |
| |
| #define ATMEL_NAND_ALE_OFFSET BIT(21) |
| #define ATMEL_NAND_CLE_OFFSET BIT(22) |
| |
| #define DEFAULT_TIMEOUT_MS 1000 |
| #define MIN_DMA_LEN 128 |
| |
| static bool atmel_nand_avoid_dma __read_mostly; |
| |
| MODULE_PARM_DESC(avoiddma, "Avoid using DMA"); |
| module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400); |
| |
| enum atmel_nand_rb_type { |
| ATMEL_NAND_NO_RB, |
| ATMEL_NAND_NATIVE_RB, |
| ATMEL_NAND_GPIO_RB, |
| }; |
| |
| struct atmel_nand_rb { |
| enum atmel_nand_rb_type type; |
| union { |
| struct gpio_desc *gpio; |
| int id; |
| }; |
| }; |
| |
| struct atmel_nand_cs { |
| int id; |
| struct atmel_nand_rb rb; |
| struct gpio_desc *csgpio; |
| struct { |
| void __iomem *virt; |
| dma_addr_t dma; |
| } io; |
| |
| struct atmel_smc_cs_conf smcconf; |
| }; |
| |
| struct atmel_nand { |
| struct list_head node; |
| struct device *dev; |
| struct nand_chip base; |
| struct atmel_nand_cs *activecs; |
| struct atmel_pmecc_user *pmecc; |
| struct gpio_desc *cdgpio; |
| int numcs; |
| struct atmel_nand_cs cs[]; |
| }; |
| |
| static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) |
| { |
| return container_of(chip, struct atmel_nand, base); |
| } |
| |
| enum atmel_nfc_data_xfer { |
| ATMEL_NFC_NO_DATA, |
| ATMEL_NFC_READ_DATA, |
| ATMEL_NFC_WRITE_DATA, |
| }; |
| |
| struct atmel_nfc_op { |
| u8 cs; |
| u8 ncmds; |
| u8 cmds[2]; |
| u8 naddrs; |
| u8 addrs[5]; |
| enum atmel_nfc_data_xfer data; |
| u32 wait; |
| u32 errors; |
| }; |
| |
| struct atmel_nand_controller; |
| struct atmel_nand_controller_caps; |
| |
| struct atmel_nand_controller_ops { |
| int (*probe)(struct platform_device *pdev, |
| const struct atmel_nand_controller_caps *caps); |
| int (*remove)(struct atmel_nand_controller *nc); |
| void (*nand_init)(struct atmel_nand_controller *nc, |
| struct atmel_nand *nand); |
| int (*ecc_init)(struct nand_chip *chip); |
| int (*setup_data_interface)(struct atmel_nand *nand, int csline, |
| const struct nand_data_interface *conf); |
| }; |
| |
| struct atmel_nand_controller_caps { |
| bool has_dma; |
| bool legacy_of_bindings; |
| u32 ale_offs; |
| u32 cle_offs; |
| const char *ebi_csa_regmap_name; |
| const struct atmel_nand_controller_ops *ops; |
| }; |
| |
| struct atmel_nand_controller { |
| struct nand_controller base; |
| const struct atmel_nand_controller_caps *caps; |
| struct device *dev; |
| struct regmap *smc; |
| struct dma_chan *dmac; |
| struct atmel_pmecc *pmecc; |
| struct list_head chips; |
| struct clk *mck; |
| }; |
| |
| static inline struct atmel_nand_controller * |
| to_nand_controller(struct nand_controller *ctl) |
| { |
| return container_of(ctl, struct atmel_nand_controller, base); |
| } |
| |
| struct atmel_smc_nand_ebi_csa_cfg { |
| u32 offs; |
| u32 nfd0_on_d16; |
| }; |
| |
| struct atmel_smc_nand_controller { |
| struct atmel_nand_controller base; |
| struct regmap *ebi_csa_regmap; |
| struct atmel_smc_nand_ebi_csa_cfg *ebi_csa; |
| }; |
| |
| static inline struct atmel_smc_nand_controller * |
| to_smc_nand_controller(struct nand_controller *ctl) |
| { |
| return container_of(to_nand_controller(ctl), |
| struct atmel_smc_nand_controller, base); |
| } |
| |
| struct atmel_hsmc_nand_controller { |
| struct atmel_nand_controller base; |
| struct { |
| struct gen_pool *pool; |
| void __iomem *virt; |
| dma_addr_t dma; |
| } sram; |
| const struct atmel_hsmc_reg_layout *hsmc_layout; |
| struct regmap *io; |
| struct atmel_nfc_op op; |
| struct completion complete; |
| int irq; |
| |
| /* Only used when instantiating from legacy DT bindings. */ |
| struct clk *clk; |
| }; |
| |
| static inline struct atmel_hsmc_nand_controller * |
| to_hsmc_nand_controller(struct nand_controller *ctl) |
| { |
| return container_of(to_nand_controller(ctl), |
| struct atmel_hsmc_nand_controller, base); |
| } |
| |
| static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) |
| { |
| op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; |
| op->wait ^= status & op->wait; |
| |
| return !op->wait || op->errors; |
| } |
| |
| static irqreturn_t atmel_nfc_interrupt(int irq, void *data) |
| { |
| struct atmel_hsmc_nand_controller *nc = data; |
| u32 sr, rcvd; |
| bool done; |
| |
| regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr); |
| |
| rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); |
| done = atmel_nfc_op_done(&nc->op, sr); |
| |
| if (rcvd) |
| regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd); |
| |
| if (done) |
| complete(&nc->complete); |
| |
| return rcvd ? IRQ_HANDLED : IRQ_NONE; |
| } |
| |
| static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, |
| unsigned int timeout_ms) |
| { |
| int ret; |
| |
| if (!timeout_ms) |
| timeout_ms = DEFAULT_TIMEOUT_MS; |
| |
| if (poll) { |
| u32 status; |
| |
| ret = regmap_read_poll_timeout(nc->base.smc, |
| ATMEL_HSMC_NFC_SR, status, |
| atmel_nfc_op_done(&nc->op, |
| status), |
| 0, timeout_ms * 1000); |
| } else { |
| init_completion(&nc->complete); |
| regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER, |
| nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); |
| ret = wait_for_completion_timeout(&nc->complete, |
| msecs_to_jiffies(timeout_ms)); |
| if (!ret) |
| ret = -ETIMEDOUT; |
| else |
| ret = 0; |
| |
| regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); |
| } |
| |
| if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { |
| dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); |
| ret = -ETIMEDOUT; |
| } |
| |
| if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { |
| dev_err(nc->base.dev, "Access to an undefined area\n"); |
| ret = -EIO; |
| } |
| |
| if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { |
| dev_err(nc->base.dev, "Access while busy\n"); |
| ret = -EIO; |
| } |
| |
| if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { |
| dev_err(nc->base.dev, "Wrong access size\n"); |
| ret = -EIO; |
| } |
| |
| return ret; |
| } |
| |
| static void atmel_nand_dma_transfer_finished(void *data) |
| { |
| struct completion *finished = data; |
| |
| complete(finished); |
| } |
| |
| static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc, |
| void *buf, dma_addr_t dev_dma, size_t len, |
| enum dma_data_direction dir) |
| { |
| DECLARE_COMPLETION_ONSTACK(finished); |
| dma_addr_t src_dma, dst_dma, buf_dma; |
| struct dma_async_tx_descriptor *tx; |
| dma_cookie_t cookie; |
| |
| buf_dma = dma_map_single(nc->dev, buf, len, dir); |
| if (dma_mapping_error(nc->dev, dev_dma)) { |
| dev_err(nc->dev, |
| "Failed to prepare a buffer for DMA access\n"); |
| goto err; |
| } |
| |
| if (dir == DMA_FROM_DEVICE) { |
| src_dma = dev_dma; |
| dst_dma = buf_dma; |
| } else { |
| src_dma = buf_dma; |
| dst_dma = dev_dma; |
| } |
| |
| tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len, |
| DMA_CTRL_ACK | DMA_PREP_INTERRUPT); |
| if (!tx) { |
| dev_err(nc->dev, "Failed to prepare DMA memcpy\n"); |
| goto err_unmap; |
| } |
| |
| tx->callback = atmel_nand_dma_transfer_finished; |
| tx->callback_param = &finished; |
| |
| cookie = dmaengine_submit(tx); |
| if (dma_submit_error(cookie)) { |
| dev_err(nc->dev, "Failed to do DMA tx_submit\n"); |
| goto err_unmap; |
| } |
| |
| dma_async_issue_pending(nc->dmac); |
| wait_for_completion(&finished); |
| dma_unmap_single(nc->dev, buf_dma, len, dir); |
| |
| return 0; |
| |
| err_unmap: |
| dma_unmap_single(nc->dev, buf_dma, len, dir); |
| |
| err: |
| dev_dbg(nc->dev, "Fall back to CPU I/O\n"); |
| |
| return -EIO; |
| } |
| |
| static u8 atmel_nand_read_byte(struct nand_chip *chip) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| |
| return ioread8(nand->activecs->io.virt); |
| } |
| |
| static void atmel_nand_write_byte(struct nand_chip *chip, u8 byte) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| |
| if (chip->options & NAND_BUSWIDTH_16) |
| iowrite16(byte | (byte << 8), nand->activecs->io.virt); |
| else |
| iowrite8(byte, nand->activecs->io.virt); |
| } |
| |
| static void atmel_nand_read_buf(struct nand_chip *chip, u8 *buf, int len) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_nand_controller *nc; |
| |
| nc = to_nand_controller(chip->controller); |
| |
| /* |
| * If the controller supports DMA, the buffer address is DMA-able and |
| * len is long enough to make DMA transfers profitable, let's trigger |
| * a DMA transfer. If it fails, fallback to PIO mode. |
| */ |
| if (nc->dmac && virt_addr_valid(buf) && |
| len >= MIN_DMA_LEN && |
| !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len, |
| DMA_FROM_DEVICE)) |
| return; |
| |
| if (chip->options & NAND_BUSWIDTH_16) |
| ioread16_rep(nand->activecs->io.virt, buf, len / 2); |
| else |
| ioread8_rep(nand->activecs->io.virt, buf, len); |
| } |
| |
| static void atmel_nand_write_buf(struct nand_chip *chip, const u8 *buf, int len) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_nand_controller *nc; |
| |
| nc = to_nand_controller(chip->controller); |
| |
| /* |
| * If the controller supports DMA, the buffer address is DMA-able and |
| * len is long enough to make DMA transfers profitable, let's trigger |
| * a DMA transfer. If it fails, fallback to PIO mode. |
| */ |
| if (nc->dmac && virt_addr_valid(buf) && |
| len >= MIN_DMA_LEN && |
| !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma, |
| len, DMA_TO_DEVICE)) |
| return; |
| |
| if (chip->options & NAND_BUSWIDTH_16) |
| iowrite16_rep(nand->activecs->io.virt, buf, len / 2); |
| else |
| iowrite8_rep(nand->activecs->io.virt, buf, len); |
| } |
| |
| static int atmel_nand_dev_ready(struct nand_chip *chip) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| |
| return gpiod_get_value(nand->activecs->rb.gpio); |
| } |
| |
| static void atmel_nand_select_chip(struct nand_chip *chip, int cs) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| |
| if (cs < 0 || cs >= nand->numcs) { |
| nand->activecs = NULL; |
| chip->legacy.dev_ready = NULL; |
| return; |
| } |
| |
| nand->activecs = &nand->cs[cs]; |
| |
| if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB) |
| chip->legacy.dev_ready = atmel_nand_dev_ready; |
| } |
| |
| static int atmel_hsmc_nand_dev_ready(struct nand_chip *chip) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_hsmc_nand_controller *nc; |
| u32 status; |
| |
| nc = to_hsmc_nand_controller(chip->controller); |
| |
| regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status); |
| |
| return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); |
| } |
| |
| static void atmel_hsmc_nand_select_chip(struct nand_chip *chip, int cs) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_hsmc_nand_controller *nc; |
| |
| nc = to_hsmc_nand_controller(chip->controller); |
| |
| atmel_nand_select_chip(chip, cs); |
| |
| if (!nand->activecs) { |
| regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, |
| ATMEL_HSMC_NFC_CTRL_DIS); |
| return; |
| } |
| |
| if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB) |
| chip->legacy.dev_ready = atmel_hsmc_nand_dev_ready; |
| |
| regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, |
| ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | |
| ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | |
| ATMEL_HSMC_NFC_CFG_RSPARE | |
| ATMEL_HSMC_NFC_CFG_WSPARE, |
| ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | |
| ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | |
| ATMEL_HSMC_NFC_CFG_RSPARE); |
| regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, |
| ATMEL_HSMC_NFC_CTRL_EN); |
| } |
| |
| static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) |
| { |
| u8 *addrs = nc->op.addrs; |
| unsigned int op = 0; |
| u32 addr, val; |
| int i, ret; |
| |
| nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; |
| |
| for (i = 0; i < nc->op.ncmds; i++) |
| op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); |
| |
| if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) |
| regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); |
| |
| op |= ATMEL_NFC_CSID(nc->op.cs) | |
| ATMEL_NFC_ACYCLE(nc->op.naddrs); |
| |
| if (nc->op.ncmds > 1) |
| op |= ATMEL_NFC_VCMD2; |
| |
| addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | |
| (addrs[3] << 24); |
| |
| if (nc->op.data != ATMEL_NFC_NO_DATA) { |
| op |= ATMEL_NFC_DATAEN; |
| nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; |
| |
| if (nc->op.data == ATMEL_NFC_WRITE_DATA) |
| op |= ATMEL_NFC_NFCWR; |
| } |
| |
| /* Clear all flags. */ |
| regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); |
| |
| /* Send the command. */ |
| regmap_write(nc->io, op, addr); |
| |
| ret = atmel_nfc_wait(nc, poll, 0); |
| if (ret) |
| dev_err(nc->base.dev, |
| "Failed to send NAND command (err = %d)!", |
| ret); |
| |
| /* Reset the op state. */ |
| memset(&nc->op, 0, sizeof(nc->op)); |
| |
| return ret; |
| } |
| |
| static void atmel_hsmc_nand_cmd_ctrl(struct nand_chip *chip, int dat, |
| unsigned int ctrl) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_hsmc_nand_controller *nc; |
| |
| nc = to_hsmc_nand_controller(chip->controller); |
| |
| if (ctrl & NAND_ALE) { |
| if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) |
| return; |
| |
| nc->op.addrs[nc->op.naddrs++] = dat; |
| } else if (ctrl & NAND_CLE) { |
| if (nc->op.ncmds > 1) |
| return; |
| |
| nc->op.cmds[nc->op.ncmds++] = dat; |
| } |
| |
| if (dat == NAND_CMD_NONE) { |
| nc->op.cs = nand->activecs->id; |
| atmel_nfc_exec_op(nc, true); |
| } |
| } |
| |
| static void atmel_nand_cmd_ctrl(struct nand_chip *chip, int cmd, |
| unsigned int ctrl) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_nand_controller *nc; |
| |
| nc = to_nand_controller(chip->controller); |
| |
| if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) { |
| if (ctrl & NAND_NCE) |
| gpiod_set_value(nand->activecs->csgpio, 0); |
| else |
| gpiod_set_value(nand->activecs->csgpio, 1); |
| } |
| |
| if (ctrl & NAND_ALE) |
| writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs); |
| else if (ctrl & NAND_CLE) |
| writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs); |
| } |
| |
| static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, |
| bool oob_required) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct atmel_hsmc_nand_controller *nc; |
| int ret = -EIO; |
| |
| nc = to_hsmc_nand_controller(chip->controller); |
| |
| if (nc->base.dmac) |
| ret = atmel_nand_dma_transfer(&nc->base, (void *)buf, |
| nc->sram.dma, mtd->writesize, |
| DMA_TO_DEVICE); |
| |
| /* Falling back to CPU copy. */ |
| if (ret) |
| memcpy_toio(nc->sram.virt, buf, mtd->writesize); |
| |
| if (oob_required) |
| memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, |
| mtd->oobsize); |
| } |
| |
| static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, |
| bool oob_required) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct atmel_hsmc_nand_controller *nc; |
| int ret = -EIO; |
| |
| nc = to_hsmc_nand_controller(chip->controller); |
| |
| if (nc->base.dmac) |
| ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma, |
| mtd->writesize, DMA_FROM_DEVICE); |
| |
| /* Falling back to CPU copy. */ |
| if (ret) |
| memcpy_fromio(buf, nc->sram.virt, mtd->writesize); |
| |
| if (oob_required) |
| memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, |
| mtd->oobsize); |
| } |
| |
| static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct atmel_hsmc_nand_controller *nc; |
| |
| nc = to_hsmc_nand_controller(chip->controller); |
| |
| if (column >= 0) { |
| nc->op.addrs[nc->op.naddrs++] = column; |
| |
| /* |
| * 2 address cycles for the column offset on large page NANDs. |
| */ |
| if (mtd->writesize > 512) |
| nc->op.addrs[nc->op.naddrs++] = column >> 8; |
| } |
| |
| if (page >= 0) { |
| nc->op.addrs[nc->op.naddrs++] = page; |
| nc->op.addrs[nc->op.naddrs++] = page >> 8; |
| |
| if (chip->options & NAND_ROW_ADDR_3) |
| nc->op.addrs[nc->op.naddrs++] = page >> 16; |
| } |
| } |
| |
| static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_nand_controller *nc; |
| int ret; |
| |
| nc = to_nand_controller(chip->controller); |
| |
| if (raw) |
| return 0; |
| |
| ret = atmel_pmecc_enable(nand->pmecc, op); |
| if (ret) |
| dev_err(nc->dev, |
| "Failed to enable ECC engine (err = %d)\n", ret); |
| |
| return ret; |
| } |
| |
| static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| |
| if (!raw) |
| atmel_pmecc_disable(nand->pmecc); |
| } |
| |
| static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct atmel_nand_controller *nc; |
| struct mtd_oob_region oobregion; |
| void *eccbuf; |
| int ret, i; |
| |
| nc = to_nand_controller(chip->controller); |
| |
| if (raw) |
| return 0; |
| |
| ret = atmel_pmecc_wait_rdy(nand->pmecc); |
| if (ret) { |
| dev_err(nc->dev, |
| "Failed to transfer NAND page data (err = %d)\n", |
| ret); |
| return ret; |
| } |
| |
| mtd_ooblayout_ecc(mtd, 0, &oobregion); |
| eccbuf = chip->oob_poi + oobregion.offset; |
| |
| for (i = 0; i < chip->ecc.steps; i++) { |
| atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, |
| eccbuf); |
| eccbuf += chip->ecc.bytes; |
| } |
| |
| return 0; |
| } |
| |
| static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, |
| bool raw) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct atmel_nand_controller *nc; |
| struct mtd_oob_region oobregion; |
| int ret, i, max_bitflips = 0; |
| void *databuf, *eccbuf; |
| |
| nc = to_nand_controller(chip->controller); |
| |
| if (raw) |
| return 0; |
| |
| ret = atmel_pmecc_wait_rdy(nand->pmecc); |
| if (ret) { |
| dev_err(nc->dev, |
| "Failed to read NAND page data (err = %d)\n", |
| ret); |
| return ret; |
| } |
| |
| mtd_ooblayout_ecc(mtd, 0, &oobregion); |
| eccbuf = chip->oob_poi + oobregion.offset; |
| databuf = buf; |
| |
| for (i = 0; i < chip->ecc.steps; i++) { |
| ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, |
| eccbuf); |
| if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) |
| ret = nand_check_erased_ecc_chunk(databuf, |
| chip->ecc.size, |
| eccbuf, |
| chip->ecc.bytes, |
| NULL, 0, |
| chip->ecc.strength); |
| |
| if (ret >= 0) { |
| mtd->ecc_stats.corrected += ret; |
| max_bitflips = max(ret, max_bitflips); |
| } else { |
| mtd->ecc_stats.failed++; |
| } |
| |
| databuf += chip->ecc.size; |
| eccbuf += chip->ecc.bytes; |
| } |
| |
| return max_bitflips; |
| } |
| |
| static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, |
| bool oob_required, int page, bool raw) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| int ret; |
| |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| |
| ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); |
| if (ret) |
| return ret; |
| |
| atmel_nand_write_buf(chip, buf, mtd->writesize); |
| |
| ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); |
| if (ret) { |
| atmel_pmecc_disable(nand->pmecc); |
| return ret; |
| } |
| |
| atmel_nand_pmecc_disable(chip, raw); |
| |
| atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize); |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); |
| } |
| |
| static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip, |
| const u8 *buf, int oob_required, |
| int page) |
| { |
| return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); |
| } |
| |
| static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, |
| bool oob_required, int page, bool raw) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| |
| ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); |
| if (ret) |
| return ret; |
| |
| atmel_nand_read_buf(chip, buf, mtd->writesize); |
| atmel_nand_read_buf(chip, chip->oob_poi, mtd->oobsize); |
| |
| ret = atmel_nand_pmecc_correct_data(chip, buf, raw); |
| |
| atmel_nand_pmecc_disable(chip, raw); |
| |
| return ret; |
| } |
| |
| static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); |
| } |
| |
| static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); |
| } |
| |
| static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, |
| const u8 *buf, bool oob_required, |
| int page, bool raw) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_hsmc_nand_controller *nc; |
| int ret, status; |
| |
| nc = to_hsmc_nand_controller(chip->controller); |
| |
| atmel_nfc_copy_to_sram(chip, buf, false); |
| |
| nc->op.cmds[0] = NAND_CMD_SEQIN; |
| nc->op.ncmds = 1; |
| atmel_nfc_set_op_addr(chip, page, 0x0); |
| nc->op.cs = nand->activecs->id; |
| nc->op.data = ATMEL_NFC_WRITE_DATA; |
| |
| ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); |
| if (ret) |
| return ret; |
| |
| ret = atmel_nfc_exec_op(nc, false); |
| if (ret) { |
| atmel_nand_pmecc_disable(chip, raw); |
| dev_err(nc->base.dev, |
| "Failed to transfer NAND page data (err = %d)\n", |
| ret); |
| return ret; |
| } |
| |
| ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); |
| |
| atmel_nand_pmecc_disable(chip, raw); |
| |
| if (ret) |
| return ret; |
| |
| atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize); |
| |
| nc->op.cmds[0] = NAND_CMD_PAGEPROG; |
| nc->op.ncmds = 1; |
| nc->op.cs = nand->activecs->id; |
| ret = atmel_nfc_exec_op(nc, false); |
| if (ret) |
| dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n", |
| ret); |
| |
| status = chip->legacy.waitfunc(chip); |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return ret; |
| } |
| |
| static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip, |
| const u8 *buf, int oob_required, |
| int page) |
| { |
| return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, |
| false); |
| } |
| |
| static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip, |
| const u8 *buf, |
| int oob_required, int page) |
| { |
| return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, |
| true); |
| } |
| |
| static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, |
| bool oob_required, int page, |
| bool raw) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_hsmc_nand_controller *nc; |
| int ret; |
| |
| nc = to_hsmc_nand_controller(chip->controller); |
| |
| /* |
| * Optimized read page accessors only work when the NAND R/B pin is |
| * connected to a native SoC R/B pin. If that's not the case, fallback |
| * to the non-optimized one. |
| */ |
| if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) { |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| |
| return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, |
| raw); |
| } |
| |
| nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; |
| |
| if (mtd->writesize > 512) |
| nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; |
| |
| atmel_nfc_set_op_addr(chip, page, 0x0); |
| nc->op.cs = nand->activecs->id; |
| nc->op.data = ATMEL_NFC_READ_DATA; |
| |
| ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); |
| if (ret) |
| return ret; |
| |
| ret = atmel_nfc_exec_op(nc, false); |
| if (ret) { |
| atmel_nand_pmecc_disable(chip, raw); |
| dev_err(nc->base.dev, |
| "Failed to load NAND page data (err = %d)\n", |
| ret); |
| return ret; |
| } |
| |
| atmel_nfc_copy_from_sram(chip, buf, true); |
| |
| ret = atmel_nand_pmecc_correct_data(chip, buf, raw); |
| |
| atmel_nand_pmecc_disable(chip, raw); |
| |
| return ret; |
| } |
| |
| static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, |
| false); |
| } |
| |
| static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip, |
| u8 *buf, int oob_required, |
| int page) |
| { |
| return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, |
| true); |
| } |
| |
| static int atmel_nand_pmecc_init(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_nand_controller *nc; |
| struct atmel_pmecc_user_req req; |
| |
| nc = to_nand_controller(chip->controller); |
| |
| if (!nc->pmecc) { |
| dev_err(nc->dev, "HW ECC not supported\n"); |
| return -ENOTSUPP; |
| } |
| |
| if (nc->caps->legacy_of_bindings) { |
| u32 val; |
| |
| if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap", |
| &val)) |
| chip->ecc.strength = val; |
| |
| if (!of_property_read_u32(nc->dev->of_node, |
| "atmel,pmecc-sector-size", |
| &val)) |
| chip->ecc.size = val; |
| } |
| |
| if (chip->ecc.options & NAND_ECC_MAXIMIZE) |
| req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; |
| else if (chip->ecc.strength) |
| req.ecc.strength = chip->ecc.strength; |
| else if (chip->base.eccreq.strength) |
| req.ecc.strength = chip->base.eccreq.strength; |
| else |
| req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; |
| |
| if (chip->ecc.size) |
| req.ecc.sectorsize = chip->ecc.size; |
| else if (chip->base.eccreq.step_size) |
| req.ecc.sectorsize = chip->base.eccreq.step_size; |
| else |
| req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; |
| |
| req.pagesize = mtd->writesize; |
| req.oobsize = mtd->oobsize; |
| |
| if (mtd->writesize <= 512) { |
| req.ecc.bytes = 4; |
| req.ecc.ooboffset = 0; |
| } else { |
| req.ecc.bytes = mtd->oobsize - 2; |
| req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; |
| } |
| |
| nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); |
| if (IS_ERR(nand->pmecc)) |
| return PTR_ERR(nand->pmecc); |
| |
| chip->ecc.algo = NAND_ECC_BCH; |
| chip->ecc.size = req.ecc.sectorsize; |
| chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; |
| chip->ecc.strength = req.ecc.strength; |
| |
| chip->options |= NAND_NO_SUBPAGE_WRITE; |
| |
| mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); |
| |
| return 0; |
| } |
| |
| static int atmel_nand_ecc_init(struct nand_chip *chip) |
| { |
| struct atmel_nand_controller *nc; |
| int ret; |
| |
| nc = to_nand_controller(chip->controller); |
| |
| switch (chip->ecc.mode) { |
| case NAND_ECC_NONE: |
| case NAND_ECC_SOFT: |
| /* |
| * Nothing to do, the core will initialize everything for us. |
| */ |
| break; |
| |
| case NAND_ECC_HW: |
| ret = atmel_nand_pmecc_init(chip); |
| if (ret) |
| return ret; |
| |
| chip->ecc.read_page = atmel_nand_pmecc_read_page; |
| chip->ecc.write_page = atmel_nand_pmecc_write_page; |
| chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; |
| chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; |
| break; |
| |
| default: |
| /* Other modes are not supported. */ |
| dev_err(nc->dev, "Unsupported ECC mode: %d\n", |
| chip->ecc.mode); |
| return -ENOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip) |
| { |
| int ret; |
| |
| ret = atmel_nand_ecc_init(chip); |
| if (ret) |
| return ret; |
| |
| if (chip->ecc.mode != NAND_ECC_HW) |
| return 0; |
| |
| /* Adjust the ECC operations for the HSMC IP. */ |
| chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; |
| chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; |
| chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; |
| chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; |
| |
| return 0; |
| } |
| |
| static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, |
| const struct nand_data_interface *conf, |
| struct atmel_smc_cs_conf *smcconf) |
| { |
| u32 ncycles, totalcycles, timeps, mckperiodps; |
| struct atmel_nand_controller *nc; |
| int ret; |
| |
| nc = to_nand_controller(nand->base.controller); |
| |
| /* DDR interface not supported. */ |
| if (conf->type != NAND_SDR_IFACE) |
| return -ENOTSUPP; |
| |
| /* |
| * tRC < 30ns implies EDO mode. This controller does not support this |
| * mode. |
| */ |
| if (conf->timings.sdr.tRC_min < 30000) |
| return -ENOTSUPP; |
| |
| atmel_smc_cs_conf_init(smcconf); |
| |
| mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck); |
| mckperiodps *= 1000; |
| |
| /* |
| * Set write pulse timing. This one is easy to extract: |
| * |
| * NWE_PULSE = tWP |
| */ |
| ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps); |
| totalcycles = ncycles; |
| ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| /* |
| * The write setup timing depends on the operation done on the NAND. |
| * All operations goes through the same data bus, but the operation |
| * type depends on the address we are writing to (ALE/CLE address |
| * lines). |
| * Since we have no way to differentiate the different operations at |
| * the SMC level, we must consider the worst case (the biggest setup |
| * time among all operation types): |
| * |
| * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE |
| */ |
| timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min, |
| conf->timings.sdr.tALS_min); |
| timeps = max(timeps, conf->timings.sdr.tDS_min); |
| ncycles = DIV_ROUND_UP(timeps, mckperiodps); |
| ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0; |
| totalcycles += ncycles; |
| ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| /* |
| * As for the write setup timing, the write hold timing depends on the |
| * operation done on the NAND: |
| * |
| * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH) |
| */ |
| timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min, |
| conf->timings.sdr.tALH_min); |
| timeps = max3(timeps, conf->timings.sdr.tDH_min, |
| conf->timings.sdr.tWH_min); |
| ncycles = DIV_ROUND_UP(timeps, mckperiodps); |
| totalcycles += ncycles; |
| |
| /* |
| * The write cycle timing is directly matching tWC, but is also |
| * dependent on the other timings on the setup and hold timings we |
| * calculated earlier, which gives: |
| * |
| * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD) |
| */ |
| ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps); |
| ncycles = max(totalcycles, ncycles); |
| ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| /* |
| * We don't want the CS line to be toggled between each byte/word |
| * transfer to the NAND. The only way to guarantee that is to have the |
| * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: |
| * |
| * NCS_WR_PULSE = NWE_CYCLE |
| */ |
| ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| /* |
| * As for the write setup timing, the read hold timing depends on the |
| * operation done on the NAND: |
| * |
| * NRD_HOLD = max(tREH, tRHOH) |
| */ |
| timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min); |
| ncycles = DIV_ROUND_UP(timeps, mckperiodps); |
| totalcycles = ncycles; |
| |
| /* |
| * TDF = tRHZ - NRD_HOLD |
| */ |
| ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps); |
| ncycles -= totalcycles; |
| |
| /* |
| * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and |
| * we might end up with a config that does not fit in the TDF field. |
| * Just take the max value in this case and hope that the NAND is more |
| * tolerant than advertised. |
| */ |
| if (ncycles > ATMEL_SMC_MODE_TDF_MAX) |
| ncycles = ATMEL_SMC_MODE_TDF_MAX; |
| else if (ncycles < ATMEL_SMC_MODE_TDF_MIN) |
| ncycles = ATMEL_SMC_MODE_TDF_MIN; |
| |
| smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) | |
| ATMEL_SMC_MODE_TDFMODE_OPTIMIZED; |
| |
| /* |
| * Read pulse timing directly matches tRP: |
| * |
| * NRD_PULSE = tRP |
| */ |
| ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps); |
| totalcycles += ncycles; |
| ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| /* |
| * The write cycle timing is directly matching tWC, but is also |
| * dependent on the setup and hold timings we calculated earlier, |
| * which gives: |
| * |
| * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD) |
| * |
| * NRD_SETUP is always 0. |
| */ |
| ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps); |
| ncycles = max(totalcycles, ncycles); |
| ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| /* |
| * We don't want the CS line to be toggled between each byte/word |
| * transfer from the NAND. The only way to guarantee that is to have |
| * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: |
| * |
| * NCS_RD_PULSE = NRD_CYCLE |
| */ |
| ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| /* Txxx timings are directly matching tXXX ones. */ |
| ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps); |
| ret = atmel_smc_cs_conf_set_timing(smcconf, |
| ATMEL_HSMC_TIMINGS_TCLR_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps); |
| ret = atmel_smc_cs_conf_set_timing(smcconf, |
| ATMEL_HSMC_TIMINGS_TADL_SHIFT, |
| ncycles); |
| /* |
| * Version 4 of the ONFI spec mandates that tADL be at least 400 |
| * nanoseconds, but, depending on the master clock rate, 400 ns may not |
| * fit in the tADL field of the SMC reg. We need to relax the check and |
| * accept the -ERANGE return code. |
| * |
| * Note that previous versions of the ONFI spec had a lower tADL_min |
| * (100 or 200 ns). It's not clear why this timing constraint got |
| * increased but it seems most NANDs are fine with values lower than |
| * 400ns, so we should be safe. |
| */ |
| if (ret && ret != -ERANGE) |
| return ret; |
| |
| ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps); |
| ret = atmel_smc_cs_conf_set_timing(smcconf, |
| ATMEL_HSMC_TIMINGS_TAR_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps); |
| ret = atmel_smc_cs_conf_set_timing(smcconf, |
| ATMEL_HSMC_TIMINGS_TRR_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps); |
| ret = atmel_smc_cs_conf_set_timing(smcconf, |
| ATMEL_HSMC_TIMINGS_TWB_SHIFT, |
| ncycles); |
| if (ret) |
| return ret; |
| |
| /* Attach the CS line to the NFC logic. */ |
| smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL; |
| |
| /* Set the appropriate data bus width. */ |
| if (nand->base.options & NAND_BUSWIDTH_16) |
| smcconf->mode |= ATMEL_SMC_MODE_DBW_16; |
| |
| /* Operate in NRD/NWE READ/WRITEMODE. */ |
| smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD | |
| ATMEL_SMC_MODE_WRITEMODE_NWE; |
| |
| return 0; |
| } |
| |
| static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand, |
| int csline, |
| const struct nand_data_interface *conf) |
| { |
| struct atmel_nand_controller *nc; |
| struct atmel_smc_cs_conf smcconf; |
| struct atmel_nand_cs *cs; |
| int ret; |
| |
| nc = to_nand_controller(nand->base.controller); |
| |
| ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); |
| if (ret) |
| return ret; |
| |
| if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| cs = &nand->cs[csline]; |
| cs->smcconf = smcconf; |
| atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf); |
| |
| return 0; |
| } |
| |
| static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand, |
| int csline, |
| const struct nand_data_interface *conf) |
| { |
| struct atmel_hsmc_nand_controller *nc; |
| struct atmel_smc_cs_conf smcconf; |
| struct atmel_nand_cs *cs; |
| int ret; |
| |
| nc = to_hsmc_nand_controller(nand->base.controller); |
| |
| ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); |
| if (ret) |
| return ret; |
| |
| if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| cs = &nand->cs[csline]; |
| cs->smcconf = smcconf; |
| |
| if (cs->rb.type == ATMEL_NAND_NATIVE_RB) |
| cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id); |
| |
| atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id, |
| &cs->smcconf); |
| |
| return 0; |
| } |
| |
| static int atmel_nand_setup_data_interface(struct nand_chip *chip, int csline, |
| const struct nand_data_interface *conf) |
| { |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct atmel_nand_controller *nc; |
| |
| nc = to_nand_controller(nand->base.controller); |
| |
| if (csline >= nand->numcs || |
| (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY)) |
| return -EINVAL; |
| |
| return nc->caps->ops->setup_data_interface(nand, csline, conf); |
| } |
| |
| static void atmel_nand_init(struct atmel_nand_controller *nc, |
| struct atmel_nand *nand) |
| { |
| struct nand_chip *chip = &nand->base; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| mtd->dev.parent = nc->dev; |
| nand->base.controller = &nc->base; |
| |
| chip->legacy.cmd_ctrl = atmel_nand_cmd_ctrl; |
| chip->legacy.read_byte = atmel_nand_read_byte; |
| chip->legacy.write_byte = atmel_nand_write_byte; |
| chip->legacy.read_buf = atmel_nand_read_buf; |
| chip->legacy.write_buf = atmel_nand_write_buf; |
| chip->legacy.select_chip = atmel_nand_select_chip; |
| |
| if (!nc->mck || !nc->caps->ops->setup_data_interface) |
| chip->options |= NAND_KEEP_TIMINGS; |
| |
| /* Some NANDs require a longer delay than the default one (20us). */ |
| chip->legacy.chip_delay = 40; |
| |
| /* |
| * Use a bounce buffer when the buffer passed by the MTD user is not |
| * suitable for DMA. |
| */ |
| if (nc->dmac) |
| chip->options |= NAND_USE_BOUNCE_BUFFER; |
| |
| /* Default to HW ECC if pmecc is available. */ |
| if (nc->pmecc) |
| chip->ecc.mode = NAND_ECC_HW; |
| } |
| |
| static void atmel_smc_nand_init(struct atmel_nand_controller *nc, |
| struct atmel_nand *nand) |
| { |
| struct nand_chip *chip = &nand->base; |
| struct atmel_smc_nand_controller *smc_nc; |
| int i; |
| |
| atmel_nand_init(nc, nand); |
| |
| smc_nc = to_smc_nand_controller(chip->controller); |
| if (!smc_nc->ebi_csa_regmap) |
| return; |
| |
| /* Attach the CS to the NAND Flash logic. */ |
| for (i = 0; i < nand->numcs; i++) |
| regmap_update_bits(smc_nc->ebi_csa_regmap, |
| smc_nc->ebi_csa->offs, |
| BIT(nand->cs[i].id), BIT(nand->cs[i].id)); |
| |
| if (smc_nc->ebi_csa->nfd0_on_d16) |
| regmap_update_bits(smc_nc->ebi_csa_regmap, |
| smc_nc->ebi_csa->offs, |
| smc_nc->ebi_csa->nfd0_on_d16, |
| smc_nc->ebi_csa->nfd0_on_d16); |
| } |
| |
| static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc, |
| struct atmel_nand *nand) |
| { |
| struct nand_chip *chip = &nand->base; |
| |
| atmel_nand_init(nc, nand); |
| |
| /* Overload some methods for the HSMC controller. */ |
| chip->legacy.cmd_ctrl = atmel_hsmc_nand_cmd_ctrl; |
| chip->legacy.select_chip = atmel_hsmc_nand_select_chip; |
| } |
| |
| static int atmel_nand_controller_remove_nand(struct atmel_nand *nand) |
| { |
| struct nand_chip *chip = &nand->base; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| ret = mtd_device_unregister(mtd); |
| if (ret) |
| return ret; |
| |
| nand_cleanup(chip); |
| list_del(&nand->node); |
| |
| return 0; |
| } |
| |
| static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, |
| struct device_node *np, |
| int reg_cells) |
| { |
| struct atmel_nand *nand; |
| struct gpio_desc *gpio; |
| int numcs, ret, i; |
| |
| numcs = of_property_count_elems_of_size(np, "reg", |
| reg_cells * sizeof(u32)); |
| if (numcs < 1) { |
| dev_err(nc->dev, "Missing or invalid reg property\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL); |
| if (!nand) { |
| dev_err(nc->dev, "Failed to allocate NAND object\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| nand->numcs = numcs; |
| |
| gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0, |
| &np->fwnode, GPIOD_IN, |
| "nand-det"); |
| if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { |
| dev_err(nc->dev, |
| "Failed to get detect gpio (err = %ld)\n", |
| PTR_ERR(gpio)); |
| return ERR_CAST(gpio); |
| } |
| |
| if (!IS_ERR(gpio)) |
| nand->cdgpio = gpio; |
| |
| for (i = 0; i < numcs; i++) { |
| struct resource res; |
| u32 val; |
| |
| ret = of_address_to_resource(np, 0, &res); |
| if (ret) { |
| dev_err(nc->dev, "Invalid reg property (err = %d)\n", |
| ret); |
| return ERR_PTR(ret); |
| } |
| |
| ret = of_property_read_u32_index(np, "reg", i * reg_cells, |
| &val); |
| if (ret) { |
| dev_err(nc->dev, "Invalid reg property (err = %d)\n", |
| ret); |
| return ERR_PTR(ret); |
| } |
| |
| nand->cs[i].id = val; |
| |
| nand->cs[i].io.dma = res.start; |
| nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res); |
| if (IS_ERR(nand->cs[i].io.virt)) |
| return ERR_CAST(nand->cs[i].io.virt); |
| |
| if (!of_property_read_u32(np, "atmel,rb", &val)) { |
| if (val > ATMEL_NFC_MAX_RB_ID) |
| return ERR_PTR(-EINVAL); |
| |
| nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; |
| nand->cs[i].rb.id = val; |
| } else { |
| gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, |
| "rb", i, &np->fwnode, |
| GPIOD_IN, "nand-rb"); |
| if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { |
| dev_err(nc->dev, |
| "Failed to get R/B gpio (err = %ld)\n", |
| PTR_ERR(gpio)); |
| return ERR_CAST(gpio); |
| } |
| |
| if (!IS_ERR(gpio)) { |
| nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; |
| nand->cs[i].rb.gpio = gpio; |
| } |
| } |
| |
| gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs", |
| i, &np->fwnode, |
| GPIOD_OUT_HIGH, |
| "nand-cs"); |
| if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { |
| dev_err(nc->dev, |
| "Failed to get CS gpio (err = %ld)\n", |
| PTR_ERR(gpio)); |
| return ERR_CAST(gpio); |
| } |
| |
| if (!IS_ERR(gpio)) |
| nand->cs[i].csgpio = gpio; |
| } |
| |
| nand_set_flash_node(&nand->base, np); |
| |
| return nand; |
| } |
| |
| static int |
| atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, |
| struct atmel_nand *nand) |
| { |
| struct nand_chip *chip = &nand->base; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| /* No card inserted, skip this NAND. */ |
| if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) { |
| dev_info(nc->dev, "No SmartMedia card inserted.\n"); |
| return 0; |
| } |
| |
| nc->caps->ops->nand_init(nc, nand); |
| |
| ret = nand_scan(chip, nand->numcs); |
| if (ret) { |
| dev_err(nc->dev, "NAND scan failed: %d\n", ret); |
| return ret; |
| } |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| dev_err(nc->dev, "Failed to register mtd device: %d\n", ret); |
| nand_cleanup(chip); |
| return ret; |
| } |
| |
| list_add_tail(&nand->node, &nc->chips); |
| |
| return 0; |
| } |
| |
| static int |
| atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) |
| { |
| struct atmel_nand *nand, *tmp; |
| int ret; |
| |
| list_for_each_entry_safe(nand, tmp, &nc->chips, node) { |
| ret = atmel_nand_controller_remove_nand(nand); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc) |
| { |
| struct device *dev = nc->dev; |
| struct platform_device *pdev = to_platform_device(dev); |
| struct atmel_nand *nand; |
| struct gpio_desc *gpio; |
| struct resource *res; |
| |
| /* |
| * Legacy bindings only allow connecting a single NAND with a unique CS |
| * line to the controller. |
| */ |
| nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs), |
| GFP_KERNEL); |
| if (!nand) |
| return -ENOMEM; |
| |
| nand->numcs = 1; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| nand->cs[0].io.virt = devm_ioremap_resource(dev, res); |
| if (IS_ERR(nand->cs[0].io.virt)) |
| return PTR_ERR(nand->cs[0].io.virt); |
| |
| nand->cs[0].io.dma = res->start; |
| |
| /* |
| * The old driver was hardcoding the CS id to 3 for all sama5 |
| * controllers. Since this id is only meaningful for the sama5 |
| * controller we can safely assign this id to 3 no matter the |
| * controller. |
| * If one wants to connect a NAND to a different CS line, he will |
| * have to use the new bindings. |
| */ |
| nand->cs[0].id = 3; |
| |
| /* R/B GPIO. */ |
| gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN); |
| if (IS_ERR(gpio)) { |
| dev_err(dev, "Failed to get R/B gpio (err = %ld)\n", |
| PTR_ERR(gpio)); |
| return PTR_ERR(gpio); |
| } |
| |
| if (gpio) { |
| nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB; |
| nand->cs[0].rb.gpio = gpio; |
| } |
| |
| /* CS GPIO. */ |
| gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH); |
| if (IS_ERR(gpio)) { |
| dev_err(dev, "Failed to get CS gpio (err = %ld)\n", |
| PTR_ERR(gpio)); |
| return PTR_ERR(gpio); |
| } |
| |
| nand->cs[0].csgpio = gpio; |
| |
| /* Card detect GPIO. */ |
| gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN); |
| if (IS_ERR(gpio)) { |
| dev_err(dev, |
| "Failed to get detect gpio (err = %ld)\n", |
| PTR_ERR(gpio)); |
| return PTR_ERR(gpio); |
| } |
| |
| nand->cdgpio = gpio; |
| |
| nand_set_flash_node(&nand->base, nc->dev->of_node); |
| |
| return atmel_nand_controller_add_nand(nc, nand); |
| } |
| |
| static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) |
| { |
| struct device_node *np, *nand_np; |
| struct device *dev = nc->dev; |
| int ret, reg_cells; |
| u32 val; |
| |
| /* We do not retrieve the SMC syscon when parsing old DTs. */ |
| if (nc->caps->legacy_of_bindings) |
| return atmel_nand_controller_legacy_add_nands(nc); |
| |
| np = dev->of_node; |
| |
| ret = of_property_read_u32(np, "#address-cells", &val); |
| if (ret) { |
| dev_err(dev, "missing #address-cells property\n"); |
| return ret; |
| } |
| |
| reg_cells = val; |
| |
| ret = of_property_read_u32(np, "#size-cells", &val); |
| if (ret) { |
| dev_err(dev, "missing #size-cells property\n"); |
| return ret; |
| } |
| |
| reg_cells += val; |
| |
| for_each_child_of_node(np, nand_np) { |
| struct atmel_nand *nand; |
| |
| nand = atmel_nand_create(nc, nand_np, reg_cells); |
| if (IS_ERR(nand)) { |
| ret = PTR_ERR(nand); |
| goto err; |
| } |
| |
| ret = atmel_nand_controller_add_nand(nc, nand); |
| if (ret) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| atmel_nand_controller_remove_nands(nc); |
| |
| return ret; |
| } |
| |
| static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc) |
| { |
| if (nc->dmac) |
| dma_release_channel(nc->dmac); |
| |
| clk_put(nc->mck); |
| } |
| |
| static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = { |
| .offs = AT91SAM9260_MATRIX_EBICSA, |
| }; |
| |
| static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = { |
| .offs = AT91SAM9261_MATRIX_EBICSA, |
| }; |
| |
| static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = { |
| .offs = AT91SAM9263_MATRIX_EBI0CSA, |
| }; |
| |
| static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = { |
| .offs = AT91SAM9RL_MATRIX_EBICSA, |
| }; |
| |
| static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = { |
| .offs = AT91SAM9G45_MATRIX_EBICSA, |
| }; |
| |
| static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = { |
| .offs = AT91SAM9N12_MATRIX_EBICSA, |
| }; |
| |
| static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = { |
| .offs = AT91SAM9X5_MATRIX_EBICSA, |
| }; |
| |
| static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = { |
| .offs = AT91_SFR_CCFG_EBICSA, |
| .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16, |
| }; |
| |
| static const struct of_device_id atmel_ebi_csa_regmap_of_ids[] = { |
| { |
| .compatible = "atmel,at91sam9260-matrix", |
| .data = &at91sam9260_ebi_csa, |
| }, |
| { |
| .compatible = "atmel,at91sam9261-matrix", |
| .data = &at91sam9261_ebi_csa, |
| }, |
| { |
| .compatible = "atmel,at91sam9263-matrix", |
| .data = &at91sam9263_ebi_csa, |
| }, |
| { |
| .compatible = "atmel,at91sam9rl-matrix", |
| .data = &at91sam9rl_ebi_csa, |
| }, |
| { |
| .compatible = "atmel,at91sam9g45-matrix", |
| .data = &at91sam9g45_ebi_csa, |
| }, |
| { |
| .compatible = "atmel,at91sam9n12-matrix", |
| .data = &at91sam9n12_ebi_csa, |
| }, |
| { |
| .compatible = "atmel,at91sam9x5-matrix", |
| .data = &at91sam9x5_ebi_csa, |
| }, |
| { |
| .compatible = "microchip,sam9x60-sfr", |
| .data = &sam9x60_ebi_csa, |
| }, |
| { /* sentinel */ }, |
| }; |
| |
| static int atmel_nand_attach_chip(struct nand_chip *chip) |
| { |
| struct atmel_nand_controller *nc = to_nand_controller(chip->controller); |
| struct atmel_nand *nand = to_atmel_nand(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| ret = nc->caps->ops->ecc_init(chip); |
| if (ret) |
| return ret; |
| |
| if (nc->caps->legacy_of_bindings || !nc->dev->of_node) { |
| /* |
| * We keep the MTD name unchanged to avoid breaking platforms |
| * where the MTD cmdline parser is used and the bootloader |
| * has not been updated to use the new naming scheme. |
| */ |
| mtd->name = "atmel_nand"; |
| } else if (!mtd->name) { |
| /* |
| * If the new bindings are used and the bootloader has not been |
| * updated to pass a new mtdparts parameter on the cmdline, you |
| * should define the following property in your nand node: |
| * |
| * label = "atmel_nand"; |
| * |
| * This way, mtd->name will be set by the core when |
| * nand_set_flash_node() is called. |
| */ |
| mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL, |
| "%s:nand.%d", dev_name(nc->dev), |
| nand->cs[0].id); |
| if (!mtd->name) { |
| dev_err(nc->dev, "Failed to allocate mtd->name\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops atmel_nand_controller_ops = { |
| .attach_chip = atmel_nand_attach_chip, |
| .setup_data_interface = atmel_nand_setup_data_interface, |
| }; |
| |
| static int atmel_nand_controller_init(struct atmel_nand_controller *nc, |
| struct platform_device *pdev, |
| const struct atmel_nand_controller_caps *caps) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev->of_node; |
| int ret; |
| |
| nand_controller_init(&nc->base); |
| nc->base.ops = &atmel_nand_controller_ops; |
| INIT_LIST_HEAD(&nc->chips); |
| nc->dev = dev; |
| nc->caps = caps; |
| |
| platform_set_drvdata(pdev, nc); |
| |
| nc->pmecc = devm_atmel_pmecc_get(dev); |
| if (IS_ERR(nc->pmecc)) { |
| ret = PTR_ERR(nc->pmecc); |
| if (ret != -EPROBE_DEFER) |
| dev_err(dev, "Could not get PMECC object (err = %d)\n", |
| ret); |
| return ret; |
| } |
| |
| if (nc->caps->has_dma && !atmel_nand_avoid_dma) { |
| dma_cap_mask_t mask; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_MEMCPY, mask); |
| |
| nc->dmac = dma_request_channel(mask, NULL, NULL); |
| if (!nc->dmac) |
| dev_err(nc->dev, "Failed to request DMA channel\n"); |
| } |
| |
| /* We do not retrieve the SMC syscon when parsing old DTs. */ |
| if (nc->caps->legacy_of_bindings) |
| return 0; |
| |
| nc->mck = of_clk_get(dev->parent->of_node, 0); |
| if (IS_ERR(nc->mck)) { |
| dev_err(dev, "Failed to retrieve MCK clk\n"); |
| ret = PTR_ERR(nc->mck); |
| goto out_release_dma; |
| } |
| |
| np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); |
| if (!np) { |
| dev_err(dev, "Missing or invalid atmel,smc property\n"); |
| ret = -EINVAL; |
| goto out_release_dma; |
| } |
| |
| nc->smc = syscon_node_to_regmap(np); |
| of_node_put(np); |
| if (IS_ERR(nc->smc)) { |
| ret = PTR_ERR(nc->smc); |
| dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); |
| goto out_release_dma; |
| } |
| |
| return 0; |
| |
| out_release_dma: |
| if (nc->dmac) |
| dma_release_channel(nc->dmac); |
| |
| return ret; |
| } |
| |
| static int |
| atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) |
| { |
| struct device *dev = nc->base.dev; |
| const struct of_device_id *match; |
| struct device_node *np; |
| int ret; |
| |
| /* We do not retrieve the EBICSA regmap when parsing old DTs. */ |
| if (nc->base.caps->legacy_of_bindings) |
| return 0; |
| |
| np = of_parse_phandle(dev->parent->of_node, |
| nc->base.caps->ebi_csa_regmap_name, 0); |
| if (!np) |
| return 0; |
| |
| match = of_match_node(atmel_ebi_csa_regmap_of_ids, np); |
| if (!match) { |
| of_node_put(np); |
| return 0; |
| } |
| |
| nc->ebi_csa_regmap = syscon_node_to_regmap(np); |
| of_node_put(np); |
| if (IS_ERR(nc->ebi_csa_regmap)) { |
| ret = PTR_ERR(nc->ebi_csa_regmap); |
| dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret); |
| return ret; |
| } |
| |
| nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data; |
| |
| /* |
| * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 |
| * add 4 to ->ebi_csa->offs. |
| */ |
| if (of_device_is_compatible(dev->parent->of_node, |
| "atmel,at91sam9263-ebi1")) |
| nc->ebi_csa->offs += 4; |
| |
| return 0; |
| } |
| |
| static int |
| atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc) |
| { |
| struct regmap_config regmap_conf = { |
| .reg_bits = 32, |
| .val_bits = 32, |
| .reg_stride = 4, |
| }; |
| |
| struct device *dev = nc->base.dev; |
| struct device_node *nand_np, *nfc_np; |
| void __iomem *iomem; |
| struct resource res; |
| int ret; |
| |
| nand_np = dev->of_node; |
| nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc"); |
| if (!nfc_np) { |
| dev_err(dev, "Could not find device node for sama5d3-nfc\n"); |
| return -ENODEV; |
| } |
| |
| nc->clk = of_clk_get(nfc_np, 0); |
| if (IS_ERR(nc->clk)) { |
| ret = PTR_ERR(nc->clk); |
| dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n", |
| ret); |
| goto out; |
| } |
| |
| ret = clk_prepare_enable(nc->clk); |
| if (ret) { |
| dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n", |
| ret); |
| goto out; |
| } |
| |
| nc->irq = of_irq_get(nand_np, 0); |
| if (nc->irq <= 0) { |
| ret = nc->irq ?: -ENXIO; |
| if (ret != -EPROBE_DEFER) |
| dev_err(dev, "Failed to get IRQ number (err = %d)\n", |
| ret); |
| goto out; |
| } |
| |
| ret = of_address_to_resource(nfc_np, 0, &res); |
| if (ret) { |
| dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n", |
| ret); |
| goto out; |
| } |
| |
| iomem = devm_ioremap_resource(dev, &res); |
| if (IS_ERR(iomem)) { |
| ret = PTR_ERR(iomem); |
| goto out; |
| } |
| |
| regmap_conf.name = "nfc-io"; |
| regmap_conf.max_register = resource_size(&res) - 4; |
| nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf); |
| if (IS_ERR(nc->io)) { |
| ret = PTR_ERR(nc->io); |
| dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", |
| ret); |
| goto out; |
| } |
| |
| ret = of_address_to_resource(nfc_np, 1, &res); |
| if (ret) { |
| dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n", |
| ret); |
| goto out; |
| } |
| |
| iomem = devm_ioremap_resource(dev, &res); |
| if (IS_ERR(iomem)) { |
| ret = PTR_ERR(iomem); |
| goto out; |
| } |
| |
| regmap_conf.name = "smc"; |
| regmap_conf.max_register = resource_size(&res) - 4; |
| nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf); |
| if (IS_ERR(nc->base.smc)) { |
| ret = PTR_ERR(nc->base.smc); |
| dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", |
| ret); |
| goto out; |
| } |
| |
| ret = of_address_to_resource(nfc_np, 2, &res); |
| if (ret) { |
| dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n", |
| ret); |
| goto out; |
| } |
| |
| nc->sram.virt = devm_ioremap_resource(dev, &res); |
| if (IS_ERR(nc->sram.virt)) { |
| ret = PTR_ERR(nc->sram.virt); |
| goto out; |
| } |
| |
| nc->sram.dma = res.start; |
| |
| out: |
| of_node_put(nfc_np); |
| |
| return ret; |
| } |
| |
| static int |
| atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) |
| { |
| struct device *dev = nc->base.dev; |
| struct device_node *np; |
| int ret; |
| |
| np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); |
| if (!np) { |
| dev_err(dev, "Missing or invalid atmel,smc property\n"); |
| return -EINVAL; |
| } |
| |
| nc->hsmc_layout = atmel_hsmc_get_reg_layout(np); |
| |
| nc->irq = of_irq_get(np, 0); |
| of_node_put(np); |
| if (nc->irq <= 0) { |
| ret = nc->irq ?: -ENXIO; |
| if (ret != -EPROBE_DEFER) |
| dev_err(dev, "Failed to get IRQ number (err = %d)\n", |
| ret); |
| return ret; |
| } |
| |
| np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0); |
| if (!np) { |
| dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); |
| return -EINVAL; |
| } |
| |
| nc->io = syscon_node_to_regmap(np); |
| of_node_put(np); |
| if (IS_ERR(nc->io)) { |
| ret = PTR_ERR(nc->io); |
| dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret); |
| return ret; |
| } |
| |
| nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node, |
| "atmel,nfc-sram", 0); |
| if (!nc->sram.pool) { |
| dev_err(nc->base.dev, "Missing SRAM\n"); |
| return -ENOMEM; |
| } |
| |
| nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool, |
| ATMEL_NFC_SRAM_SIZE, |
| &nc->sram.dma); |
| if (!nc->sram.virt) { |
| dev_err(nc->base.dev, |
| "Could not allocate memory from the NFC SRAM pool\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) |
| { |
| struct atmel_hsmc_nand_controller *hsmc_nc; |
| int ret; |
| |
| ret = atmel_nand_controller_remove_nands(nc); |
| if (ret) |
| return ret; |
| |
| hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); |
| if (hsmc_nc->sram.pool) |
| gen_pool_free(hsmc_nc->sram.pool, |
| (unsigned long)hsmc_nc->sram.virt, |
| ATMEL_NFC_SRAM_SIZE); |
| |
| if (hsmc_nc->clk) { |
| clk_disable_unprepare(hsmc_nc->clk); |
| clk_put(hsmc_nc->clk); |
| } |
| |
| atmel_nand_controller_cleanup(nc); |
| |
| return 0; |
| } |
| |
| static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev, |
| const struct atmel_nand_controller_caps *caps) |
| { |
| struct device *dev = &pdev->dev; |
| struct atmel_hsmc_nand_controller *nc; |
| int ret; |
| |
| nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); |
| if (!nc) |
| return -ENOMEM; |
| |
| ret = atmel_nand_controller_init(&nc->base, pdev, caps); |
| if (ret) |
| return ret; |
| |
| if (caps->legacy_of_bindings) |
| ret = atmel_hsmc_nand_controller_legacy_init(nc); |
| else |
| ret = atmel_hsmc_nand_controller_init(nc); |
| |
| if (ret) |
| return ret; |
| |
| /* Make sure all irqs are masked before registering our IRQ handler. */ |
| regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); |
| ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt, |
| IRQF_SHARED, "nfc", nc); |
| if (ret) { |
| dev_err(dev, |
| "Could not get register NFC interrupt handler (err = %d)\n", |
| ret); |
| goto err; |
| } |
| |
| /* Initial NFC configuration. */ |
| regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, |
| ATMEL_HSMC_NFC_CFG_DTO_MAX); |
| |
| ret = atmel_nand_controller_add_nands(&nc->base); |
| if (ret) |
| goto err; |
| |
| return 0; |
| |
| err: |
| atmel_hsmc_nand_controller_remove(&nc->base); |
| |
| return ret; |
| } |
| |
| static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { |
| .probe = atmel_hsmc_nand_controller_probe, |
| .remove = atmel_hsmc_nand_controller_remove, |
| .ecc_init = atmel_hsmc_nand_ecc_init, |
| .nand_init = atmel_hsmc_nand_init, |
| .setup_data_interface = atmel_hsmc_nand_setup_data_interface, |
| }; |
| |
| static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { |
| .has_dma = true, |
| .ale_offs = BIT(21), |
| .cle_offs = BIT(22), |
| .ops = &atmel_hsmc_nc_ops, |
| }; |
| |
| /* Only used to parse old bindings. */ |
| static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = { |
| .has_dma = true, |
| .ale_offs = BIT(21), |
| .cle_offs = BIT(22), |
| .ops = &atmel_hsmc_nc_ops, |
| .legacy_of_bindings = true, |
| }; |
| |
| static int atmel_smc_nand_controller_probe(struct platform_device *pdev, |
| const struct atmel_nand_controller_caps *caps) |
| { |
| struct device *dev = &pdev->dev; |
| struct atmel_smc_nand_controller *nc; |
| int ret; |
| |
| nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); |
| if (!nc) |
| return -ENOMEM; |
| |
| ret = atmel_nand_controller_init(&nc->base, pdev, caps); |
| if (ret) |
| return ret; |
| |
| ret = atmel_smc_nand_controller_init(nc); |
| if (ret) |
| return ret; |
| |
| return atmel_nand_controller_add_nands(&nc->base); |
| } |
| |
| static int |
| atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) |
| { |
| int ret; |
| |
| ret = atmel_nand_controller_remove_nands(nc); |
| if (ret) |
| return ret; |
| |
| atmel_nand_controller_cleanup(nc); |
| |
| return 0; |
| } |
| |
| /* |
| * The SMC reg layout of at91rm9200 is completely different which prevents us |
| * from re-using atmel_smc_nand_setup_data_interface() for the |
| * ->setup_data_interface() hook. |
| * At this point, there's no support for the at91rm9200 SMC IP, so we leave |
| * ->setup_data_interface() unassigned. |
| */ |
| static const struct atmel_nand_controller_ops at91rm9200_nc_ops = { |
| .probe = atmel_smc_nand_controller_probe, |
| .remove = atmel_smc_nand_controller_remove, |
| .ecc_init = atmel_nand_ecc_init, |
| .nand_init = atmel_smc_nand_init, |
| }; |
| |
| static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { |
| .ale_offs = BIT(21), |
| .cle_offs = BIT(22), |
| .ebi_csa_regmap_name = "atmel,matrix", |
| .ops = &at91rm9200_nc_ops, |
| }; |
| |
| static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { |
| .probe = atmel_smc_nand_controller_probe, |
| .remove = atmel_smc_nand_controller_remove, |
| .ecc_init = atmel_nand_ecc_init, |
| .nand_init = atmel_smc_nand_init, |
| .setup_data_interface = atmel_smc_nand_setup_data_interface, |
| }; |
| |
| static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = { |
| .ale_offs = BIT(21), |
| .cle_offs = BIT(22), |
| .ebi_csa_regmap_name = "atmel,matrix", |
| .ops = &atmel_smc_nc_ops, |
| }; |
| |
| static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { |
| .ale_offs = BIT(22), |
| .cle_offs = BIT(21), |
| .ebi_csa_regmap_name = "atmel,matrix", |
| .ops = &atmel_smc_nc_ops, |
| }; |
| |
| static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { |
| .has_dma = true, |
| .ale_offs = BIT(21), |
| .cle_offs = BIT(22), |
| .ebi_csa_regmap_name = "atmel,matrix", |
| .ops = &atmel_smc_nc_ops, |
| }; |
| |
| static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = { |
| .has_dma = true, |
| .ale_offs = BIT(21), |
| .cle_offs = BIT(22), |
| .ebi_csa_regmap_name = "microchip,sfr", |
| .ops = &atmel_smc_nc_ops, |
| }; |
| |
| /* Only used to parse old bindings. */ |
| static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { |
| .ale_offs = BIT(21), |
| .cle_offs = BIT(22), |
| .ops = &atmel_smc_nc_ops, |
| .legacy_of_bindings = true, |
| }; |
| |
| static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = { |
| .ale_offs = BIT(22), |
| .cle_offs = BIT(21), |
| .ops = &atmel_smc_nc_ops, |
| .legacy_of_bindings = true, |
| }; |
| |
| static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = { |
| .has_dma = true, |
| .ale_offs = BIT(21), |
| .cle_offs = BIT(22), |
| .ops = &atmel_smc_nc_ops, |
| .legacy_of_bindings = true, |
| }; |
| |
| static const struct of_device_id atmel_nand_controller_of_ids[] = { |
| { |
| .compatible = "atmel,at91rm9200-nand-controller", |
| .data = &atmel_rm9200_nc_caps, |
| }, |
| { |
| .compatible = "atmel,at91sam9260-nand-controller", |
| .data = &atmel_sam9260_nc_caps, |
| }, |
| { |
| .compatible = "atmel,at91sam9261-nand-controller", |
| .data = &atmel_sam9261_nc_caps, |
| }, |
| { |
| .compatible = "atmel,at91sam9g45-nand-controller", |
| .data = &atmel_sam9g45_nc_caps, |
| }, |
| { |
| .compatible = "atmel,sama5d3-nand-controller", |
| .data = &atmel_sama5_nc_caps, |
| }, |
| { |
| .compatible = "microchip,sam9x60-nand-controller", |
| .data = µchip_sam9x60_nc_caps, |
| }, |
| /* Support for old/deprecated bindings: */ |
| { |
| .compatible = "atmel,at91rm9200-nand", |
| .data = &atmel_rm9200_nand_caps, |
| }, |
| { |
| .compatible = "atmel,sama5d4-nand", |
| .data = &atmel_rm9200_nand_caps, |
| }, |
| { |
| .compatible = "atmel,sama5d2-nand", |
| .data = &atmel_rm9200_nand_caps, |
| }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids); |
| |
| static int atmel_nand_controller_probe(struct platform_device *pdev) |
| { |
| const struct atmel_nand_controller_caps *caps; |
| |
| if (pdev->id_entry) |
| caps = (void *)pdev->id_entry->driver_data; |
| else |
| caps = of_device_get_match_data(&pdev->dev); |
| |
| if (!caps) { |
| dev_err(&pdev->dev, "Could not retrieve NFC caps\n"); |
| return -EINVAL; |
| } |
| |
| if (caps->legacy_of_bindings) { |
| struct device_node *nfc_node; |
| u32 ale_offs = 21; |
| |
| /* |
| * If we are parsing legacy DT props and the DT contains a |
| * valid NFC node, forward the request to the sama5 logic. |
| */ |
| nfc_node = of_get_compatible_child(pdev->dev.of_node, |
| "atmel,sama5d3-nfc"); |
| if (nfc_node) { |
| caps = &atmel_sama5_nand_caps; |
| of_node_put(nfc_node); |
| } |
| |
| /* |
| * Even if the compatible says we are dealing with an |
| * at91rm9200 controller, the atmel,nand-has-dma specify that |
| * this controller supports DMA, which means we are in fact |
| * dealing with an at91sam9g45+ controller. |
| */ |
| if (!caps->has_dma && |
| of_property_read_bool(pdev->dev.of_node, |
| "atmel,nand-has-dma")) |
| caps = &atmel_sam9g45_nand_caps; |
| |
| /* |
| * All SoCs except the at91sam9261 are assigning ALE to A21 and |
| * CLE to A22. If atmel,nand-addr-offset != 21 this means we're |
| * actually dealing with an at91sam9261 controller. |
| */ |
| of_property_read_u32(pdev->dev.of_node, |
| "atmel,nand-addr-offset", &ale_offs); |
| if (ale_offs != 21) |
| caps = &atmel_sam9261_nand_caps; |
| } |
| |
| return caps->ops->probe(pdev, caps); |
| } |
| |
| static int atmel_nand_controller_remove(struct platform_device *pdev) |
| { |
| struct atmel_nand_controller *nc = platform_get_drvdata(pdev); |
| |
| return nc->caps->ops->remove(nc); |
| } |
| |
| static __maybe_unused int atmel_nand_controller_resume(struct device *dev) |
| { |
| struct atmel_nand_controller *nc = dev_get_drvdata(dev); |
| struct atmel_nand *nand; |
| |
| if (nc->pmecc) |
| atmel_pmecc_reset(nc->pmecc); |
| |
| list_for_each_entry(nand, &nc->chips, node) { |
| int i; |
| |
| for (i = 0; i < nand->numcs; i++) |
| nand_reset(&nand->base, i); |
| } |
| |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL, |
| atmel_nand_controller_resume); |
| |
| static struct platform_driver atmel_nand_controller_driver = { |
| .driver = { |
| .name = "atmel-nand-controller", |
| .of_match_table = of_match_ptr(atmel_nand_controller_of_ids), |
| .pm = &atmel_nand_controller_pm_ops, |
| }, |
| .probe = atmel_nand_controller_probe, |
| .remove = atmel_nand_controller_remove, |
| }; |
| module_platform_driver(atmel_nand_controller_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); |
| MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs"); |
| MODULE_ALIAS("platform:atmel-nand-controller"); |